
ar
X

iv
:2

10
8.

11
78

1v
2 

 [
cs

.S
E

] 
 1

4 
Se

p 
20

21

On the use of test smells for prediction of flaky tests

Bruno Henrique Pachulski Camara

Department of Computer Science

Federal University of Paraná

Curitiba, PR, Brazil

bhpachulski@ufpr.br

Marco Aurélio Graciotto Silva

Department of Computing

Federal University of Technology - Paraná

Campo Mourão, PR, Brazil

magsilva@utfpr.edu.br

Andre Takeshi Endo

Department of Computing

Federal University of Technology - Paraná

Cornélio Procópio, PR, Brazil

andreendo@utfpr.edu.br

Silvia Regina Vergilio

Department of Computer Science

Federal University of Paraná

Curitiba, PR, Brazil

silvia@inf.ufpr.br

Abstract

Regression testing is an important phase to deliver soft-

ware with quality. However, flaky tests hamper the evalua-

tion of test results and can increase costs. This is because

a flaky test may pass or fail non-deterministically and to

identify properly the flakiness of a test requires rerunning

the test suite multiple times. To cope with this challenge,

approaches have been proposed based on prediction mod-

els and machine learning. Existing approaches based on the

use of the test case vocabulary may be context-sensitive and

prone to overfitting, presenting low performance when ex-

ecuted in a cross-project scenario. To overcome these lim-

itations, we investigate the use of test smells as predictors

of flaky tests. We conducted an empirical study to under-

stand if test smells have good performance as a classifier to

predict the flakiness in the cross-project context, and ana-

lyzed the information gain of each test smell. We also com-

pared the test smell-based approach with the vocabulary-

based one. As a result, we obtained a classifier that had a

reasonable performance (Random Forest, 0.83) to predict

the flakiness in the testing phase. This classifier presented

better performance than vocabulary-based model for cross-

project prediction. The Assertion Roulette and Sleepy Test

test smell types are the ones associated with the best infor-

mation gain values.

Kewords: test flakiness, regression testing, test smells, ma-

chine learning

1 Introduction

Regression testing is an important phase to deliver soft-

ware continuously with quality and minimizing failures af-

ter changes in the production code. In this phase, developers

evaluate the test results to decide whether the program has

a bug as a consequence of recent changes. However, the ex-

istence of flaky tests makes this evaluation untrustworthy.

This happens because some tests have an intermittent be-

havior, that is, they pass and fail when executed in the same

codebase [1, 2]. This non-deterministic behavior, alternat-

ing between passing and failing without any code changes,

frustrates developers. Flaky tests are challenging to debug,

and a single failing test can halt release cycles [3].

Studies from literature show that flaky tests are common

and appear in most large-scale projects [4]. In such cases,

developers may spend important resources in analyzing fail-

ures that are due to flaky tests and not to actual problems in

the code. Practitioners get now used to rerun each newly ob-

served failure several times, to ascertain that it is a genuine

regression failure and not an intermittent one [5]. This neg-

atively impacts the productivity and contributes to increase

costs.

A recent review on flaky tests points a growing interest

in this subject [6]. The academic and industrial software

development communities have worked towards the defi-

nition of flaky tests [1, 7, 8, 9, 10], reporting their occur-

rence [4, 11], building datasets [3, 5, 9, 12], and finding au-

tomatically ways to identify them [3, 5, 13, 14, 15, 16, 17,

17]. The identification of flaky tests is usually addressed

1

http://arxiv.org/abs/2108.11781v2


by two kinds of approaches. Dynamic approaches usually

re-execute the test cases a fixed number of times [9, 18].

This is expensive and error-prone. Moreover, it is not easy

to determine how many executions is enough. This can be

challenging and an inadequate choice can lead to false neg-

atives. Static approaches in turn do not require code re-

execution [1, 4, 5, 13, 18, 19].

Most of the works apply Machine Learning (ML) meth-

ods to build models to predict flakiness likelihood [3, 5, 13,

16, 19]. These works differ on the adopted ML method and

features used as predictors. Some of them use as predic-

tors features obtained through the execution of code, such

as coverage and runtime [3, 13].

Models built using only static features present many ad-

vantages and are less costly [5]. Considering this advan-

tage, Pinto et al. [5] build the set of predictors considering

that there are some patterns within the test code that may

be employed to automatically identify flaky tests. Then,

tokens are identified and processed by using Natural Lan-

guage Processing (NLP) techniques to synthesize a vocab-

ulary of flaky tests. This vocabulary is used as predictors

in combination with some common static test case features

regarding number of lines of code and occurrence of cer-

tain Java keywords. This work applied five ML algorithms

and Random Forest and Support Vector Machine (SVM)

reached the best performance (F-measure of 0.95).

The works of Ahmad et al. [15] and Haben et al. [17]

attempted to reproduce the findings of Pinto et al. and

evaluated the effectiveness of vocabulary-based features in

Python projects. Haben et al. [17] also used an informa-

tion retrieval technique to statically estimate testing cover-

age, and investigated whether it could improve the perfor-

mance of a vocabulary-based model, but without success.

Camara et al. [16] replicated the work of Pinto et al. and

also investigated the generalization of the original results in

real scenarios. By using different datasets, the authors eval-

uated the performance of the vocabulary-based model for

a cross-project context, considering intra- and inter-project

test flakiness prediction. The authors concluded that the

vocabulary-based approach is context-sensitive and prone

to overfitting, presenting low performance when executed

in a cross-project scenario.

Considering these negative results, this work investigates

the use of an alternative approach for flaky test prediction,

based on test smells. Similarly to the concept of bad code

smells [20], test smells are associated to potential design

problems in the test code, that is, problems related to the

way test cases are organized, implemented and interact with

each other [21]. Test smells may also impact the software

quality and has been recently associated to test flakiness.

For instance, Alshammari et al. [3] investigated the use of

test smells as predictors of flaky tests but in combination

with other features. The set of features used included static

metrics such as number of lines and assertions but also dy-

namics metrics related to line coverage, what can increase

costs.

Unlike the work of Alshammari et al. we adopted a set

of predictors only composed by metrics collected statically.

