
Point Cloud Interaction and Manipulation in Virtual Reality
Daniel Garrido

Department of Informatics
Engineering, University of Porto
Portugalup201403060@fe.up.pt

Rui Rodrigues
Department of Informatics

Engineering, University of Porto
Portugalruirodrig@fe.up.pt

Augusto Sousa
Department of Informatics

Engineering, University of Porto
Portugalaas@fe.up.pt

João Jacob
Department of Informatics

Engineering, University of Porto
Portugaljoajac@fe.up.pt

Daniel Castro Silva
Department of Informatics

Engineering, University of Porto
Portugaldcs@fe.up.pt

ABSTRACT
The use of virtual reality technologies for data visualization and
analysis has been an emerging topic of research in the past years.
However, one type of data has been left neglected, the point cloud.
While some strides have beenmade in the visualization and analysis
of point clouds in immersive environments, these have yet to be
used for direct manipulation interactions. It is hypothesized that
as with other types of data, bringing direct interactions and 3D
visualization to point clouds may increase the ease of performing
basic handling tasks. An immersive application for virtual reality
HMDs was developed in Unity to help research this hypothesis. It is
capable of parsing classified point cloud files with extracted objects
and representing them in a virtual environment. Several editing
tools were also developed, designed with the HMD controllers in
mind. The end result allows the user to perform basic transformative
tasks to the point cloud with an ease of use and intuitive feeling
unmatched by the traditional desktop-based tools.

CCS CONCEPTS
• Computing methodologies; • Computer graphics; • Shape
modeling; • Human-centered computing; • Human com-
puter interaction (HCI); • Interaction paradigms; • Virtual
reality;

KEYWORDS
Virtual Reality, Interaction, Point Cloud, Point Cloud Classification,
Object Extraction, Unity, Geometry Shader

ACM Reference Format:
Daniel Garrido, Rui Rodrigues, Augusto Sousa, João Jacob, and Daniel Castro
Silva. 2021. Point Cloud Interaction and Manipulation in Virtual Reality. In
2021 5th International Conference on Artificial Intelligence and Virtual Reality
(AIVR) (AIVR 2021), July 23–25, 2021, Kumamoto, Japan. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3480433.3480437

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
AIVR 2021, July 23–25, 2021, Kumamoto, Japan
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8414-8/21/07.
https://doi.org/10.1145/3480433.3480437

1 INTRODUCTION
The use of Virtual Reality (VR) technologies for data visualization
and analysis is a research topic that dates to the beginning of the
millennium, when Cave Automatic Virtual Environment (CAVE)
systems started being used by many research laboratories [1, 10].
More recently, with the emergence of the new generation Head
Mounted Display (HMD) VR technology, the research in this area
has shifted to this type of systems [3, 8].

Alongside various other types of data, point clouds have been
represented in immersive environments in this HMD focused era of
virtual reality. At their most basic level. point clouds are "data struc-
tures used to represent a collection of multidimensional points" [14].
Most often, data points are represented with the usual 3 dimensions
(XYZ) and additional information such as color, vectors (normal,
velocity), scalar fields (temperature, height) and class [9, 14].

The state of the art on immersive point clouds shows that some
strides have been accomplished in the interactive visualization
department, while direct manipulation of the point dataset is cu-
riously missing, aside from classification tasks. This mimics the
current developments on Immersive Analytics in general, where
most work being done is concerning interactive visualization and
not manipulation.

This is the direction in which the present work attempts to aim.
Immersive modeling of 3D objects in VR has been documented to
have advantages over traditional modelling tools such as improve
user creativity [4], input intuitiveness [4, 15] and visualization
clarity [15].

The goal of this work is to research the usefulness of adapting
typical point cloud manipulation tasks in immersive environments.
This was achieved by implementing a framework for point cloud
manipulation in VR using modern 6DoF HMDs and input con-
trollers which serve as a base to implement various interaction
tools. Three interaction tools were developed: selection/deselection
of points; translation/rotation of selected points; and classification
of selected points.

