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Traditional social group analysis mostly uses interaction models, event models, or other methods to identify and distinguish 

groups. This type of method can divide social participants into different groups based on their geographic location, social 

relationships, and/or related events. However, in some applications, it is necessary to make more specific restrictions on the 

members and the interaction between members of the group. Generally, graph pattern matching (GPM) is used to solve this 

problem. However, the existing GPM methods rarely consider the rich contextual information of nodes and edges to measure the 

credibility between members. In this paper, a social group query problem that needs to consider the trust between members of 

the group is proposed. To solve this problem, we propose a Strong Simulation GPM algorithm (NTSS) based on the exploration of 

pattern Node Topological ordered sequence. Aiming at the inefficiency of the NTSS algorithm when matching pattern graph with 

multiple nodes with zero in-degree and the problem of repeated calculation of matched edges shared by multiple matching 

subgraphs, two optimization strategies are proposed. Finally, we conduct verification experiments on the effectiveness and 

efficiency of the NTSS algorithm and the algorithms with the optimization strategies on four social network datasets in real 

applications. Experimental results show that the NTSS algorithm is significantly better than the existing multi-constrained GPM 

algorithm, and the NTSS_Inv_EdgC algorithm, which combines two optimization strategies, greatly improves the efficiency of the 

NTSS algorithm. 

CCS CONCEPTS • Information systems→Information retrieval→Specialized information retrieval • Computing 

methodologies→Modeling and simulation→Model development and analysis 

Additional Keywords and Phrases: Graph pattern matching, Contextual social network, Multi-fuzzy-constrained 

strong simulation, Social group query 

1 INTRODUCTION 

The query and identification of groups are of great significance in the analysis and application of social networks, 

such as the discovery of social groups [1,2,3], the identification of criminal groups [4], and the positioning of expert 

groups [5]. The social network-based group query can define the pattern graph of the group to be queried by 

restricting the members and the relationship between the members in the group. 

In 2013, Fan et al. [5] proposed the problem of graph pattern matching (GPM) for expert group matching in 

collaborative networks. For example, in the collaborative network shown in Fig. 1(b), each participant has three 

attributes: name, job, and work experience. The edges between them represent cooperative relationships. If a 
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Fig. 1. Query pattern graph 𝑃 and collaboration network 𝐺 

company wants to form a team for system development, the team needs system architect, business analyst, project 

manager, system developers, and testers to work together. The job requirements, experience requirements, the 

relationship between the team members, and the path length requirements are shown in Fig. 1(a). Obviously, the 

influence of the relationship between team members on the efficiency of team collaboration is not considered. For 

example, if BA lacks communication with PM and SD, or cannot communicate well with PM and SD, it will affect the 

development efficiency of the team. Besides, the professional ability of each person is also an important factor to be 

considered for teamwork. For a team, the credibility of members and the trust between members have a very 

important impact on the formation of the team, and the measurement of trust between members are affected by 

many factors. Therefore, we propose a social group query problem that needs to measure the credibility among 

team members. 

In 2015, Liu et al. [6] considered crowdsourced tourism and social network-based e-commerce in contextual 

social networks may require multiple constraints on matching nodes and edges, so they proposed the problem of 

Multi-Constrained Graph Pattern Matching (MC-GPM) and proposed Multi-Constrained Simulation (MCS) matching 

method. MC-GPM can be well adapted to the group query problem. However, the Baseline algorithm and the HAMC 

algorithm proposed by Liu et al. [6], and the M-HAMC algorithm [7] proposed later, are essentially similar to the 

exact GPM algorithms, and both adopt exploration-based approaches. Although those algorithms can return 

matching results faster, it is difficult to complete the task of completely matching large-scale social network data 

graphs. In addition, MCS cannot well match the topological relationship between nodes in the pattern graph, so the 

matching results will contain a large number of matching results that do not meet the requirements. 

In this paper, we focus on the social group queries that require the calculation of credibility among members. 

For each social group to be queried, there is generally a leader or an organizer. In this paper, we assume that the 

pattern graph to be queried is a directed acyclic graph starting from the leader (or organizer). Since the existing  

MC-GPM algorithms are similar to exact GPM algorithms, each leader may appear in multiple matching subgraphs, 

which can be considered as one large matching subgraph for group queries. In addition, previous definitions of MC-

GPM only added judgment of multiple constraints on nodes and edges based on bounded simulation [4], so it could 

not well match the topology of pattern graphs just like bounded simulation. 

In response to the above problems, the MC-GPM matching model is improved firstly, and the Multi-Fuzzy-

Constrained Strong Simulation (MFCSS) matching model is proposed. MFCSS ensures that the matched nodes 

completely satisfy the topology of the corresponding pattern node through the dual simulation [10]; by limiting the 

locality of the entire matching subgraph, it further ensures that the matching subgraph composed of matched nodes 
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has a more similar topological structure to the pattern graph. Then, given the high time complexity of the existing 

MC-GPM algorithm, a Strong Simulation matching algorithm (NTSS) based on the exploration of pattern Node 

Topological ordered sequence is proposed. NTSS ensures that the matched nodes and the corresponding pattern 

node have the same topological structure by examining the predecessor and subsequent topological structure of 

the matching candidate nodes. Furthermore, the exploration-based method of NTSS ensures the locality of the 

matching subgraph. Then, in view of the low matching efficiency of the NTSS algorithm when matching pattern 

graphs with multiple vertices with zero in-degree (i.e., multi-source pattern graphs), an optimization algorithm 

NTSS_Inv for reverse edge matching is proposed. Aiming at the problem that the NTSS algorithm needs to 

repeatedly calculate the shared matching paths (or edges) of the matching subgraphs, an optimization algorithm 

NTSS_EdgC for matched paths caching is proposed. Finally, we implement the NTSS, NTSS_Inv, NTSS_EdgC, and the 

NTSS_Inv_EdgC algorithm with two optimization strategies, and conduct confirmatory experiments on four social 

network datasets of different sizes. The experimental results show that the proposed NTSS algorithm is significantly 

better than the existing MC-GPM algorithms, and the NTSS_Inv_EdgC algorithm greatly improves the efficiency of 

the NTSS algorithm. 

2 RELATED WORK 

Regarding the discovery and recognition of groups, Ngan et al. [11] used the characteristics of the recognition of 

people in the picture and the characteristics of crowd gathering to group the characters; Tran et al. [12] identified 

people in communication through modeling of participant interaction clues in social networks; Amin et al. [13] used 

event-based models to compare groups in multiple networks to discover criminal groups; Yang et al. [14,15] 

analyzed the time, location and social relationship of the characters in social networks to organize social activities. 

This kind of method is not close to our work, so we will not discuss it in detail. 

The earliest GPM refers to the matching subgraph [16] with the same topology structure as the pattern graph, 

so it is also called subgraph matching, subgraph isomorphism, or GPM based on isomorphism. This kind of matching 

is often used for biological data analysis [17,18] and social network applications with strict requirements on the 

structure of subgraphs [19], and often use indexing [20,21] and pruning [22] methods to improve the matching 

efficiency of the algorithm. For some emerging applications in social networks, isomorphism-based matching 

requirements are too strict, and the efficiency of the algorithm is too low. In 2010, Fan et al. [4] proposed bounded 

simulation matching based on node simulation to solve the query problem of the crime group. The algorithm can 

complete the GPM task within cubic time. Since bounded simulation matching only constrains the successor 

topology of candidate nodes, the matching results include a large number of matched nodes that do not meet the 

requirements of the predecessor topology of the pattern nodes. In response to this problem, Ma et al. [10] proposed 

strong simulation matching. Strong simulation matching requires that the matched node must meet the dual 

simulation requirements, that is, the matched node have to not only meet the subsequent topology of the 

corresponding pattern node but also meet the predecessor topology of the pattern node. In addition, strong 

simulation matching further requires the matched nodes of a matching subgraph to be in a subgraph with a 

diameter of D (D=2d, d represents the diameter of the pattern graph), that is, the matching subgraph is required to 

meet locality, thus further ensuring that the topology structure of the matching subgraph is consistent with that of 

the pattern graph. 

The above work does not consider the information on the edges of the social network graph, that is, the 

constraints of the information about the relationship between nodes. In 2015, Liu et al. [6] first proposed the MC-
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GPM problem in contextual social networks and proposed the heuristic algorithm HAMC. Since the HAMC algorithm 

cannot fully match large-scale social network data, Liu et al. further studied the method of returning top-k matching 

results [23] and the parallel M-HAMC algorithm [7]. Li et al. [8] studied the application of MC-GPM in system 

reliability, and regarded it as a multi-objective constraint problem, and used multi-objective optimization methods 

to filter the GPM results to return more valuable results, but they did not improve the MC-GPM algorithm itself. 

Considering that there may be problems with fuzzy attributes in large-scale graph data, Liu et al. [9] proposed a 

general problem model for GPM in big graph data, multi-fuzzy-constrained graph pattern matching (MFC-GPM), 

and proposed a method ETOF-K based on exploration of edge topological order in the pattern graph. This algorithm 

improves the efficiency of the MC-GPM by adjusting the edge matching order and optimizing the matching method 

of multi-constrained pattern edges, but it is still an algorithm similar to exact GPM in essence, and its time 

complexity is very high. 

The edge matching of the MFC-GPM problem is a multi-constrained optimal path selection (MCOPs) problem. 

