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Reproduced Computational Results Report for “Ginkgo: A
Modern Linear Operator Algebra Framework for High
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The article titled “Ginkgo: A Modern Linear Operator Algebra Framework for High Performance Computing”

by Anzt et al. presents a modern, linear operator centric, C++ library for sparse linear algebra. Experimental

results in the article demonstrate that Ginkgo is a flexible and user-friendly framework capable of achieving

high-performance on state-of-the-art GPU architectures.

In this report, the Ginkgo library is installed and a subset of the experimental results are reproduced.

Specifically, the experiment that shows the achieved memory bandwidth of the Ginkgo Krylov linear solvers

on NVIDIA A100 and AMD MI100 GPUs is redone and the results are compared to what presented in the

published article. Upon completion of the comparison, the published results are deemed reproducible.
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1 INTRODUCTION

In [2], Anzt et al. introduce a modern C++ library for sparse linear operator algebra, Ginkgo. To
demonstrate flexibility and performance, the authors conduct several experiments on GPU ar-
chitectures relevant to today’s supercomputers and offer performance comparisons between the
Ginkgo implementation of certain algorithms and GPU vendor implementations.

In this report, we focus on reproducing a subset of the results presented by Anzt et al. in [2];
specifically, we reproduce the solver memory bandwidth data and plots given in Figures 8 and 9.
The results portrayed by Figure 8 of [2] are generated using an NVIDIA A100 GPU with 40 GB of
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memory and the CUDA programming model [5], while the results portrayed by Figure 9 of [2] are
generated using an AMD MI100 GPU with 32 GB of memory and the HIP programming model [1].
The general steps we use to reproduce the experimental results are the same for both GPUs:

(1) Install the ssget tool and prefetch test matrices from the SuiteSparse collection.
(2) Download and build the Ginkgo library.
(3) Generate the scripts needed to execute the experiments.
(4) Upload the experiments to a git repository and use the Ginkgo Performance Explorer inter-

active website to generate the figures.

The published manuscript [2] utilized the Tulip early access system for the Frontier supercom-
puter to benchmark Ginkgo, but in this report, we utilize the Spock early access system sited at
Oak Ridge National Laboratory [7]. The Spock system has AMD MI100 GPUs, like Tulip [2], so
the results we generate will be comparable to the original. For reproducing the NVIDIA A100 re-
sults, we utilize the Guyot system hosted by the Innovative Computing Laboratory (ICL) at
the University of Tennessee, Knoxville. While Guyot has NVIDIA A100 GPUs, they are slightly
different from the A100 GPUs used in the published article. In particular, the Guyot A100 GPUs
have 80 GB of memory instead of 40 GB and 2039 GB/s of memory bandwidth vs 1555 GB/s [6].
All of the other specifications of the A100 GPUs in Guyot match the A100 GPUs used to generate
the published experimental data. Therefore, we should still be able to reproduce the results within
a reasonable margin, and we only have one variable, the increased memory bandwidth, which we
must account for in our analysis.

2 REPRODUCTION OF EXPERIMENTAL RESULTS

Anzt et al. provide detailed steps to reproduce Figures 8 and 9 and their relevant data in Annex A
of the published article [2]. We follow the instructions exactly (including using the same software
versions), except where noted, and as such, we only summarize most of the steps below. Steps that
differ for the A100 and MI100 experiments are also noted.

2.1 Preparing to Execute the Experiments

2.1.1 Clone the ssget Tool. The ssget tool is cloned from the git repository https://github.com/
ginkgo-project/ssget to $HOME/TOMS-gko-reproduce. The ARCHIVE_LOCATION variable on line 39
of the ssget.sh script is set to be $HOME/TOMS-gko-reproduce on Guyot. On Spock, the variable
is set to a directory, /gpfs/alpine/<projid>/scratch/<username>, that resides on the Spock
parallel file system. We add the location of the ssget script to our $PATH variable.

2.1.2 Use ssget to Download the SuiteSparse Matrices Needed for the Experiments. Following
the author-provided instructions, we create a file with a list of 10 relevant matrix IDs from the
SuiteSparse Matrix Collection [3]. The ssget script is then used to fetch each of the matrices.

