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Abstract

Embedding static graphs in low-dimensional vector spaces plays a key role in network analytics
and inference, supporting applications like node classification, link prediction, and graph visualization.
However, many real-world networks present dynamic behavior, including topological evolution, feature
evolution, and diffusion. Therefore, several methods for embedding dynamic graphs have been
proposed to learn network representations over time, facing novel challenges, such as time-domain
modeling, temporal features to be captured, and the temporal granularity to be embedded. In this
survey, we overview dynamic graph embedding, discussing its fundamentals and the recent advances
developed so far. We introduce the formal definition of dynamic graph embedding, focusing on the
problem setting and introducing a novel taxonomy for dynamic graph embedding input and output.
We further explore different dynamic behaviors that may be encompassed by embeddings, classifying
by topological evolution, feature evolution, and processes on networks. Afterward, we describe existing
techniques and propose a taxonomy for dynamic graph embedding techniques based on algorithmic
approaches, from matrix and tensor factorization to deep learning, random walks, and temporal point
processes. We also elucidate main applications, including dynamic link prediction, anomaly detection,
and diffusion prediction, and we further state some promising research directions in the area.

Keywords: dynamic networks, graph embedding, graph representation learning, dynamic graphs,
dynamic graph embedding.

1 Introduction

Graph-structured networks arise naturally in several real-world complex systems, including social
networks, biological networks, knowledge graphs, and finance, whose interactions between nodes allow the
understanding of the structural information of these domains [1]. Therefore, graph-aware learning tasks
play a key role in machine learning and network science literature, and scalable approaches to deal with
these high-dimensional non-Euclidean data have been explored to address the computational challenges
associated with graph data-driven analytics and inference. Embedding graphs in low-dimensional vector
spaces have been applied to extract features from networks and encoding topological and semantic informa-
tion, and many researchers have been using these network representation learning approaches for several
applications, including node classification and clustering, link prediction, and network visualization [2, 3, 4].

Previous work on network representation learning has focused on static graphs, either representing
existing connections at a fixed moment (i.e., a graph snapshot), or node interactions over time that
are aggregated into a single static graph [5]. However, several real networks display dynamic behavior,
including nodes and edges being added or removed from the system [6], labels and other properties
changing over time [7], and diffusion in the network [8]. The network temporal correlations are lost
during the aggregating process and, in this sense, approaches to develop embedding methods for dynamic
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networks have been proposed over the past few years. These efforts have improved tasks such as link
prediction [9] and node classification [10] over time, while enabling novel applications, including event
prediction [8], anomaly detection [10] and diffusion prediction [11].

Several challenges arise when developing an approach to embed dynamic graphs, as (i) how to model the
time domain, i.e. discrete-time or continuous-time, (ii) which dynamic behaviors are desired to be captured,
and (iii) which temporal granularity will be represented in the vector space, i.e. the same granularity as
the dataset, or a coarser granularity summarizing dynamics in a finer timescale. Considering the increasing
number of studies proposing dynamic graph embedding techniques, these discussions are becoming more
important to advance the comprehension of dynamic network representation learning. Therefore, in this
survey, we overview the problem of embedding dynamic graphs, discussing its fundamental aspects and
the recent advances that have been made so far. We introduce the formal definition of dynamic graph
embedding, discussing different dynamic network models whose representations may be extracted, and
introducing a novel taxonomy for the problem settings, i.e. embeddings input and output. Moreover, we
explore and classify different dynamic behaviors that may be captured by embeddings, describe existing
methods, discuss their similarities and differences, and propose a detailed taxonomy based on algorithmic
approaches.

To the best of our knowledge, a few attempts have been made so far to survey dynamic graph
embeddings. Kazemi et al. [12] focus on recent representation learning techniques for dynamic graphs by
using an encoder-decoder framework. Xie et al. [13] propose a taxonomy based on algorithmic approaches
to encode graphs. Additionally, Skarding et al. [14] survey how the dynamic network topology can be
modeled using dynamic graph neural networks. Our work is different from the aforementioned surveys
since we discuss different dynamic network models that have been or may be used for embedding, in
addition to detecting temporal behaviors in networks that can be captured. Moreover, we extend dynamic
graph embedding techniques taxonomy, encompassing methods based on graph kernels, temporal point
processes, and agnostic methods. In this sense, this survey has the following contributions:

• A taxonomy of dynamic graph embedding based on problem settings, extending graph embedding
input and output to handle temporal heterogeneity (i.e. timestamps with labels, classifying network
behavior over time) and temporal embeddings (i.e. different temporal granularities to represent in
the low-dimensional vector space);

• A discussion about different dynamic behaviors in networks that embedding models may capture,
including topological evolution (concerning both node and edge addition or removal), feature
evolution (regarding changes of nodes/edges features or labels over time) and processes on networks
(diffusion and global role of nodes and its evolution). Furthermore, we also bring some perspectives
about temporal point processes on networks.

• A detailed analysis of embedding techniques for dynamic graphs, focused on a classification
concerning their algorithmic approaches, comparing different methods proposed in the literature
and discussing their similarities, differences and other particularities;

• The categorization, according to the topological structure, of several dynamic graph embedding
applications, focused on: node related tasks, edge related tasks, node, and edge related tasks, and
graph-related tasks;

• A discussion of future research directions in the area in terms of problem settings, solution techniques,
and modeling, in addition to applications and representation learning on generalized graphs (i.e.
hypergraphs and higher-order graphs).

The remainder of this survey is organized as follows. In Section 2, we introduce the fundamentals
behind the embedding of dynamic graphs, reviewing static graph embedding, defining the problem of
dynamic graph embedding, presenting different dynamic graph models explored in the embedding scenario,
along with other problem settings, including the dynamic graph embedding input and output as well as
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the dynamic behaviors that may be captured. In Section 3, we categorize the literature based on the
embedding techniques, unraveling insights behind each paradigm and we provide a detailed comparison of
different techniques. After that, we present in Section 4 some concrete examples of applications enabled
by dynamic graph embedding methods discussed in Section 3, allowing the reader to better grasp the
practical utility of these methods. Finally, our conclusions are presented in Section 5, alongside some
discussions on potential future research directions in the field of dynamic graph embedding.

2 Fundamentals Behind the Embedding of Dynamic Graphs

In this section, we first review basic graph concepts and static graph embedding, introducing the
definition of dynamic graphs. Then, we formally define the dynamic graph embedding problem. Thereafter,
we describe possible problem settings, starting with dynamic graph embedding input and detailing
different outputs. We expand the initial graph embedding concepts considering time-varying graph
models, time granularity, and temporal aggregation, and discuss dynamic behaviors that may be captured
by embeddings.