For two social participants A and B (there is no direct correlation between them), there may be multiple paths 

between them. In the case of multiple constraints, finding the optimal path is proved to be an NP-Complete problem 

[24]. In 2010, Liu et al. [25] proposed the problem of calculating the optimal trust path between nodes in complex 

social networks and proposed to use the weighted sum of trust and intimacy between nodes and the influence of 

nodes in the field of social networks to evaluate whether B is trustworthy to A. In 2012, Liu et al. [26] proposed a 

calculation model for a trusted network in a complex contextual social network, adding the similarity of the hobbies 

between nodes and the length of the relationship path into the calculation model for comprehensive trust 

measurement, and through evaluation of the trusted network formed by multiple paths between A and B to measure 

the credibility of B to A. 

3 GRAPH PATTERN MATCHING 

This part first gives general definition of data graph, pattern graph, and matching subgraph, and then introduces 

the proposed multi-fuzzy-constrained strong simulation (MFCSS). 

3.1 Related Terms 

GPM means that given a pattern graph P and a data graph G, query all subgraphs of the matching pattern graph P 

from G. The definitions of the data graph, the pattern graph, and the matching subgraph are as follows. 

A data graph is a directed graph with node and edge attributes, which can be denoted as 𝐺 = (𝑉, 𝐸, 𝑓𝑣
𝐷 , 𝑓𝑒

𝐷), 

where: 

- 𝑉 represents a set of nodes; 

- 𝐸 represents the set of edges, (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 represents the directed edge from node 𝑣𝑖  to node 𝑣𝑗; 

- 𝑓𝑣
𝐷  represents a function defined on the node set 𝑉, ∀ 𝑣 ∈ 𝑉, 𝑓𝑣

𝐷(𝑣) represents the attributes set of nodes 𝑣; 

- 𝑓𝑒
𝐷  represents a function defined on the edge set 𝐸, ∀ (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸, 𝑓𝑒

𝐷(𝑣𝑖 , 𝑣𝑗) represents the attributes set on 

the edge (𝑣𝑖 , 𝑣𝑗). 

A pattern graph is a directed graph with attributes constraints on nodes and edges. It can be expressed as 𝑃 =

(𝑉𝑃, 𝐸𝑃 , 𝑓𝑣
𝑃 , 𝑓𝑒

𝑃 , 𝑓𝑙
𝑃 , 𝑓𝑚

𝑃), where: 

- 𝑉𝑃 and 𝐸𝑃 represent the set of pattern node and the set of pattern edge, respectively; 

- 𝑓𝑣
𝑃  represents the function defined on the pattern node set 𝑉𝑃 ; ∀ (𝑢𝑖 , 𝑢𝑗) ∈ 𝐸𝑃, 𝑓𝑒

𝑃  (𝑢𝑖 , 𝑢𝑗) represents the 

attributes constraints on the pattern node 𝑢; 
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- 𝑓𝑒
𝑃  represents the function defined on the pattern edge set 𝐸𝑃 , ∀ (𝑢𝑖 , 𝑢𝑗) ∈ 𝐸𝑃 , 𝑓𝑒

𝑃  (𝑢𝑖 , 𝑢𝑗) represents the 

attributes constraints defined on the pattern edge (𝑢𝑖 , 𝑢𝑗); 

- 𝑓𝑙
𝑃  represents the function defined on the pattern edge set 𝐸𝑃 , ∀ (𝑢𝑖 , 𝑢𝑗) ∈ 𝐸𝑃 , 𝑓𝑙

𝑃  (𝑢𝑖 , 𝑢𝑗) represents the 

matching path length constraint defined on the pattern edge (𝑢𝑖 , 𝑢𝑗); 

- 𝑓𝑚
𝑃  represents a set of membership constraint functions and its corresponding set of membership constraint 

values. For each attribute constraint in the pattern graph, a membership function can be defined to calculate 

whether the attribute (or aggregated attribute) on the matched node or matched edge (or path) meets the 

membership constraint, and the corresponding membership constraint value can be set. 

The matching subgraph is a subgraph that matches the pattern graph in the data graph 𝐺 , denoted as 

𝐺𝑠𝑢𝑏=(𝑉𝑠𝑢𝑏 , 𝐸𝑠𝑢𝑏 , 𝑓𝑣𝑠𝑢𝑏

𝐷 , 𝑓𝑒𝑠𝑢𝑏

𝐷 ), where 𝐺𝑠𝑢𝑏 ⊂ 𝐺, 𝑉𝑠𝑢𝑏 ⊂ 𝑉, 𝐸𝑠𝑢𝑏 ⊂ 𝐸, 𝑓𝑣𝑠𝑢𝑏

𝐷 ⊂ 𝑓𝑣
𝐷, 𝑓𝑒𝑠𝑢𝑏

𝐷 ⊂ 𝑓𝑒
𝐷 . 

3.2 Multi-fuzzy-constrained Strong Simulation 

The MCS is the same as the bounded simulation, that is, it cannot guarantee that the topological structure of the 

pattern graph is matched, nor can it guarantee the connectivity of the matching subgraphs. Fan et al. [10] proposed 

strong simulation matching, which requires that the matching subgraph must meet dual simulation, and the nodes 

in the matching subgraph must be in the subgraph with 𝑣 as the center node and radius 𝑟; thereby ensuring the 

matched nodes meet the topological requirements of the pattern nodes and the connectivity of the matching 

subgraph. However, strong simulation is edge-to-edge matching and does not consider multiple constraints on the 

pattern edges. Therefore, this paper proposes MFCSS on the basis of MFC-GPM. This section will first introduce the 

meaning of some related concepts, and then give the definition of MFCSS. 

About the meaning of the concepts of Dual Simulation, 𝑑𝑖𝑠𝑡(𝑣, 𝑣′), radius 𝑟, diameter 𝐷, etc., Fan et al. have been 

given in the paper [10], and will not be repeated in this paper. This paper focuses on the fuzzy multi-constrained 

social group query problem that needs to measure the credibility between members. Regarding the measurement 

of credibility, the method proposed by Liu et al. in [6, 25] through the aggregation calculation of the trust value, 

social intimacy, and social influence factor on the connection path between participants is used. However, in this 

paper, we have given a more reasonable explanation for these attributes. In addition, we also introduced the 

aggregation attributes and the calculation methods of the aggregation attributes and explained the form of the 

matching subgraph of the social group query study. The specific introduction of related concepts is as follows: 

Social influence factor: The social influence factor is determined by the number of recognized remarks and the 

number of recognized experiences or experiences in a certain domain. The more remarks and experience 

recognized by others, the higher the social influence factor of the participant in the field can be considered. The 

social influence factor is represented by 𝜌, and 𝜌 ∈ [0,1]. 

Social trust: Social trust refers to the personal scores given to each other's credibility by two adjacent participants 

in a social network based on their previous communication experience, denoted by 𝑇, and 𝑇 ∈ [0,1]. 

Social intimacy: Social intimacy is determined by the type of relationship between two social participants, such as 

relatives, teachers and students, friends, etc., as well as the frequency of communication between them. The closer 

the relationship and the more frequent the interaction, the higher the social intimacy. Social intimacy is represented 

by 𝑅, and 𝑅 ∈ [0,1]. 

Aggregation attribute: For two social participants A and B, suppose the path from A to B is represented as A, 𝑣1, 

𝑣2, … 𝑣𝑚, B, where m is a positive integer greater than or equal to 1. Aggregation attribute refers to the aggregate 

value of an attribute obtained by aggregation, averaging and other methods for the attributes on the nodes or edges 
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on the path. In this paper, the method of averaging is used for the aggregation of social influence factors on the 

matched path, while the method of integration based on the trust propagation model [27] is used for social trust 

and social intimacy. 

Matching subgraph: Given a node 𝑣 ∈ 𝑉, 𝑣 matches the leader in the pattern graph, with this node as the central 

node and the diameter 𝐷  of the pattern graph as the radius 𝑟 , can get a data subgraph 𝐺̂[𝑣, 𝑟] ⊂ 𝐺 . Then the 

subgraph composed of all matched nodes obtained from 𝑣 as the starting point and the nodes and edges on the 

matched paths in 𝐺̂[𝑣, 𝑟] is a matching subgraph of the pattern graph. 

Multi-fuzzy-constrained Strong Simulation: Given a data graph 𝐺 = (𝑉, 𝐸, 𝑓𝑣
𝐷 , 𝑓𝑒

𝐷)  and a pattern graph 𝑃 =

(𝑉𝑃, 𝐸𝑃 , 𝑓𝑣
𝑃 , 𝑓𝑒

𝑃 , 𝑓𝑙
𝑃 , 𝑓𝑚

𝑃), 𝐺 matches 𝑃 through multi-fuzzy-constrained strong simulation means that there is such a 

binary relationship 𝑆 ⊂ 𝑉 × 𝑉𝑃, which satisfies: 

- (𝑢, 𝑣) ⊂ 𝑆, if there is a membership function for node attributes in 𝑓𝑚
𝑃 , the corresponding attributes in 𝑓𝑣

𝐷(𝑣) 

only need to satisfy the corresponding membership constraints, otherwise 𝑓𝑣
𝐷(𝑣)  need to satisfy the 

constraints 𝑓𝑣
𝑃(𝑢) defined on the node 𝑢; 

- ∀ 𝑢 ∈ 𝑉𝑃, ∃ (𝑢, 𝑣) ⊂ 𝑆, 𝑣 ∈ 𝑉; 

- ∀ (𝑢, 𝑣) ⊂ 𝑆, for all (𝑢, 𝑢′) ∈ 𝐸𝑃, there exists 𝑝𝑎𝑡ℎ(𝑣, 𝑣′) ∈ 𝐺, (𝑢′, 𝑣′) ⊂ 𝑆, at the same time for all (𝑢′′, 𝑢) ∈

𝐸𝑃, there exists 𝑝𝑎𝑡ℎ(𝑣′′, 𝑣) ∈ 𝐺, (𝑢′′, 𝑣′′) ⊂ 𝑆; 

for all matched paths 𝑝𝑎𝑡ℎ(𝑣, 𝑣′)  (here 𝑝𝑎𝑡ℎ(𝑣, 𝑣′)  generally refers to 𝑝𝑎𝑡ℎ(𝑣, 𝑣′)  and 𝑝𝑎𝑡ℎ(𝑣′′, 𝑣) ), 

𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝑎𝑡ℎ(𝑣, 𝑣′)) ≤ 𝑓𝑙
𝑃(𝑢, 𝑢′), and if there is a membership function for the aggregated attribute on the matched 

path in 𝑓𝑚
𝑃 , then the corresponding aggregated attribute in 𝑝𝑎𝑡ℎ(𝑣, 𝑣′)  only need to meet the corresponding 

membership constraints; otherwise, the aggregated attributes on the matched path need to meet the corresponding 

attribute constraint in 𝑓𝑒
𝑃; all nodes 𝑣 in 𝑆 are contained in a data subgraph with 𝑣𝑠 as the central node and radius 

𝑟, where 𝑟 is equal to the diameter 𝐷 of the pattern graph. 