2.1.3 Clone and Build Ginkgo. On Guyot, we follow the author-provided instructions to clone
Ginkgo from https://github.com/ginkgo-project/ginkgo.git and build it. We change line 3 of Listing
13 in the published article to load the equivalent modules on Guyot. We also omit line 15 of Listing
13, since Guyot does not require us to submit a job through a job scheduler. The available CUDA
version on Guyot is a slightly newer version than used by Anzt et al. (CUDA 11.0.221 instead of
11.0.194). With these modifications, we successfully built Ginkgo on Guyot and all unit tests run
by make test passed.

On Spock, first, we modified Listing 13 for HIP use as the authors instructed. The exact script
we use is given in Listing 1. On the Spock system, the ROCM version used by Anzt et al., 4.0.20496,
is not available. Instead, we utilize ROCM 4.1.0, which requires us to modify line 157 of the CMake-
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Lists.txt in the root directory of the Ginkgo source code. Specifically, we change the line to read if
(GINKGO_HIP_PLATFORM MATCHES "hcc|amd"). After these steps were completed, running make
-j10 successfully compiled Ginkgo, and all tests run by make test passed as well.

1 ginkgo_source=$HOME/TOMS -gko -reproduce/ginkgo
2 ginkgo_build =/gpfs/alpine/<projid >/ scratch/<username >/TOMS -gko -reproduce/

ginkgo -build
3 module load craype -accel -amd -gfx908 rocm cmake git
4

5 # For every new session , the previous setup is required
6 # git clone https :// github.com/ginkgo -project/ginkgo.git ${ginkgo_source} --

branch master
7 mkdir -p ${ginkgo_build} && cd ${ginkgo_build}
8 cmake -DGINKGO_BUILD_CUDA=off -DGINKGO_BUILD_HIP=ON -DGINKGO_BUILD_OMP=off -

DGINKGO_BUILD_EXAMPLES=off -DGINKGO_BUILD_TESTS=on -DGINKGO_DEVEL_TOOLS=
off -DCMAKE_CXX_COMPILER=$(which hipcc) ${ginkgo_source}

9

10 # Compilation can happen either directly or through a job depending on the
11 # system policies.
12 srun -N 1 -A <projid > -p <partition > --gres=gpu:1 --time =3:00:00 --export=ALL

make -j10
13 make -j10 # afterwards , ensure everything is compiled
14 make test
15 # Everything should run without failure. If cuda tests fail logging
16 # in again might solve some issue , this could be due to the hardware
17 # restrictions on summit after 4 hours of login time

Listing 1. A script to download and build the Ginkgo library to reproduce the MI100 experiments on

Spock with HIP.

2.1.4 Clone and Build BabelStream. Since the NVIDIA A100 GPUs on Guyot have a higher
theoretical memory bandwidth than the A100 GPUs utilized by Anzt et al. in [2], we need to run
the BabelStream [4] TRIAD benchmark on Guyot. We clone the BabelStream git repository (https:
//github.com/UoB-HPC/BabelStream.git) to $HOME/TOMS-gko-reproduce/babelstream and then
follow the documentation to build it with CUDA enabled. After building, we end up with the cuda-
stream script in the $HOME/TOMS-gko-reproduce/babelstream/build directory.

2.2 Executing the Experiments

To execute the A100 experiments on Guyot, we do not need to use a SLURM batch script like
the authors instructed in the article (so we skip the steps in Listings 14 and 15 of [2]). Instead,
we execute the benchmarks directly by navigating to the directory ${ginkgo_build}/benchmark,
where ${ginkgo_build} is the directory where Ginkgo was built earlier, and then running the
command sh run_all_benchmarks.sh. As in the published article, the experiments employ a
single NVIDIA A100 GPU.

For the MI100 experiments that we run on Spock, a SLURM batch script is required. We utilize
Listing 14 of [2] as a guide to create the batch script. Due to the queue limitations, we cannot
run all of the experiments as a single batch job. As such, we split the experiments into two jobs
by splitting the matrices list file from Section 2.1.2 into two files, each with five matrix IDs. Our
exact batch script is given in Listing 2. Note that each batch job uses a single AMD MI100 GPU
for the experiments.