In the end, the developed solution proved to be functional for
modifying the point cloud structure and further classify it. The
use of geometry shaders and 3D stereoscopic vision was beneficial
to distinguish points and their closeness to the user, while using
one’s hands to directly "touch" the points was very intuitive and
increased ease of use, in relation to common, desktop-based, point
cloud editing tools.

15

https://doi.org/10.1145/3480433.3480437
https://doi.org/10.1145/3480433.3480437
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3480433.3480437&domain=pdf&date_stamp=2021-11-08


AIVR 2021, July 23–25, 2021, Kumamoto, Japan Daniel Garrido et al.

The remainder of this document echoes the following structure.
In Section 2 (State of the Art) a literature review search and analysis
of related works is conducted. Section 3 (Methodology) documents
the approach of the solution, including the data and tools used,
and its architecture. In Section 4 (Implementation), the details for
the implementation following the proposed solution can be found.
Section 5 (Results and Discussion) presents the advantages and
disadvantages of the implemented solution and how the user tests
should be conducted. Finally, Section 6 (Conclusion and Future
Work) ends the article with a conclusion of the developed work and
ideas for future improvements.

2 STATE OF THE ART
This section presents a literature review of the current related
work in this field. It starts with a quick overview on the search
methodology, followed by a description of the relevant publications
and finishes with a comparisons and conclusions segment.

2.1 Methodology
To adequately acquire a picture of the current state of the art in
point cloud manipulation in virtual reality environments, a sys-
tematic literature review was performed with the intent of finding
most of the performed scientific work in this area. First, a set of
searchable terms were gathered that specifically pointed to the
topic being researched, which were then plugged into the most
popular databases and search engines (Scopus, Web of Science and
Google Scholar). The chosen terms were:

• "virtual reality" OR vr
• point* NEAR cloud*

This produced hundreds of results, most of which were not
directly relevant to the research topic. To cut out the unwanted
results, two criteria were composed:

1. Point cloud visualization must be immersive.
2. Some type of interaction or manipulation must happen in

the immersive environment.

After applying these restrictions, the number of pieces of litera-
ture was reduced to only five, but in a niche area of research such
as this one, that was expected.

2.2 Reviewed Literature
Despite being a short selection, the gathered literature review pro-
vides very interesting insights into the world of interactive point
clouds in VR. The first two examples share a lot of similarities, as
they focus on the visualization of LIDAR data of buildings.

The first one presents an open-source platform for visualizing
classified point clouds built on top of Unity. The visualization sys-
tem uses several optimization techniques, as simply rendering all
points of a point cloud (which can be composed of billions of points)
is not feasible. Their approach utilizes a modified octree to partition
the point cloud based on the points position and class. This approach
later allows the rendering engine to selectively and dynamically
load and display only the points that are currently visible to the
user. To help with the perception of depth a custom shader was
developed that simulates shadows. In terms of interaction features,

the user can select and deselect which classes should be visible
through a custom GUI interactable via a ray casted pointer [5].

The other one also incorporates rendering optimizations and
increases the interactivity of the user with the point cloud. The
rendering engine was developed with openGL, GLSL and OpenVR.
It incorporates several optimizations to reduce the number of ren-
dered points such as view frustum and detail culling, and early
fragment test for the cases not covered by the previous two. On top
of this custom rendering engine, the authors present useful interac-
tion features.: aside the basic manipulations of translating, scaling
and rotating the point cloud, the user has a virtual measuring tape
and surface area calculators at his disposal [13].

In a more practical application case, the next example uses point
clouds generated from photogrammetry reconstruction of aerial
pictures taken from a UAV of patches of forests. Their goal was to
create an explorable immersive environment where the user could
investigate and analyze the structure of the forest and individual
trees. To aid in these tasks, the user has access to a virtual tape
measure, similar to the one from the previous work, and each tree
can be individually selected, displaying relevant information [6].