Example 1: Consider a social group query problem that needs to calculate the credibility between members of the 

group. The data graph can be denoted as 𝐺 = (𝑉, 𝐸, 𝑓𝑣
𝐷 , 𝑓𝑒

𝐷), where 𝑓𝑣
𝐷  represents the label and social influence 

factor 𝜌 of 𝑣, 𝑓𝑒
𝐷  represents social trust 𝑇 and social intimacy 𝑅 between participants. The pattern graph can be 

denoted as 𝑃 = (𝑉𝑃 , 𝐸𝑃, 𝑓𝑣
𝑃 , 𝑓𝑒

𝑃 , 𝑓𝑙
𝑃 , 𝑓𝑚

𝑃), where 𝑓𝑣
𝑃  represents the label constraint on the pattern node and the social 

influence factor constraint 𝜌𝑣 , 𝑓𝑒
𝑃  represents the social trust constraint 𝜆𝑇, social intimacy constraint 𝜆𝑅, and social 

influence factor constraint 𝜆𝜌 on the pattern edge, 𝑓𝑙
𝑃  represents the matching path length constraint on the pattern 

edge, 𝑓𝑚
𝑃 = {𝑓𝜌𝑣

𝑚, 𝑓𝑇
𝑚 , 𝑓𝑅

𝑚 , 𝑓𝜌
𝑚, 𝜌𝑣𝑚 , 𝑇𝑚, 𝑅𝑚,𝜌𝑚}, where 𝑓𝜌𝑣

𝑚  represents the membership function defined on the social 

influence factor constraint 𝜌𝑣 , and 𝜌𝑣𝑚  represents the corresponding membership constraint value. 𝑓𝑇
𝑚 ,𝑓𝑅

𝑚 ,𝑓𝜌
𝑚  

respectively represent the membership functions defined on the pattern edge attribute constraints 𝜆𝑇,𝜆𝑅,𝜆𝜌, and 

𝑇𝑚, 𝑅𝑚, and 𝜌𝑚 respectively represent the membership constraint values of the corresponding attribute constraints. 

The pattern graph 𝑃 matches the data graph 𝐺 through multi-fuzzy-constrained strong simulation, which means 

that there is a binary relationship 𝑆 ⊂ 𝑉 × 𝑉𝑃, which satisfies: 

- if (𝑢, 𝑣) ⊂ 𝑆, then 𝑓𝑣
𝐷(𝑣) satisfies the label constraint defined on the node u and 𝑓𝜌𝑣

𝑚(𝜌(𝑣)) ≥ 𝜌𝑣𝑚. 

- ∀ 𝑢 ∈ 𝑉𝑃, ∃ (𝑢, 𝑣) ⊂ 𝑆, 𝑣 ∈ 𝑉; 

- ∀ (𝑢, 𝑣) ⊂ 𝑆 , for all (𝑢, 𝑢′) ∈ 𝐸𝑃 , there exists 𝑝𝑎𝑡ℎ(𝑣, 𝑣′) ∈ 𝐺 , (𝑢′, 𝑣′) ⊂ 𝑆 , and for all (𝑢′′, 𝑢) ∈ 𝐸𝑃 , there 

exists 𝑝𝑎𝑡ℎ(𝑣′′, 𝑣) ∈ 𝐺, (𝑢′′, 𝑣′′) ⊂ 𝑆; 

for all matched paths 𝑝𝑎𝑡ℎ(𝑣, 𝑣′)  (here 𝑝𝑎𝑡ℎ(𝑣, 𝑣′)  refers to 𝑝𝑎𝑡ℎ(𝑣, 𝑣′)  and 𝑝𝑎𝑡ℎ(𝑣′′, 𝑣) ), 𝑙𝑒𝑛(𝑝𝑎𝑡ℎ(𝑣, 𝑣′)) ≤

𝑓𝑙
𝑃(𝑢, 𝑢′), and 𝑓𝑇

𝑚(𝐴𝑇𝐷𝑖(𝑣, 𝑣′)) ≥ 𝑇𝑚, 𝑓𝑅
𝑚(𝐴𝑅𝐷𝑖(𝑣, 𝑣′)) ≥ 𝑅𝑚, 𝑓𝜌

𝑚(𝐴𝜌𝐷𝑖(𝑣, 𝑣′)) ≥ 𝜌𝑚, where 𝐴𝑇𝐷𝑖(𝑣, 𝑣′), 𝐴𝑅𝐷𝑖(𝑣, 𝑣′), 

𝐴𝜌𝐷𝑖(𝑣, 𝑣′) represent the aggregated attributes value of 𝑇, 𝑅, 𝜌 on 𝑝𝑎𝑡ℎ(𝑣, 𝑣′), respectively. for all nodes 𝑣 in 𝑆, they  
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Method 1: 𝑔𝑒𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 

Input: 𝑢 ∈ 𝑉𝑃, 𝑉 ∈ 𝐺 
Output: 𝐶𝑎𝑛𝑑𝑢 
Begin 
1. while there is a 𝑣 ∈ 𝑉 not visited do 
2.  if 𝑙𝑎𝑏𝑒𝑙𝑣(𝑢) ⊂ 𝑙𝑎𝑏𝑒𝑙𝑣(𝑣) and 𝑓𝜌𝑣

𝑚(𝜌(𝑣)) ≥ 𝜌𝑣𝑚 
3.   add 𝑣 to 𝐶𝑎𝑛𝑑𝑢 
4. return 𝐶𝑎𝑛𝑑𝑢 

End 

ALGORITHM 1: NTSS 

Input: 𝐺, 𝑃 
Output: 𝐺𝑠𝑢𝑏

𝐴𝑙𝑙  
Begin 
1. Get 𝑉𝑇 and 𝑉𝐸; 
2. For 𝑉𝑇[0], call 𝑔𝑒𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑢) to get 𝐶𝑎𝑛𝑑𝑢; 
3. 𝑖 = 0; 
4. while 𝑖 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝐶𝑎𝑛𝑑𝑢) do 
5.  𝑣𝑠 =  𝐶𝑎𝑛𝑑𝑢[𝑖]; 
6.  𝐺𝑠𝑢𝑏 =  𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔(𝑣𝑠, 𝑉𝑇 , 𝑉𝐸 , 𝐺, 𝑃); 
7.  if 𝐺𝑠𝑢𝑏 ≠ ∅ 
8.   Add 𝐺𝑠𝑢𝑏 to 𝐺𝑠𝑢𝑏

𝐴𝑙𝑙 ; 
9.  𝑖 = 𝑖 + 1; 
10. return 𝐺𝑠𝑢𝑏

𝐴𝑙𝑙 ; 
End 

are contained in a subgraph with 𝑣𝑠 as the center node and the diameter of the pattern graph P as the radius, where 

𝑣𝑠 refers to the matching starting node in the pattern graph, and he/she is generally the leader of the group. 

4 NTSS ALGORITHM 

The execution process of the existing MC-GPM algorithm is generally divided into two parts, the matching of multi-

constrained pattern edges and the connection of matched paths based on the topology of the pattern graph. 

Generally, the execution of simulation-based GPM algorithms is divided into two parts:  getting the candidate nodes-

sets and filtering the candidate nodes based on the topology of the pattern nodes. This difference is because, for 

MC-GPM, the matching of multi-constrained pattern edges is much more difficult than the general simulation-based 

GPM. It is difficult to return the matching result in a short time using the existing simulation-based algorithms, so 

the existing MC-GPM algorithms all use exploration-based methods to achieve the requirement of quickly returning 

matching results. However, the matching algorithm based on exploration, due to the locality of the matching process, 

it is difficult to avoid the problem of repeated calculation of common matching paths between matching subgraphs. 

Moreover, the existing MC-GPM algorithms do not design matching algorithms strictly according to the idea of 

multi-constrained simulation but adopt the method similar to exact subgraph matching, so there is also the problem 

of subgraph explosion. 

