
Data-driven Analysis of Gender Differences and Similarities

in Scratch Programs

Isabella Graßl
isabella.grassl@uni-passau.de

University of Passau
Passau, Germany

Katharina Geldreich
katharina.geldreich@tum.de

Technical University of Munich
Munich, Germany

Gordon Fraser
gordon.fraser@uni-passau.de

University of Passau
Passau, Germany

ABSTRACT

Block-based programming environments such as Scratch are an
essential entry point to computer science. In order to create an
effective learning environment that has the potential to address
the gender imbalance in computer science, it is essential to better
understand gender-specific differences in how children use such
programming environments. In this paper, we explore gender dif-
ferences and similarities in Scratch programs along two dimen-
sions: In order to understand what motivates girls and boys to use
Scratch, we apply a topic analysis using unsupervised machine
learning for the first time on Scratch programs, using a dataset
of 317 programs created by girls and boys in the range of 8–10
years. In order to understand how they program for these topics,
we apply automated program analysis on the code implemented
in these projects. We find that, in-line with common stereotypes,
girls prefer topics that revolve around unicorns, celebrating, danc-
ing and music, while boys tend to prefer gloomy topics with bats
and ghouls, or competitive ones such as soccer or basketball. Girls
prefer animations and stories, resulting in simpler control struc-
tures, while boys create games with more loops and conditional
statements, resulting in more complex programs. Considering these
differences can help to improve the learning outcomes and the re-
sulting computing-related self-concepts, which are prerequisites
for developing a longer-term interest in computer science.

CCS CONCEPTS

• Social and professional topics → Gender; Computing edu-

cation; • Software and its engineering → Software develop-

ment techniques.

KEYWORDS

Scratch, gender, topic modeling, automated code analysis.
ACM Reference Format:

Isabella Graßl, Katharina Geldreich, and Gordon Fraser. 2021. Data-driven
Analysis of Gender Differences and Similarities in Scratch Programs. In
The 16th Workshop in Primary and Secondary Computing Education (WiPSCE
’21), October 18–20, 2021, Virtual Event, Germany. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3481312.3481345

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WiPSCE ’21, October 18–20, 2021, Virtual Event, Germany
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8571-8/21/10. . . $15.00
https://doi.org/10.1145/3481312.3481345

1 INTRODUCTION

Even though the promotion of girls in computer science (CS) is
increasingly emphasized, girls remain underrepresented [30, 48].
A potential approach to address this problem is to provide girls
insights into CS [40] and thus to arouse their interest in it before
gender-specific role attributions become entrenched during pu-
berty [7, 25]. In particular, the potential expression of creativity
enabled by programming environments such as Scratch [34] is as-
sumed to help exciting girls about programming [22, 36]. However,
the continuing gender imbalance in CS suggests a need to better
understand how girls program in Scratch [2, 4, 17, 21], in order to
improve learning environments [2, 22] to consider gender-specific
interests while ensuring the same learning outcomes.

In this paper, we provide further evidence for gender differences
and similarities in Scratch by analyzing programs created by girls
and boys in the range of 8–10 years.1 The dataset contains 127
projects originating from a prior study by Funke and Geldreich [17],
in which they manually evaluated programs. We replicated [42]
the programming course to obtain 192 additional projects; in total
this combined dataset contains 319 Scratch programs of which we
used 317 for an automated analysis, created by 64 girls and 68 boys.

To encourage children’s interest in learning to program, it is
essential to motivate them for this new subject in the first place.
The learning process is particularly sustainable when the children’s
interests are addressed and they also have fun [2, 36]. Especially
when it comes to attracting girls, it is purposeful to make them
aware of programming through their thematic preferences [22, 24,
44]. Therefore, our first research question is as follows:
RQ1: What gender differences and similarities can be identified in
the topics chosen by girls and boys?

We use the unsupervised machine learning method of Latent Dirich-
let Allocation (LDA) [8] to automatically extract topics in Scratch
programs in order to determine the thematic preferences of girls
and boys. These extracted topics help to see what the children in-
terest is and thus to design programming lessons that are equally
attractive to girls and boys, or specifically attractive to girls.

While initial enthusiasm for programming is essential, learning
outcomes are equally important as they determine the resulting
computing-related self-concept and perceived self-efficacy [41, 47].
These are prerequisites for a longer-term interest in CS and whether
learners consider themselves suitable for studies in CS. In order to
evaluate the learning outcomes, we consider the source code:
RQ2: What gender differences and similarities can be identified in
the implementations of the programs?

1We explicitly do not support binary gender thinking, however, the children categorized
themselves as female and male.

ar
X

iv
:2

10
8.

07
05

7v
1

 [
cs

.S
E

]
 1

6
A

ug
 2

02
1

https://doi.org/10.1145/3481312.3481345
https://doi.org/10.1145/3481312.3481345

WiPSCE ’21, October 18–20, 2021, Virtual Event, Germany Graßl, et al.

We use automated code analysis to provide insights into four di-
mensions of code: block types, programming concepts, code com-
plexity, and code smells. The identification of the preferred block
types, i.e., the program type, and the associated programming con-
cepts, is important for creating appealing learning scenarios and
for making the learning needs of certain programming concepts ap-
parent [1, 3, 17]. The presence of code smells has a negative impact
on the performance of the children, the usability of the programs
and the understanding of programming [16, 19, 20, 31]. Similarly,
increased code smells and bugs are a source of frustration that can
discourage children from continuing to program, and could also
indicate inadequate teaching approaches. Code complexity can be
used as an indicator to see whether girls and boys are implement-
ing correct programs differently, where individual learning is still
needed and how their activities relate to learning objectives.

In detail, the contributions of this paper are as follows:
1. A replication of a Scratch course [17] to obtain a combined

dataset of 319 projects with gender labels (Section 3).
2. An automated identification of topics in programs of girls

and boys using unsupervised machine learning (Section 4.1).
3. An automated code analysis of Scratch programs in relation

to gender, hence the confirmation and extension of previous
research results regarding the gender-specific use of code
blocks and programming concepts (Section 4.2).

4. A discussion of didactic implications for designing univer-
sally suitable programming courses and tasks to promote
girls in CS in particular (Section 5).

Our analyses confirm stereotypical gender-differences regarding
the choice of topics, and a tendency that girls produce programs that
are more sequential and less complex. However, the differences in
code are not a result of the chosen topics per se, but rather a result of
the types of programs preferred: Girls prefer programming elements
that serve to develop animations or stories, while boys mainly
implement games in Scratch. Consequently, programming courses
need to be designed such that both topic preferences and application
of programming concepts can be adequately addressed [12].

2 BACKGROUND AND RELATEDWORK

Scratch [34] is one of the most popular introductory programming
languages. To make it easier for programming beginners, code is
constructed with the help of blocks, which represent instructions
of the program. Learning material often explicitly focuses more on
creativity than on programming concepts [5]. It has been shown
that different types of projects result in the use of different program-
ming concepts, e.g., animations represent a lower level of difficulty
than projects implementing games [29].