2.1 Graphs and Static Graph Embedding

A graph G = (V,E) is a mathematical structure, where V = {v1, ..., vN} is a finite set of N nodes
(vertices), and E ⊆ {(vi, vj) | (vi, vj) ∈ V ×V } is a finite set of unordered pairs of vertices, whose elements
eij = (vi, vj) are called edges (links). The adjacency matrix A of a graph is an N ×N matrix whose
element Aij = 1 if edge eij ∈ E, or Aij = 0 otherwise. A directed graph is a graph in which an
edge eij ∈ E is an ordered pair, i.e. the edge eij is oriented. Otherwise, the graph is undirected. A
weighted graph is a graph in which a weight function w : E → R is assigned to it. Each edge has
a weight associated with it, and it is possible to define a weight matrix W such that Wij = w(eij).
Otherwise, the graph is unweighted. A homogeneous graph is a graph in which the number of node
types Ln and the number of edge types Le is 1, i.e. |Lv| = |Le| = 1, and every node in G belongs to a
single node category and every edge belongs to a single edge category. A heterogeneous graph is a
graph in which |Lv| > 1 or |Le| > 1.

Different ways to define proximity or similarity between nodes in a graph may be conceived [3]. The
first-order proximity S(1)

ij between nodes vi and vj is the weight of the edge eij , i.e., Wij . The second-
order proximity S(2)

ij between nodes vi and vj is a similarity between vi’s neighbourhood S
(1)
i and vj ’s

neighbourhood S(1)
j given by some defined metric, where S(1)

i = [S
(1)
i1 , ..., S

(1)
iN ] and S(1)

j = [S
(1)
j1 , ..., S

(1)
jN ].

Higher-order proximities can be defined as well, including the Katz centrality [15], which is a weighted
summation over the paths between two vertices in the graph whose weight is an exponential decay function
of its length, and the Adamic/Adar Index [16], which counts the number of vertices connecting two nodes
taking into account a weight depending on the reciprocal of the neighbor’s degree.

The central idea behind graph embedding lies in learning a mapping that embeds nodes, edges,
subgraphs, or even entire graphs, in a low-dimensional vector space, where the embedding dimension is
expected to be much lower than the total number of nodes in the network. More specifically, given a
graph G = (V,E), and a predefined embedding dimension d, such that d� |V |, the problem of graph
embedding is to map G into a d-dimensional space, in which graph properties are preserved as much as
possible, i.e. topology and similarity measures [2, 3, 4]. Based on the output of the graph embedding,
four categories may be defined: (i) node embedding, where vector embeddings are learned for each node;
(ii) edge embedding, where edges are mapped into the embedding space; (iii) substructure embedding, in
which subgraphs (i.e. clusters, communities, graphlets, ...) are represented in the vector space; and (iv)
whole-graph embedding, i.e. an entire graph is mapped into a single vector. [3] (see Fig. 1).
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Figure 1: A toy example of embedding a graph into 2D space taking into account different granularities. (a)
Sample network used as a reference for graph embedding, where the different node colors depict different
substructures, and different edge colors depict intra-substructure and inter-substructure connections.
(b-e) Different static graph embedding outputs, as described by Cai et al. [3], where d = 2. Note that the
colors refer to the substructures and connections displayed in (a).

Static graphs embedding taxonomies have been proposed in the past few years [4, 3]. Graph embedding
based onmatrix factorization represents some graph similarity in the form of a matrix and factorizes this
matrix to obtain a node embedding. The problem of graph embedding is treated as a structure-preserving
dimensionality reduction problem, which assumes the input data lie in a low dimensional manifold.
Approaches based on deep learning apply deep neural architectures on graphs, including autoencoders
(AEs), convolutional neural networks (CNNs), and variational autoencoders (VAEs). Random walk
approaches generate node sequences from a graph to create contexts for each node, then applying
techniques from natural language processing for learning embeddings. They try to preserve higher-order
proximity between nodes by maximizing the probability of occurrence of subsequent nodes in fixed-length
random walks, using neural language models, such as SkipGram. Cai et al. [3] further suggest other
paradigms, such as edge reconstruction based optimization, which learns representations that
directly optimize either edge reconstruction probability or edge reconstruction loss; graph kernel-based
methods, which decompose the graph into atomic substructures (as graphlets and subtrees) and build a
vector using these features; and generative models, which specify the joint distribution of the input
features and the class labels conditioned on a set of parameters.

Several further discussions about static graph embeddings were presented in other surveys and
reviews [2, 17, 18], along with some works concerning knowledge graph embedding, specifying their
analysis to tasks including knowledge graph completion and relation extraction [19, 20]. Moreover, Goyal
developed GEM [4], an open-source Python library that provides a framework for graph embedding
implementation, and Grattarola and Alippi have presented Spektral [21], another open-source Python
library for building graph neural networks with Keras API and TensorFlow 2, handling tasks such as
node classification, link prediction, and graph generation.
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2.2 Dynamic Graphs

There are different mathematical formulations to describe interactions between nodes over the lifetime
of a system [6, 22, 23]. A possible definition is to describe a dynamic graph by a mathematical structure
G = (V, E , T ), where V = {V (t)}t∈T is a collection of node sets over time, E = {E(t)}t∈T is a collection
of edge sets over time, and T is the time span. For each t ∈ T , it is possible to define a graph snapshot
G(t) = (V (t), E(t)), i.e. a static graph representing a fixed timestamp t of the dynamic graph. Adjacency
matrix A(t), weight matrixW (t) and similarity matrix S(t) are now time-dependent, and can be calculated
for each snapshot G(t), as well as node types Ln(t) and edge types Le(t).

Casteigts et al. [6] alternatively defined a dynamic graph as G = (V,E, T , ρv, ρe), where V is a node
set containing every node that is present in the network at any given time t ∈ T , E is an edge set defined
similarly, and further defining a node presence function ρv : V × T → {0, 1}, indicating whether a given
node v ∈ V is available at a given time t ∈ T , and an edge presence function ρe : E × T → {0, 1},
specifying if a given edge e ∈ E exists at a timestamp t ∈ T .

Figure 2 depicts a dynamic network as a time-varying graph, containing 9 nodes along lifetime
T = [0, 7). It is noteworthy that, at the beginning of the network lifetime, only nodes A, B, C, and D are
present, as well as links (A,B), (A,C), (B,C), and (B,D). As time passes, new nodes and edges arrive,
even as nodes and edges are removed from the system. In the end, we have nodes B, E, F, G, H, and I,
and links (B,E), (B,F), (E,G), and (H,I).

