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ABSTRACT
Omics allows researchers to apply systems biology approaches
to identify the novel pathophysiological mechanism of diseases.
It yields an unprecedented view of the cellular inner workings
and is now often incorporated into the everyday methodology of
biological researchers. However, the curse of dimensionality caused
by the lack of enough samples and a large number of features is a
major impediment to using Omics. In order to improve performance
and decrease impediments of dimensionality in machine learning
using Omics data, feature selection techniques are adopted. There
are different feature selection methods and deep learning-based
methods that have been attracting increasing attention in the field.
In this paper, I applied the neural network-based feature selection
methods to extract the Stomach and Esophageal carcinoma (STES)
gene and compared the results. Finally, through comprehensive
comparison, I found that the use of neural network-based feature
selection methods did not always help improve the performance.
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1 INTRODUCTION
Omics technology is the method aiming to a comprehensive char-
acterization, quantitation, and quantification of many molecules,
grouped according to fundamental structural or functional biologi-
cal similarities. It includes universal detection of genes (genomics),
mRNA (transcriptomics), proteins (proteomics), and metabolites
(metabolomics) [1-2].
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MicroRNAs (miRNAs) are noncoding RNAs which regulate gene
expression through targeted binding tomRNA. [01] During biogene-
sis, a mature miRNA that can participate in posttranscriptional mod-
ification once bound to the RNA induced silencing complex (RISC)
[3-4]. Many single miRNAs are usually required to adequately in-
hibit a single mRNA depending on the degree of base pairing [5-6].
MiRNA plays an important role in post-transcriptional regulation.
Many miRNAs have been identified as potential biomarkers and
targets for the diagnosis of many diseases, such as cancer [3]. The
Cancer Genome Atlas (TCGA) researchers have sequenced and an-
alyzed the tumors of more than 30 individuals through large-scale
genome sequencing, providing a publicly available data set in which
miRAN expression can be used as a signature for computational
analysis and prediction of cancer [7].

Cancer is a complex genetic, proteomic, and cellular disease
caused by multiple factors, including genetic mutations (hereditary
or somatic) and environmental factors [8]. Since early diagnosis
may improve the survival rate and overall medical care of cancer
patients, the emergence of omics provides a new opportunity in
the detection and treatment of cancer.

However, there are some limits to the utilization of omics tech-
niques. Because of a significant amount of time-consuming data
acquisition process and high cost, a generalized lack of samples
is a challenge in the field. Machine learning methods have been
widely used to analyze large data sets, like the ones that derive
from multi-omics measurements, and can lead to algorithms with
predictive value [9].

The selection of appropriate features in the machine learning
method is the key to the accuracy of the prediction results. Every
omics dataset can provide thousands of features, so only increasing
sample size might not avoid negative impacts, such as overfitting
and redundancy. So, I prefer another available method which is
selecting some more valuable features for cancer diagnosis.

In this paper, I used the deep belief network method, the auto-
encoder method, and so on to extract the feature to obtain a higher-
level representation of feature abstraction. After that, the abstract
features are selected, andmulti-component air training is conducted.
By analyzing the results thatmethodswithout deep learning surpass
methods with deep learning, I give suggestions on the diagnosis
process using the machine learning data analysis method with
Omics technology.

This paper is organized as follows: The second section will in-
troduce the proposed methods in detail; then my results will be
present and compared; finally, in the fourth section, I summarize
the whole paper and give suggestions.
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2 RELATEDWORK
In 2010, Christoph et al. attempted to use principal component
analysis (PCA) to map high-dimensional data of DNA microarray
data to low-dimension data, and the result showed that with very
few dimensions the most significant information in the data can be
captured better than the original data [10]. After this, people made
active exploration and attempt the method of applying feature se-
lection on biological data. Xie et. al proposed a clustering learning
of the feature space named unsupervised deep embedding for clus-
tering analysis, they define a parameterized non-linear mapping
from the data space X to a lower-dimensional feature space Z, then
use stochastic gradient descent (SGD) via backpropagation on a
clustering objective to learn the mapping to achieve the purpose of
unsupervised clustering feature selection [11]. Nezhad et al. a new
deep feature selection method based on deep architecture. They
used stacked auto-encoders for feature representation in higher
level abstraction. This novel feature selection approach focused on
assessing and prioritizing risk factors for hypertension (HTN) in
a vulnerable demographic subgroup (African-American) and has
been proved the feature learning approach leads to better results in
comparison with others [12].