Although recently research has started investigating gender dif-
ferences in programming concepts in Scratch [14, 33, 38], overall
there has been relatively little explicit research on this topic, in
particular in the context of Scratch, which might be due to the fact
that gender is only a self-reported information on the Scratchweb-
site. Most publications manually analyzed programs from program-
ming courses for their use of programming concepts and blocks.
The consensus of the research is relatively clear: While girls prefer
narrative structures and dialog messages in their programs, i.e., ani-
mations and stories, boys’ programs are dominated by game-specific

blocks and concepts such as motion blocks, boolean expressions
and conditional statements [1, 2, 14, 17, 21].

This paper builds on a prior dataset of 127 Scratch programs of
Funke and Geldreich [17], whose manually extracted results corrob-
orate the previous results. Girls are more likely to program stories
using a large number of looks blocks, which require a lower level of
comprehension, and boys are more likely to program games, which
require a large number of motion blocks and have a higher level
of comprehension. Overall, boys use almost twice as many differ-
ent blocks as girls, which indicates that boys are more willing to
experiment or that girls need fewer different blocks to accomplish
their objectives. Our work automates this acquisition process and
extends it to analyze topics, code smells and complexity metrics,
since these subjects in relation to gender have not yet been scien-
tifically studied in an automated manner. Gender differences have
also been investigated in the domain of robot programming, where
boys were shown to perform better than girls in tasks related to
advanced programming concepts [43, 44]. In addition, differences
in their learning approach and methodology [33, 38] were evident.

Overall, research in this direction helps to sustainably strengthen
the interest of girls in CS. This is relevant because an increased
proportion of women in CS has a positive effect on the productivity,
communication and spirit of software teams [10, 39, 46]. In addition,
this mitigates the still prevailing gender bias in CS [49, 50].

3 METHOD

3.1 Data Collection

To extend the results of Funke and Geldreich [17] and their original
dataset, their introductory programming course was replicated by
using the same materials and instructions. The course was con-
ducted with a total of nine groups of children with 8–10 children as
an extracurricular offer at the Technical University of Munich. One
group attended the course as a voluntary vacation activity, and the
remaining eight were attended by four whole elementary school
classes—one of 3rd grade and three of 4th grade—each of which was
divided into two groups. Overall, 36 boys and 38 girls aged 8–10
years took part who had little to no experience in programming.

The programming course consists of three sessions (each for 3.5
hours) over three consecutive days and was conducted by a course
instructor with a background in CS education. In the course, the
children started by describing algorithms in natural language. At
first they were introduced to Scratch in an unplugged way [6]
by allowing them to arrange haptic programming blocks corre-
sponding to the programming commands in Scratch into a script.
Afterwards, the basic functions of Scratch, such as repetitions
and conditional statements, were introduced to the children in a
learning circle based on the theme of a circus performance. In the
process, they had to solve suitable tasks, which were, for example,
to fill the circus ring with an audience, to have the ringmaster say a
greeting, to have a tiger and a horse run back and forth or to have
the tightrope walker balance. In the last unit of the course, the stu-
dents were tasked to implement their own program and to present
it. After filling in a planning sheet for their individual projects,
they had three hours to realize their own ideas in Scratch. The
programs had to meet several requirements: They should contain
more than one sprite, move at least one sprite during execution,

Data-driven Analysis of Gender Differences and Similarities

in Scratch Programs WiPSCE ’21, October 18–20, 2021, Virtual Event, Germany

and include at least one iteration as well as a conditional statement.
Students were allowed to create multiple projects if they wanted to.
A detailed description of the development and progression of the
course can be found in the description by Geldreich et al. [18].

3.2 Dataset

The dataset used here is the result of the last task of the course,
where the students had to design and implement a Scratch project
based on a topic of their own choice. Since our data is based on
an exact replication of the course by Funke and Geldreich [17] we
combined their original data with the data we collected for our
analysis. The original dataset consists of 127 projects from 26 girls
and 32 boys, and we gathered another 192 projects from 38 girls
and 36 boys. Accordingly, the dataset contains 319 projects—171 of
them by girls and 148 by boys. We removed projects that contain
no modifications to the default project (i.e., the only content is
the Scratch cat as default sprite with no code) and thus obtain
a dataset of 317 projects, 171 from 64 girls and 146 from 68 boys.
Even programs without blocks but with, for instance, self-painted
backgrounds provide information about how children use Scratch
and were therefore included in the analysis. The dataset contains
only the code and information as given above (ID, age, gender) and
no further annotation or demographic data.

3.3 Data Analysis

3.3.1 RQ1. We aim to automatically extract semantic topics from
unstructured text data of the Scratch programs in order to de-
termine which topics are common in the programs of girls and
boys. To the best of our knowledge, an automatic identification of
topics of Scratch programs has not yet been conducted, which
explicitly distinguishes this work from previous research [17]. The
text corpus of documents (here Scratch programs), which con-
tains different terms that form a vocabulary (e.g., names of sprites
etc.), serves as input for the LDA model. The number of the hidden
topics are represented by manually predetermined multinominal
distributions. These distributions are drawn over all terms from
Dirichlet distributions and then for each document (i.e., Scratch
program) a distribution of multinomial distributions is derived from
such a Dirichlet distribution. Thus, different topics according to
their grouped terms are automatically assigned to each document.

To create the text corpus we extracted tokens from the Scratch
programs. The programs in the course were created locally using
the Scratch 2 desktop application and not on the Scratch web-
site, which means that the only available source of information
is the code of the programs, but not other meta information such
as instructions or comments. The Scratch programs are in .sb2
format, which is a zip archive format consisting of the media files
used in the project together with the source code in JSON format.
From these JSON files we extracted all tokens that represent names
of sprites, costumes, backgrounds, sounds, variables, as well as all
string inputs to common blocks (e.g., say and think blocks).

As usual when applying natural language processing (NLP), the
textual data was preprocessed before serving as input for a machine
learning model. For data cleaning, we normalized the text to lower
case, and removed English and German stop words. In addition,
we defined and removed customized stop words that represent the

German and English default designations of the individual tokens,
which do not add any content value for a topic identification: ‘stage’,
‘bühnenbild’, ‘pop’, ‘plopp’, ‘kostüm’, ‘figur’, ‘block’, ‘hintergrund’.
Furthermore, we removed digits and words with less than two
characters as they do not contain relevant information.

One of the best established methods of unsupervised machine
learning to generate unknown (“hidden”) topics from a large, unla-
belled text dataset is Latent Dirichlet Allocation (LDA) [8], which
is also increasingly applied in software engineering [9]. Based on
common practice we used a minimum number of 10 occurrences
for words when tokenizing and building a vocabulary, as words
with fewer occurrences are likely not important enough in the
data set. Finally, the remaining tokens are used to create a sparse
document-term-matrix of the programs.

The semantic analysis is implemented using the LDA model
of the popular Scikit-Learn library2. The LDA model is trained
with the following parameter values, which are the commonly used
default values: maximal learning iterations = 10, random state = 100,
and a batch size of 128. A further parameter to choose is the number
of topics, which influences the result quality of these topics. Since
there is no standard way to choose the best model we empirically
determined that 10 is a suitable number to cover different topic
areas for a dataset of 317 projects; for larger numbers the topics
were no longer semantically distinct and had a lot of overlap [23].

Using the model, each project is assigned a probability for each
topic. The topic with the highest probability represents the domi-
nant topic of the project. We consider the dominant topics of the
projects together with the gender information to analyze gender-
specific differences in the topic distributions.