In response to the above problems, we first propose a strong simulation matching algorithm (NTSS) based on 

the exploration of pattern node topological ordered sequence, which is significantly better than the existing MFC- 
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ALGORITHM 2: 𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 

Input: 𝑣𝑠, 𝑉𝑇 , 𝑉𝐸 , 𝐺, 𝑃 
Output: 𝐺𝑡𝑒𝑚𝑝

𝑣  

Begin 
1. For all (𝑢, 𝑢′) ∈ 𝑉𝑃, (𝑢, 𝑣𝑠) ∈ 𝑆 
2.  𝑝𝐿𝑀(𝑣𝑠, 𝑣′) = 𝑒𝑑𝑔𝑒𝑀𝑎𝑡𝑐ℎ(𝑣𝑠, (𝑢, 𝑢′)); 
3.  𝐺𝑡𝑒𝑚𝑝

𝑣  = 𝑓𝑖𝑛𝑑𝑆𝑢𝑖𝑡𝑎𝑏𝑙𝑒𝑃𝑎𝑡ℎ(𝑝𝐿𝑀(𝑣𝑠, 𝑣′)); 
4.  if 𝑆𝑢𝑖𝑡𝑃(𝑣𝑠, 𝑣′) = ∅ 
5.   return ∅; 

6. 𝑖 =  1; 
7. while 𝑖 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑉𝑇) do 
8.  𝑢𝑐 = 𝑉𝑇[𝑖]; 
9.  if 𝑢𝑐 ∈ 𝑉𝐸 
10.   call 𝑔𝑒𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑢𝑐) to get 𝐶𝑎𝑛𝑑𝑢𝑐

; 

11.  else 
12.   get 𝐶𝑎𝑛𝑑𝑢𝑐

 from 𝐺𝑡𝑒𝑚𝑝
𝑣 ; 

13.  𝑗 = 0; 
14.  while 𝑗 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝐶𝑎𝑛𝑑𝑢𝑐

) do 
15.   𝑣𝑐 =  𝐶𝑎𝑛𝑑𝑢𝑐

[𝑗]; 
16.   if 𝑖𝑛𝐸𝑑𝑔𝑒𝐶ℎ𝑒𝑐𝑘(𝑣𝑐) ==   𝑓𝑎𝑙𝑠𝑒 
17.    𝑗 = 𝑗 + 1; 
18.    𝑑𝑒𝑙𝑒𝑡𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑣𝑐); 
19.    continue; 

20.   For all (𝑢, 𝑢′) ∈ 𝑉𝑃, (𝑢𝑐 , 𝑣𝑐) ∈ 𝑆 
21.    𝑝𝐿𝑀(𝑣𝑐 , 𝑣𝑐

′) = 𝑒𝑑𝑔𝑒𝑀𝑎𝑡𝑐ℎ(𝑣𝑐 , (𝑢𝑐 , 𝑢𝑐
′)); 

22.    𝐺𝑡𝑒𝑚𝑝
𝑣  = 𝑓𝑖𝑛𝑑𝑆𝑢𝑖𝑡𝑎𝑏𝑙𝑒𝑃𝑎𝑡ℎ(𝑝𝐿𝑀(𝑣𝑐 , 𝑣𝑐

′)); 
23.    if 𝑆𝑢𝑖𝑡𝑃(𝑣𝑐 , 𝑣𝑐

′) = ∅ 
24.     𝑑𝑒𝑙𝑒𝑡𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑣𝑐); 

25.   𝑗 = 𝑗 + 1; 
26.  𝑖 =  𝑖 + 1; 
27. return 𝐺𝑡𝑒𝑚𝑝

𝑣 ; 

End 

GPM algorithms in efficiency. Then we add two optimizations to the NTSS algorithm and propose the 

NTSS_Inv_EdgC algorithm, which greatly reduces the time complexity and improves the efficiency of the NTSS 

algorithm. This section introduces the NTSS algorithm in detail, and the next section will introduce the optimization 

methods for NTSS. 

4.1 Node Topological Based Pattern Node Matching 

The matching of pattern nodes can be divided into two stages. In the first stage, candidate nodes are selected 

according to the constraints on the pattern nodes in the pattern graph; in the second stage, candidate nodes are 

filtered according to the topology structure of the corresponding pattern nodes. 

In the social group query problem described in this paper, constraints on nodes include constraint on node label 

𝑙𝑎𝑏𝑒𝑙𝑣 and constraint on node social influence factor 𝜌𝑣 . In addition, 𝑓𝑚
𝑃  also contains a membership function 𝑓𝜌𝑣

𝑚  

for the node social influence factor constraint 𝜌𝑣  and the corresponding membership constraint value 𝜌𝑣𝑚. For a 

pattern node 𝑢 , if there is a node 𝑣 ∈ 𝑉  is a candidate node for 𝑢 , then there are 𝑙𝑎𝑏𝑒𝑙𝑣(𝑢) ⊂ 𝑙𝑎𝑏𝑒𝑙𝑣(𝑣)  and 
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𝑓𝜌𝑣

𝑚(𝜌(𝑣)) ≥ 𝜌𝑣𝑚. The candidate node set 𝐶𝑎𝑛𝑑𝑢 of 𝑢 can be obtained through the 𝑔𝑒𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 method, as shown 

in Method 1. 

 The NTSS algorithm matches pattern nodes according to the topologically ordered sequence. Because, when 

considering whether a node satisfies the predecessor and successor topological relationship, based on the 

topologically ordered matching order, it can directly determine whether the candidate node satisfies the 

predecessor topology. If it is not satisfied, it is no longer necessary to judge whether the subsequent topology meets 

the requirements, so as to achieve the purpose of pruning. In addition, we assume that there is a leader (or 

organizer) in the group, the matching of the pattern graph starts from the leader, and it is a pattern node with zero 

entry. The execution steps of the NTSS algorithm are shown in ALGORITHM 1. 

The input of the algorithm is the data graph 𝐺 and the pattern graph 𝑃, and the output is the set of matching 

subgraphs 𝐺𝑠𝑢𝑏
𝐴𝑙𝑙 . The algorithm first uses the topological sorting algorithm to obtain the topologically ordered 

sequence 𝑉𝑇 of the pattern nodes, and at the same time records the out-degree 𝑜𝑢𝑡𝑢 and in-degree 𝑖𝑛𝑢 of each node. 

Then, obtain the pattern node-set 𝑉𝐸  which in-degree is zero. The above steps are shown in lines 1-2 of ALGORITHM 

1. Loop through the candidate set of the starting node, call the 𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔  method to obtain the 

matching subgraph organized or lead by 𝑣 =  𝐶𝑎𝑛𝑑𝑢[𝑖]. If the matching result is not an empty set, then added the 

matching subgraph 𝐺𝑠𝑢𝑏  to the matching subgraph set 𝐺𝑠𝑢𝑏
𝐴𝑙𝑙 , as shown in lines 4-9 of ALGORITHM 1. 

The specific execution steps of the 𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 method is shown in ALGORITHM 2. First, use the 

𝑒𝑑𝑔𝑒𝑀𝑎𝑡𝑐ℎ  and 𝑓𝑖𝑛𝑑𝑆𝑢𝑖𝑡𝑎𝑏𝑙𝑒𝑃𝑎𝑡ℎ  methods, match all matching paths 𝑆𝑢𝑖𝑡𝑃(𝑣𝑠, 𝑣′)  that satisfy the multiple 

constraints of the pattern edge (𝑢, 𝑢′) ∈ 𝑉𝑃 , where 𝑣𝑠  matching start node of pattern graph, (𝑢, 𝑣𝑠) ∈ 𝑆, and add 

these matched paths to the data structure 𝐺𝑡𝑒𝑚𝑝
𝑣  that stores the intermediate result of the matching subgraph, as 

shown in ALGORITHM 2 lines 1-3. The storage structure of 𝐺𝑡𝑒𝑚𝑝
𝑣  is shown in Fig. 2. It is an array of key-value pairs, 

each element in the array is a key-value pair, the key is the pattern node 𝑢𝑖  (0 ≤ 𝑖 < 𝑛𝑝, 𝑛𝑝 represents the number 

of nodes in the pattern graph), and the value is the matching candidate node list of 𝑢𝑖 . 𝑣𝑖,𝑗 (0 ≤ 𝑖 < 𝑛𝑝, 1 ≤ 𝑗 ≤ 𝑚𝑖)  

represents the 𝑗th matched node of the 𝑖-th pattern node 𝑢𝑖 , and 𝑚𝑖  represents the number of matching candidate 

nodes of the 𝑖-th pattern node 𝑢𝑖 . For each matched node 𝑣𝑖,𝑗 , its storage structure in 𝐺𝑡𝑒𝑚𝑝
𝑣  is shown in Fig. 3. Let 𝑣 

represent 𝑣𝑖,𝑗  in Fig. 2, 𝑙𝑖𝑠𝑡𝑁  represents the list of predecessor nodes of pattern node 𝑢  ((𝑢, 𝑣) ∈ 𝑆), and 𝑙𝑖𝑠𝑡𝐸 

represents the list of successor edges of pattern node 𝑢  ((𝑢, 𝑣) ∈ 𝑆). When using the edge matching function 

𝑓𝑖𝑛𝑑𝑆𝑢𝑖𝑡𝑎𝑏𝑙𝑒𝑃𝑎𝑡ℎ  to get a matching path 𝑆𝑢𝑖𝑡𝑃(𝑣, 𝑣𝑘
′ ) , it needs to be added to the matching list of the 𝑘 th 

subsequent edge of 𝑙𝑖𝑠𝑡𝐸, and at the same time in the pattern node 𝑢𝑘
′ , (𝑢𝑘

′ , 𝑣𝑘
′ ) ∈ 𝑆 add 𝑣𝑘

′  to the list of matching 

candidate nodes, and then find the precursor node 𝑢, (𝑢, 𝑢𝑘
′ ) ∈ 𝐸𝑃 in the 𝑙𝑖𝑠𝑡𝑁 of the matching candidate node 𝑣𝑘

′ , 

and add 𝑣 to the matching list of 𝑢. Therefore, after matching the starting node's subsequent edges, not only can we 

get the matched path lists of all the starting node's subsequent pattern edges (𝑢, 𝑢′) ∈ 𝑉𝑃, but also get the candidate 

nodes set 𝑣′ of 𝑢′ based on the candidate node 𝑣, and stored in 𝐺𝑡𝑒𝑚𝑝
𝑣 . 

𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔  method, then, starting from the second node of 𝑉𝑇 , the pattern nodes are matched 

sequentially in topological order. When the current pattern node to be matched 𝑢𝑐 = 𝑉𝑇[𝑖] is the successor of the 

matched pattern node, obtain the candidate node set of 𝑢𝑐 from 𝐺𝑡𝑒𝑚𝑝
𝑣 , otherwise, call the method 𝑔𝑒𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 to 

obtain the candidate node set of 𝑢𝑐 , as in ALGORITHM 2 shown in lines 9-12. After obtaining the candidate node set 

𝐶𝑎𝑛𝑑𝑢𝑐
, loop through the elements 𝑣𝑐 in the candidate node set. First, determine whether 𝑣𝑐 meets the topological 

requirements of the incoming edges, that is, determine whether there is a null value in the matched node lists of all  
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Fig. 2. The data structure of intermediate result 𝐺𝑡𝑒𝑚𝑝
𝑣  of matching subgraph 𝐺𝑠𝑢𝑏 

 

Fig. 3. Match data node 𝑣 structure in 𝐺𝑡𝑒𝑚𝑝
𝑣  

the precursor nodes in the 𝑙𝑖𝑠𝑡𝑁 of 𝑣𝑐 . If it is not satisfied, the 𝑑𝑒𝑙𝑒𝑡𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 method is called, and the matching 

candidate nodes that do not meet the topology requirements are recursively deleted, and then the next  candidate 

node is looped; if it is satisfied, the 𝑒𝑑𝑔𝑒𝑀𝑎𝑡𝑐ℎ and 𝑓𝑖𝑛𝑑𝑆𝑢𝑖𝑡𝑎𝑏𝑙𝑒𝑃𝑎𝑡ℎ methods are called to obtain the matching 

paths of all subsequent edges (𝑢𝑐 , 𝑢𝑐
′) ∈ 𝐸𝑃 , and adds them to 𝐺𝑡𝑒𝑚𝑝

𝑣 , as shown in ALGORITHM 2 lines 13-25. 

The 𝑒𝑑𝑔𝑒𝑀𝑎𝑡𝑐ℎ and 𝑓𝑖𝑛𝑑𝑆𝑢𝑖𝑡𝑎𝑏𝑙𝑒𝑃𝑎𝑡ℎ methods called in the 𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 method are both part of 

multi-constrained pattern edge matching methods, which will be introduced in detail in section IV B. The 

𝑑𝑒𝑙𝑒𝑡𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 method is a method to recursively delete matching candidate nodes and edges in 𝐺𝑡𝑒𝑚𝑝
𝑣  that do 

not meet the topology requirements.  

The NTSS algorithm is an exploration-based simulation matching algorithm. It can be adapted to different 

applications according to different edge matching algorithms, such as edge-to-edge matching, edge-to-path 

matching, multi-constrained edge matching etc. At the same time, NTSS is an algorithm that satisfies strong 

simulation matching, that is, NTSS has the following two properties. 

Proposition 1: NTSS meets dual simulation. ∀ 𝑣, (𝑢, 𝑣) ∈ 𝑆 , then ∀ (𝑢, 𝑢′) ∈ 𝐸𝑃 , there must exists 𝑝𝑎𝑡ℎ(𝑣, 𝑣′) 

matching it, where (𝑢′, 𝑣′) ∈ 𝑆. At the same time, ∀ (𝑢′′, 𝑢) ∈ 𝐸𝑃 , there must exists 𝑝𝑎𝑡ℎ(𝑣′′, 𝑣) to match with it, 

where (𝑢′′, 𝑣′′) ∈ 𝑆. 

Proof: For any matching candidate node 𝑣, (𝑢, 𝑣) ∈ 𝑆, 𝑖𝑛𝐸𝑑𝑔𝑒𝐶ℎ𝑒𝑐𝑘 must be executed. If there is (𝑢, 𝑢′) ∈ 𝐸𝑃 and 

there is no 𝑝𝑎𝑡ℎ(𝑣, 𝑣′) matching it, then 𝑣 will be added to 𝑑𝑒𝑙𝐶𝑆 and then deleted from 𝐺𝑡𝑒𝑚𝑝
𝑣 , which contradicts 

with (u, v) ∈ S. At the same time, ∀ 𝑣, (𝑢, 𝑣) ∈ 𝑆, if there is (𝑢′′, 𝑢) ∈ 𝐸𝑃, there is no 𝑝𝑎𝑡ℎ(𝑣′′, 𝑣) matching it, then if 

𝑣 is the starting node 𝑣𝑠, the matching subgraph 𝐺𝑡𝑒𝑚𝑝
𝑣  for 𝑣𝑠 will return an empty set, that is (𝑢, 𝑣𝑠) ∉ 𝑆; if v is not 

the starting node, then 𝑣 will be added to 𝑑𝑒𝑙𝐶𝑆, and then deleted from 𝐺𝑡𝑒𝑚𝑝
𝑣 , which contradicts with (𝑢, 𝑣) ∈ 𝑆. 

The proposition is proved. 
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ALGORITHM 3: 𝑒𝑑𝑔𝑒𝑀𝑎𝑡𝑐ℎ 

Input: 𝑣, (𝑢, 𝑢′), 𝐺 

Output: 𝑝𝐿𝑀(𝑣, 𝑣′) 

Begin 

1. 𝑄 =  ∅; 

2. 𝑄. 𝑝𝑢𝑠ℎ(𝑝𝑎𝑡ℎ𝐸); 

3. while 𝑄. 𝑒𝑚𝑝𝑡𝑦() == 𝑓𝑎𝑙𝑠𝑒 do 

4.     𝑝𝑎𝑡ℎ𝑗(𝑣, 𝑣′) = 𝑄. 𝑓𝑟𝑜𝑛𝑡(); 

5.     𝑄. 𝑝𝑜𝑝(); 

6.     if 𝑝𝑎𝑡ℎ𝑗(𝑣, 𝑣′) not in 𝑀𝑃𝐿(𝑢,𝑢′)
𝑣  

7.  if there is another path from 𝑣 to 𝑣′in 𝑀𝑃𝐿(𝑢,𝑢′)
𝑣  

8.      add 𝑝𝑎𝑡ℎ𝑗(𝑣, 𝑣′) to the 𝑝𝑎𝑡ℎ𝑙𝑖𝑠𝑡(𝑣, 𝑣′); 

9.  else 

10.      add 𝑝𝑎𝑡ℎ𝑗(𝑣, 𝑣′) to 𝑀𝑃𝐿(𝑢,𝑢′)
𝑣  directly; 

11.     get adjacency set 𝑎𝑑𝑗𝐿𝑣 of 𝑣; 

12.     while 𝑎𝑑𝑗𝐿𝑣 ≠ ∅ do 

13.  𝑎𝑑𝑗𝑣= 𝑔𝑒𝑡𝑂𝑛𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑎𝑑𝑗𝐿𝑣); 

14.  𝑟𝑒𝑚𝑜𝑣𝑒(𝑎𝑑𝑗𝑣 , 𝑎𝑑𝑗𝐿𝑣); 

15.  if 𝑙𝑒𝑛(𝑝𝑎𝑡ℎ𝑗(𝑣, 𝑣′))<𝑏𝑜𝑢𝑛𝑑𝑒𝑑𝑙𝑒𝑛(𝑢, 𝑢′)-1 

16.       𝑝𝑎𝑡ℎ𝑖 = 𝑝𝑎𝑡ℎ𝑗(𝑣, 𝑣′) + (𝑣, 𝑎𝑑𝑗𝑣); 

17.       𝑄. 𝑝𝑢𝑠ℎ(𝑝𝑎𝑡ℎ𝑖); 

18.  else if 𝑙𝑒𝑛(𝑝𝑎𝑡ℎ𝑗(𝑣, 𝑣′)) == 𝑏𝑜𝑢𝑛𝑑𝑒𝑑𝑙𝑒𝑛(𝑢, 𝑢′)-1 

19.       if 𝑎𝑑𝑗𝑣 satisfies the constraints of 𝑢′ 

20.    𝑝𝑎𝑡ℎ𝑖 = 𝑝𝑎𝑡ℎ𝑗(𝑣, 𝑣′) + (𝑣, 𝑎𝑑𝑗𝑣); 

21.    𝑄. 𝑝𝑢𝑠ℎ(𝑝𝑎𝑡ℎ𝑖); 

22. return 𝑝𝐿𝑀(𝑣, 𝑣′) 

End 

Proposition 2: NTSS satisfies locality. That is, for any matching subgraph 𝐺𝑠𝑢𝑏 , any matched node 𝑣, (𝑢, 𝑣) ∈ 𝑆, all 

𝑑𝑖𝑠𝑡(𝑣𝑠, 𝑣) less than or equal to 𝐷, and 𝐷 represents the pattern graph diameter. 