The last two examples are the only literature works found that
incorporate direct interaction with the point cloud in an immersive
environment. They both focus on the selection and annotation of
points (which can also be referred as labeling or classification), usu-
ally to later train classification models. The first one uses the then
novel Leap Motion to enable the user to use his hands and fingers
as input. The tip of the index finger selects and deselects points
to then label. Additionally, two hand gestures enabled translation,
rotation and scaling of the point cloud itself. Since this solution
was meant to be used while sitting in a desk, large point clouds can
become cumbersome [7].

The other one introduces the labeling of animated point cloud
data to immersive environments. The annotation is made through
a virtual painting brush, similar to the previously mentioned ap-
proach. The innovation is the tracking of already labeled objects
through time, meaning that after labeling the first frame of the
animation, only touch-ups are required in the following frames,
drastically reducing classification times [12].

2.3 Comparison and Conclusions
In terms of direct comparisons, only the first two have performance
test data for direct comparison. The solution from Thiel et al. was
able to maintain a steady 90 frames per second while displaying a
point cloud of 11.6 million points [13], while the one by Kharroubi
et al. averaged about 50 frames per second for 10 million points [5].
This could be due to the different performance enhancing features
both systems present or, on a more basic level, the difference be-
tween the platforms in which they were built upon (Unity3D vs
OpenGL + GLSL).

Regarding the interactions employed by each, they have their
similarities and differences. All except one [7] allows the user to
move freely in the environment, either physically or by teleporting.

Interactions with the point cloud seem to be related to the intent
of the explored solutions. For the ones focusing on the exploration
of the point cloud, informative tools like virtual measuring tapes

16



Point Cloud Interaction and Manipulation in Virtual Reality AIVR 2021, July 23–25, 2021, Kumamoto, Japan

[6, 13] and GUIs to select which classes to visualize [5] or with
information about the point cloud objects [6] were used.

The one thing that wasn’t observed in the examples mentioned is
the direct manipulation of points in the point cloud. Most desktop-
based point cloud visualization and editing tools grant the user the
ability to modify and make adjustments to the cloud structure and
even the scalar variables associated with each point.

3 METHODOLOGY
This chapter details the approach taken in the development of
the solution. It starts with a description of the proposed solution,
followed by a description of the point cloud and software used, and
ending with an explanation of the solution architecture.

3.1 Proposed Solution
To achieve the proposed goal of recreating common point cloud
editing tools in an immersive environment, a new VR application
will be created, specifically designed for interacting with point
clouds. Unity will be used as a development base, as it integrates
easily with most VR SDKs, and several open-source utilities for VR
and point clouds are readily available.

Not all point clouds are alike with some being more complex
than others. The point cloud data used in the work of Kharroubi et
al. [5] includes the classification of the point, and to which object it
belongs. With this in mind, it was decided that the solution would
work with the PLY file type, which can be used for all kinds of 3D
objects and allows the definition of additional scalar variables in its
header. By designing our application to support classes and objects
from the start, it can cover more use cases.

The development of the solution will split in two main parts:
loading the PLY file in Unity and render the point cloud; and im-
plement the interaction features. For part one, each object will be
represented by an individual Unity GameObject, which has a limit
of 65,000 mesh vertices. This means special care needs to be given
to cases where an object exceeds that number of points.

For part two, the interactions to be implemented are as follows:
select / deselect points, translate selected points, rotate selected
points and classify selected points. Translating and rotating selected
points of a point cloud is currently a novelty in immersive environ-
ments, while selecting / deselecting and classifying will follow a
similar approach to the work of Stets et al. [12].

3.2 Point Cloud Data
For testing purposes, it was necessary to source a point cloud
dataset. Since the presented solution was designed to work with
classified point clouds with extracted objects, a suiting point cloud
was needed. Currently, a popular use for classified point clouds is
to train models to be used in self driving cars with LiDAR scanners.