The formulations we described above are sufficient for understanding the dynamic graph embedding
methods we review in this paper. It is important to mention that dynamic graphs can present even
more complex temporal patterns, such as latency [6] (i.e. nodes/edges not arising instantaneously in the
network, instead of taking a finite time interval to be established) and spatial-temporal edges [22] (i.e.
a node at a given timestamp connected to another node at another timestamp). In Sec. 5, we propose
future directions for embedding dynamic graphs concerning these properties.
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Figure 2: A representation of a small dynamic network, showing edge presence (continuous intervals
above edges) and node presence (bold continuous intervals next to nodes) intervals.

2.3 Dynamic Graph Modeling

One of the first aspects to be considered when modeling a dynamic network is to define its life
span T . Two different approaches may be adopted to model the system’s time domain: discrete-time
approaches, where T is a discrete set, hence the evolution of a dynamic graph can be described by
a sequence of static graphs, with a fixed timestamp; and continuous-time approach, where T is a
continuous set, therefore the evolution is modeled at a finer temporal granularity to encompass different
events in real time [8]. Computationally, dynamic graph models assuming discrete-time domain are easier
to manipulate. Most of the existing embedding methods are based on this approach [10]. However, some
authors have proposed to model more sophisticated phenomena, such as stochastic events, to leverage
applications such as event time prediction (i.e. predict when an edge or a node is created or removed
from a network) [8, 24]. Therefore, these approaches must rely on continuous-time lifespan to capture
temporal evolution at an appropriate granularity. We briefly discuss some dynamic graph models covered
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by embedding methods presented in this survey.

2.3.1 Graph Snapshots

This model represents a dynamic graph as a list of static graphs, i.e. G = {G(t0), ..., G(tNS−1)}, where
G(tk) = (V (tk), E(tk)) is a static graph with timestamp tk (k ∈ {0, ..., NS − 1}), NS is the number of
snapshots, V (tk) is the node set at timestamp tk and E(tk) is the edge set including all edges within
the period [tk, tk+1) [25]. Most of the methods for embedding dynamic graphs manage this model as the
input, either by adopting directly a sequence of successive state sub-graphs that represent the network in
a discrete way as time passes [26, 10, 27], or splitting the time domain into non-overlapping windows of
fixed duration, establishing a static graph for each window [28, 29].

2.3.2 Difference Network Models

In many real problems, the number of edges inserted or removed at any given time is much smaller
than the total number of edges. i.e. the topological evolution is sparse [30, 31]. These models representing
these network changes take as input an initial graph Gt0 , and a list of adjacency matrix changes
∆A = {∆A(t1), ...,∆A(tNR−1)}, where ∆A(tk) = A(tk) − A(tk−1), and NR is the total number of
recorded timestamps. This definition may be extended for other similarity matrices [32, 7], and difference
networks may be divided into a link formation network (concerning positive values of adjacency matrix
change) and a link dissolution network (regarding negative values of adjacency matrix change) [33, 29].
Note that these models do not handle nodes being added or removed from the network, as they rely on
matrices with a fixed dimensionality.

2.3.3 Continuous-Time Network Models

Continuous-time approaches may include timestamped edges (edges with the information about the
time they were created, or the time intervals concerning their existence in the network) [34] and link
streams (a list of node interactions over time) [23]. Events in the network, such as the creation and
removal of nodes and edges, may occur in any time t ∈ T , and maybe instantaneous (i.e. much faster
than the typical temporal granularity of the system) or may be assigned with a latency [6]. Several
dynamic graph embedding methods rely on continuous-time networks, either by modeling timestamped
edges as stochastic point processes [24] or leveraging link streams [35]. Furthermore, node arrival and
removal may be included by these network models, as proposed in the literature by stream graphs [23]
and appeared in some embedding techniques [8, 36].

2.4 Temporal Point Processes on Graphs

As discussed above, nodes and edges network churn may be modeled by stochastic events in a
continuous-time domain, normally as stochastic point processes, random processes whose realization
is comprised of discrete events in a continuous time. A temporal point process is a point process
that can be represented as a counting process N(t), recording the number of events up to time t, thus
being useful for modeling sequential asynchronous discrete events occurring in continuous time [12]. The
conditional intensity function λ(t) characterizes a temporal point process such that λ(t) ∆t is the
conditional probability of observing an event in the tiny window [t, t+ ∆t) given the network history, i.e.,
all events before t, and only one event can happen in this tiny interval ∆t. Similarly, a survival function
S(t) determines the conditional probability that no event happens during a time window [t, t+ ∆t) given
the network history, and the conditional density f(t) = λ(t)S(t) for an event that occurs at time t is
further defined as well.
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The functional form of the intensity λ(t) is often designed to capture the phenomena of interests,
some of them include Poisson Process, Hawkes Process, Self-Correcting Process, Power Law, or Rayleigh
Process [37]. Many dynamic graph embedding techniques consider that interactions between nodes are
stochastic processes whose probabilities depend on the topological structure of the network, and node
features (if applicable) at each timestamp [8, 38, 39, 40, 41, 42].

2.5 Dynamic Graph Embedding Input

In addition to the dynamic network modeling, discussed in Sec. 2.3, dynamic graphs can be (i)
homogeneous, in which only topological information over time is available, (ii) heterogeneous, in which
either nodes, edges (topological heterogeneity) or timestamps (temporal heterogeneity) are assigned with
labels, (iii) attributed (or with additional information), where nodes and edges may hold several different
features, and (iv) constructed from non-relational data (see Fig. 3). This proposed taxonomy extends Cai
et al. [3], who encompassed static graph embedding input considering static networks, without leveraging
dynamic aspects neither handling the difference between topological and temporal heterogeneity. In the
following, we discuss each dynamic graph embedding input shown in Figure 3.

Dynamic Graph Embedding Input

Dynamic Heterogeneous
Graph

Dynamic Graph Constructed from
Non-relational Data

Dynamic Homogeneous
Graph

Topological
Heterogeneity

Temporal
Heterogeneity

Dynamic Graph with
Additional Information

Figure 3: The proposed taxonomy for dynamic graph embedding input, an extension of Cai et al. [3] to
encompass dynamic networks and to consider topological heterogeneity (similar to static networks) and
temporal heterogeneity (i.e. timestamps having labels).