In recent years, researchers have begun to use feature extraction
methods on a wider range of organisms. Gupta et al. apply Gray
Level Co-Occurrence Matrix (GLCM) as a feature extraction tech-
nique to extract the features from CT scan image, which would be
given to classifier to train and detect head and neck cancer [13].

Autoencoder inspired unsupervised feature selection method
proposed by Han et al. is a novel AutoEncoder Feature Selector
(AEFS) for unsupervised feature selection which combines autoen-
coder regression and group lasso tasks. AEFS could select the most
important features by excavating linear and nonlinear information
among various features, which is more flexible than the conven-
tional self-representationmethod for unsupervised feature selection
with only linear assumptions [14].

3 METHODS
In this section, I will introduce the method I proposed in detail, in-
cluding the deep learningmethods involved, the algorithms adopted
for feature selection, the data set used, the experimental setting,
and the evaluation criteria.

3.1 Methods overview
In this work, I analyzed miRNA-seq expression data downloaded
from the cancer genome atlas (TCGA) database which characterized
over 20,000 patients and matched normal samples spanning 33
cancer types [15]. I used data sets for Stomach and Esophageal
carcinoma (STES).

I deleted genes whose expression is zero in all samples, and all
samples with zero genetic characteristics. Then I standardized all
the values in the dataset. The cleaned dataset was divided into 70%
for training and the rest of 30% for testing.

For the purpose of comparison, I designed three setups, namely,
autoencoder, deep belief network (DBN), and no high-level repre-
sentation. In the first setup, I used a deep belief network to extract
a high-level representation of features from gene expression data.

Then the high-level represented features are used for feature se-
lection to acquire further selected features (see Figure. 1. A) In
the second setup, I replaced the deep belief network with the au-
toencoder as the method to obtain the high-level representation
of gene features. This setup is presented in Figure. 1. B. For the
third setup, I did not use the deep learning approach to achieve
high-level representation shown in Figure. 1. C.

After the above high-level representation extraction and feature
selection, three groups of selected features can be obtained. In the
first two setups I obtained 200 high-level representations of features
through the extraction step, and then selected the top 50 of these
ranked features as the final training features with a classical feature
selection approach (including random forest, decision tree, and
chi-square).

3.2 Autoencoder
Autoencoder is a type of artificial neural network applied to learn a
high-level representation of original data in an unsupervised man-
ner. There are several variants of self-encoders, including Sparse
Autoencoder (SAE), Variational Lossy Autoencoder, and Denoising
Autoencoder (DAE). In this study, I use a traditional auto-encoder
for data representation learning.

In an autoencoder, a neural network architecture is developed
with a bottleneck which forces a compressed knowledge represen-
tation of the original input. The autoencoder then learns how to
reconstruct the data from a reduced dimension representation to a
representation as close to the original input as possible. Its structure
is divided into two parts: encoder and decoder.

The encoding step of each layer is a forward process and math-
ematically described as equation (1), (2), and (3), given the input
space x∈X, and feature space h∈F, the auto-encoder solves the map-
ping f and g of the two, so as to minimize the reconstruction error
of input features [16]:

f : X → F (1)

д : F → X (2)

f ,д = arдmin | |x − д [f (x)]| |2 (3)

After the optimization process is completed, the encoded feature
of the hidden layer output by the encoder, i.e., "encoded feature",
can be regarded as the representation of the input data. According
to the difference of the auto-encoder, its encoding characteristics
can be compression (contraction autoencoder), sparse (sparse auto-
encoder), or implicit variable model (variational auto-encoder) of
the input data [17].

In this paper, the autoencoder model adopts the following train-
ing parameters:

In the coding layer, there are three layers. In the first layer,
units=889, and activation=’relu’. In the second layer, units =
512, and activation=’relu’. In the third layer, units=256, and
activation=’relu’. In the encoder output, the units=200 and
activation=None.