A quick search returned several point clouds already classified
of street scenes for this purpose. One of which was the Paris-Lille-
3D dataset [11] which was encoded in the desired PLY file format,
and already segmented in 6 classes: undefined, ground, building,
car, post and vegetation. The “Mini Lille” point cloud, containing
approximately 2 million points, was used. Object identification will
have to be done separately, but it can be easily done in common
point cloud editing software.

3.3 Used Tools and Software
For preparing the point cloud to be used in the proposed application,
two free software were used for different tasks. CloudCompare
is a "3D point cloud (and triangular mesh) processing software"
(https://www.danielgm.net/cc/) that includes many point cloud
processing, analysis, segmentation and reconstruction tools and
algorithms. It was used to extract individual objects from the chosen
dataset.

Meshlab is "the open-source system for processing and editing
3D triangular meshes." (https://www.meshlab.net/). It has similar
functionalities to CloudCompare, but focuses more on algorithms
for cleaning, reconstructing and texturing meshes. It is also possible
to run Meshlab through the command line, feature that was used to
create meshes from the point cloud objects extracted in CloudCom-
pare for better visualization when in an immersive environment.

As mentioned before, Unity was used as the basis for the solution
implementation. On top of that, the SteamVR Unity plugin (https:
//github.com/ValveSoftware/steamvr_unity_plugin) was used to
increase the compatibility with most HMD system on the market.
The free-to-use VRTK (VR ToolKit) (https://vrtoolkit.readme.io/)
was also used to handle the basics of the interactions.

3.4 Solution Architecture
The proposed solution includes several steps and additional exter-
nal modules, which work together to create the final immersive
application. Its structure can be visualized in Fig. 1

In summary, and in order, a classified point cloud file (PLY format)
is transformed in CloudCompare to extract the individual objects
of each class. This new PLY file is read in Unity by a custom PLY file
Parser capable of reading the class and object attributes. Each object
point cloud is then processed externally in Meshlab to retrieve a
mesh that represents that object. After all objects are ready, the
immersive application loop starts. The point cloud is rendered and
shown to the immersed user through SteamVR. The user inputs are
then captured with help from VRTK and the point cloud is modified
according to the user actions. The loop is then closed by rendering
and showing the altered point cloud to the user.

4 IMPLEMENTATION
In the wake of the above outlined methodology, this section de-
scribes the implementation process, including how the point cloud
data was prepared, imported into Unity, and describing the interac-
tion tools.

4.1 Preparing Point Cloud Data
As mentioned in the previous section, the first step is preparing the
data for use in the application. This was achieved in CloudCompare,
using its Label Connected Components tool. It forms groups of points
given a certain minimum distance. This worked perfectly on the
buildings, cars and posts, while on vegetation it is unclear, as it is
difficult to differentiate between distinct bushes, for instance. This
segmentation was then saved in a new PLY file, now including an
object variable for each point, in the form of an integer. It is saved
in ASCII format, which will be substantially easier to parse further
ahead, when compared to the original binary format.

17

https://www.danielgm.net/cc/
https://www.meshlab.net/)
https://github.com/ValveSoftware/steamvr_unity_plugin
https://github.com/ValveSoftware/steamvr_unity_plugin
https://vrtoolkit.readme.io/


AIVR 2021, July 23–25, 2021, Kumamoto, Japan Daniel Garrido et al.

Figure 1: Proposed solution architecture, with the different components and their integration.

4.2 Importing the Point Cloud to Unity
The next step is importing the point cloud to Unity and achieving
a visible and interactable point cloud. This step is divided in three
phases: parsing the PLY file; creating the object polygon mesh; and
rendering the point cloud.