3.3.2 RQ2. At the level of code, we aim to investigate which pro-
gramming blocks girls and boys prefer, which programming con-
cepts they cover with these blocks, and how complex the resulting
programs are. To investigate the distribution of covered program-
ming statements and concepts, we extracted the opcodes of the
blocks used directly from the JSON files. The blocks are organized
into categories such as looks and motion based on the “drawers”
they are contained in within Scratch. We compare projects in
terms of the individual opcodes as well as these categories. To sort
blocks into the programming concepts they represent, we used the
classification applied by Funke and Geldreich [17]. In contrast to
their manual analysis, our procedure is automated and includes the
additional metrics of code complexity and code smells.

In order to measure the complexity of the programs we used
LitterBox [16], which parses the JSON files into an abstract syntax
tree, on which various metrics can be extracted. In particular we
consider complexity in terms of the common Halstead and McCabe
metrics. The Halstead metrics are based on the total and unique
number of operators (e.g., keywords and tokens of the programming
language) and operands (e.g., variables, literals, function names)
in a program. The Halstead length represents the total number of
operator occurrences and the total number of operand occurrences,
the Halstead size (also known as vocabulary) is the total number
of unique operators and operands. The volume represents the size
(in bits) of space necessary for storing the program; the difficulty

2https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.
LatentDirichletAllocation.html

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.LatentDirichletAllocation.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.LatentDirichletAllocation.html

WiPSCE ’21, October 18–20, 2021, Virtual Event, Germany Graßl, et al.

is proportional to the ratio of the total number of operands to the
number of unique operands based on the intuition that if the same
operands are used many times in a program, that program is more
prone to errors. Finally, the Halstead effort measures the elemen-
tary mental discriminations. We implemented Halstead metrics for
LitterBox while interpreting operators and operands as in pre-
vious work [28]. The McCabe complexity (cyclomatic complexity)
measures the number of linearly independent paths through a pro-
gram’s control flow graph. Since Scratch programs often consist
of many small, parallel scripts, we implemented an interprocedural
version of cyclomatic complexity (ICC) based on the interproce-
dural control-flow graph provided by LitterBox. Similar to lines
of code (LOC) in textual programming languages we also measure
size in terms of the number of blocks a program consists of.

In order to detect code smells in the programs we used Litter-
Box. A code smell is a weakness in the code that requires refactoring
as it might disturb the programming process [15], which in turn
results in frustration of the program, especially for beginners. In
addition, the learning process is impaired, since the misconception
is reinforced over time if no action is taken.

In contrast to the procedure for RQ1, no cleaning of names or
any further cleaning steps were carried out in order not to falsify
the results as information such as incremented sprite names (e.g.,
sprite1, sprite2) are relevant for the analysis of code smells.

3.4 Threats to Validity

Internal Validity. Since there is neither an existing thematic
framework nor labelled data, we had to apply unsupervised ma-
chine learning. In contrast to alternative approaches such as Latent
Semantic Analysis [13] or word embeddings with Word2Vec [26]
and subsequent clustering, LDA has the advantage of providing
the probabilities of topic associations. Disadvantages of LDA are
the necessity to decide on the number of topics in advance, lack of
names of topics and reduced accuracy due to multilingual and short
text. Since the programs are relatively small and created by novices,
complexity and code smells can only be seen as indicators. Other
metrics such as the computational thinking score [27] might have
been considered, but there is no consensus about the most adequate
metrics; furthermore these metrics are usually based on checking
the existence of certain blocks in programs, which is conceptually
similar to our measurement of programming concept occurrence.

External Validity. The study does not claim to be exhaustive, as
the 317 analyzed projects can only provide an insight. The study
is limited by its participants due to their home resident as well as
cultural and social background. Likewise, due to the format of the
three-day workshop with the introductory tasks on the topic circus
as well as the teachers present, there may have been a bias in the
study conditions. In order to minimize this influence, the course
was very carefully designed by didactics experts and has already
been conducted several times.

Construct Validity. Further filtering may improve data quality,
e.g., by excluding duplicates. For our ranking of topics, only the
highest probability of a topic is considered, which might be mislead-
ing when the difference between two topics of a project is small.
However, even setting a threshold would be subjective.

Table 1: The ten topics automatically generated from the

LDA model with their most popular terms. Colors assigned

to topics match Figures 1 and 2.

ID Topic

0 dog, bass, drum, elec, dance, snare, celebrate, right, bedroom, birthday
1 meow, balloon, donut, unicorn, dance, rainbow, bear, magic, cave,

party
2 aufnahme, cymbal, drum, cave, spotlight, creak, alien, city, night, beat
3 katze, klein, manege, castle, desert, bedroom, chalkboard, water
4 bat, ghoul, meow, stars, ghost, wizard, wall, brick, woods, neon
5 miau, water, underwater, hallo, beach, hello, meow, city, malibu, puffs
6 cat, flying, soccer, ball, goal, dance, meow, head, nod, stars
7 ball, dee, adrian, seiltänzerin, bedroom, baseball, basketball, blue, sky,

spotlight
8 zirkusdirektor, mädchen, junge, affe, spotlight, zauberer, elefant,

seiltänzerin, clown, seehund
9 giga, pico, ghost, affe, drum, sky, blue, schon, hello, tom

4 RESULTS

4.1 RQ1: Topic Analysis

Table 1 lists the ten topics automatically generated from the LDA
model with their most weighted terms of the Scratch programs.
In order to observe the distribution of the topics more precisely,
Figure 1 shows a visualization of these topics in the LDA model
in a 2D space using the t-SNE (t-distributed stochastic neighbor
embedding) algorithm [45]. The arrangement of the topics in the
space clearly shows to what extent they overlap and how simi-
lar they are to each other as the algorithm tries to minimize the
Kullback-Leibler divergence of the between the joint probabilities
of the data points. The algorithm preserves only nearest-neighbors
and is therefore very sensitive to the choice of perplexity (here 15).

Topics 1 and 4 seem to be independent and disjoint from all oth-
ers, and the plot already hints at gender differences for these topics.
The distribution of the derived topics among the genders is shown
in detail in Figure 2. For the other topics, Figure 1 shows moderate
intra- and inter-cluster distances, which indicates a greater similar-
ity or a lower delimitation of the topics. Topic 8, which represents
the circus topic (i.e., the topic used in the preparatory exercises),
shows a high dispersion, which means that it is a very wide field,
while in Topics 4 or 6 the programs are very close together and
therefore show a high inter-class similarity. Topic 3 has strong out-
liers which indicates that this topic is not highly homogeneous and
addresses very different aspects of programs that are also reflected
in other topics. The visualization based on the LDA model provides
indicative and apparent insights on how the programs are arranged
in a high-dimensional space, hence a glance to what extent the
model has identified latent patterns in the programs.

4.1.1 Thematic Differences. The most popular topics in Scratch
programs differ between girls and boys (Fig. 2). In approximately
17 % of all girls’ projects, the semantic field of a fantasy world is
formed in Topic 1 as dominant topic by the terms unicorn, rainbow
andmagic (Table 1). These keywords fit into the social attribution of
girls’ fascination with unicorns, as especially in recent years as the
enthusiasm for unicorns has increased in pop culture. Additionally,
there seems to be cause for celebration, which the terms balloon,

Data-driven Analysis of Gender Differences and Similarities

in Scratch Programs WiPSCE ’21, October 18–20, 2021, Virtual Event, Germany

Figure 1: The visualization of the ten topics generated from

the LDA model. Each data point corresponds to a program.