In the decoding layer, there are three layers. In the first
layer, units=256, and activation=’relu’. In the second layer, units
= 512, and activation=’relu’. In the third layer, units=889 and
activation=’tanh.
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Figure 1: The main process and method of the experiment

3.3 Deep Belief Network
When using traditional neural networks training in deep layered
networks, there will be some problems, such as slow learning and
being stuck in local minima due to poor parameter selection. To
solve these problems, deep belief networks are proposed by Hinton
in 2006 [18].

A deep belief network is constructed by multiple Restricted
Boltzmann Machine (RBM) stacks. It considers the output of the
hidden layer in an RBM as the visible layer’s input of another RBM.
In this process, I can obtain the extracted feature of samples [16].

As Figure 2, Deep Belief Network, stacked by three RAMs, uses
the output of the upper RBM’s hidden layer as the input of the
lower RBM’s visible layer.

In this paper, DBN model adopts the following training parame-
ters:
n_ins = 20271, hidden_layer_sizes = [200, 200], n_outs = 1, rng=
np.random.RandomState(123)

3.4 Traditional feature selection methods
Selecting the right set of features has been proved helpful for data
modeling, reducing computational costs, and solve the curse of
dimensionality. Therefore, the feature selection method is justi-
fied as an important step towards the model. In this paper, some
classical feature selection methods are used, including support vec-
tor machines (SVM), random forest (RF), decision tree (DT), and
chi-square.

The SVM is already known as a tool that discovers informative
patterns [19]. The method is based upon finding those features

Figure 2: A sample DBN

which minimize bounds on the leave-one-out error. This search
can be efficiently performed via gradient descent. Weston et al. has
proved SVMs have both quantitative and qualitative advantages in
a comparison with several other gene selection methods on Colon
cancer data [20].

The DT selects features by using the mean decrease impurity or
the mean accuracy decrease criteria. It can include explicit condi-
tions at each branching node, which are based on single features.
Then information gain or entropy will be used to compute the sig-
nificance of variables. The ranking of feature importance is based on
the average impurity decrease to achieve effective feature selection
[21].
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The RF performs as a classifier that is constructed with many
DTs. Each DT is a classifier. For each input sample, every node has
multiple classified results. To classify an input vector in an RF, the
vector is submitted to each tree of the forest. Then the RF integrates
all the classification voting results and designates the category with
the most votes as the final output [22].

Chi-square is mainly used to assess two kinds of comparing: tests
of independence and tests of goodness of fit. In feature selection,
the test of independence is assessed by chi-square and estimates
whether the class label is independent of a feature. Assesses test
of independence Chi-square score with c class and r values. The
formula is expressed as equation (4).

x2 =
r∑
i=1

c∑
j=1

ni j − µi j

µi j
(4)

µi j is the amount of sample value with the ith value of the feature.
ni j is the amount of samples with the ith value of the feature value
in class j [23].

3.5 Feature selection method
I respectively used the random forest, decision tree, and Chi-square
methods for feature selection. Through the following comparison,
it can be found that the method of support vector machine Per-
formed better on several of these criteria, but the decision tree
algorithm has significantly less computation and memory over-
head. In terms of feature selection, some current researches use
some more advanced methods to select features, such as the neural
network. However, based on the good results I have obtained now,
I leave this exploration to the future.

3.6 Dataset and experimental environment
This paper uses the miRNA sequencing data on the Stomach and
Esophageal carcinoma in TCGA, which encodes the expression of a
large number of sequencing sites and statistics the data. The dataset
contains more than 20273 samples and covers 646 gene detection
sites that could be used as initial features [7]. The samples are
classified as normal and abnormal, and the abnormal sample is
the one with cancer. I selected the valuable features from these
data. After that, the incomplete data is removed and the normalized
processing is carried out. As for the training data and test data, I
randomly selected 70% data as the training data and the rest as the
test data. This reduces the influence of uneven sample distribution
on experimental results to a certain extent.

The experiment is conducted using AMD Ryzen 7 3700U
2.30GHz,4GB memory, Windows10 system, pytorch1.4.0, Python
3.7 programming language, CPU Memory 500G, and GPU Memory
8G.