4.2.1 Parsing the PLY File. Before implementing a parser from
scratch, a search was conducted on the Unity asset store for po-
tential implementations of PLY file readers. The closest tool to
the requirements was the “Point Cloud Free Viewer” by Gerard
Llorach (https://github.com/gerardllorach/Unity-Point-Cloud-Free-
Viewer), that uses the .OFF file type as input, which shares some
similarities with the PLY format.

A PLY file parser was then created, following the structure of
Llorach’s implementation. This included dividing the point cloud
while making sure that each vertex mesh did not surpass 65.000
points, as Unity would then ignore the excess. Each object’s points
were stored in one or moreMesh Filters, under the sameGameObject.

4.2.2 Creating Object Polygon Mesh. One difficulty of working
with point clouds in general, but specially in immersive environ-
ments, is the difficult perception of what the points represent. To
help combat this, a surface mesh of the objects captured in the point
cloud was created. To avoid implementing this directly in Unity,
the specialized tool MeshLab was used.

The MeshLab command line tool, MeshLab Server, was used for
ease of integration. The instructions to be followed by MeshLab
are detailed in a custom MLX script. The commands in the script
are as follows: first the normal vector for each point is calculated;
followed by the use of the Ball Pivoting Algorithm [2] to create the
mesh, which despite being 20 years old, still produces good results
and is fast.

To run the MLX script, the point cloud is first saved in a tempo-
rary file and an external process is executed. Upon finishing the
script, a new PLY file is created with the object’s polygonmesh. This
is also parsed in Unity, and the new mesh is added to the object’s
GameObject. As this process is very time consuming, it only needs
to be executed once per point cloud, provided that no modifications
were made.

4.2.3 Rendering the Point Cloud. Rendering a point cloud requires
a different process to rendering a typical mesh with faces. Two
different approaches were found from open-source projects. The

first one, from the aforementioned Gerard Llorach, used a simple
shader to paint the closest camera pixel the color of the vertex. This
is a fast solution, but with the points being one pixel in width with
no shading or defined edge, the clarity was subpar.

An alternative was to use geometry shaders, as implemented by
Keijiro Takahashi in his point cloud renderer (https://github.com/
keijiro/Pcx) for Unity titled “Pcx”. By using geometry shaders, it
is possible to create points of any size and any regular polygonal
shape. For greater point differentiation, a black outline was given to
each point, making it easier to discern which points are closer and
which ones are further away. The difference between the original
single pixel point shader and geometry shader with outline can be
seen in Fig. 2

4.3 Immersive Point Cloud Interactions
With this being a VR application, frames per second (FPS) perfor-
mance must be given special attention to prevent the user from
breaking immersion or suffering simulator sickness. To this end,
the point cloud is rendered using the pixel point shader, which is
significantly less computational heavy than the geometry shader.
To allow the user to benefit from the latter, he can select one object
at a time to be rendered using this shader, while the rest use the
former. This selection is made with a raycasted pointer.

With an object selected, the user can use his left controller to
access a radial menu that lets him turn visible or invisible the
polygon mesh for that object and increase or decrease the size
of the geometry shader points. The remainder of the interaction
tools will be available to the user through a virtual, right wrist
mounted, toolbox, in the form of another radial menu. In terms of
user movement through space, two option are provided. The first
and simpler one is a simple teleport with a Bézier curve pointer
to select the destination. The other is smooth locomotion, which
also allows the user to move vertically, since some point cloud
objects, like buildings, are very tall when using 1:1 scaling. The
implementation of the tools was divided in 3 phases: selecting /
deselecting points; transform the selected points; and classification
of selected points.

4.3.1 Selecting/Deselecting Points. As mentioned in the method-
ology section, the selecting and deselecting tools work similarly
to a brush (as done by Stets et al. [12]), but with some differences,
the first being that instead of having to "brush" each individual

18

https://github.com/gerardllorach/Unity-Point-Cloud-Free-Viewer)
https://github.com/gerardllorach/Unity-Point-Cloud-Free-Viewer)
https://github.com/keijiro/Pcx
https://github.com/keijiro/Pcx


Point Cloud Interaction and Manipulation in Virtual Reality AIVR 2021, July 23–25, 2021, Kumamoto, Japan

Figure 2: Comparison between single pixel point shader (left) and outlined geometry shader (right) for a point cloud of a car.