Figure 2: The distribution of the automatically generated

topics from the LDA model in girls’ and boys’ programs.

(a) This girl’s program (ID73) is 98

% assigned to Topic 1.

(b) This boy’s program (ID55) is 97

% assigned to Topic 4.

Figure 3: Two representative program examples, which have

the highest allocation of the LDA model of the top-topics.

donut, dance and celebrate indicate. Figure 3 shows an example
project (ID73, Unicorn loves Rainbow) which is assigned to Topic 1
by 98 % and was created by a girl. In the program, a unicorn moves
from the right edge of the screen on static donuts to dance music in
zigzag movements to the left edge of the screen and back. Towards
the end of the program it says “Hello”. The sprites Donut and Cloud
contain no code. The Rainbow and Star sprites both contain the
script “When flag clicked, repeat 100, change effect color”.

Strikingly, Topic 1 is the least popular topic for boys (approx.
2 %). Instead, the terms bat, ghoul and ghost dominate the most com-
mon subject area of approximately 18 % boys’ programs (Topic 4).
Although these might also be part of a fantasy world, both the bat,
a bloodsucker that lives in the night, and a ghoul, i.e., a demon-like
creature, commonly have rather negative and sinister connotations.
The settings, cave and woods, also indicate a rather gloomy world.
The example project in Figure 3 (ID55, Arena of Death) is assigned
to Topic 4 by 97 %, and was created by a boy. Sprite 1 (the default
sprite) and the black bats remain static in the middle of the arena
while the other bats and the ghouls move towards it. The script
is the same for Bat1–3 and Ghoul1–3, and because of the missing
termination condition the program does not terminate. There is no
user interaction. For girls, on the other hand, Topic 4 is one of the
least popular topics occuring in only 4.67 % of all girls’ projects.
These large gender differences can be observed for several topics:
While girls’ projects often focus on dance and music (e.g., Topic 0,
15.02 %), boys’ projects seem to be more about games or football
according to the terminology ball, soccer and goal (Topic 6, 16.43 %).

The distribution of the respective most popular topics of both
genders thus already reveals some gender-stereotypical patterns
established in society and a different interest in topics in Scratch
programs. These stereotypes seem to manifest themselves already
in childhood [32]. The differences found in the topics reinforce
this impression and indicate an interrelation that is also evident in
Scratch. In all these cases the contrast between genders is striking,
and clearly visible in the visualization in Figure 1.

4.1.2 Thematic Similarities. There also exist thematic overlaps be-
tween girls and boys: Topics 2 and 3 are similarly weighted between
genders, though both topics are represented by only few projects
that lack coherence in terms of content. Topic 8, which is overall the
most common topic, and second and third most common for girls
and boys (f: 16.37 %, m: 14.38 %), is about a circus with a ringmaster
(“zirkusdirektor”) and magician (“zauberer”), various characters (girl
and boy) and animals (monkey, elephant). This popularity is likely
due to the introductory projects presented in the course, which
suggests that girls and boys are either equally interested in the
topic, or they were simply less creative for these projects.

A similar observation applies to Topic 7, the overall fifth most
popular topic for both genders (f: 9.35 %, m: 11.64 %): By means of a
balancing tightrope walker (“seiltänzerin”) as well as a cat pushing a
ball around, the children should get to know themotion instructions
better. In addition, the terms baseball and basektball opens up the
subject area of ball sports, which could indicate children’s interests
in their leisure time. This topic seems to equally attract girls and
boys through its diversity with the affinity for female tightrope
walkers and stereotypically male ball sports.

Topic 0 is also a popular topic for both genders and the second
most frequently mentioned topic in total. It covers the word fields
around music (bass, drum, snare) and celebration (dance, celebrate).

Summary. The most popular topics reflect gender stereotypical
interests: girls’ programs center on unicorns, celebrating, danc-
ing, and music while boys prefer comparatively gloomy fantasy
worlds with bats and ghouls as well as soccer. Topics involving
circuses, birthday parties and animals appeal to both genders.

WiPSCE ’21, October 18–20, 2021, Virtual Event, Germany Graßl, et al.

p =0.77

p =0.93

p =0.53

p =0.94

p =0.6

p =0.19

p =0.11

p =0.00082

p =3.7e−05

p =0.25

operator other procedures sensing sound

control data event looks motion

operator other procedures sensing sound

control data event looks motion
0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

Block category

N
um

be
r

of
 b

lo
ck

s

Gender f m

Figure 4: The average usage of general block types per

Scratch program.
3
The different uses of motion and sens-

ing blocks are statistically significant at 𝛼 = 0.05.

0.279 0.141 0.516 0.0143 0.195 0.176 0.0172 0.00444
Length Size Volume Difficulty Effort Blocks WMC ICC

f m f m f m f m f m f m f m f m

5

10

15

20

25

0

5

10

15

20

0

20

40

60

0

2000

4000

4

8

12

16

0

200

400

600

0

10

20

30

40

50

0

25

50

75

100

Complexity metric

V
al

ue

Gender f m

Figure 5: The overall program complexity is measured by

the Halstead metrics and the ICC.
4
The Halstead difficulty,

WMC and ICC are statistically significant at 𝛼 = 0.05.

4.2 RQ2: Code Analysis

While the first research question looked at the overall topics of the
programs implemented, in this research question we now turn to
the insides of the programs and look at the source code. Figure 4
summarizes the distribution over different categories of the blocks
used, and Table 2 shows the top 10 blocks used for each gender.
Table 3 summarizes which programming concepts are covered by
these blocks. Figure 5 summarizes different complexity metrics for
the programs. Table 4 shows the top 10 code smells for each gender.

4.2.1 Code Differences. According to Figure 4, the largest number
of blocks in the boys’ programs (30% of all blocks used) are from
the motion category. Table 2 confirms that the most frequent block
is move steps which is responsible for moving sprites, and further
popular blocks are point in direction and turn right. While there
is no significant difference in the overall number of event blocks
used, Table 2 shows that boys use when key pressed frequently.
Together with the significantly higher number of sensing blocks,
and a slightly higher number of event blocks, this is indicative of
interactive, game-like programs.

Girls use considerably more looks blocks—26% of all the blocks
they use are from this category. Table 2 shows that, for girls, the
3Violins exclude outliers (i.e., 1.5 × interquartile range above the third quartile or
below the first quartile) for readability; 𝑝-values calculated using Wilcoxon Rank Sum
Test on the full data.
4See footnote 3.

Table 2: Top ten Scratch block types per gender.

Rank Type Block # (f) Type Block # (m)

1 event when clicked 565 motion move steps 522

2 control wait 502 event when clicked 422

3 looks say for seconds 434 event when key pressed 337

4 motion move steps 243 control forever 316

5 control forever 174 control wait 233

6 control repeat 148 looks say for seconds 174

7 sound 147 control if , then 168

8 looks costume 113 motion point in direction 159

9 looks switch costume to 113 control repeat 144

10 motion turn degrees 104 motion turn degrees 123

Table 3: Usage of programming concepts and their corre-

sponding block type in Scratch programs.