Proof: Suppose (𝑢𝑠 , 𝑣𝑠) ∈ 𝑆 , 𝑢𝑠  represents the leader in the pattern graph, that is, the starting node of pattern 

matching, and 𝑣𝑠 is the matched node. It is easy to know that 𝑑𝑖𝑠𝑡(𝑢𝑠, 𝑢) ≤ 𝐷, where 𝑢 represents any pattern node 

in the pattern graph. Use 𝑢𝑠, 𝑢1, 𝑢2, … , 𝑢𝑛 , 𝑢  to represent the shortest path from 𝑢𝑠  to 𝑢 , then 𝑑𝑖𝑠𝑡(𝑢𝑠 , 𝑢) =

𝑙𝑒𝑛𝑔𝑡ℎ(𝑢𝑠 , 𝑢1) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑢1, 𝑢2) + ⋯ + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑢𝑛, 𝑢) . ∀𝑣, (𝑢, 𝑣) ∈ 𝑆 , there must exists a path 𝑣𝑠, 𝑣1, 𝑣2, … , 𝑣𝑛, 𝑣 

from 𝑣𝑠 to 𝑣, where 𝑣1, 𝑣2, … , 𝑣𝑛 match 𝑢1, 𝑢2, … , 𝑢𝑛, respectively, so there are 𝑙𝑒𝑛𝑔𝑡ℎ(𝑣𝑖 , 𝑣𝑖+1) ≤ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑢𝑖 , 𝑢𝑖+1). 

Thus, 𝑑𝑖𝑠𝑡(𝑣𝑠, 𝑣) ≤ 𝑑𝑖𝑠𝑡(𝑢𝑠, 𝑢) ≤ 𝐷, the proposition is proved. 

4.2 Multi-fuzzy-constrained Pattern Edge Matching 

The multi-fuzzy-constrained pattern edge matching is a MCOPs problem, which is an NP-complete problem [24]. To 

reduce the calculation of unnecessary aggregated attributes and improve the efficiency of edge matching, this paper 
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adopts a pattern edge matching method that firstly searches the path that satisfies the constraint length, and then 

aggregates the constraint attribute values on the path. The pathfinding method that satisfies the constraint length 

is shown in ALGORITHM 3. 

The overall idea of ALGORITHM 3 is to start from node 𝑣, breadth-first traverse the edges in the data graph, and 

record each traversal path 𝑝𝑎𝑡ℎ𝑗(𝑣, 𝑣′)  starting from 𝑣 . When the end point 𝑣′  of the path matches 𝑢′ , Add 

𝑝𝑎𝑡ℎ𝑗(𝑣, 𝑣′) to the matched path set 𝑝𝐿𝑀(𝑣, 𝑣′) that satisfies the path length constraint. The 𝑝𝑎𝑡ℎ𝐸 in ALGORITHM 

3 represents an empty path whose start and end nodes are both 𝑣. To reduce unnecessary enqueue and dequeue 

operation when the path length of 𝑝𝑎𝑡ℎ𝑗(𝑣, 𝑣′) is equal to the constraint length of (𝑢, 𝑢′) minus one, we first judge 

whether 𝑎𝑑𝑗𝑣 matches 𝑢′, and then execute the enqueue operation as shown in lines 18-21 of ALGORITHM 3. Among 

the multiple matched paths from 𝑣, there may be multiple 𝑣′ that satisfy the constraints defined on the pattern node 

𝑢′, and for the same 𝑣′, there may also be multiple paths from 𝑣 to 𝑣′. In order to facilitate the selection of the optimal 

matched path in the next stage, for each 𝑣′ that matches 𝑢′, we build a path list 𝑝𝑎𝑡ℎ𝑙𝑖𝑠𝑡(𝑣, 𝑣′) from 𝑣 to 𝑣′, as shown 

in lines 6-10 of ALGORITHM 3. 

After obtaining all matching paths that satisfy 𝑏𝑜𝑢𝑛𝑑𝑒𝑑𝑙𝑒𝑛(𝑢, 𝑢′)  starting from 𝑣 , we need to call the 

𝑓𝑖𝑛𝑑𝑆𝑢𝑖𝑡𝑎𝑏𝑙𝑒𝑃𝑎𝑡ℎ method to review the multiple constraints defined on the pattern edge (𝑢, 𝑢′). For the matching 

of multi-fuzzy-constrained pattern edge, the specific steps are shown in Algorithm 4. For the path list 𝑝𝑎𝑡ℎ𝑙𝑖𝑠𝑡(𝑣, 𝑣′) 

from 𝑣 to 𝑣′, calculate the aggregate attributes value on each path 𝐴𝑇𝐷𝑖(𝑣, 𝑣′), 𝐴𝑅𝐷𝑖(𝑣, 𝑣′), 𝐴𝜌𝐷𝑖  (𝑣, 𝑣′), and record 

the smallest aggregate attribute value 𝑚𝑖𝑛_𝑎𝑡𝑡𝑟𝑐 on each path, compare 𝑚𝑖𝑛_𝑎𝑡𝑡𝑟𝑐 of all paths, and select the path 

with the largest 𝑚𝑖𝑛_𝑎𝑡𝑡𝑟𝑐 as the optimal matched path from 𝑣 to 𝑣′, and then the optimal matched path is added to 

the intermediate result 𝐺𝑡𝑒𝑚𝑝
𝑣  of the matching subgraph. 

For the convenience of calculation, the membership functions 𝑓𝜌𝑣

𝑚 , 𝑓𝑇
𝑚,𝑓𝑅

𝑚 ,𝑓𝜌
𝑚  of each attribute mentioned in this 

paper all take the form shown in formula 1, where 𝐴𝑃𝑥  represents the attribute (aggregation attribute) of the 

matched node (path), 𝜆𝑥  represents the constraint of the corresponding attribute. The membership constraint 

value 𝜌𝑣𝑚, 𝑇𝑚, 𝑅𝑚,𝜌𝑚 of each attribute are all set to 0.9. 

 

𝑓 =  {
𝐴𝑃𝑥
𝜆𝑥

1
      𝐴𝑃𝑥<𝜆𝑥

𝐴𝑃𝑥≥𝜆𝑥
            (1) 

4.3 Complexity Analysis 

The NTSS algorithm needs to traverse all nodes in the data graph to obtain the candidate node set of the starting 

node 𝑢𝑠, and the time complexity is 𝑂(𝑛). For each candidate node 𝑣𝑠 of the starting node 𝑢𝑠, an exploratory MFC-

GPM process based on the topology order of the pattern nodes is required. For the nodes in the candidate node set 

of each pattern node, it is necessary to judge whether the predecessor topology structure is satisfied and the 

subsequent edges are matched. Use 𝑀 to represent the average out-degree of nodes in the pattern graph, and using 

𝑂(𝑒𝑑𝑔𝑒) to represent the time complexity of multi-fuzzy-constrained edge matching, then the time complexity of 

the NTSS algorithm is 𝑂(𝑛 ∗ 𝑛𝑃 ∗ 𝑛 ∗ 𝑀 ∗ 𝑒𝑑𝑔𝑒). 

For the matching of each pattern edge, first, it is necessary to query the path from 𝑣 to multiple 𝑣′(𝑣′ matches 𝑢′) 

with a path length not exceeding 𝑏𝑜𝑢𝑛𝑑𝑒𝑑𝑙𝑒𝑛(𝑢, 𝑢′). That is, you need to perform a breadth-first path traversal with 

a depth of 𝑏𝑜𝑢𝑛𝑑𝑒𝑑𝑙𝑒𝑛(𝑢, 𝑢′) (abbreviated as 𝑙) starting from 𝑣. Then it is necessary to judge multiple constraints 

for each matched path that already satisfies the path length constraint. Use 𝑁 to represent the average out-degree 

of nodes in the data graph, and the time complexity of multi-fuzzy-constrained edge matching is 𝑂(2 ∗ 𝑁𝑙) . 
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Therefore, the overall time complexity of the NTSS algorithm is 𝑂(2𝑛2𝑛𝑃𝑀𝑁𝑙) , which is 𝑂(𝑛2𝑛𝑃𝑀𝑁𝑙)  after 

removing the constant term. 

5 OPTIMIZATION TECHNIQUES 

The NTSS algorithm proposed in this paper still uses an exploration-based method in order to quickly obtain the 

matching results, but the node matching and the multi-fuzzy-constrained edge matching are optimized, which 

improves the efficiency of the algorithm and makes it reach the strong simulation matching requirements. Even so, 

the NTSS algorithm still exists some problems. This section proposes optimization methods for the inefficiency of 

the NTSS algorithm in processing multi-source pattern graphs and the problem of repeated calculation of some 

common matching paths between matching subgraphs. The optimization methods in these two cases are 

respectively introduced in the following sections. 

5.1 Reverse Edge Matching 

Consider the pattern graph shown in Fig. 4(a). Assuming PM is the group leader in the pattern graph, the 

topologically ordered sequence of nodes in the pattern graph is PM, BA, SD, ST. When ALGORITHM 2 completes the 

successor edge matching of a candidate node of PM, the 𝑔𝑒𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 method needs to be called to obtain the 

candidate node set 𝐶𝑎𝑛𝑑𝐵𝐴  of BA. When the data graph is large, there may be tens of thousands or even more 

candidate nodes of BA, and there may be only a small part of them that can link to the same SD node as the current 

matched nodes of PM. For GPM starting from each candidate node of PM, the 𝑔𝑒𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 method needs to be 

called to retrieve the set 𝐶𝑎𝑛𝑑𝐵𝐴  of BA, and then perform subsequent edge matching and connection with the 

current SD candidate node for each candidate node in 𝐶𝑎𝑛𝑑𝐵𝐴 one by one. It can be seen from this that the NTSS 

algorithm has very low matching efficiency for multi-source pattern graphs, and there are a lot of unnecessary and 

repeated calculations. Since the time complexity of executing the 𝑔𝑒𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒  method is 𝑂(𝑛) , and the time 

complexity of executing BA's subsequent edge matching is 𝑂(𝑀𝑁𝑙) , the time complexity of NTSS algorithm is 

𝑂(𝑛(𝑚+2)𝑛𝑃𝑀(𝑚+1)𝑁(𝑚+1)𝑙) when there are 𝑚 nodes with zero indegree in the pattern graph. 