In addition to the size of test case and number of smells in

the test code, we also adopted binary features related to the

presence or not of 19 test smells. Moreover, we investigated

the use of the obtained models for cross-project prediction

in comparison with the vocabulary-based approach. To this

end, we employed the same dataset and algorithms used in

our previous work [16]. As a result, we obtained a clas-

sifier that has a reasonable performance (Random Forest,

0.83%). This classifier presented better performance than

vocabulary-based model for cross-project prediction. The

Assertion Roulette and Sleepy Test smells are the ones as-

sociated with the best information gain values. In this way,

the main contributions of this paper are:

• An empirical study of the adoption of test smell-based

models for the prediction of test flakiness. Such an

approach presents some advantages. The use of smells

can be collected statically and automatically. In our

work we use the tsDetect tool [22];

• Results about the importance of the different type of

smells and their relation with flaky tests. This can

guide testers to better design test code;

• Discussion on some implications and limitations about

the generalization of the results and obtained mod-

els for different projects in a cross-validation scenario,

that can guide future research in the area; and

• A repository containing the procedures, datasets,

and scripts generated from this study at

https://github.com/bhpachulski/SAST21-Paper.

The paper is organized as follows. Section 2 provides

background about test smells and flaky tests. Section 3 con-

tains an example showing how smells and flakiness may

relate. This example serves as motivation to our work.

Section 4 reviews related work. Section 5 describes the

methodology adopted in our study. Section 6 presents and

analyses the obtained results. Section 7 discusses the main

threats of our study. Section 8 presents our final remarks

and concludes the paper.

2 Background

In this section we provide an overview of the main topics

related to this work: flaky tests and test smells.

2

https://github.com/bhpachulski/SAST21-Paper


2.1 Flaky test

In regression testing, test suites are executed to validate

if code changes, like new features added or bug fixing, do

not negatively impact the software. However, not all test

failures during the regression testing uncover new faults on

production code [2]. Some tests have an intermittent behav-

ior, that is, in a given moment they execute with success,

but in others they fail for the same code version. A test with

this characteristic, which passes/fails non-deterministically,

is known as flaky [1].

Figure 1 illustrates a flaky test reported by Lam et al.

[9]. A time limit (timeout=2000) to execute the method

testIssue is defined in Line 1. In this way, if the method

takes more than two seconds (i.e., 2000 ms), the test case

fails. In some cases, the test case is executed with suc-

cess, but eventually, if the resource that is required is not

ready, the test case will fail. In other words, the test case

behavior can be associated with the environment, hardware,

and some other reasons [9]. The existence of flaky test is

inconvenient for software development and regression test-

ing activities. Many times, to reproduce the failure that is

non-deterministic, and to detect flakiness it is necessary to

re-execute the code and this can be costly for the software

development process.

@Test(timeout=2000)

public void testIssue() throws Exception {

final int port = SocketUtil.getAvailablePort();

WebSocketServer server = new WebSocketServer(

new InetSocketAddress(port)) { ...}

...

}

Listing 1: Flaky test example [9].

Luo et al. [1] identified a list of the most prominent cate-

gories of flaky tests for developers and researchers to focus

on. As a result of this study a classification of the main

causes of flakiness was introduced. Figure 1 describes the

causes found. The most prevalent root causes are Async

Wait with 45% of the cases, Concurrency with 20%, and

Test Order Dependency with 12%. These three causes rep-

resent 77% of the cases [1].

2.2 Test smells

Test code, just like any production code, is subject to be

poorly written, without taking good programming practices

into account, fact that introduces the so-called anti-patterns

or smells [20]. Test smells are a deviation of how the tests

should be written, organized and how tests should interact

with others. That deviation can indicate test design prob-

lems, and can hurt the test performance [21, 23]. This sec-

tion gives an overview of bad code smells that are specific

for test code.

Initially, Deursen et al. [21] proposed a set of test smells

composed of Assertion Roulette, Eager Test, General Fix-

ture, Lazy Test, Mystery Guest, Resource Optimism, and

Sensitive Equality. Then, Peruma et al. [23] extended the

types of test smells with others inspired by bad test pro-

gramming practices mentioned in unit testing based litera-

ture. In a later work, Peruma et al.t [22] introduced tsDetect,

an open source test smells detection tool. Table 2 presents

definitions and detection rules of test smells used by tsDe-

tect. This state-of-the-art tool detects a comprehensive set

of test smells and was adopted in our study.

3 Motivating Example

Considering the causes of flakiness described by Luo

et al. [1] and test smells, we can observe it is possible to

make relations between some of them. For example, in-

structions that inject delays may be related to the flakiness

root causes Async Wait or Concurrency; it is possible to wait

for an Async operation to complete or provide delays to syn-

chronize two or more threads. The use of delays is related

to the Sleepy Test smell.

To illustrate this, Figure 2 shows a method from the test

class TESTMEMORYLOCKS, from the open-source project

Oozie1, a workflow scheduler system to manage Apache

Hadoop2 jobs. This example is a flaky test, extracted from

the dataset provided by Pinto et al. [5]. Using the tsDetect

tool [22] in the test method TESTREADWRITELOCK, two

test smells are detected: Sensitive Equality, and Sleepy Test.

@Test

public void testReadWriteLock() throws Exception

{

StringBuffer sb = new StringBuffer("");

Locker l1 = new ReadLocker("a", 1, -1, sb);

Locker l2 = new WriteLocker("a", 2, -1, sb);

new Thread(l1).start();

Thread.sleep(500);

new Thread(l2).start();

Thread.sleep(500);

l1.finish();

Thread.sleep(500);

l2.finish();

Thread.sleep(500);

assertEquals("a:1-L a:1-U a:2-L a:2-U", sb.

toString().trim());

}

Listing 2: A flaky test from the Oozie project [5].

The test starts instantiating a STRINGBUFFER object to

be used by the code under test and on the assertion (Line 3).

Then, two objects from classes READLOCKER and WRITE-

LOCKER are instantiated (Lines 4 and 5); these objects

consist of the main production code under test. A thread

1https://oozie.apache.org/
2https://hadoop.apache.org/

3

https://oozie.apache.org/
https://hadoop.apache.org/


Table 1: Classification for the causes of flakiness, proposed by Luo et al. [1].