Figure 3: Left: user selecting points from the left side mirror of a car. Selected points turn yellow. Right: User translating and
rotating the same selection. Notice how the yellow points indicate the original position, while the green ones show the user
where he is moving them to.

point one by one with a "small and sharp tip" our solution makes
use of a size-adjustable sphere as the brush. The second difference
is that instead of the brush selecting what comes in contact with
the tip immediately, it only does so when the right trigger button
is pressed. The objective of this change is to prevent accidental
selection of points. The selection sphere itself is tinted either green
or red, representing the selection and deselection tools, respectively.
It is also translucent to allow the user to see which points are cor-
rectly being encircled by the selection tool. Once a point is selected,
it changes color to yellow, strongly contrasting with the magenta
of the unselected points.

4.3.2 Move/Rotate Selection. With a selected subsection of the
object’s point cloud, the user can translate and rotate that specific
selection, thus modifying the point cloud structure. To do so, he
must first deselect any other active tool. To translate the subset, the
user simply has to press the right hand grab button and move the
right controller. By doing so, an identical subset of points colored
in green appears, to give a visual indication of where the points
will be shifted to. Once the grab button is release, the green subset
disappears, and in its place are now the selected points.

To rotate the selection, the user must press the left hand grab but-
ton while already pressing the right hand grab button (translation
mode). Then, by rotating the left hand, the green subset point cloud
rotates too. Figure 3 shows the user selecting and moving/rotating
a subset of points. It is expected that putting the transformation
of the points right in the hands of the user, the experience can be
more natural, immersive, and straightforward.

4.3.3 Classify Selection. To use the classification tool, the user
must first make a selection. After adjusting his selection as desired,
the user can select the classification tool in his toolbox, which
spawns the tool’s panel. This panel is composed of three main parts:
the keyboard, the color selector and the class selector.

In order for the user to create a new class, he must input its
name with the keyboard and use the color sliders to create the color
with which to identify that class. In case the intended class was
previously segmented in that object, the user can simply select it
from the dropdown menu on the right. After either creating a new
class or choosing an existing one, when the user clicks the save
button, those points change color (to the selected color) and can
no longer be selected. The performed classifications are stored in
memory, to later be saved once the user is finished. Figure 4 shows
the user classifying points with the tool.

5 RESULTS AND DISCUSSION
The development of the immersive point cloud manipulation appli-
cation was successful and works as intended. After getting used to
the placement of the tools in the controller buttons, it becomes very
intuitive to select and adjust the position and rotation of the se-
lected points. When compared to the traditional point cloud editing
tools like CloudCompare and MeshLab, the presented immersive
solution is less cumbersome to use, due to the simplicity of the GUI,
which in the mentioned 2D tools, can be cluttered and difficult to
use.

The use of immersive 3D technologies also helps with point
depth perception, especially when combined with the outlined

19



AIVR 2021, July 23–25, 2021, Kumamoto, Japan Daniel Garrido et al.

Figure 4: User classifying the A-Pillar of the car. Notice how
the previously classified left mirror is now blue/grey and
that the class MIRROR LEFT is present in the dropdown.

geometry shader. In addition, being immersed in a virtual world
with the point cloud and using one’s own hands to interact directly
with the points feels more natural and straightforward.

In terms of performance, no hang-ups or declines in frame rate
were detected while testing with the solution.