2.5.1 Dynamic Homogeneous Graph

Undirected and unweighted homogeneous graphs are widely used as dynamic graph embedding inputs
due to their simplicity and to handle only basic structural information over time [43]. Several embedding
methods, however, are proposed to handle weighted [44, 45] and directed dynamic graphs [10].

2.5.2 Dynamic Heterogeneous Graph

Embedding methods to handle topological heterogeneity, i.e. nodes or edges having labels, are usually
concerned with node and edge classification [46, 47]. Nevertheless, graph snapshots may have labels,
characterizing different global behavior [48, 49] and describing another type of heterogeneity, which we
have named temporal heterogeneity.

2.5.3 Dynamic Graph with Additional Information

Additional attributes may be assigned to nodes, such as a set of numerical or categorical features.
It is possible to define a time-dependent node feature matrix F (t) ∈ RN×f , where f is the number
of additional node features, and learn representations leveraging these features in addition to their
topological structure [7, 50]. Although an edge feature matrix would be defined as well, its usage is much
less common.
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2.5.4 Dynamic Graph Constructed from Non-Relational Data

Non-relational time series data can be transformed into a dynamic graph by defining a similarity
measure between two data instances, and constructing a similarity matrix S(t) afterward. Several
papers use this step as an intermediate to learn vector representations from this constructed graph to
support some task-driven application, such as traffic forecasting [51], predicting bike-sharing demand [52],
predicting social events [53] and missing label classification on videos [54].

2.6 Problem Formulation and Output for Dynamic Graph Embedding

It is important to mathematically formulate dynamic graph embedding to understand its outputs.
Given a dynamic graph G = (V, E , T ), where V = {V (t)}t∈T and E = {E(t)}t∈T , and an embedding
dimension d, the problem of embedding dynamic graph is regarded as learning how to map G into a
d-dimensional vector space over time, in which both topological information and temporal dependencies
of the network are captured, either by learning representations able to reconstruct the dynamic graph
G, to predict the behavior of the network at timestamps outside the lifespan T , or to directly handle
a task-driven application such as node classification. When the graph topology evolves, two possible
interpretations are possible for the evolution of embeddings: (i) the vector representations move along
the embedding space, making it possible to trace the trajectory of each node; or (ii) the embedding space
itself evolves in time, thus being possible to learn mappings between embedding spaces in consecutive
timestamps [43].

The time-domain of vector representations and the network does not need to be identical, i.e., T 6= T .
For instance, a dynamic graph may have daily information about interactions between users in a social
network, but the network analytics and inference are more interested in capturing weekly or even monthly
features. Hence, even though the network life span is given by daily timestamps, vector representations
are extracted for a coarser temporal granularity.

Therefore, to define different dynamic graph embedding outputs, it is important to separate between (i)
topological embedding, which is similar to the definitions for static graph embedding [3] and concerns
node embedding, edge embedding, substructure embedding, and graph snapshot embedding, all of them
over time, and (ii) temporal embedding, regarding the relation between network temporal granularity
given by T and embedding temporal granularity given by T. The complete classification we propose is
shown in Figure 4 and is further discussed in the following topics.

Dynamic Graph Embedding Output

Topological EmbeddingTemporal Embedding

Node Embedding

Snapshot Embedding

Substructure Embedding

Edge Embedding

Embedding over Time

Time Grouping Embedding

Whole-Time Embedding

Figure 4: Dynamic graph embedding output taxonomy proposed in this survey.

2.6.1 Temporal Embedding

Temporal embedding concerns the relationship between the input temporal domain T and the
output temporal domain T. Defining T (G) as a set compressing a topological property of the dynamic
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graph (i.e. node set, edge set, induced subgraph set or entire graph, as described later in Section 2.6.2),
one may distinguish between three different classifications for temporal embedding, as shown in Figure 4
and further illustrated in Figure 5.

Definition 1. An embedding over time is a mapping µt : T (G)×T → Rd×T (i.e. T = T ). Therefore,
each node/edge/substructure/graph at time t ∈ T is represented as a vector in a low dimensional space
over t.

In this type of temporal embedding, the mapping µt is a bijection in time, allowing to distinguish, in
the vector space, each time instant for each mapped entity of the network (Figure 5b shows an example).

Definition 2. A time-grouping embedding is a mapping µg : T (G) × T → Rd × T, where T is a
discrete set composed of elements that aggregate timestamps or time intervals of T . Therefore, instead of
representing each node/edge/substructure/graph at every time t ∈ T , they are represented at every time
aggregate t′ ∈ T.

Time aggregates are useful for representing networks whose desired time information is of a different
granularity than that available in the data. As discussed, vector representations may be required each
week from data obtained daily. Figure 5c contains another example, where two timestamps have been
aggregated into a single one.

Definition 3. A whole-time embedding is a mapping µw : T (G)×T → Rd, i.e. T is a unitary set indi-
cating that every timestamp is aggregated into a single point. Therefore, each node/edge/substructure/graph
at every time t ∈ T is represented as a single vector in Rd.

Temporal aggregation can be performed: (i) as a step before embedding, aggregating temporal data
before applying an embedding method; or (ii) after representation learning over the dynamic graph,
usually by performing operations in the vector space (e.g. weighted averages or non-linear functions) to
obtain lower temporal granularity representations (i.e. embedding daily network data to extract weekly
or even monthly network representations).

2.6.2 Topological Embedding

Embedding topological properties of a dynamic graph is similar to Fig. 1, and the main difference is
the coupling between the temporal embedding discussed above and each graph structure, as presented in
the right branch of Fig. 4. WLoG, we are considering V = V × T and E = E × T to simplify notations.

Definition 4. A dynamic node embedding is a mapping νn : V ×T → Rd×T. Therefore, each node
at time t ∈ T is represented as a vector in a low dimensional space.

Node embedding over time is useful for several applications such as time-dependent node classification,
network clustering evolution, and link prediction. It also allows one to track node trajectories in the
embedding space and extract information about node behavior and roles in the network. [55, 28].

Definition 5. A dynamic edge embedding is a mapping νe : E × T → Rd × T. Therefore, each edge
at time t ∈ T is represented as a vector in a low dimensional space.

In addition to edge embedding, a few methods map both edges and nodes, in particular for embedding
dynamic knowledge graphs or user-item interaction graphs [41, 56].

Definition 6. A dynamic substructure embedding is a mapping νh : S(G) × T → Rd × T, where
S(G) is a set of induced subgraphs in G at each time t ∈ T . Therefore, each substructure at time t ∈ T
is represented as a vector in a low dimensional space.