Cause Description

Async Wait When the test makes an asynchronous call and does not wait for the result to be available

before using it.

Concurrency When the test starts several threads that interact non-deterministically, causing a undesirable

behavior.

Test Order Dependency When the test outcome depends on the order in which the test cases are run.

Resource Leak When the test does not acquire or release resources, e.g., memory allocations or database

connections.

Network When the test execution depends on the network and can be flaky because the network is

hard to control and unpredictable.

Time When the test assertion is based on a time or due to the precision by which time is reported

as it can vary inter-platforms.

IO operations When the test needs to access an IO resource that may also cause flakiness.

Randomness When the test assertion is based on a random number or information, this may be a potential

flaky.

Floating Point Operations When dealing with floating point operations is known to lead to tricky non-deterministic

cases.

Unordered Collections When iterating over unordered collections the code should not assume that the elements are

returned in a particular order.

with READLOCKER is started in Line 7 and, after a sleep

(Line 8). The same occurs to the WRITELOCKER object

(Lines 9 and 10). Similarly, both locker objects are finished

(Lines 11 to 14). Finally, the assertion checks whether the

simulated behavior with read and write operations to vari-

able sb is accurate or not (Line 15).

The root cause for flakiness is probably related to Con-

currency due to the use of delays associated with the

threads. This test code contains the smell Sleepy Test, since

it uses the SLEEP method on a THREAD. Also, the Sensi-

tive Equality smell is identified by the use of a TOSTRING

method in the assertion. As defined by Luo et al. [1],

the root cause of flakiness Concurrency happens when the

test starts several threads that interact non-deterministically,

causing the intermittent behavior.

Just like this example, other four test cases are identified

as flaky in the same class; their structure are pretty simi-

lar. This example indicates that the root cause of a flaky

test may be associated to the presence of one or more test

smells. Test cases that have this pattern are identified just by

re-executing the code. This process is expensive and time-

consuming, as demonstrated by Pinto et al. [5] that found

around 70% of flaky test cases passed in more than 90% of

the executions. This fact serves as a motivation to use test

smells as predictors of test flakiness.

4 Related Work

The presence of flaky tests may imply extra effort during

the software engineering process. For instance, the devel-

oper can spend a lot of time debugging a failing test case

that happens to be flaky. On the other side, ignoring a failing

test by misclassifying it as flaky would cause the shipping

of faulty software to the users. Flaky tests may occur due to

software changes, though other causes have been identified

in the literature [1, 4]; see Table 1.

In general, test flakiness detection has brought a lot of at-

tention from industry and academia [6, 7, 8, 26, 27]. One di-

rection is to adopt dynamic approaches whose core involves

rerunning test cases for a fixed number of times [9, 18]. A

clear disadvantage is the cost of execution; for large test

suites, this strategy may not scale. A different direction is

to rely on statically-extracted information.

Works in the literature that are most related to ours

apply Machine Learning (ML) methods to detect flaky

tests [3, 5, 13, 16, 19]. Memon et al. [19] introduce an

approach to minimize the workload of the test automation

platform in Google. To do so, the approach avoids the exe-

cution of test cases with low failure probability, and present

insights to developers in order to prevent bugs. For ML

part, the following features are used: CI tool, transitions

PASSED-to-FAILED, fixes FAILED-to-PASSED, and de-

velopers’ activity. The results show that the number of test

runs can be reduced while maintaining similar bug detection

capabilities.

King et al. [13] apply Bayesian networks to predict flaky

tests. The used features are a mix of static and dynamic

metrics: (i) complexity: assertion count, test class/method

size, depth of inheritance tree, (ii) implementation coupling:

coupling between objects and selector stability index, (iii)

4



Table 2: Test smells and detection rules of tsDetect [22].

Test Smell Detection Rule

Assertion Roulette It occurs when a method has more than an assertion, so if one fails it is difficult to define

which one.

Conditional Test Logic A test method that contains control flow statements (i.e IF, SWITCH, conditional expression,

FOR, FOREACH and WHILE statements).

Constructor Initialization A test class that contains a constructor declaration.

Default Test A test class is named either “ExampleUnitTest” or “ExampleInstrumentedTest”.

Duplicate Assert A test method that contains more than one assertion statement with the same parameters.

Eager Test A test method that contains multiple calls to multiple production methods.

Empty Test A test method that does not contain a single executable statement.

General Fixture Not all fields instantiated within the SETUP method of a test class are utilized by all test

methods in the same test class.

Ignored Test A test method or class that contains the @Ignore annotation.

Lazy Test Multiple test methods calling the same production method.

Magic Number Test An assertion method that contains a numeric literal as an argument.

Mystery Guest A test method containing object instances of files and databases classes.

Redundant Print A test method that invokes either the print or PRINTLN or PRINTF or write method of the

System class.

Redundant Assertion A test method that contains an assertion statement in which the expected and actual parame-

ters are the same.

Resource Optimism A test method that utilizes an instance of a File class without calling the EXISTS(), ISFILE()

or NOTEXISTS() methods of the object.

Sensitive Equality A test method that invokes the TOSTRING() method of an object.

Sleepy Test A test method that invokes the THREAD.SLEEP() method.

Unknown Test A test method that does not contain a single assertion statement and @Test(expected) anno-

tation parameter.

Verbose Test A test that is too long and hard to understand [24, 25].

non-determinism: cyclomatic complexity and explicit wait

count, (iv) performance: average execution time, and (v)

general stability metrics: failure rate and flip rate. The au-

thors evaluated the proposed approach with a case study

with five teams developing a proprietary Web application.

During the study, the approach supported the reduction of

flaky tests; for some cases, the reduction was up to 60%.

Overall, the accuracy of the prediction was 65.7%.

Pinto et al. [5] propose that there exists a vocabulary of

patterns (words) in the test code that can be extracted using

NLP to predict whether a test is flaky or not. To evaluate the

approach, the authors constructed a dataset of Java projects,

with test cases labelled as flaky and non-flaky, to train and

test ML algorithms. Overall, all classifiers had good perfor-

mance: Random Forest with the best precision (0.99) and

F1-Score, and SVM with the best recall (0.92). The paper

also shows the top-20 features with the highest information

gain. Other studies also investigated how the vocabulary-

based approach performs in Python projects [15, 17].