To reduce the time complexity of NTSS algorithm matching multi-source pattern graphs, a reverse edge 

matching method is proposed, which can effectively reduce unnecessary edge matching calculations. The specific 

method of improvement is that if the current pattern node 𝑢𝑐 has no matching candidate nodes, and there is a set 

of candidate nodes of the successor node 𝑢𝑐
′  of the current pattern node 𝑢𝑐 in 𝐺𝑡𝑒𝑚𝑝

𝑣 , we start from each candidate 

node of 𝑢𝑐
′  and use the inverse adjacency list of the data graph to reversely match the pattern edges (𝑢𝑐 , 𝑢𝑐

′ ) to 

obtain the candidate node set 𝐶𝑎𝑛𝑑𝑢𝑐
 of 𝑢𝑐 . Then it traverses the candidate node set of 𝑢𝑐  to match other 

subsequent edges. With the improved NTSS algorithm (NTSS_Inv), the time complexity is restored to 𝑂(𝑛2𝑛𝑃𝑀𝑁𝑙) 

when matching multi-source pattern graphs. 

5.2 Cache Mechanism of Matched Paths 

Consider the pattern graph shown in Fig. 4(a). When the length constraint of the matching path from BA to SD is 

changed to 3, another additional matched 𝑝𝑎𝑡ℎ (Reg, Kim) of the pattern edge (BA, SD) can be obtained. Thus, the 

NTSS algorithm can be used to obtain two matching subgraphs. The matched nodes set of the first matching 

subgraph is 𝑉𝑠𝑢𝑏1 ={Bill, Reg, Elly, Kim, Eva}, and the matched nodes set of the second matching subgraph is 

𝑉𝑠𝑢𝑏2 ={Bob, Reg, Elly, Kim, Eva}. It can be seen that there are multiple identical matched nodes in the two matching  
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Fig. 4. Pattern graph and data graph of bounded simulation 

 

Fig. 5. Cache structure of matched edges 

subgraphs, and it is also easy to know that the two matching subgraphs have multiple identical matched paths. But 

when matching two subgraphs, these same matched paths need to be recalculated. In addition, consider there is a 

graphical designer (GD) between BA and SD in Fig. 4(a), we still assuming that PM is the leader of the group, and 

the topologically ordered sequence of pattern nodes in the graph is PM, BA, GD, SD, ST. When ALGORITHM 2 is 

executed to complete the subsequent edge matching of a candidate node of PM, there is neither a candidate node of 

BA nor a candidate node of GD in 𝐺𝑡𝑒𝑚𝑝
𝑣 , so the 𝑔𝑒𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 method must be called to obtain the candidate nodes 

set 𝐶𝑎𝑛𝑑𝐵𝐴 of node BA. Through the analysis in section V A, it is easy to know that when using the NTSS algorithm 

to deal with this kind of problem, there are a large number of repeated calculation problems about the matching of 

BA and its subsequent edges. 

In response to those problems, this section proposes a method of caching the matched paths, thereby avoiding 

the problem of repeated calculation of the matched paths in the NTSS algorithm. First, the edges in the pattern graph 

are numbered, and use 𝑒𝑖  to represent the pattern edge numbered 𝑖. Then construct the data structure shown in Fig. 

5 to store the edge matching results. The first column represents the pattern edge numbered 𝑖, the second column 

represents the list of nodes that match the starting node of the pattern edge numbered 𝑖, and the third column 

represents the list of matched paths matching the pattern edge numbered 𝑖 obtained from each matched node. 

When using the 𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔  algorithm in the NTSS algorithm to match the subsequent edges of the 

matching candidate node 𝑣, it can first query the cache shown in Fig. 5 whether the matching of the current node 𝑣 

on its subsequent edges exists in the cache. Because in the NTSS algorithm that based on matched paths cache  
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Table I: The Social Datasets 

Name Vertices Edges Description 

Epinions 75879 508837 A trust-oriented social network 

Slashdot 77360 905468 A friend/foe social network 

Pokec 1632803 30622564 General online social network 

LiveJournal 4847571 68993773 General online social network 

Table II: Statistics of the Number of Matching Subgraphs 

Datasets NTSS Fuzzy-ETOF-K 

        𝑃1  𝑃2  𝑃1      𝑃2 

Epinions 109 275 109 275 

Slashdot 215 515 214 515 

Pokec 1588 30 1583 30 

LiveJournal 8101 265 8097 265 

(NTSS_EdgC), the subsequent edge matching of each matched node is only calculated once, and the sum of all 

matching candidate nodes is less than or equal to the sum of nodes in the data graph, so the time complexity of the 

NTSS_EdgC algorithm is 𝑂(𝑛 ∗ 𝑀 ∗ 2 ∗ 𝑁𝑙), which is 𝑂(𝑛𝑀𝑁𝑙) after removing the constant term. 

6 EXPERIMENTAL STUDY 

To verify the superiority of the NTSS algorithm proposed in this paper and the effectiveness of the two optimization 

strategies proposed for the NTSS algorithm, the following comparative experiments are carried out in this section. 

6.1 Experimental Implements and Settings 

We used four social network datasets of different sizes as the experimental datasets. The detailed statistics of the 

datasets are shown in Table I. These datasets only provide the association between the social participants but do 

not provide the attributes such as the social influence factor of the nodes, the social intimacy and trust of the 

association relationship required by our experiment. These attributes can be obtained by data mining methods and 

are not within the scope of this paper. In order not to lose generality, we used python to preprocess the datasets 

and use the 𝑟𝑎𝑛𝑑𝑜𝑚 function to randomly generate those attribute values on the nodes and edges, and the range of 

those attribute values is 0 to 1. 

The pattern graphs and parameter settings used in our experiment is shown in Fig. 6. Because the Fuzzy-ETOF-K 

algorithm and the NTSS algorithm have high time complexity when processing multi-source pattern graphs.  when 

0.5 is used as the constraints condition of nodes and edges in pattern graph (b) in Fig.9, the matching task cannot 

be completed within a reasonable time in Pokec and LiveJournal datasets. Therefore, in the experiment, when 

experimenting on the Pokec and LiveJournal datasets, the constraint values on the nodes and edges are set to 0.8 

for the pattern graph (b). 

About the implementation of the algorithm, we first obtained the source code of the existing MFC-GPM algorithm 

Fuzzy-ETOF-K and then programmed the NTSS algorithm by ourselves. Aiming at the two optimization strategies 

proposed in this paper, we have implemented three versions of optimization algorithms of NTSS: NTSS_Inv , 

NTSS_EdgC, and NTSS_Inv_EdgC. All the above algorithms are completed using C++ based on Visual Studio 2015 . 

The experiments in this paper are all running on a PC with Intel(R) Core (TM) i7-8700K CPU @3.70 GHz, 48 GB 

RAM, Windows 10 operating system. 
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Fig. 6. Pattern graphs of experimental 

6.2 Experimental Results and Analysis 

Exp-1: Effectiveness. This experiment verifies the effectiveness of the NTSS algorithm by comparing the number 

of matching subgraphs returned by the NTSS algorithm and the Fuzzy-ETOF-K algorithm, as well as the average 

number of matched nodes and matched paths contained in each matching subgraph. When counting the number of 

matching subgraphs of the Fuzzy-ETOF-K algorithm, since the Fuzzy-ETOF-K algorithm is similar to exact subgraph 

matching, there is a problem that the same matching starting node returns multiple matching results. Therefore,  

before the comparison, we aggregated the matching results with the same starting matched node and regarded 

them as a matching result. 

The statistics of the number of matching subgraphs returned by the NTSS algorithm and the Fuzzy-ETOF-K 

algorithm are shown in Table II, and the average statistics of the number of matched nodes and matched paths 

contained in each matching subgraph are shown in Fig. 7. 𝑃1 and 𝑃2 marked in the legend represent the matching 

results of the corresponding algorithm when matching the pattern graphs 𝑃1 and 𝑃2 in Fig. 6 respectively. 

It can be seen from Table II that the NTSS algorithm and the Fuzzy-ETOF-K algorithm return the same number 

of results when matching the pattern graph 𝑃2. When matching the pattern graph 𝑃1, the number of matching results 

of the NTSS algorithm is slightly more than that of the Fuzzy-ETOF-K algorithm. At the same time, it can be seen 

from Fig. 7 that when the pattern graph 𝑃2 is matched, the matching subgraph obtained by the two algorithms 

contains exactly the same number of matched nodes and paths. When matching the pattern graph 𝑃1, the number 

of matched nodes and paths in the matching subgraph obtained by the NTSS algorithm is slightly more than that of 

the Fuzzy-ETOF-K algorithm. The reason for this is that the NTSS algorithm is an algorithm that satisfies the strong 

simulation matching, while the Fuzzy-ETOF-K algorithm is a similar precise matching algorithm. For the topological 

structure of the pattern graph and the data graph as shown in Fig. 8, the NTSS algorithm can be matched but the 

Fuzzy-ETOF-K algorithm cannot be matched. In summary, the effectiveness of the NTSS algorithm is proved. 