In addition to the Ginkgo experiments, we also run the BabelStream TRIAD benchmark on
Guyot. To do this, we navigate to $HOME/TOMS-gko-reproduce/babelstream/build, execute the
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command ./cuda-stream --triad-only, and then note the output bandwidth (1721 GB/s) for
later use.

1 #!/bin/bash
2 #SBATCH --nodes=1
3 #SBATCH --ntasks =1
4 #SBATCH --exclusive
5 #SBATCH --gres=gpu:1
6 #SBATCH --time =3:00:00
7 #SBATCH --account=<account >
8 #SBATCH --partition=<partition >
9 #SBATCH --export=ALL

10

11 cd ${ginkgo_build }/ benchmark
12 make -j10
13 chmod +x run_all_benchmarks.sh
14 # choose which part of the experiment to run in this job
15 export MATRIX_LIST_FILE=$HOME/TOMS -gko -reproduce/matrices.list.part1
16 #export MATRIX_LIST_FILE=$HOME/TOMS -gko -reproduce/matrices.list.part2
17 export SOLVERS_PRECISION =1e-200
18 export SYSTEM_NAME=MI100_solvers
19 export EXECUTOR=hip
20 export BENCHMARK=solver
21 export FORMATS="coo"
22 exec ./ run_all_benchmarks.sh

Listing 2. The SLURM batch script we utilize to launch the MI100/HIP experiments on Spock.

2.3 Evaluating the Reproduced Results

The result of the experiment batch jobs is a set of JSON files, one for each test matrix, con-
taining timing information for five of the different Krylov linear solver methods available in
Ginkgo: BiCGSTAB, CG, CGS, FCG, and GMRES. To evaluate the reproduced results and recre-
ate Figures 8 and 9 of [2], we utilize the Ginkgo Performance Explorer (GPE) plotting tool
(https://ginkgo-project.github.io/gpe/) as discussed by Anzt et al. in Annex A.4 of their article.

Continuing to follow the authors’ instructions, we first fork the ginkgo-data (https://github.com/
ginkgo-project/ginkgo-data) git repository. To publish the results, we use Listing 16 from [2] with
one change: For the A100 results from Guyot, we publish the files to the TOMS-interface branch
of our ginkgo-data fork (https://github.com/balos1/ginkgo-data), but for the MI100 results from
Spock, we publish the files to a branch named TOMS-interface-hip. After publishing, we use the
GPE to inspect our reproduced results. Again, we simply follow the instructions of Anzt et al. to
load the reproduced results into the GPE.

In order to recreate the plot with the MI100 results, we modify the plotting script
plots/solver-bandwidth.plot.jsonata in our fork of ginkgo-data on the TOMS-interface-hip
branch so that MI100 results are plotted instead of the A100 results. We provide the exact changes
needed as a diff in Listing 3.

Upon inspection of the results generated from Guyot, we note that the achieved memory band-
width for the thermal2, atmosmodj, and StocF1465 matrices are comparable to the results generated
by Anzt et al [2]. However, for the other matrices, we note that our reproduced results achieve a
memory bandwidth that is approximately 15% higher than original results. As we pointed out in
Section 1, the NVIDIA A100 GPU available on Guyot has a higher peak memory bandwidth than
the NVIDIA A100 GPU utilized by Anzt et al. Indeed, our run of the BabelStream TRIAD bench-
mark indicated that the Guyot A100 could achieve a 19% higher memory bandwidth than the other
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A100 (1,732 GB/s vs 1,399 GB/s). Furthermore, the vectors associated with the first three matrices
are small enough to fit into the cache of the Guyot A100, which is the same size as the cache of
the A100 used in the published article (so the increased memory bandwidth has a limited effect)
[2]. Therefore, the discrepancy with the seven larger matrices is not surprising, and we look at
performance as a percentage of the STREAM bandwidth instead. When we do this comparison,
we see that the published results and newly generated results are similar as both achieve between
65% and 85% of the STREAM bandwidth recorded for their respective version of the A100.