Concept Type Block # (f) # (m)
Conditional control if 77 168

motion if on edge bounce 54 91
control if else 3 8
total 134 267

Coordination event broadcast 4 10
event when broadcast received 4 17
event broadcast and wait 4 17
control wait 502 233
control wait until 0 0
total 510 260

Iteration control repeat 147 144
control repeat until 0 1
control forever 174 316
total 321 461

Variables data change variable by 4 23
data set variable to 18 5
data variable 0 4
data show variable 0 0
data hide variable 0 0
total 22 32

most frequent looks block are say for secs, costume, and switch cos-
tume to, which cause sprites to produce dialog using speech bubbles
and change appearance. These blocks are essential components of
story-like projects, with dialogue between sprites in the program.
However, the use of sensing blocks (which includes asking the user
questions) is done significantly less often by girls compared to boys.

In the programs of the introductory course, 20 different types of
blocks were introduced. There are also differences in the additional
individual blocks of the children. There are 21 block types used only
by girls and 20 block types used only by boys. The most common
types of blocks that only girls used are: rest for beats, change tempo,

Data-driven Analysis of Gender Differences and Similarities

in Scratch Programs WiPSCE ’21, October 18–20, 2021, Virtual Event, Germany

Table 4: The ten most common code smells in Scratch pro-

grams of both genders, normalized per project.

Rank Code Smell (f) # (f) Code Smell (m) # (m)
1 Duplicate Sprite 10.22 Duplicate Sprite 5.15
2 Empty Sprite 2.38 Missing Init. 3.52
3 Missing Init. 1.66 Sprite Naming 1.76
4 Sprite Naming 1.63 Stuttering Movement 1.31
5 Clone Type 3 0.71 Empty Sprite 1.22
6 Clone Type 2 0.40 Clone Type 1 0.89
7 Dead Code 0.23 Clone Type 3 0.80
8 Empty Script 0.19 Dead Code 0.43
9 Long Script 0.16 Clone Type 2 0.41
10 Clone Type 1 0.14 Miss. Pen Up / Erase All 0.24

reporter string number. The most common block types that only
boys have used are: change pen hue by, change y by, random.

Although there are no significant differences in the overall num-
ber of control and event blocks used, Table 2 shows that the blocks
within these categories do differ: Girls mainly use when flag clicked
event handlers, and simpler control structures (forever, repeat, wait),
whereas if makes an appearance in the boys’ top 10 blocks. Table 3
confirms that conditional statements (if, if on edge bounce, if else)
are substantially more frequent in boys programs. This is likely
another artifact of them preferring to implement games, where
the gaming flow requires those concepts as well as dynamic input
more often. Although the loop-statements used by boys and girls
are similar, Figure 3 shows that boys use loops more frequently,
whereas girls seem to prefer programs with sequential flow.

These differences in the control structures imply differences in
the complexity of the resulting programs. The Halstead metrics
in Figure 5 all show slightly higher values for the boys’ programs:
There are no significant differences in terms of length (total num-
ber of words used) or size (total number of unique words), and
thus also no significant difference in terms of the resulting Hal-
stead volume. The Halstead effort, which is meant to estimate the
amount of mental effort required to recreate the software, is sub-
stantially higher for boys’ programs, and the Halstead difficulty is
significantly higher for boys’ programs (p=0.01).

Theweightedmethod count (WMC) shows the sum of cyclomatic
complexities of all scripts in a program, while the interprodedural
cyclomatic complexity (ICC) is calculated on the interprocedural
control flow graph. In both cases there is a significant difference
observable (WMC: p=0.02, ICC: p < 0.01), suggesting that boys
create more complex programs (Figure 5). This is in line with the
observation that boys use more if-statements (as shown in Table 2).

The concept of Scratch eliminates syntax errors, but there
are still many other types of errors and bugs [16, 20]. Since the
children’s programs are relatively small and less complex, fewer
code smells are likely to occur. They do, however, corroborate our
previous observations on the difference in the programming con-
cepts applied: Girls’ projects contain the smells Duplicate Sprite and
Empty Sprite twice as often (Table 4). This may be due to the fact
that in animations and stories many sprites serve as decoration
and are therefore empty. Boys’ projects, on the other hand, contain
the smell Missing Initialization about twice as often. Missing Initial-
ization is mainly due to the category game, because the position

has to be changed, but is never set. As Table 4 shows, the smell
Stuttering Movement in the programs of boys is striking, which
points to programs with a lot of interaction of the user and thus
to the project category game. The smell is also one of the most
common bug patterns in Scratch programs [16].

4.2.2 Code Similarities. Although there are differences in the types
of blocks used, and the complexity of the structures that connect
these blocks, the programs are comparable in size (p=0.24): Boys’
programs contain on average almost 27 blocks, while girls’ pro-
grams contain slightly less, around 22 blocks. While we saw a large
difference in terms of Halstead effort, the size-related Halstead met-
rics in Figure 5 suggest that programs are comparable in terms of
how diverse blocks are within the programs.

According to Figure 4, two of the largest categories of blocks are
related to control (if-statements, loops), events (event handler blocks,
with comparable distributions between girls and boys. Even though
there are differences between which specific blocks are used as
discussed above, the interleaving of control and non-control blocks
shows a comparable desire to control the program execution.

Blocks of categories other than control, event, looks, and motion
are used less frequently by both, girls and boys; in particular we see
almost no usage of blocks from the data, operator, and procedures
categories, which cover concepts that were not covered in the
introductory teaching material.

Compared with the different block types used in the sample
projects from the introductory course, the ratio of blocks differing
from this in the programs of girls and boys is almost identical (f:
28.57 %, m: 27.24 %) as girls add another 59 block types to their
programs and boys add 60 more. Both genders are equally skilled
at exploring unfamiliar block types on their own as they extended
their programs proportionally equally, but conceptually differently
as described in Section 4.2.1. As Table 4 shows, we also observe
some common code smells that are independent of gender: The
smell Sprite Naming means that the default name of the sprite is
used or that the same name is only used in an incremented form
(e.g., cat1, cat2). Thus, girls and boys invented their own names for
their sprites with similar frequency.

Summary. The usage of code blocks in Scratch programs of
girls and boys differ. Girls use blocks that are suitable for stories
and animations, such as looks, and boys mainly use game-specific
blocks such as motion. Boys apply more programming concepts
such as conditional statements or iterations. The type of code
smells differ only slightly as the code smells are mainly due to
the specifics of the project type.

5 DISCUSSION

5.1 Interrelation of Topics and Code

We observed differences in the topics that girls and boys use when
creating Scratch programs (RQ1) and we observed that girls are
less likely than boys to use programming concepts such as iterations
and conditions (RQ2). Ideally, we want girls to be able to imple-
ment topics they like, but produce code that covers programming
concepts to the same extent as boys’ programs. Figure 6 therefore
shows the distribution of block types among the topics, and Fig-
ure 7 shows the relation of complexity and size of the projects of

WiPSCE ’21, October 18–20, 2021, Virtual Event, Germany Graßl, et al.

looks

event

sound

control

motion

motion

control

event

other

looks

control

motion

looks

event

sound

control

looks

motion
event

sound sensing

sound

control

looks motion

other event

operator data

motion

event

control

sensing

looks

sound

motion
control

event

motion
event

control

looks

looks

control

event

motion

sensing

motion

control

event

sensing

looks sound

0 1 2 3 4

f
m

looks

event

control

motion

sound

motion

control

looks

event

sound

control

looks

motion

event

sound

motion

event

control

looks

sound sensing

looks

event

motion

control

sensing

motion

control

event

sensing looks

looks

control

event

motion

other

looks

control

event

motion

sound
sensing

looks

control

motion

event

sensing
sound

operator

looks

control

event motion

sensing

operator

data

5 6 7 8 9

f
m

Figure 6: Distribution of block types among topics/genders.