While no technical user tests were performed, they will be con-
ducted in the future to validate the usefulness and ease of use
of the solution. For this, test subjects will be given similar point
cloud modification and segmentation tasks to be performed in a
traditional desktop environment and using the developed solution.
To evaluate their performance, the time to completion and result
accuracy will be compared. Questionnaires about the ease of use,
immersion and engagement will also be given to the subjects.

6 CONCLUSION AND FUTUREWORK
An immersive point cloud editing and classification tool was de-
veloped, bringing for the first time per point manipulation to an
immersive environment. In terms of contributions, the developed
PLY file parser and renderer for Unity is a plus for future users and
developers. With the groundwork done, it is also now easier for
other researchers to develop additional point cloud interaction fea-
tures. In the end, the test performed on the solution indicates that
working with point clouds in an immersive environment brings
significant advantages such as effortless point depth perception
and intuitive hand gesture-based point cloud manipulation. It still
falls short of the versatility that regular point cloud manipulation
software provides, which include several tools and features. How-
ever, as demonstrated with MeshLab Server, these can be brought
into an immersive environment too.

As for future work, as mentioned in the previous section, it is
important to conduct the described evaluation methodology with
test subjects to ascertain the value of this solution in terms of
usability and usefulness. As for improvements to the solution, to
guarantee the scalability in relation to the number of points of
the cloud, performance enhancing features like the ones used by
Kharroubi et al. and Thiel et al. must be implemented, as some
point clouds can reach billions of points. Additional manipulation

features and integrations with MeshLab could also benefit usability,
as well as improvements such as an undo button or a cooperative
mode.

REFERENCES
[1] Ayman Ammoura. 2001. DIVE-ON: From Databases to Virtual Reality. XRDS 7, 3

(March 2001), 4-ff. https://doi.org/10.1145/367884.367891
[2] F. Bernadini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. 1999. The ball-

pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization
and Computer Graphics 5, 4 (October 1999), 349-359. https://doi.org/10.1109/2945.
817351

[3] Ciro Donalek, S. G. Djorgovski, Alex Cioc, Anwell Wang, Jerry Zhang, Elizabeth
Lawler, Stacy Yeh, Ashish Mahabal, Matthew Graham, Andrew Drake, Scott
Davidoff, Jeffrey S. Norris, and Giuseppe Longo. 2014. Immersive and collabora-
tive data visualization using virtual reality platforms. In 2014 IEEE International
Conference on Big Data. 609-614. https://doi.org/10.1109/BigData.2014.7004282

[4] Seth M. Feeman, Landon B. Wright, John L. Salmon. 2018. Exploration and evalua-
tion of CADmodeling in virtual reality. Computer-Aided Design and Applications
15, 6 (2018), 892-904. https://doi.org/10.1080/16864360.2018.1466807

[5] A. Kharroubi, R. Hajji, R. Billen, F. Poux. 2019. Classification and Integration of
Massive 3d Points Clouds in a Virtual Reality (vr) Environment. ISPRS - Interna-
tional Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences XLII-2/W17 (December 2019), 165-171. https://doi.org/10.5194/isprs-
archives-XLII-2-W17-165-2019

[6] D. Lee, W. Muir, S. Beeston, S. Bates, S. D. Schofield, M. J. Edwards, and R. D.
Green. 2018. Analysing Forests Using Dense Point Clouds. In 2018 International
Conference on Image and Vision Computing New Zealand. https://doi.org/10.
1109/IVCNZ.2018.8634651

[7] P. Lubos, R. Beimler, M. Lammers, and F. Steinicke. 2014. Touching the Cloud:
Bimanual annotation of immersive point clouds. In 2014 IEEE Symposium on 3D
User Interfaces. 191-192. https://doi.org/10.1109/3DUI.2014.6798885

[8] Stefan Marks, Javier E. Estevez, and Andy M. Connor. 2014. Towards the
Holodeck: Fully Immersive Virtual Reality Visualisation of Scientific and En-
gineering Data. In Proceedings of the 29th International Conference on Image
and Vision Computing New Zealand. Hamilton, New Zealand, 42–47. https:
//doi.org/10.1145/2683405.2683424

[9] Sven Oesau. 2015. Geometric modeling of indoor scenes from acquired point
data. PhD Thesis, Université Nice Sophia Antipolis.