9



C D

A B

C D

A B

C D

t0 t1 t2

A B

C D

t3
T1 T2

BA

(a) Dynamic graph G

0.4 0.2 0.0 0.2 0.4
0.4

0.2

0.0

0.2

0.4

t0

t1

t2t3

t0

t1

t2

t3

t0

t1t2

t3

t0t1

t2
t3

(b) Embedding dynamic
graph

0.4 0.2 0.0 0.2 0.4
0.4

0.2

0.0

0.2

0.4

T1T2
T1 T2

T1 T2

T1

T2

(c) Time-grouping embed-
ding

0.4 0.2 0.0 0.2 0.4
0.4

0.2

0.0

0.2

0.4

(d) Whole-time embedding

Figure 5: A toy example of embedding each node of a dynamic graph into 2D space taking into account
different temporal granularities. (a) Sample network used as a reference for dynamic node embedding,
where the snapshot model is considered, different node colors are used to distinguish each of them, and the
four timestamps t0 to t3 are grouped into two time aggregates T1 (holding t0 and t1) and T2 (which holds
t2 and t3). (b) In embedding over time, each node is mapped into the low-dimensional space for each
timestamp, thus describing trajectories in embedding space. These trajectories are illustrated by arrows,
indicating the time flow. In this case, T = Ta = {t0, t1, t2, t3}. (c) Although time granularity of the
network is described by T , the graph is mapped into a different time granularity Tb = {T1, T2}, where each
new timestamp aggregates temporal information about the original timestamps. The representations were
defined from embedding over time handcrafted design, and (d) In the whole-time aggregation embedding,
Tc is a unitary set, and every timestamp is aggregated into a single representation for each node.
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Several dynamic graph embedding methods generalize traditional node or link prediction tasks to
consider joint prediction over larger k-node induced subgraphs [57] and graphlets [58, 59].

Definition 7. A snapshot embedding is a mapping νG : G×T → Rd×T, where G = {Gt}t∈T . Hence,
each graph snapshot at time t ∈ T is represented as a vector in low dimensional space.

Snapshot embeddings are useful for tracking network behavior over time, when the topological structure
of the network is related to some emerging property or global interpretation of node interactions [49, 48].

2.7 Dynamic Behaviors

Embedding methods can also be identified according to the type of time dynamics they capture. Most
methods can capture the evolution of connectivity between network nodes, i.e. addition and removal
of edges. However, several works generalize the method to include adding and removing nodes in the
network. In addition, there are methods capable of capturing other temporal properties of networks,
including varying edge weights, changing node and edge classification, evolving node, and edge attributes,
and dynamic processes in the network (such as diffusion cascades).

We mapped three groups of dynamical behaviors on networks: topological evolution (nodes and
edges varying over time), feature evolution (node and edge features changing over time), and processes
on networks (a time-dependent process taking place on the network), as shown in Figure 6.

Topological Evolution Feature Evolution Processes on
Networks

Label Evolution

Information
Evolution

Node Evolution

Edge Evolution

Diffusion Cascades

Role Evolution

Dynamic Behaviors

Figure 6: Several dynamical properties that may be captured by embedding methods, divided by
topological evolution (concerning changes in the node and edge set), feature evolution (related to node or
edge label or other additional information changes over time) and processes on the network (regarding
diffusion and role evolution of nodes in a network).

2.7.1 Topological Evolution

Topological evolution means that nodes and edges may vary over time, being added/removed from the
network. Node evolution is characterized by changes on the node set V , whereas the Edge evolution
concerns connections between nodes that may be continuously formed or broken. Several dynamic graph
embedding methods require that the number of nodes in a network does not change over time, since they
handle adjacency or similarity matrices with fixed dimensionality [43]. Moreover, approaches considering
edge creation may be captured concerning a trend through historical records of interaction between a
pair of nodes (i.e. if two nodes have recently made multiple connections, they are more likely to make
future connections), and ternary closure (if a third node is a common neighbor of two unconnected nodes,
there is a greater tendency to close the triangle and form a clique) [57].

2.7.2 Feature Evolution

In many problems involving heterogeneous graphs, it is assumed nodes have fixed labels. However, it
is also possible to observe a label evolution: In a citation network, an author may have as its main
research area a different topic compared to previous years. Such changes are linked in some way to
the topological evolution of the network. In node classification tasks, each node in a graph has a class
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label, hence it is possible to predict the class label for the nodes in a graph G(tk) using previous graphs
G(t0), ..., G(tk−1) [31].

Even more, in several real-world networks, nodes and edges may have rich attributes (i.e. additional
information) that are changing over time in addition to the network structure and the topology may
influence attribute modification. Therefore, embedding methods may also capture information evo-
lution [50, 56]. Furthermore, edge weights may also change over time in weighted networks, and their
changes may be handled by embedding methods [60].

2.7.3 Processes on Networks

It is possible to analyze dynamic processes on the network, such as information diffusion or disease
spreading, and other emergent properties, such as node roles changing over time. Two of the most basic and
widely-studied diffusion models include [61]: (i) linear threshold model, where each node vi is influenced
by each neighbor vj ∈ Nvi according to a sum of weights bij , and if this sum is higher than a random
choice of a threshold θvi at time tk, the node vj is activated at time tk+1; and (ii) independent cascade
model, where an active node vi influences its neighborhood Nvi with a probability parameter pij (for each
node vj ∈ Nvi) independently of the network history. In this context, the problem of modeling diffusion
by independent cascades comes down to learning probability distributions characterizing the hidden
influence between users, to discover the main communication channels of the network. A group of nodes
sharing similar roles in the network can be regarded as a set of nodes that are more structurally similar
to nodes inside the set than outside, whereas communities are sets of nodes with more connections inside
the set than outside. Hence the dynamic role evolution aims to automatically discover groups of nodes
(representing common patterns of behavior) based on their latent features given by its representations [55].

2.8 Stability and Temporal Smoothness

A successful dynamic graph embedding algorithm should create stable embeddings over time. In
other words, an embedding should be able to learn similar representations at consecutive timestamps if
the underlying graph changes only slightly. More specifically, given the dynamic graph G, if the graph
snapshot G(tk+1) is similar to G(tk) (for instance, adjacency matrices A(tk+1) and A(tk)), the embedding
matrix Z(tk+1) is expected to be similar to Z(tk). Goyal et al. [10] propose the stability constant KA(ν)

as a metric to evaluate the stability of a dynamic graph embedding function ν in terms of the adjacency
matrix A over time. More specifically, the authors consider the stability of any embedding at a given
timestamp as the ratio of the Frobenius norm of the difference between embedding matrices and the
Frobenius norm of the difference between adjacency matrices, at consecutive timestamps. Then, the
stability constant is the maximum difference between stabilities calculated along the entire life span T of
the network, and the authors claim that a dynamic embedding ν is stable as long as the stability constant
is small. It is possible to further extend these proposals to include any similarity matrix S, and to take
the limit of two consecutive timestamps tk+1 − tk = ∆t → 0 in order to analyze continuity aspects of
embeddings (see future directions in Sec. 5).