Exp-2: Efficiency. This experiment is divided into three parts: The first part verifies the efficiency of the NTSS 

algorithm by comparing the number of matching subgraphs returned by the NTSS algorithm and the Fuzzy-ETOF-

K algorithm over time. The second part verifies the effectiveness of the two optimization strategies and the 

efficiency of the NTSS_Inv_EdgC algorithm by comparing five algorithms: Fuzzy-ETOF-K, NTSS, NTSS_Inv, 

NTSS_EdgC, and NTSS_Inv_EdgC. In the third part, by further comparing the three algorithms of NTSS_Inv, 

NTSS_EdgC, and NTSS_Inv_EdgC, the stability and efficiency of the NTSS_Inv_EdgC algorithm are verified. The 

statistics of the total execution time of each algorithm are shown in Table III. The k1 and k2 in the table represent  
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Fig. 7. The mean of the number of matched nodes and paths contained in matching subgraphs 

 

Fig. 8. The pattern graph and data graph are used to illustrate the difference between the NTSS algorithm and the Fuzzy-ETOF-K 
algorithm 

the ratio of the execution time of the Fuzzy-ETOF-K algorithm to the NTSS_Inv_EdgC algorithm and the ratio of the 

execution time of the NTSS algorithm to the NTSS_Inv_EdgC algorithm. The relationship between the number of 

matching results returned by each algorithm and the time consumed is shown in Fig. 9 to Fig. 12. 

Part 1: Verification of the efficiency of the NTSS algorithm 

The relationship between the execution time and the number of returned results when the NTSS algorithm and the 

Fuzzy-ETOF-K algorithm match the pattern graphs 𝑃1 and 𝑃2 in Fig. 6 is shown in Fig. 9 and Fig. 10, respectively. As 

can be seen from Fig. 9, when matching the pattern graph 𝑃1, the number of results returned by the NTSS algorithm 

increases with the execution time significantly faster than the Fuzzy-ETOF-K algorithm. As can be seen from Fig. 10, 

when matching the pattern graph 𝑃2, although the execution efficiency of the NTSS algorithm is obviously better 

than the Fuzzy-ETOF-K algorithm on the Epinions and Slashdot datasets, the execution efficiency on the Pokec and 

LiveJournal datasets is only a little better than Fuzzy-ETOF-K algorithm. This is because the time complexity of NTSS 

algorithm increases when processing multi-source pattern graphs. The larger the data scale, the greater the impact 

of this complexity change on the actual execution time. In general, although the efficiency of the NTSS algorithm 

decreases when matching multi-source pattern graphs, the efficiency of the NTSS algorithm is higher than the 

Fuzzy-ETOF-K algorithm when matching two pattern graphs. 

Part 2: Verification of the effectiveness of two optimization strategies 

It can be seen from Fig. 9 that the NTSS_EdgC and NTSS_Inv_EdgC algorithms that have added matched paths 

caching strategies are significantly better than the NTSS algorithm and the Fuzzy-ETOF-K algorithm. The execution 

efficiency of the NTSS_Inv algorithm with the reverse edge matching strategy is basically the same as the NTSS 

algorithm. This is because there are no pattern edges that need to be reversed matched in the pattern graph 𝑃1, so 
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Table III: Statistics of the Number of Matching Subgraphs 

Datasets P 
Fuzzy-

ETOF-K 
NTSS NTSS_Inv 

NTSS_Ed

gC 

NTSS_Inv

_EdgC 
k1 k2 

Epinions 
𝑃1 17.46 7.42 7.92 2.36 2.17 8.05 3.42 

𝑃2 276.27 152.60 13.14 3.57 2.84 97.38 53.73 

Slashdot 
𝑃1 107.68 25.50 27.57 6.12 5.66 19.01 4.51 

𝑃2 1415.15 805.94 28.27 8.04 6.91 204.68 116.63 

Pokec 
𝑃1 4940.94 221.12 216.55 82.70 77.66 63.62 2.85 

𝑃2 9161.83 8968.24 13.82 28.24 12.82 714.82 699.55 

LiveJournal 
𝑃1 22335.90 3758.60 3728.46 379.59 352.01 63.45 10.68 

𝑃2 73404.30 70114.92 78.87 119.89 56.26 1304.71 1246.27 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 9. The change in the number of results returned by all comparison algorithms over time when matching 𝑃1 

the NTSS_Inv algorithm is theoretically equal to the efficiency of the NTSS algorithm. However, in the actual 

matching process, in the NTSS_Inv algorithm, we only query the candidate nodes once for the pattern nodes with 

zero entry degree, so the efficiency is slightly higher than that of the NTSS algorithm. As shown in Fig. 10, the 

efficiency of the NTSS algorithm with the optimization strategy is significantly better than the NTSS algorithm and 

the Fuzzy-ETOF-K algorithm. This is because when matching the pattern graph 𝑃2 , not only can reverse edge 

matching be used to reduce unnecessary candidate node search and matched path connections, but there are also 

a large number of matched paths recalculation that can be optimized by the matched paths caching strategy, so both  
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Fig. 10. The change in the number of results returned by all comparison algorithms over time when matching 𝑃2 

optimization strategies can play a good role in improving the execution efficiency of the NTSS algorithm. In general, 

both optimization strategies can improve the efficiency of the NTSS algorithm, but the reverse edge matching can 

only improve the efficiency of the NTSS algorithm for matching multi-source pattern graphs. The cache strategy of 

the matched paths has better stability, and can improve the efficiency of the NTSS algorithm in both cases.  

Part 3: The stability and efficiency of the NTSS_Inv_EdgC algorithm 

In Fig. 9 and Fig. 10, it is difficult to observe the difference of the efficiency among NTSS_Inv, NTSS_EdgC and 

NTSS_Inv_EdgC, because the execute time of them is too little compared with Fuzzy-ETOF-K algorithm and part of 

the experiment of NTSS algorithm. Therefore, in this section, we further compare the time consumption of the three 

algorithms in matching pattern graphs 𝑃1  and 𝑃2 . The experimental results are shown in Fig. 11 and Fig. 12 

respectively. 

As can be seen from Fig. 11, when matching the pattern graph 𝑃1 , the execution efficiency of the NTSS_Inv 

algorithm is far lower than that of the NTSS_EdgC and NTSS_Inv_EdgC algorithms, and the execution efficiency of 

the latter two algorithms are similar. The reason for this, as mentioned above, is because there are no pattern edges 

in 𝑃1 that require reverse edge matching. It can be seen from Fig. 10 and Fig. 12 that although the two optimization 

strategies can play a very good role in optimizing the efficiency of the NTSS algorithm when matching 𝑃2. However, 

on the Epinions and Slashdot datasets, the NTSS_EdgC algorithm is more efficient than the NTSS_Inv algorithm, and 

the NTSS_Inv algorithm on the Pokec and LiveJournal datasets is more efficient than the NTSS_EdgC algorithm.  
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Fig. 11. The change in the number of results returned by the algorithm with optimization strategy over time when matching 𝑃1 

However, the NTSS_Inv_EdgC algorithm, which combines two optimization strategies, has the stability and best-

matching efficiency when matching the two pattern graphs. In addition, as shown in Table III, when matching the  

pattern graph 𝑃1 , the consumption time of the Fuzzy-ETOF-K algorithm is 8-63 times of the NTSS_Inv_EdgC 

algorithm, and the NTSS algorithm is 2-10 times of the NTSS_Inv_EdgC algorithm. When matching the pattern graph 

𝑃2, the consumption time of the Fuzzy-ETOF-K algorithm is 97-1304 times of the NTSS_Inv_EdgC algorithm, and the 

NTSS algorithm is 53-1246 times of the NTSS_Inv_EdgC algorithm. This proves that the NTSS_Inv_EdgC algorithm 

has a significantly better matching efficiency than the Fuzzy-ETOF-K and NTSS algorithm. 

Exp-3: Memory Usage. In this experiment, the memory usage of each algorithm for GPM on four different datasets 

was statistically compared. Fig. 13(a) and Fig. 13(b) show the statistical results of memory usage when matching 

the pattern graphs 𝑃1  and 𝑃2 , respectively. It can be seen from the Fig. 13 that the memory usage of the same 

algorithm when matching two pattern graphs is basically the same. NTSS_Inv algorithm and NTSS_Inv_Edg C  

algorithm use nearly twice as much memory as the other three algorithms because they need to store the inverse 

adjacency list of the data graph when they perform reverse edge matching. 

7 CONCLUSION 

In this paper, we propose a social group query problem that needs to calculate the credibility between members in 

the group, MFCSS matching model is proposed. Then, to address the MFCSS matching, the NTSS algorithm i s 
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Fig. 12. The change in the number of results returned by the algorithm with optimization strategy over time when matching 𝑃2 

 

(a) 

 

(b) 

Fig. 13. Memory usage of different algorithms 

proposed. Aiming at reducing the high time complexity of the NTSS algorithm in matching multi-source pattern 

graphs, we propose an optimization algorithm NTSS_Inv that using a reverse edge matching strategy. To avoid the  

repeated search calculation for the common matching paths of multiple matching subgraphs in the matching 

process of the NTSS algorithm, an optimization algorithm NTSS_EdgC with matched paths cache is proposed. Finally, 

we implement the three algorithms: NTSS, NTSS_Inv, and NTSS_EdgC, and the NTSS_Inv_EdgC algorithm with two 
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optimization strategies added, and carry out comparative experiments with the existing MFC-GPM algorithm Fuzzy-

ETOF-K on four social network datasets. The experimental results show that the NTSS algorithm is better than the 

existing MC-GPM algorithm Fuzzy-ETOF-K, and the improved NTSS algorithm NTSS_Inv_EdgC significantly 

improves the efficiency of NTSS, and is many times more efficient than the Fuzzy-ETOF-K algorithm. 
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