[10] Noritaka Osawa, Kikuo Asai, Yuji Y. Sugimoto. 2000. Immersive Graph Navigation
Using Direct Manipulation and Gestures. In Proceedings of the ACM Symposium
on Virtual Reality Software and Technology. Seoul, Korea, 147–152.

[11] Xavier Roynard, Jean-Emmanuel Deschaud, and François Goulette. 2017. Paris-
Lille-3D: A large and high-quality ground-truth urban point cloud dataset for
automatic segmentation and classification. The International Journal of Robotics
Research 37, 6 (May 2018), 545-557. https://doi.org/10.1177/0278364918767506

[12] Jonathan Dyssel Stets, Yongbin Sun, Wiley Corning, and Scott W. Greenwald.
2017. Visualization and Labeling of Point Clouds in Virtual Reality. In SIGGRAPH
Asia 2017 Posters. Bangkok, Thailand, Article 31, 1–2. https://doi.org/10.1145/
3145690.3145729

[13] F. Thiel, S. Discher, R. Richter, and J. Döllner. 2018. Interaction and Locomotion
Techniques for the Exploration of Massive 3D Point Clouds in VR Environments.
ISPRS - International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences XLII-4 (October 2018), 623-630. https://doi.org/10.
5194/isprs-archives-XLII-4-623-2018

[14] Martin Weinmann. 2016. Preliminaries of 3D Point Cloud Processing. In: Recon-
struction and Analysis of 3D Scenes. Springer, Cham. https://doi.org/10.1007/978-
3-319-29246-5_2

[15] Josef Wolfartsberger. 2019. Analyzing the potential of Virtual Reality for engi-
neering design review. Automation in Construction 104 (August 2019), 27 – 37.
https://doi.org/10.1016/j.autcon.2019.03.018

20

https://doi.org/10.1145/367884.367891
https://doi.org/10.1109/2945.817351
https://doi.org/10.1109/2945.817351
https://doi.org/10.1109/BigData.2014.7004282
https://doi.org/10.1080/16864360.2018.1466807
https://doi.org/10.5194/isprs-archives-XLII-2-W17-165-2019
https://doi.org/10.5194/isprs-archives-XLII-2-W17-165-2019
https://doi.org/10.1109/IVCNZ.2018.8634651
https://doi.org/10.1109/IVCNZ.2018.8634651
https://doi.org/10.1109/3DUI.2014.6798885
https://doi.org/10.1145/2683405.2683424
https://doi.org/10.1145/2683405.2683424
https://doi.org/10.1177/0278364918767506
https://doi.org/10.1145/3145690.3145729
https://doi.org/10.1145/3145690.3145729
https://doi.org/10.5194/isprs-archives-XLII-4-623-2018
https://doi.org/10.5194/isprs-archives-XLII-4-623-2018
https://doi.org/10.1007/978-3-319-29246-5_2
https://doi.org/10.1007/978-3-319-29246-5_2
https://doi.org/10.1016/j.autcon.2019.03.018

	Abstract
	1 INTRODUCTION
	2 STATE OF THE ART
	2.1 Methodology
	2.2 Reviewed Literature
	2.3 Comparison and Conclusions

	3 METHODOLOGY
	3.1 Proposed Solution
	3.2 Point Cloud Data
	3.3 Used Tools and Software
	3.4 Solution Architecture

	4 IMPLEMENTATION
	4.1 Preparing Point Cloud Data
	4.2 Importing the Point Cloud to Unity
	4.3 Immersive Point Cloud Interactions

	5 RESULTS AND DISCUSSION
	6 CONCLUSION AND FUTURE WORK
	References