Although the above discussion is related to the global behavior of embedding, most of the proposed
embedding methods seek local stability, i.e., for each node in the network. If the local topological structure
around a node v has undergone few changes, it is expected that the representations zv(tk+1) and zv(tk)

are similar, assuming a temporal smoothness in the embedding space [31, 62, 63].
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3 Techniques for the Embedding of Dynamic Graphs

In this section, we propose a taxonomy of dynamic graph embedding techniques, summarized in
Figure 7. This taxonomy has been inspired by previous static graph embedding classifications [4, 3].
Classifications for dynamic graphs can be seen as extensions of static graph methods: (i) matrix
factorization approaches; (ii) deep learning approaches; (iii) random walk-based methods
(which may be understood as node sequence sampling methods); (iv) optimization based on edge
reconstruction, which also leverages temporal smoothness, and (v) graph kernel methods. Here
we include tensor factorization approaches, fusing them with matrix factorization approaches and
defining general factorization based approaches, and introduce two novel paradigms: (i) temporal
point process based methods, which handles similarity matrix changes as stochastic processes; and
(ii) agnostic models, which learn embeddings over time independent of the approach used for each
graph snapshot in dynamic networks.

Earlier approaches to map dynamic networks into vector spaces proposed learning independent
vector representations of each snapshot employing static graph embedding methods. However, since
representation learning assumes that the probability mass of the data concentrates in manifolds that have
much smaller dimensionality than the original space where the data lives, the evolution of the network
may cause two relevant impacts on the embedding space: (i) the embedding vectors move on the manifold;
and (ii) the manifold itself evolves in time [43]. Therefore, integrating spatial topology of network and
the temporal network evolution into feature vectors encompassing these temporal correlations enhances
the performance of prediction, classification and many other temporal network analysis problems [64].

Techniques for the Embedding of Dynamic Graphs

Factorization based
Approaches

Deep Learning based
Approaches

Matrix Factorization

Tensor Factorization

Encoder-Decoder
Architecture

Generative Models

Random Walk Approaches

Random Walks on
Snapshots

Evolving Random
Walks

Temporal Random
Walks

Edge Reconstruction based
Optimization

Graph Kernel based
Methods

Temporal Point Process
based Methods

Agnostic Models

Retrofitted Model

Embedding Space
Transformation Model

Other Related
Approaches

Figure 7: Proposed taxonomy for dynamic graph embedding techniques, organized by algorithmic
approaches.

Next, we present each classification proposed by our taxonomy, discussing its insights, how it leverages
temporal dependence in addition to topological structure, and describing several methods following each
approach.Concrete examples of applications using the methods covered here are presented only in the
following section.

3.1 Factorization-based methods

Factorization-based approaches generate node embeddings over time by finding low-rank decomposi-
tions of time-dependent similarity measures. These similarity measures can be represented by: (i) sequence
of matrices over time; or (ii) three-way tensors, where the first two dimensions are related to the similarity
between nodes, and the third dimension is the temporal slice. The matrix representation relies on
capturing the temporal evolution between representations in adjacent timestamps, and the embedding
learns how the network changes over time, separating the topological contribution from the temporal
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contribution. The tensor representation, on the other hand, couples topology and temporal evolution
in a structure to be factorized in a unified way. Consequently, it is valid to separate the factorization
approaches into matrix factorization approaches and tensor factorization approaches.

3.1.1 Matrix factorization approaches

Matrix factorization approaches express the evolutionary structure of networks in the form of matrices,
therefore leveraging the time-dependent structural correlation among pairs of nodes. Dynamic graph
embedding based on matrix factorization may be classified, as in static graphs, according to which type of
loss function the approach minimizes. While most approaches factorize the similarity matrix and define an
inner-product function between node embeddings to approximate the proximity measure [55, 60, 28, 32, 9],
graph Laplacian Eigenmaps can be used to reconstruct time-dependent adjacency matrix from an
eigendecomposition of Laplacian matrix [7]. The novelty in the embedding of dynamic networks consists
in the way of propagating the factorization over time, maintaining the stability of the representations while
inserting temporal dependence into matrix decomposition. It is possible to distinguish three paradigms
based on the modeling for the connections between different timestamps: (i) adding temporal smoothing
directly to the loss function, thus ensuring the stability of embeddings over time and focusing on node
trajectories; (ii) updating the similarity matrix by using matrix perturbation theory, assuming that
temporal evolution changes network topology slightly; and (iii) defining a temporal matrix factorization,
decomposing the similarity matrix into a constant term and a time-dependent term. Figure 8 shows these
two classifications.

Matrix Factorization Techniques

Type of Cost Function Temporal Dependence into
Matrix Decomposition

Graph Laplacian
Eigenmaps

Node Similarity Matrix
Factorization

Loss Function with
Temporal Smoothing

Incremental Updates using
Matrix Perturbation Theory

Temporal Matrix
Factorization

Figure 8: Classification of matrix factorization techniques for dynamic graph embedding, taking into
account the type of cost function (similar to Cai et al. [3]) and how temporal dependence is leveraged
into matrix decomposition.

• Jointly optimizing loss function and temporal smoothing: The methods based on the above
insight perform the matrix factorization of each snapshot, in addition to bound the representations
through a loss function term that is minimized when, for each node, the embeddings at two
consecutive timestamps are similar. In other words, these approaches assume temporal smoothness
in the embedding space, and the optimal embedding should jointly reconstruct the similarity matrix
over time while being continuous. Given the loss function L0(t) minimized by a matrix factorization
approach on static graphs at each timestamp t ∈ T , the jointly similarity reconstruction and
temporal smoothing loss function for a dynamic graph can be defined as:

L =
∑
t∈T
L0(t) + τ

∑
t∈T

∑
t′∈T |(t′−t)≤∆t

L∆t(t
′, t), (1)

where ∆t is the time interval between consecutive timestamps in T , L∆t(t
′, t) is a loss function for

each pair of consecutive timestamps (t and t′) implying temporal smoothness. τ > 0 regulates the
temporal smoothness term contribution. Some approaches following this paradigm include Ferreira
et al. [28] and Zhu et al. [9].
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One can implement two generalizations of the loss function: (i) the contribution of each timestamp
may not be homogeneous, since the future in general depends more directly on the recent past
than on the distant past, weighing the loss function L0 with a function f(t) that is close to 1 when
t ≈ τ (where τ is the last timestamp, i.e. tNS−1 for snapshot model), and close to 0 if t� τ (as an
example, f(t) = eτ−t); and (ii) the dataset may contain non-homogeneous time intervals, i.e., a
function g(∆t) may be defined in order to leverage different values of ∆t, and the smoothness of
embeddings at timestamps t and t+ ∆t may be less important when ∆t is large.