1 diff --git a/plots/solver -bandwidth.plot.jsonata b/plots/solver -bandwidth.
plot.jsonata

2 index 09 af1c0580 .. bdc349de70 100644
3 --- a/plots/solver -bandwidth.plot.jsonata
4 +++ b/plots/solver -bandwidth.plot.jsonata
5 @@ -2,7 +2,7 @@
6 $data_hip := content[dataset.executor="hip" and dataset.system="

MI100_solvers"];
7 $data_cuda := content[dataset.executor="cuda" and dataset.system="

A100_solvers"];
8

9 -$solvers := $data_cuda.solver~>$keys();
10 +$solvers := $data_hip.solver~>$keys();
11

12 $matrices := [
13 "thermal2",
14 @@ -46,7 +46,7 @@ $memops := function($name , $n, $nnz , $it , $k , $vtype ,

$itype) {
15

16 $plot := $solvers~>$map(function($v , $i) {{
17 "label": $v,
18 - "data": $data_cuda .{
19 + "data": $data_hip .{
20 "x": problem.name ,
21 "y": $memops($v , problem.rows , problem.nonzeros , (solver~>$lookup($v)).apply

.iterations , 100, 8, 4) / (( solver~>$lookup($v)).apply.time /1000000000)
22 },
23 @@ -58,7 +58,7 @@ $plot := $solvers~>$map(function($v, $i) {{
24 }});
25

26 $bw := $matrices~>$map(function($v, $i) {
27 - $get_bandwidth("cuda")
28 + $get_bandwidth("hip")
29 });
30

31 {
32 @@ -82,7 +82,7 @@ $bw := $matrices~>$map(function($v , $i) {
33 },
34 "title": {
35 "display": true ,
36 - "text": "Bandwidth of selected problems for Ginkgo solvers on A100(CUDA)",
37 + "text": "Bandwidth of selected problems for Ginkgo solvers on MI100(Hip)",
38 "fontSize": 20
39 },
40 "tooltips": {

Listing 3. A diff showing the changes made to the ginkgo-data plotting script in order to plot the

MI100/HIP results.
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Fig. 1. Reproduction of Figure 8 from Anzt et al. [2] using the Guyot system. The plot shows the memory

efficiency of Ginkgo’s Krylov solvers on an NVIDIA A100 GPU. The matrices are sorted by number of rows.

When compared to the published results, the new ones are similar once the increased memory bandwidth

of the Guyot A100 GPU is accounted for.

Fig. 2. Reproduction of Figure 9 from Anzt et al. [2] using the Spock system. The plot shows the memory

efficiency of Ginkgo’s Krylov solvers on the AMD MI100 GPU. The matrices are sorted by number of rows.

These newly reproduced results are nearly identical to the published results.

Examining the reproduced results we generated with an AMD MI100 GPU on Spock, we see
that they are nearly identical to the memory bandwidth values presented by Anzt et al. in [2]. For
all of the matrices, roughly 50% of the STREAM bandwidth is achieved.

Figures 1 and 2 show our reproductions of Figures 8 and 9 of [2]. Since both the results generated
with the NVIDIA A100 GPU and AMD MI100 GPU are comparable to the published results, we
consider the published results successfully reproduced.
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3 CONCLUSION

Anzt et al. present Ginkgo, a modern C++ sparse linear operator algebra framework that targets
GPU accelerators, in [2]. Using the instructions provided by the authors in Annex A of [2], we
were able to install all of the software needed on two different computers: Guyot and Spock. We
utilized Guyot for experiments that require CUDA and an NVIDIA A100 GPU and Spock for ex-
periments that required HIP and an AMD MI100 GPU. All of the software was freely and openly
available. Once the software was installed, we were able to continue using the instructions pro-
vided by the authors, with only a few deviations, to reproduce the experimental data. Finally, we
utilized the Ginkgo Performance Explorer plotting tool to recreate the plots in Figures 8 and 9 of
the published article [2]. After analyzing the newly generated results and comparing them to the
published results, the reviewer deems the published results to be reproducible.
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