In a previous paper [16], we conducted a replication of

the Pinto et al. [5]’s study. The main extension was to assess

the trained classifiers to predict flaky tests using a differ-

ent test dataset (not used for training) in two contexts: For

the intra-project context, the dataset contained tests from

the same projects used during the training, while tests from

different projects were used for the inter-project context.

Among the trained classifiers, the best one was LDA with

recall of 0.75 for intra-project, and 0.45 for inter-project.

The authors conclude that the vocabulary-based approach

is context sensitive and prone to overfitting.

In the same line, Alshammari et al. [3] introduced an

approach called FlakeFlagger that employs static and dy-

namic features like test smells, test coverage, source code

management system, and source code, to predict test flak-

iness. Using a newly-defined dataset with 24 open source

Java projects, the authors compared FlakeFlagger with the

vocabulary-based approach [5], and a combination of both.

The obtained recall was similar for the 3 approaches com-

pared (74%, 72%, and 74%), but the precision has a 49%

difference between the FlakeFlagger and vocabulary-based,

and the combined approach has a sensitive improvement of

6%. So, the precision of the vocabulary-based approach was

lower than FlakeFlagger. As for test smells, FlakeFlagger

implements its own detector using an expanded definition

5



of existing test smells. By analyzing the information gain,

the results showed very low correlation with test flakiness.

We can see that the use of test smells is few explored

in the literature. We find only one work that consider test

smells [3], but in combination with other predictors, such

as coverage that need at least one execution of the code.

Differently from related work, we adopt only static metrics

and perform a validation of the obtained models in cross-

project scenario.

5 Methodology

The main goal of this study is to investigate the use of

test smells as predictors of flakiness. The main advantage

of this approach is that the smells can be collected statically.

In addition to this, we investigate the use of the smell-based

models as an alternative for a cross-project scenario.

5.1 Research questions

According to our goals we defined three Research Ques-

tions (RQs).

• RQ1. How accurately can we predict test flakiness

based on test smells in the test cases? The goal of this

question is to evaluate the performance of classifiers to

predict test flakiness based on the presence/absence of

test smells, without re-execution of the test suites.

• RQ2. Which test smells are the most strongly asso-

ciated with test flakiness prediction? The goal is to

identify the test smells which are more related to flak-

iness in order to help development, code review, and

debugging tasks.

• RQ3. How does the test smell-based approach com-

pare with the existing vocabulary-based approach?

The goal was to compare the obtained results with the

vocabulary-based approach [5], which can be consid-

ered as state-of-the art approach that also does not re-

quire test re-execution.

RQ1 and RQ3 are answered considering two perspec-

tives. In the first perspective a prediction model is built

and evaluated according to some performance measures and

compared with the vocabulary-based approach. For this

end, the dataset made available by Pinto et al. [5] is used. In

the second perspective, the evaluation considers the cross-

project scenario. To this end, the dataset as extended by

our previous work Camara et al. [16] is used. In this cross-

project perspective, we evaluate the performance of the built

models with different datasets: i) within a different set of

test cases from the same software projects (intra-projects);

and ii) within other different projects (inter-projects).

The next sections present details about the methodology

adopted to answer the RQs considering both perspectives:

datasets, classifiers used to build the models, and evaluated

measures.

5.2 Datasets

As mentioned before, for building the models, we use

the dataset of Pinto et al.’s work [5], built based on 24 De-

Flaker projects [12]. The raw dataset has 49,919 test cases:

44,428 non-flaky, 5,069 flaky. To evaluate the models in the

cross-project perspective we used the data from a previous

work [16], built based on idFlakies projects of Lam et al.

[9]. This dataset contains only flaky tests, in a total of 422,

from 72 different projects.

Both datasets were submitted to the tsDetect tool [22]. In

a first step this tool requires, for each test case, the identifi-

cation of the corresponding production code, to then detect

the smells the test contains. But for some test cases the code

could not be identified, and as a consequence, the smell de-

tection step could not be performed. Because of this, these

test cases were removed from both datasets. At the end the

dataset from Pinto et al.’s work [5] dropped to 14,390 sam-

ples (11,319 non-flaky, 2,914 flaky), to deal with the im-

balanced dataset, a number of non-flaky tests was selected

randomly, equal to the number of flaky tests. In the dataset

based on idFlakies projects Lam et al. [9], the resultant sam-

ple dropped to 155.

As result we obtained a list with 19 test smells we used

as features for the model; the test smells are described in Ta-

ble 2. The information about the smells is then augmented

with two numerical features, acting as proxies of code com-

plexity: LOC: number of lines of code of the test case; and

smells count: total number of test smells present in the test

case. The vocabulary-based approach was applied accord-

ing to related work [16].

Following the methodology adopted in [16], we gener-

ated two datasets: one for training and testing the models,

and other to cross-project validation. The training and test-

ing dataset is balanced and contains 2,777 samples, 1,377

flaky and 1,400 non-flaky, from 22 projects. This sample

size was defined to be compatible with Pinto et al.’s work [5]

so we can use that work as benchmark. The cross-project

validation dataset was divided to attend the intra- and inter-

project context. To obtain the intra-project dataset we fil-

tered a set of flaky tests from 24 projects of the training

dataset. At the end this set was composed by 35 samples.

We obtained the dataset for the inter-project context by fil-

tering out tests from projects present in the training dataset,

this set are composed by 120 samples. In both only flaky

samples are present.

6



5.3 Used Classifiers

We use eight classifiers available in the framework

Scikit-learn [28]: Random Forest, Decision Tree (DT),

Naive Bayes, Support Vector Machine (SVM), Logistic Re-

gression (LR), Linear Discriminant Analysis (LDA), K-

Nearest Neighbour (KNN), and Perceptron. For compari-

son reasons, the choice of these classifiers, as well as the

used parameters are based on related work [5, 16].