5 6 7 8 9

0 1 2 3 4

0 10 20 0 5 101520 0 20 40 0 10 20 0 255075

0 50 100 0 10 20 30 10203040 0 10 20 30 0 20 40 60
0

50
100
150

0
100
200
300
400

0
20
40
60

0
50

100
150

0
100
200
300

0
50

100
150

0

100

200

0
20
40
60
80

0
100
200
300
400
500

0
25
50
75

Interprocedural Cyclomatic Complexity

To
ta

l b
lo

ck
s

Gender f m

Figure 7: For each topic of the LDA model, their programs

are shown by their complexity in relation to their size.

each topic. This allows us to investigate whether we observe any
differences between the code produced for different topics.

Considering the distribution of block types for girls in Figure 6,
we see that the use of motion blocks is similarly sparse across all
topics except Topic 3, which in fact is a strong outlier for girls and
boys (f: 50 %, m: 53 % of all blocks used in this topic are motion
blocks). However, this does not imply the topic is well suited to
guide girls to produce programs with more interactive behavior:
As Figure 7 demonstrates, these projects contain almost no code,
but instead consist of modified or self-painted backgrounds. For
example, one girl’s program (ID1) contains a cat moving towards a
ball. This observation is not gender-specific, as the boys’ projects
for this topic also contain very few blocks. For example, a boy’s
project (ID120) contains several lions and cats moving back and
forth. Thus, even though boys and girls use the topic in a similar
way, it does not appear to foster exercising programming concepts.

To see whether girls are more likely to produce game-like pro-
grams for topics boys prefer, we examine Topic 4, the most popular
topic among boys (Fig. 6). Boys’ projects in this topic are primarily
games that require manymotion and control blocks (f: 25 %, m: 22 %
of all blocks used in this topic). These are games whose presentation
and mechanics are reminiscent of classic maze arcade games like
Pac-Man, Ghost Hunt or platform games. Figure 7 shows that girls’

projects in this topic are mostly small and simple (average blocks:
11, ICC: 5.37), while boys projects are both larger and more complex
(average blocks: 28, ICC: 13.51). The dominant category of blocks
used by girls for this topic are looks blocks, which account for 32
% of all blocks in this topic (Fig. 6). For example, Figure 8a shows
an example girl’s project for this topic: Even though it contains
a Bat sprite, this sprite just says “I want blood” while the other
sprites are empty, like in many of the girls’ programs. Thus, even
for popular boys’ topics, the girls’ projects follow the pattern of
animation programs without interactions. According to the use of
blocks such as looks and sound as shown in RQ 2, it indicates that
girls’ projects are predominantly of the animation project type.

We do, however, observe in Figure 6 some differences in the
projects that boys produce for the topics dominated by girls, com-
pared to other topics: For both genders the majority of programs in
the topics popular among girls (Topic 0, 1, 5) fall into the animation
or story type, which requires little to no user interaction. Figure 7
also shows that within these topics, boys’ projects are similar in size
and complexity to girls’ projects, while in most other categories,
boys’ projects are more complex. In Topic 1 (Fig. 6), the most popu-
lar girl topic, the boys’ projects also use a relatively large number
of looks blocks (18% in Topic 1 versus 8% in Topic 4 of all blocks
used). The boy’s program with the highest assignment to Topic 1
(Fig. 8b) seems to be about a birthday party without interaction.
However, there are only three boys’ programs in this topic.

Topic 8 occurs with similar frequency for girls and boys and is
overall the most common topic, as it represents the circus topic
used in the instructional programs. For this topic, the distribution
of block types seems relatively balanced across genders (Fig. 6). It
has the highest proportion of looks blocks across all topics for girls
and boys (f: 37 %, m: 27 % of all blocks used in this topic) and a fair
amount of control elements (f: 25 %, m: 22 % of all blocks used in
this topic). Fig. 7 shows that the projects are comparable in terms of
size (approximately 21 blocks used for both genders), although the
boys’ projects again tend to be slightly more complex overall (ICC
per project f: 6.46, m: 8.71). Considering sample projects (Fig. 8c,
8d), the narrative as well as the code used is similar: there is a stage
with many sprites (sprites per project f: 4.5, m: 5.0) that interact
with each other through communication, where wait and if blocks
are used, in order to be able to react to certain input from the user,
for example whether the performance was liked. This suggests that
using the topic featured in the initial work materials may support
a more balanced use of programming concepts.

The distribution in Figure 7 shows that outliers exist for all
topics and girls and boys. These extreme outliers are usually the
result of duplicated sprites, which is a common practice for both
genders (Table 4); for example, two most extreme projects are a
boy’s program (ID 49) with almost 368 blocks in Topic 0 (70 %) and
a girl’s program (ID125) with 305 blocks in Topic 9 (98 %), both of
which contain dozens of duplicated sprites.

5.2 Recommendations

5.2.1 Suggestions for Code Elements. It was shown that girls prefer
the project types animation and story, regardless of the topic, and
thereby implement fewer programming concepts (Table 3), which
leads to less complex programs (Fig. 5). There is a risk that girls

Data-driven Analysis of Gender Differences and Similarities

in Scratch Programs WiPSCE ’21, October 18–20, 2021, Virtual Event, Germany

(a) This girls’ program (ID126) is 94

% assigned to Topic 4.

(b) This boys’ program (ID100) is 59

% assigned to Topic 1.

(c) This girls’ program (ID26) is 98

% assigned to Topic 8.

(d) This boys’ program (ID19) is 96

% assigned to Topic 8.

Figure 8: One representative example for each of the top-

topics of boys (8a) and girls (8b) as well as two representative

examples of the universally popular circus topic (8c, 8d).

who implement the seemingly simpler concepts will remain at
a somewhat lower level of knowledge and skills, which can be
detrimental to their enthusiasm and the unfolding of their full
potential. To address this, programming tasks should be designed
that provide sufficient room for all children’s thematic preferences
and the application of programming concepts. The aim should be
to design challenging tasks but also to further increase the girls’
motivation by using elements of their favoured project types.

One way could be to foster the use of cross-category elements
in programming tasks, for example using blocks that particularly
appeal to girls in games. This could be realized, for example, by
having a sprite change its costume, say something or make a sound
on certain events in the game as switch costume to and sounds menu
are two of the most popular blocks of the girls (Table 2).

Another way to lead girls to using more complex programming
concepts might be to provide specifications in open programming
scenarios, such as “the main character in your program should be
controlled by the user”, which implies reacting to user input and
thus using if-conditions or multiple events. In this case, the topic
of the program can be left completely open, or a rough thematic
framework can be given, e.g., a visit to the zoo or a day at the beach.

An alternative could be to develop tasks based on short stories
and in this way evoke the desired programming concepts. The
storyline could suggest certain programming concepts, e.g., “no
matter where the mermaid moved, the fish followed her” and still
be appealing to girls. Free spaces could be left in the stories for
them to fill in creatively, such as “the crab was very happy to meet
the octopus”. This phrase could be implemented in very different
ways—the crab could say something joyful, jump in joy etc.