3.7 Evaluation
In this paper, classifier random forest (RF) classifier or support
vector machine (SVM) classifier was applied to train the final fifty
selected features to obtain the training results. I also used a series
of evaluation metrics to evaluate the feature selection performance
of three different setups, including classification accuracy, f-score,
precision, and recall.

Accuracy is an index used to evaluate classification models. In an-
other word, accuracy refers to the proportion of all the samples that
my model predicts correctly. For the dichotomy problem, according
to the definition of accuracy, it can be obtained with equation (5):

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision (shown as equation (6)) quantifies the number of posi-
tive class predictions that actually belong to the positive class.

Precision =
TP

TP + FP
(6)

Recall (shown as equation 7) ) quantifies the number of positive
class predictions made out of all positive examples in the dataset.

Recall =
TP

TP + TN
(7)

F-Measure provides a single score that balances both the con-
cerns of precision and recall in one number.

4 EXPERIMENTAL RESULTS AND ANALYSIS
To compare results with or without high-level representation, I
analyzed the results with the use of the auto-encoder and deep belief
network method as the deep learning methods and without deep
learning methods. Then, to ensure the universality of the results, six
experiments were applied for each setup. I applied three traditional
feature selection methods, including RF, DT, and Chi-square. For
every feature selection method, I used 2 classifiers, including RF
and SVM. The results are evaluated with accuracy, precision, recall,
and f-score, respectively. Particularly, I performed 5-fold cross-
validation and presenting results in terms of the average evaluation.

From these tables, in the comparison between the deep learning
method and the no deep learning method, I can see that methods
without deep learning outperform methods with deep learning
whether it is an autoencoder or a deep belief network. For example,
in the experiments using RF as a feature selection method and SVM
as a classifier, the results without deep learning are 0.8 higher than
those using DBN and those using auto-encoder in f-score.

I then compared the performance of the two approaches using
deep learning. The results of using auto-encoders are generally
slightly higher than that of deep belief networks. The only exception
is the experiment using chi-square for selecting features and SVM
for classification (in Table 1).

5 CONCLUSION AND DISCUSSION
In this paper, I compared performance differences with or without
deep learning method in the biological Omics datasets. The deep
belief networks or auto-encoders extract a high-level representation
of features using all the gene datasets. I selected features from high-
level representations of features with traditional feature selections.
By evaluating these results, I found that experiments without a deep
learning approach perform better than experiments with a deep
learning approach. I can see that when solving high-dimension data,
using a deep learning method to obtain high-level representations
for training will not always help improve training performance.
In this paper, I have not invited medical experts to conduct new
verification, and I will do so in the next step. DBN and auto-encoder
models are always used in the feature selection of Omics data set
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Table 1: The results of comparison for different methods

Deep Learning Feature Selection Classifier Accuracy F-score Precision Recall

Auto
-encoder

RF RF 0.93 0.89 0.86 0.93
SVM 0.92 0.88 0.85 0.92

DT RF 0.92 0.88 0.86 0.92
SVM 0.92 0.88 0.84 0.92

CS RF 0.93 0.89 0.87 0.93
SVM 0.92 0.88 0.85 0.92

DBN RF RF 0.90 0.86 0.81 0.90
SVM 0.92 0.88 0.85 0.92

DT RF 0.91 0.87 0.83 0.91
SVM 0.92 0.87 0.92 0.92

CS RF 0.91 0.87 0.83 0.91
SVM 0.93 0.89 0.86 0.93

No Deep Learning RF RF 0.95 0.94 0.95 0.95
SVM 0.97 0.96 0.97 0.92

DT RF 0.96 0.95 0.97 0.96
SVM 0.96 0.96 0.96 0.96

CS RF 0.94 0.93 0.92 0.94
SVM 0.95 0.95 0.95 0.95

in existing studies, so I chose them in the experiment. My future
work will try more neural network models to get more credible
conclusions.

This study has potential limitations. At present, I used TCGA
data sets on Stomach and Esophageal carcinoma. In the future, I
will apply this method to a larger data set to verify the scalability
and correctness of this method. In addition, only limited feature
selection methods and classification methods are used in this paper,
which may affect the correctness of my conclusion.
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