5.4 Evaluated metrics

To evaluate the performance of the classifiers, the dataset

was split into 80% for training and 20% for testing. We used

the following standard metrics:

• precision: the number of correctly classified flaky tests

divided by the total number of tests that are classified

as flaky;

• recall: the number of correctly classified flaky tests di-

vided by the total number of actual flaky tests in the

test set;

• F1-Score: the harmonic mean of precision and recall;

• MCC (Matthews correlation coefficient): measures the

correlation between predicted classes (i.e., flaky vs.

non-flaky) and ground truth. Values of MCC vary in

the interval of [-1,1], with 1 representing a perfect pre-

diction;

• AUC (area under the ROC curve): measures the area

under the curve which visualizes the trade-off between

true-positive and false-positive rates.

Concerning the cross-project perspective (namely, intra-

and inter-project validation), the idFlakies dataset was

adopted, and to evaluate the results only recall were used

because, as mentioned, this dataset does not contain exam-

ples of non-flaky tests. To evaluate the relevance of the

features (RQ2) we utilized the information gain (known

as entropy), calculated for each output variable. This

value ranges from 0 (no gain) to 1 (maximum of infor-

mation gain). It was calculated by using the method

mutual info classif of Scikit-learn with default set-

tings.

6 Analysis of Results

This section analyses the obtained results to answer the

research questions.

6.1 RQ1 – How accurately can we predict test flak
iness based on test smells in the test cases?

Following the experimental design described, we first

built the prediction model by training and testing the clas-

sifiers. The results of the eight classifiers are presented in

Table 3. All classifiers archived reasonably performance.

Except by Naive-Bayes, they reached values greater than

70% of precision, recall, F1-Score, and AUC. Again, ex-

cept Naive-Bayes, all the classifiers obtained MCC values

greater than 0.5 (which are close to 1 that represents a per-

fect classification).

The obtained results show that test smell-based models

have reasonable performance to predict test flakiness, with

precision values varying from 74 to 83%. The best classifier

was obtained with Random Forest and Decision Tree, which

reached similar values for all measures, with precision value

of 83%. Naive-Bayes presented the worst performance.

Table 3: Test smells-based classifiers’ performance.

Algorithm Prec Rec F1 MCC AUC

Random Forest 0.83 0.83 0.83 0.65 0.90

Decision Tree 0.83 0.83 0.83 0.66 0.86

KNN 0.81 0.81 0.81 0.62 0.81

LR 0.79 0.79 0.79 0.59 0.87

LDA 0.78 0.78 0.78 0.56 0.86

Perceptron 0.78 0.78 0.78 0.55 0.86

SVM 0.75 0.75 0.75 0.50 0.83

Naive Bayes 0.74 0.65 0.61 0.37 0.78

To validate the performance of the model in the cross-

project context we tested the trained classifiers utilizing

the flaky tests identified in the idFlakies dataset [9] (cross-

validation dataset). Table 4 shows the results of intra- and

inter-project contexts: it presents the classifiers’ perfor-

mance considering the recall, true positives (TP), and false

negatives (FN).

Table 4: Cross-project test smells-based classification.

Algorithm
Intra-Project Inter-Project

Rec TP FN Rec TP FN

Random Forest 0.69 24 11 0.54 65 55

Decision Tree 0.66 23 12 0.54 65 55

KNN 0.51 18 17 0.51 61 59

LR 0.74 26 9 0.48 57 63

LDA 0.66 23 12 0.48 57 63

Perceptron 0.71 25 10 0.48 57 63

SVM 0.66 23 12 0.55 66 54

Naive Bayes 0.57 20 15 0.14 17 103

Considering the intra-project context, the performance of

all classifiers dropped to recall values varying from 51% to

7



74%, being the best value reached by LR that classified cor-

rectly 26 of 9 flaky tests. The performance of the classifiers

in the inter-project context dropped more significantly. But,

excluding Naive-Bayes that reached the value of 14%, there

is not great difference between the classifiers, with recall

values varying from 48% to 55%. SVM reached the best

performance.

Answer to RQ1: The obtained results show that test

smells can be used as predictors of flakiness. Nev-

ertheless, the performance drops considerably in the

inter-project context.

Implications: The results show that the smell-based models

present performance comparable and in some cases better

that some values reported in the literature (precision around

70%) [3, 13, 16]. This lead to the conclusion that smells

are good predictors of flakiness, but future work should ex-

plore the use of smells with other features, obtained stati-

cally. This can contribute for improving performance in the

cross-project validation and for obtaining more generaliz-

able models.

6.2 RQ2 – Which test smells are the most strongly
associated with test flakiness prediction?

The features most associated with test flakiness were

determined by calculating the information gain based on

the entropy of the features. Table 5 shows all features

adopted in the proposed model, ordered by their relevance

(i.e., information gain); the data is based on the training

dataset. Column ‘Total’ shows how many tests are affected

by the feature, while columns ‘Flaky tests’ and ‘Non-Flaky

tests’ bring the number of affected tests that are flaky or

not, respectively; the percentages are presented in the next

columns.

Considering the contribution of the test smells for

the model, we observe four smells with at least 90% of

affected tests being flaky. They are: Verbose Test

(100%), Redundant Print (94.83%), Sleepy Test

(93.75%), and Constructor Initialization

(92.65%). Of these, Sleepy Test, and Constructor

Initialization. These smells can be associated with

types of flaky tests.

The Sleepy Test smell is related to the use of delays

(THREAD.SLEEP() or similar statements) to wait for other

components to be ready to be executed. That behavior is

described by Luo et al. [1] as the flaky test type Async

Wait. In Table 8 Sleepy Test is found in 105 (94%)

flaky tests and in just 7 non-flaky tests. Constructor

Initialization occurs when a test class has a con-

structor, which also can be related to the flakiness type

Test Order Dependency, when the test result de-

pends on the order in which the tests are run. This test smell

type are found in 93% of flaky tests and 6% in non-flaky

tests. The Assertion Roulette smell occurs when

the method has more than an assertion; this is the test smell

most found in our study, in 69.69% of the cases they are

associated with flaky tests and is the second feature with

biggest information gain. The average of lines of code of

methods that are identified with Assertion Roulette is over

28, containing 3.4 smells.