The starter projects on the Scratch website5 also show that cer-
tain topics are more suitable for certain project types. For example,
dance and music topics, such as the Dance Party project, are offered
as animation, while the games may be less appealing to girls. Here,
one possibility would be to address girl-specific topics or at least
more neutral topics to motivate girls to implement games as well.

5.2.2 Topics as Motivators. The topics identified from RQ1 exem-
plify that the areas of interest of girls and boys differ in the imple-
mentation of Scratch projects, but that there are also thematic
overlaps. The most popular topic in boys’ programs is particularly
interesting as it relates to the introductory Scratch program Ghost-
busters in the first module of Code Club6 –a large initiative to get
children interested in programming. One could eventually establish
a connection here: Boys in particular are addressed with this con-
tent and also may have been inspired by this task. Girls may have
less desire to implement the programming task, simply because
they are less interested in the topics compared to others.

Therefore, a motivator would be to thematically adapt an intro-
ductory task to girls’ interests: Besides Ghostbusters, an example
program with more “girly” topics containing Unicorns or an equiva-
lent set of topics from pop culture, analogous toGhostbusters should
be offered as a springboard [11]. When children are working on one
project in a session, providing a gender-neutral topic is beneficial.
This could also have a positive effect on attracting interest in more
diverse groups, especially for events such as introductory program-
ming courses or Take Our Daughters and Sons to Work Day. In this
context, it is important to ensure that no gender stereotypes are re-
produced in these introductory programs, but that universal topics
provide an entry point for further enthusiasm in programming [37].

Just as with the introductory tasks at Code Club, it is important
to pay attention to thematic diversity in learning environments. A
completely free design of their programs would be most beneficial
for children [36]. If this is not possible due to certain learning goals
or if programs are presented as examples, care must be taken to
ensure that the content of the programs can potentially inspire all
target groups, and thus arouse interest in programming and CS.

6 CONCLUSIONS AND FUTUREWORK

In this paper, we identified gender differences and similarities in
317 Scratch programs using automated topic and code analysis.
A topic analysis revealed that girls’ programs revolve around uni-
corns, music and dance, while boys prefer more gloomy fantasy
worlds with bats and ghouls as well as soccer or basketball. While
both genders use similar numbers of blocks to implement these pro-
grams, usage varies: Girls mainly use looks and sound blocks, which
indicate the category of story and animation, while boys predomi-
nantly use motion blocks, which are game-specific elements. Boys
are also much more likely to use essential programming concepts
such as conditional statements or iterations, resulting in slightly
higher complexity. These findings suggest a better internalization
of programming concepts by boys. These results suggest that teach-
ing materials must be adapted in such a way that all genders are
equally challenged and motivated [31]. It is also important to ad-
dress the special needs and interests of girls in order to promote
5https://scratch.mit.edu/starter-projects
6https://projects.raspberrypi.org/en/projects/ghostbusters

WiPSCE ’21, October 18–20, 2021, Virtual Event, Germany Graßl, et al.

them in particular. This also has an impact on the design of starter
projects on the Scratchwebsite and the programming examples in
the Code Club. Furthermore, it is important to create an awareness
for the interests of the users and the accompanying stereotypes
among the educators to ensure that these are not reproduced in
the teaching concepts [37]. For future work it is relevant to con-
sider all facets of diversity and to expand the analyses to include
not only gender, but also ethnicity, social background, or disabili-
ties [35, 36]. A deeper understanding of behavior in Scratch pro-
gramming [14] will enable an effective learning environment for all
children equally, which helps to strengthen their computing-related
self-concept and thus their longer-term interest in CS.

ACKNOWLEDGMENTS

We thank Alexandra Funke for her contribution to the data collec-
tion. This work is supported by the Federal Ministry of Education
and Research through project “primary::programming” (01JA2021)
as part of the “Qualitätsoffensive Lehrerbildung”, a joint initiative
of the Federal Government and the Länder. The authors are respon-
sible for the content of this publication.

REFERENCES

[1] J. Adams and A. Webster. 2012. What Do Students Learn about Programming
from Game, Music Video, and Storytelling Projects?. In SIGCSE ’12. ACM, 643.

[2] E. Aivaloglou and F. Hermans. 2016. How Kids Code and How We Know: An
Exploratory Study on the Scratch Repository. In ICER ’16. ACM, 53–61.

[3] E. Aivaloglou and F. Hermans. 2019. Early Programming Education and Career
Orientation: The Effects of Gender, Self-Efficacy, Motivation and Stereotypes. In
SIGCSE ’19. ACM, 679–685.

[4] E. Aivaloglou and F. Hermans. 2019. How Is Programming Taught in Code Clubs?.
In Koli Calling ’19. ACM, 1–10.

[5] K. Amanullah and T. Bell. 2019. Analysis of Progression of Scratch Users Based
on Their Use of Elementary Patterns. In ICCSE ’19. 573–578.

[6] T. Bell, I. Witten, and M. Fellows. 2015. CS Unplugged: An enrichment and
extension programme for primary-aged students. (2015).

[7] S. Beyer, K. Rynes, J. Perrault, K. Hay, and S. Haller. 2003. Gender Differences in
Computer Science Students. In SIGCSE (New York). ACM, 49–53.

[8] D. M. Blei, A. Y. Ng, and M. I. Jordan. 2003. Latent dirichlet allocation. JMLR 3
(2003), 993–1022.

[9] J. C. Campbell, A. Hindle, and E. Stroulia. 2015. Latent Dirichlet allocation:
extracting topics from software engineering data. In The art and science of
analyzing software data. Elsevier, 139–159.

[10] G. Catolino, F. Palomba, D. A. Tamburri, A. Serebrenik, and F. Ferrucci. 2019. Gen-
der Diversity and Women in Software Teams: How Do They Affect Community
Smells?. In ICSE-SEIS ’19. IEEE, 11–20.

[11] H. G. Corneliussen and L. Prøitz. 2016. Kids Code in a rural village in Nor-
way: could code clubs be a new arena for increasing girls’ digital interest and
competence? Inf. Commun. Soc. 19, 1 (2016), 95–110.

[12] S. Dasgupta and B. M. Hill. 2018. How “wide walls” can increase engagement:
evidence from a natural experiment in Scratch. In CHI ’18. 1–11.

[13] S. T. Dumais, G. W. Furnas, T. K. Landauer, S. Deerwester, and R. Harshman.
1988. Using latent semantic analysis to improve access to textual information. In
SIGCHI ’88. 281–285.

[14] D. A. Fields, Y. B. Kafai, and M. T. Giang. 2017. Youth Computational Participation
in the Wild: Understanding Experience and Equity in Participating and Program-
ming in the Online Scratch Community. TOCE 17, 3 (Aug. 2017), 15:1–15:22.

[15] M. Fowler, K. Beck, and J. Brant. 1999. Refactoring - Improving the Design of
Existing Code. (1999), 337.

[16] C. Frädrich, F. Obermüller, N. Körber, U. Heuer, and G. Fraser. 2020. Common
Bugs in Scratch Programs. In ITiCSE ’20. ACM, 89–95.