• Incremental updates on embeddings: In these methods, the initial graph snapshot G0 gives the
initial similarity matrix S(0) using a standard matrix decomposition. Afterwards, the embeddings
for subsequent timestamp are updated by assuming that ||S(∆t)− S(0)|| < ε for some small ε, i.e.
the similarity matrix S(∆t) is a perturbation of the initial matrix S(0). Therefore, it is possible
to update a low dimensional representation of the nodes using first-order matrix perturbation
theory in symmetric matrices iteratively [65]. Li et al. [7] apply matrix perturbation theory for
Laplacian Eigenmaps, whereas Zhang et al. [32] propose TIMERS to update SVD decompositions
incrementally.
It is noteworthy that these approaches accumulate errors due to the perturbative approach made,
and it may not be very effective if the network evolves intensely over time. Nevertheless, since for
many real networks the temporal evolution is quite sparse (i.e. the number of added or removed
edges is much lower than the total number of edges), these methods present promising results
in dynamic link prediction, node clustering and node classification. Moreover, these strategies
may reduce error accumulation over time, setting a restart time, i.e. a time interval at which the
algorithm recalculates the factorization instead of the incremental update [32].

• Temporal Matrix Factorization: In these methods, the time-dependent similarity matrix St is
decomposed by a temporal rank-k matrix factorization model as follows [60]:

S(t) = h(U × V (t)T ), (2)

where both U and V (t) are |V | × k matrices, U is a constant matrix, V (t) is a time-dependent
matrix and h(·) is an element-wise function. For undirected networks, S(t) is symmetric and it is
possible to (i) average UV (t)T and its transpose as the prediction of S(t); or (ii) factorize S(t) as
the product of a time-dependent matrix V (t) and its transpose [60]. Therefore, this method learns
two types of embedding: (i) a constant term embedding, given by the rows of U and represents
persistent properties between pairs of nodes; and (ii) a time-varying embedding, given by the rows of
V (t) and represents changes in topology over time. A non-linearity may be inserted by the function
h, e.g. a logistic function to interpret the reconstruction U × V (t)T as a probability measure for
the similarity.
The main challenge to handle this approach is to describe the time-dependent matrices V (t) for each
timestamp. The dynamic behavioral mixed-membership model (DBMM) proposed by Rossi et al. [55]
was the first to employ this factorization, and proposed: (i) a transition matrix T in order to bound
V (t+ ∆t) ≈ V (t)T , (ii) a stacked transition model, which bounds training examples from l previous
timestamps, and (iii) a summary transition model, defining V (t) at a specific timestamp as a linear
combination of time-dependent matrices at previous timestamps. Yu et al. [60], who developed the
formal description of the temporal matrix factorization approach described above, represented V (t)

as a polynomial function over time of order p, i.e. V (t) =
∑p
i=0W

(i)ti, where {W (i)}pi=0 are |V | × k
matrices which need to be learnt from the model along with U . The LIST model [64] leverages a
temporal matrix factorization to learn the feature vector of each node by simultaneously optimizing
the temporal smoothness constraint and network propagation constraint, ensuring that two vertices
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that are connected are likely to share similar features.
Table 1 compares the approaches based on matrix factorization discussed in this section. Some

combinations of the matrix factorization approaches were not yet explored, such as graph Laplacian
eigenmaps including a temporal smoothing term and a Laplacian temporal matrix factorization.

Table 1: Matrix factorization based Dynamic Graph Embedding.
Matrix Factorization based Dynamic Graph Embedding

BCGD [9] [28] DANE [7] TIMERS [32] DBMM [55] TMF [60] LIST [64]

Cost Function Type
Laplacian Eigenmaps X

Similarity Matrix Factorization X X X X X X

Temporal Dependence
Temporal Smoothing X X

Incremental Updates X X

Temporal Matrix Factorization X X X

3.1.2 Tensor Factorization

Tensors are higher-order generalizations of vectors and matrices, represented as X ∈ RI1×I2×...×IN ,
where the order of X is N > 2 [66]. Dynamic networks are usually expressed as three-way tensors, i.e.
N = 3. Several tensor factorization methods that can extract latent structure in the data have been
proposed, including CANDECOMP/PARAFAC (CP) family, Tucker family, and alternative models [66].

For dynamic networks, CP decomposition is the most popular approach, since it learns both node
embeddings and temporal embeddings with computational efficiency. Dunlavy et al. [5] used the temporal
profiles computed by CP as a basis for predicting the scores in future timestamps, using a forecasting
method for time-series data with periodic patterns. Rafailidis and Nanopoulos [67] represent continuous
user-item interactions over time using a three-way tensor by proposing a measure of user-preference
dynamics (UPD) that captures the rate at which the current preferences of each user have been shifted,
and generate recommendations based on CP tensor factorization.

Even though models based on Tucker decomposition achieve good performance, they require a lot
of computational power, which may explain the reason every tensor factorization approach for dynamic
graphs relies on CP decomposition [68]. The alternative models discussed by Acar et al. [66], including
Multilinear Engine (ME), STATIS, and multiblock multiway models are also yet to be explored by
dynamic graph embedding methods.

3.2 Approaches based on Deep Learning

Deep Learning has shown a remarkable performance in a wide variety of research fields, including
computer vision and language modeling, and it also benefits several applications related to representation
learning and other tasks over graphs. Many successful static graph embedding methods have been
proposed in the last few years, from Graph Neural Networks [69] and Convolutional Neural Networks on
Graphs [70], to autoencoders, such as Structural Deep Network Embedding (SDNE) [71].