Table 6 shows the smell count distribution over the train-

ing dataset, in which we can see the greater the number of

smells the great the flakiness percentage. In our dataset we

have 122 test cases without test smells, 17% are identified as

flaky, when considering test cases with one smell, the per-

centage grows to 39%, becoming at 71% with six smells.

However, if a group with 1 to 4 test smells is considered

we have a set of 89% of the data, 50% of flaky, and 50%

of non-flaky tests, that is, future work is necessary to bet-

ter investigate if the feature smell count is a good feature to

identify flaky test.

Answer to RQ2: Sleepy Test, and

Constructor Initialization can be

associated with flaky test types. This is demon-

strated in our dataset by the distribution of numbers

in flaky tests and by the information gain.

Implications: The information gain presents the ordered set

of features that are more discriminant; it is possible to see

some features that make sense but more studies are neces-

sary to analyze if in fact all of them have a positive impact

in the prediction.

6.3 RQ3 – How does test the smellbased approach
compare with the existing vocabularybased
approach?

Using the vocabulary-based approach we trained the

eight classifiers with our training and testing dataset (the

same used in RQ1) to answer RQ3. Table 7 shows the re-

sults of the trained classifiers. Despite we are using distinct

datasets, as explained in Section 5.2 the results are similar

to those presented in previous studies [5, 16].

After this, we apply the vocabulary-based approach us-

ing our cross-validation dataset. The results of the classi-

fiers obtained for the cross-project contexts are presented in

Table 8. The obtained performance of intra-project clas-

sifications is worst than the performance reported previ-

ously [16] where the best classifier was LDA with 75% of

recall classifying 20 of out 60 samples correctly. Here, the

best classifier was KNN with 57% of recall, classifying cor-

8



Table 5: Information gain of each feature of the model.

Pos. Features
Inf.

Gain
Total

Flaky

tests

% Flaky

tests

Non-Flaky

tests

% Non-Flaky

tests

1 LOC 0.2545 2777 1377 49.59% 1400 50.41%

2 Assertion Roulette 0.0832 1389 968 69.69% 421 30.31%

3 Smells Count 0.0271 2655 1356 51.07% 1299 48.93%

4 Sleepy Test 0.0195 112 105 93.75% 7 6.25%

5 General Fixture 0.0160 267 61 22.85% 206 77.15%

6 Duplicate Assert 0.0155 376 269 71.54% 107 28.46%

7 Constructor Initialization 0.0109 68 63 92.65% 5 7.35%

8 Redundant Print 0.0106 58 55 94.83% 3 5.17%

9 Sensitive Equality 0.0059 129 95 73.64% 34 26.36%

10 Lazy Test 0.0055 1788 817 45.69% 971 54.31%

11 Resource Optimism 0.0043 75 17 22.67% 58 77.33%

12 Conditional Test Logic 0.0042 356 219 61.52% 137 38.48%

13 Unknown Test 0.0021 544 234 43.01% 310 56.99%

14 Verbose Test 0.0018 7 7 100% 0 0.00%

15 Magic Number Test 0.0011 411 227 55.23% 184 44.77%

16 Mystery Guest 0.0006 124 71 57.26% 53 42.74%

17 Eager Test 0.0003 970 496 51.13% 474 48.87%

18 Redundant Assertion 0.0000 8 4 50.00% 4 50.00%

19 Default Test 0.0000 0 0 0.00% 0 0.00%

20 Empty Test 0.0000 0 0 0.00% 0 0.00%

21 Ignored Test 0.0000 0 0 0.00% 0 0.00%

Table 6: Smell count distribution.

Smells

Count
Non-Flaky

%

Non-Flaky
Flaky

%

Flaky

0 101 83% 21 17%

1 469 61% 305 39%

2 327 50% 329 50%

3 264 46% 308 4%

4 159 35% 301 65%

5 63 46% 73 54%

6 12 29% 30 71%

7 4 33% 8 67%

8 1 33% 2 67%

rectly 20 of out 45 samples. The inter-project performance

was slightly better than in [16], obtaining 56% of recall

against 48% (122 of 134).

Comparing with the smell-based approach, the

vocabulary-based approach presents better performance:

the best F1 score of vocabulary-based models is 97%

(Random Forest), while smell-based approach has a score

of 83% (Random Forest). Analysing MCC, the difference

is higher. This measure takes into account true and false

positives, and negatives, the best result obtained by the

smell-based approach is 0.66 and the best obtained by the

Table 7: Vocabulary-based classifiers’ performance.

Algorithm Prec Rec F1 MCC AUC

Random Forest 0.97 0.97 0.97 0.93 0.99

Perceptron 0.97 0.97 0.97 0.93 0.99

Decision Tree 0.94 0.94 0.94 0.87 0.94

Naive Bayes 0.95 0.95 0.95 0.90 0.95

SVM 0.97 0.97 0.97 0.94 0.99

LR 0.97 0.97 0.97 0.94 0.99

LDA 0.87 0.87 0.87 0.74 0.88

KNN 0.93 0.93 0.93 0.86 0.93

vocabulary-based approach is 0.94.

However, the results obtained in the cross-project vali-

dation show that the test smell-based approach reaches bet-

ter results. In the intra-project context, the test smell-based

approach obtained 74% of recall (LR), and the vocabulary-

based one achieved at most 57% (KNN). Considering the

best classifiers in the inter-project context, the performance

is similar, the smell-based approach obtained a recall of

at most 55% (SVM), against 56% of the vocabulary-based

(LDA). But if we consider all the classifiers, we observe

that smell-based approach has a general better performance

in the cross-project validation than the vocabulary-based ap-

proach.

9



Table 8: Cross-project vocabulary-based performance.