[17] A. Funke and K. Geldreich. 2017. Gender Differences in Scratch Programs of
Primary School Children. In WiPSCE ’17. ACM, 57–64.

[18] K. Geldreich, A. Simon, and P. Hubwieser. 2019. A Design-Based Research
Approach for introducing Algorithmics and Programming to Bavarian Primary
Schools. 33 (2019), 53–75.

[19] F. Hermans and E. Aivaloglou. 2016. Do Code Smells Hamper Novice Program-
ming? A Controlled Experiment on Scratch Programs. 1–10.

[20] F. Hermans, K. Stolee, and D. Hoepelman. 2016. Smells in Block-Based Program-
ming Languages. 68–72.

[21] H.-m. J. Hsu. 2014. Gender Differences in Scratch Game Design. In ICIBET ’14.
Atlantis Press.

[22] P. Hubwieser, E. Hubwieser, and D. Graswald. 2016. How to Attract the Girls:
Gender-Specific Performance and Motivation in the Bebras Challenge. In ISSEP
’16, A. Brodnik and F. Tort (Eds.). Springer, Cham, 40–52.

[23] H. Jelodar, Y. Wang, C. Yuan, X. Feng, X. Jiang, Y. Li, and L. Zhao. 2019. Latent
Dirichlet allocation (LDA) and topic modeling: models, applications, a survey.
Multimedia Tools and Applications 78, 11 (2019), 15169–15211.

[24] C. Kelleher and R. Pausch. 2007. Using Storytelling to Motivate Programming.
CACM 50, 7 (July 2007), 58–64.

[25] A. Master and A. N. Meltzoff. 2020. Cultural stereotypes and sense of belonging
contribute to gender gaps in STEM. GST 12, 1 (2020), 152–198.

[26] T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013. Efficient Estimation of Word
Representations in Vector Space. arXiv:1301.3781 [cs] (Sept. 2013).

[27] J. Moreno-León, G. Robles, and M. Román-González. 2015. Dr. Scratch: Automatic
Analysis of Scratch Projects to Assess and Foster Computational Thinking. RED
(Sept. 2015).

[28] J. Moreno-León, G. Robles, and M. Román-González. 2016. Comparing computa-
tional thinking development assessment scores with software complexity metrics.
In EDUCON ’16. IEEE, 1040–1045.

[29] J. Moreno-León, G. Robles, and M. Román-González. 2020. Towards Data-Driven
Learning Paths to Develop Computational Thinking with Scratch. TETC 8, 1 (Jan.
2020), 193–205.

[30] A. Murphy, B. Kelly, K. Bergmann, K. Khaletskyy, R. V. O’Connor, and P. M.
Clarke. 2019. Examining Unequal Gender Distribution in Software Engineering.
In EuroSPI ’19. Vol. 1060. Springer, Cham, 659–671.

[31] S. P. Rose, M. P. J. Habgood, and T. Jay. 2020. Designing a Programming Game to
Improve Children’s Procedural Abstraction Skills in Scratch. JECR 58, 7 (Dec.
2020), 1372–1411.

[32] P. D. Palma. 2001. Why women avoid computer science. Commun. ACM 44, 6
(2001), 27–30.

[33] S. Papavlasopoulou, K. Sharma, and M. N. Giannakos. 2020. Coding Activities for
Children: Coupling Eye-Tracking with Qualitative Data to Investigate Gender
Differences. Computers in Human Behavior 105 (April 2020), 105939.

[34] M. Resnick, B. Silverman, Y. Kafai, J. Maloney, A. Monroy-Hernández, N. Rusk,
E. Eastmond, K. Brennan, A. Millner, E. Rosenbaum, and J. Silver. 2009. Scratch:
Programming for All. CACM 52, 11 (Nov. 2009), 60.

[35] G. Richard and Y. Kafai. 2016. Blind Spots in Youth DIY Programming: Exam-
ining Diversity in Creators, Content, and Comments within the Scratch Online
Community. In CHI ’16. ACM, 1473–1485.

[36] R. Roque, N. Rusk, and M. Resnick. 2016. Supporting Diverse and Creative
Collaboration in the Scratch Online Community. In Mass Collaboration and
Education, U. Cress, J. Moskaliuk, and H. Jeong (Eds.). Springer, Cham, 241–256.

[37] E. Rubegni, M. Landoni, and L. Jaccheri. 2020. Design for Change With and
for Children: How to Design Digital StoryTelling Tool to Raise Stereotypes
Awareness. In DIS ’20. ACM, Eindhoven, 505–518.

[38] M. Rubio, R. Romero-Zaliz, C. Mañoso, and A. de Madrid. 2015. Closing the
Gender Gap in an Introductory Programming Course. Computers & Education 82
(2015), 409–420.

[39] D. Russo and K. Stol. 2020. Gender Differences in Personality Traits of Software
Engineers. IEEE TSE (2020), 1–1.

[40] K. Sharma, J. C. Torrado Vidal, J. Gómez, and M. L. Jaccheri. 2020. Improving
Girls’ Perception of Computer Science as a Viable Career Option through Game
Playing and Design: Lessons from a Systematic Literature Review. (2020).

[41] R. J. Shavelson, J. J. Hubner, and G. C. Stanton. 1976. Self-Concept. 46, 3 (1976),
407–441.

[42] M. Shepperd, N. Ajienka, and S. Counsell. 2018. The role and value of replication
in empirical software engineering results. Inf. Softw. Technol. 99 (2018), 120–132.

[43] A. Sullivan and M. U. Bers. 2013. Gender Differences in Kindergarteners’ Robotics
and Programming Achievement. International Journal of Technology and Design
Education 23, 3 (Aug. 2013), 691–702.

[44] A. Sullivan and M. Umashi Bers. 2016. Girls, Boys, and Bots: Gender Differences
in Young Children’s Performance on Robotics and Programming Tasks. JITE:IIP
15 (2016), 145–165.

[45] L. Van der Maaten and G. Hinton. 2008. Visualizing data using t-SNE. JMLR 9,
11 (2008).

[46] B. Vasilescu, D. Posnett, B. Ray, M. G. van den Brand, A. Serebrenik, P. Devanbu,
and V. Filkov. 2015. Gender and Tenure Diversity in GitHub Teams. In CHI ’15.
ACM, 3789–3798.

[47] T. Vrieler, A. Nylén, and Å. Cajander. 2020. Computer science club for girls and
boys–a survey study on gender differences. Comput. Sci. Educ. (2020), 1–31.

[48] L. Wang, G. Stanovsky, L. Weihs, and O. Etzioni. 2019. Gender Trends in Computer
Science Authorship.

[49] Y. Wang and D. Redmiles. 2019. Implicit Gender Biases in Professional Software
Development: An Empirical Study. In ICSE-SEIS ’19. IEEE, 1–10.

[50] Y. Wang and M. Zhang. 2020. Reducing Implicit Gender Biases in Software
Development: Does Intergroup Contact Theory Work?. In ESEC/FSE ’20. ACM,
580–592.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Method
	3.1 Data Collection
	3.2 Dataset
	3.3 Data Analysis
	3.4 Threats to Validity

	4 Results
	4.1 RQ1: Topic Analysis
	4.2 RQ2: Code Analysis

	5 Discussion
	5.1 Interrelation of Topics and Code
	5.2 Recommendations

	6 Conclusions and Future Work
	Acknowledgments
	References