Algorithm
Intra-Project Inter-Project

Rec TP FN Rec TP FN

Decision Tree 0.31 11 24 0.39 47 73

LDA 0.29 10 25 0.56 67 53

LR 0.20 7 28 0.30 36 84

Random Forest 0.17 6 29 0.29 35 85

Naive Bayes 0.17 6 29 0.13 15 105

SVM 0.09 3 32 0.17 20 100

KNN 0.57 20 15 0.23 27 93

Perceptron 0.34 12 23 0.33 40 80

Answer to RQ3: The performance of the

vocabulary-based models are better than the perfor-

mance of the test smell-based ones using the train-

ing and testing dataset. But in the cross-project

validation scenario, the smell-based approach ob-

tains significant better results in the intra-project

and inter-project contexts.

Implications: The results obtained in our study corrobo-

rate the ones presented in our previous work [16]. The

vocabulary-based approach do not have a good performance

in cross-project validation. Our results shows that the use of

test smells can be a good alternative for overcoming some

limitations of the vocabulary-based approach, and smell-

based models can be more generalizable.

7 Threats to Validity

Threats to construct validity are related to the metrics

used to evaluate the results. But to minimize this threat we

adopted the most common measures used in the ML field to

evaluate the classifiers.

During the test code pre-processing to obtain the the test

smells in some cases tsDetect [22] could not identify the

production class, then the smells could not be extracted,

which can compromise the result.

Threats to internal validity may comprise the results

when relating independent and dependent variables. The

absence of non-flaky class on the cross-project dataset made

impossible to obtain precision and other metrics to use as a

benchmark. This should be evaluated in future work.

External validity is connected to the generalization of the

obtained results. As in similar studies, we cannot general-

ize the results, once this study targeted the Java language

and a limited set of project domains. Considering the cross-

project validation, the results obtained in the intra-project

context show an expressive reduction in the performance

if compared with the results reported in [16]. This could

be a result of the cross-project validation dataset, which is

smaller and should be increased in future works to better

understand the performance of prediction.

8 Conclusion

Regression tests are an important practice for support-

ing continuous integration and delivery, and flaky tests are

disturbing to this process. Consequently, the proper identi-

fication and prevention of test flakiness are important topics

pursued by researchers and practitioners.

This paper investigated the use of test smells as features

to predict flaky tests. To this end, we conducted an em-

pirical study to evaluate the performance of the test smell-

based approach for prediction of flakiness. Such a perfor-

mance was measured considering different evaluation indi-

cators, and cross-project validation. We also identified the

test smells most strongly associated with test flakiness pre-

diction, and compared the test smell-based approach with

the state-of-the art vocabulary-based approach.

As result, we observed that test smells are a potentially

good predictors of test flakiness; the results of intra- and

inter-project are promising. Some test smells like Sleepy

Test and Constructor Initialization are strongly associated

with flakiness. Compared to the vocabulary-based ap-

proach, the test smell-based one obtained models that have

in the best case, a precision 14% lower. In the cross-project

validation, the test smell-based approach performs better in

the intra- and inter- project contexts.

This study opens the possibility to use smell-based mod-

els for the prediction of test flakiness. As a future work it

is possible to expand the training dataset by adding samples

of other projects of other contexts and programming lan-

guages. We also intend to explore other static and dynamic

features in combination with test smells.

Acknowledgment

This work is partially supported by CNPq (Andre T.

Endo grant nr. 420363/2018-1 and Silvia Regina Vergilio

grant nr. 305968/2018-1) and by IN2 Institute (Bruno Hen-

rique Pachulski Camara grant nr. 002/2021).

References

[1] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An em-

pirical analysis of flaky tests,” in 22nd ACM SIGSOFT

International Symposium on Foundations of Software

Engineering. New York, NY, USA: ACM, Nov. 2014,

pp. 643–653.

10



[2] K. Herzig and N. Nagappan, “Empirically detecting

false test alarms using association rules,” in 37th Inter-

national Conference on Software Engineering. Pis-

cataway, NJ, USA: IEEE, May 2015, pp. 39–48.

[3] A. Alshammari, C. Morris, M. Hilton, and

J. Bell, “Flakeflagger: Predicting flakiness with-

out rerunning tests,” in 43rd IEEE/ACM In-

ternational Conference on Software Engineering,

ICSE 2021, Madrid, Spain, 22-30 May 2021.

IEEE, 2021, pp. 1572–1584. [Online]. Available:

https://doi.org/10.1109/ICSE43902.2021.00140

[4] M. Eck, F. Palomba, M. Castelluccio, and A. Bac-

chelli, “Understanding flaky tests: the developer’s per-

spective,” in 27th ACM Joint Meeting on European

Software Engineering Conference and Symposium on

the Foundations of Software Engineering. New York,

NY, USA: ACM, Aug. 2019, pp. 830–840.

[5] G. Pinto, B. Miranda, S. Dissanayake, M. d’Amorim,

C. Treude, and A. Bertolino, “What is the vocabulary

of flaky tests?” in 17th International Conference on

Mining Software Repositories. Seoul, South Korea:

IEEE / ACM, Jun. 2020.

[6] Zolfaghari, Behrouz, P. R. M., G. Srivastava,

and Y. Hailemariam, “Root causing, detect-

ing, and fixing flaky tests: State of the

art and future roadmap,” Software: Prac-

tice and Experience, 2020. [Online]. Available:

https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2929

[7] J. Micco, “Flaky tests at Google and how we mitigate

them,” Web page, May 2016. [Online]. Available:

https://bit.ly/2Nz4fF5

[8] J. Palmer. (2019, May) Test Flakiness – methods

for identifying and dealing with flaky tests. Web

page. Accessed: 2021-02-16. [Online]. Available:

https://bit.ly/2NbesYv

[9] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “iD-

Flakies: A framework for detecting and partially clas-

sifying flaky tests,” in 2019 12th IEEE Conference on

Software Testing, Validation and Verification (ICST).

IEEE, Apr. 2019, pp. 312–322.

[10] W. Lam, K. Muslu, H. Sajnani, and S. Thum-

malapenta, “A study on the lifecycle of flaky tests,”

in ICSE ’20: 42nd International Conference on Soft-

ware Engineering, Seoul, South Korea, 27 June - 19

July, 2020, G. Rothermel and D. Bae, Eds. ACM,

2020, pp. 1471–1482.

[11] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and

S. Thummalapenta, “Root causing flaky tests in a

large-scale industrial setting,” in Proceedings of the

28th ACM SIGSOFT International Symposium on

Software Testing and Analysis. New York, NY, USA:

ACM, Jul. 2019, pp. 101–111.

[12] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung,

and D. Marinov, “DeFlaker: Automatically detecting

flaky tests,” in 40th International Conference on Soft-

ware Engineering. New York, NY, USA: ACM,

May–Jun. 2018, pp. 433–444.

[13] T. M. King, D. Santiago, J. Phillips, and P. J. Clarke,

“Towards a bayesian network model for predicting

flaky automated tests,” in 2018 IEEE International

Conference on Software Quality, Reliability and Se-

curity Companion (QRS-C). IEEE, Jul. 2018, pp.

100–107.

[14] J. Moran, C. Augusto Alonso, A. Bertolino, C. de la

Riva, and J. Tuya, “Flakyloc: Flakiness localization

for reliable test suites in web applications,” Journal of

Web Engineering, 06 2020.

[15] A. Ahmad, O. Leifler, and K. Sandahl, “An evalua-

tion of machine learning methods for predicting flaky

tests,” in Proceedings of the 8th International Work-

shop on Quantitative Approaches to Software Quality

(QuASoQ 2020), 2020.

[16] B. H. P. Camara, M. A. G. Silva, A. T. Endo, and S. R.

Vergilio, “What is the vocabulary of flaky tests? an ex-

tended replication,” in 29th IEEE/ACM International

Conference on Program Comprehension, ICPC 2021,

Madrid, Spain, May 20-21, 2021. IEEE, 2021, pp.

444–454.

[17] G. Haben, S. Habchi, M. Papadakis, M. Cordy, and

Y. Le Traon, “A replication study on the usability of

code vocabulary in predicting flaky tests,” in 2021

IEEE/ACM 18th International Conference on Mining

Software Repositories (MSR), 2021, pp. 219–229.

[18] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov,

“iFixFlakies: A framework for automatically fixing

order-dependent flaky tests,” in 27th ACM Joint Meet-

ing on European Software Engineering Conference

and Symposium on the Foundations of Software En-

gineering. New York, NY, USA: ACM, Aug. 2019,

pp. 545–555.

[19] A. M. Memon, Z. Gao, B. N. Nguyen, S. Dhanda,

E. Nickell, R. Siemborski, and J. Micco, “Taming

google-scale continuous testing,” in 39th IEEE/ACM

International Conference on Software Engineering:

Software Engineering in Practice Track, ICSE-SEIP

2017, Buenos Aires, Argentina, May 20-28, 2017.

IEEE Computer Society, 2017, pp. 233–242.

11

https://doi.org/10.1109/ICSE43902.2021.00140
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2929
https://bit.ly/2Nz4fF5
https://bit.ly/2NbesYv


[20] M. Fowler, Refatoração – 2ª edição:

Aperfeiçoando o design de códigos exis-

tentes. Novatec Editora, 2020. [Online]. Available:

https://books.google.com.br/books?id=cZTeDwAAQBAJ

[21] A. Deursen, L. M. Moonen, A. Bergh, and G. Kok,

“Refactoring test code,” NLD, Tech. Rep., 2001.

[22] A. Peruma, K. Almalki, C. D. Newman, M. W.

Mkaouer, A. Ouni, and F. Palomba, “Tsdetect: An

open source test smells detection tool,” in Proceedings

of the 28th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the

Foundations of Software Engineering, ser. ESEC/FSE

2020. New York, NY, USA: Association for

Computing Machinery, 2020, p. 1650–1654. [Online].

Available: https://doi.org/10.1145/3368089.3417921

[23] ——, “On the distribution of test smells in open

source android applications: An exploratory study,”

in Proceedings of the 29th Annual International Con-

ference on Computer Science and Software Engineer-

ing, ser. CASCON ’19. USA: IBM Corp., 2019, p.

193–202.

[24] G. Meszaros, xUnit Test Patterns: Refactoring Test

Code, ser. Addison-Wesley Signature Series (Fowler).

Pearson Education, 2007. [Online]. Available:

https://books.google.com.br/books?id=-izOiCEIABQC

[25] D. Spadini, M. Schvarcbacher, A.-M. Oprescu,

M. Bruntink, and A. Bacchelli, “Investigating sever-

ity thresholds for test smells,” in Proceedings

of the 17th International Conference on Min-

ing Software Repositories, ser. MSR ’20. New

York, NY, USA: Association for Computing Ma-

chinery, 2020, p. 311–321. [Online]. Available:

https://doi.org/10.1145/3379597.3387453

[26] M. Fowler. (2011, Apr.) Eradicating non-determinism

in tests. Web page. Accessed: 2021-07-23. [Online].

Available: https://bit.ly/2ZlJ63W

[27] W. Goddard. (2018, Oct.) What’s the best program-

ming language for machine learning applications?

Web page. Accessed: 2021-02-16. [Online]. Avail-

able: https://cutt.ly/Hk1flto

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Pretten-

hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-

sos, D. Cournapeau, M. Brucher, M. Perrot, and

Édouard Duchesnay, “Scikit-learn: Machine learning

in Python,” Journal of Machine Learning Research,

vol. 12, no. 85, pp. 2825–2830, 2011.

12

https://books.google.com.br/books?id=cZTeDwAAQBAJ
https://doi.org/10.1145/3368089.3417921
https://books.google.com.br/books?id=-izOiCEIABQC
https://doi.org/10.1145/3379597.3387453
https://bit.ly/2ZlJ63W
https://cutt.ly/Hk1flto

	1 Introduction
	2 Background
	2.1 Flaky test
	2.2 Test smells

	3 Motivating Example
	4 Related Work
	5 Methodology
	5.1 Research questions
	5.2 Datasets
	5.3 Used Classifiers
	5.4 Evaluated metrics

	6 Analysis of Results
	6.1 RQ1 – How accurately can we predict test flakiness based on test smells in the test cases?
	6.2 RQ2 – Which test smells are the most strongly associated with test flakiness prediction?
	6.3 RQ3 – How does test the smell-based approach compare with the existing vocabulary-based approach?

	7 Threats to Validity
	8 Conclusion