Different architectures based on neural networks are used both to extract the topological properties
of a network and to capture temporal dependencies therein. Some preliminary works developed a
fully-connected neural networks, either using them as an autoencoder or as a part of the decoding
process [10, 27, 72, 50]. Architectures based on recurrent neural networks (RNNs), including long short-
term memory units (LSTMs) [73] and gated recurrent units (GRUs) [74], leverage a sequence of graphs,
or their representations, in order to learn or enhance embeddings taking into consideration temporal
correlation, and store information over time to handle more complex correlations beyond consecutive
timestamps [27, 75, 76]. Attention mechanisms [77] are used to further improve understanding of the
most relevant time points for each representation [63, 78]. Convolutional neural networks (CNNs) [79] for
graphs have been widely adopted in order to handle topological properties, including Graph Convolutional
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Networks (GCNs) [80]. Iterative propagation procedures have been also employed to learn the graph
topology, as in Graph Neural Networks (GNNs) [69], GraphSAGE [81], and Gated Graph Neural
Networks (GGNNs), the former also being able to learn the reachability across the nodes in a graph
using GRUs [76]. These approaches have been also explored by several dynamic graph embedding
methods [72, 82]. Even further, instead of using RNNs to explore the characteristics of the network over
time, many succeeding models also employ convolutional networks (for instance, 1D CNNs) to leverage
temporal dependencies [83, 53, 84, 85].

Neural networks may also learn an approximation of the network distribution by using generative
models, such as the variational autoencoders (VAEs) [86] and generative adversarial networks (GANs) [87].
These approaches learn low-dimensional latent representations of the training data that store information
about the type of output the model needs to generate, using a generative network to capture the data
distribution and a recognition network (or a discriminator network) to estimate the probability that a
sample came from the data distribution. Variational graph autoencoder (VGAE) [88] and Graph-GAN [89]
employ these approaches to static graphs. These generative models are used in dynamic graphs to learn
these data distributions over time [83, 31, 90, 91, 92, 85, 44].

In order to define a taxonomy that categorizes every method with minimal overlap between different
categories, we classify the approaches according to the general architecture of the neural network. We have
identified two main general architectures: (i) encoder-decoder perspective, which holds the majority of
works concerning learning representations and decoding them for an application (i.e. network reconstruc-
tion, link prediction, or node/graph classification); and (ii) encoder, sampling, and decoder perspective,
which contains the generative models and handles representations as probability distributions (see Figure 9
for the complete proposed taxonomy for deep learning based approaches). In the following, we further
detail each of these methods and also present the most important existing works for each of them.

Approaches based on Deep Learning

Encoder-Decoder
Architecture Generative Models

Traditional
Autoencoders

Dynamic
Autoencoders

Based on Variational
Autoencoders

Based on Generative
Adversarial Networks

Discriminator
Networks

Figure 9: Classification of deep learning techniques for dynamic graph embedding, dividing into encoder-
decoder perspective and generative models.

3.2.1 Encoder-Decoder Architecture

The encoder-decoder architecture consists of an encoder, which maps the data into a low-dimensional
representation, and a decoder, that aims to either (i) reconstruct the original data; or (ii) solve an
application-driven problem, such as a binary or multi-class classification problem. In the first case, the
network is called an autoencoder, since the encoding seeks to be as lossless as possible. In the second
case, the encoding is lossy and the original data cannot be fully recovered.

Concerning dynamic graphs, an encoder receives graph snapshots as input and the decoder may exhibit
three distinct outputs: (i) traditional autoencoders, whose representations reconstruct each graph snapshot,
hence following the lossless encoding paradigm; (ii) dynamic autoencoders, whose representations do
not reconstruct each graph snapshot whereas instead they reconstruct a snapshot in a future timestamp,
therefore predicting the network structure; and (iii) discriminator networks, whose embeddings do not
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reconstruct the network topology at all, but are intended to learn node labels, node clusters or a global
network property, and the loss functions are usually application-driven.

• Traditional Autoencoders: These architectures are applied for each graph snapshot, similar
to the SDNE in static graphs [71]. DynGEM [10] builds a fully-connected autoencoder for each
graph snapshot, using a transfer learning paradigm to share parameters between two consecutive
autoencoders and a strategy that allows the autoencoder network to widen its layers and inserts
new layers in order to handle a growing number of nodes in the graph. LDANE [50] follows a
similar strategy, and handles node attributes by adding a margin-based ranking loss term in the
loss function that ensures the embeddings of two similar nodes are closer than the embedding of
two non-similar nodes.
Models employing recurrent neural networks and their hidden states to encode dynamic graph
structure have also been proposed. For instance, Taheri et al. [48] developed DyGGNN, which
leverages Gated Graph Neural Networks (GGNNs) to capture graph topology and couples it with an
LSTM encoder to handle graph dynamics, and with an LSTM decoder to reconstruct the structure
of the dynamic graph at each timestamp. Other approaches include DySAT [63] and DGNN [93].
Table 2 summarizes the deep learning approach employed by each of these methods.

Table 2: Traditional Autoencoders for Dynamic Graph Embedding.
Algorithm Deep Learning Model
DynGEM [10] Fully-Connected Autoencoder (based on SDNE [71])
LDANE [50] Similar to DynGEM, also handles node attributes (margin-based ranking loss term)
DyGGNN [48] Gated Graph Neural Networks and LSTMs
DySat [63] Structural and Temporal Self-Attention
DGNN [93] Attentive LSTMs

• Dynamic Autoencoders: The input of these methods based on dynamic autoencoders is the
historical records of the network. The output is the reconstructed graph at a future time. Bonner
et al. [83] regarded this approach as the temporal graph offset reconstruction problem, i.e. creating
temporal graph embeddings that recreate a future timestamp of the graph.
Several embedding methods developed a recurrent architecture to capture the dynamics of the
network in order to predict its future state, such as Goyal et al. [27], which propose three different
strategies for taking a set of graph snapshots, from autoencoders (dyngraph2vecAE) to LSTM
networks (dyngraph2vecRNN), and the combination of both of them (dyngraph2vecAERNN). Chen
et al. [75] propose an encoder-LSTM-decoder (E-LSTM-D), which resembles dyngraph2vecAERNN,
but uses rectified linear units (ReLUs) as the activation function for each encoder/decoder layer, and
adds a regularization term to prevent overfitting. AdaNN [94] employs a triple attention module,
leveraging topology, node attributes and temporal attention to further feed them into two connected
GRUs and concatenating them into a joint state vector. TRRN [95] adopts memories to enhance
temporal capacity, applying multi-head self-attention and learning contextualized representations
feeding different factors (including node features and topological features) and updated memories
into LSTMs.
Graph convolution combined with recurrent units have been exploited for building dynamic au-
toencoders. GC-LSTM [72] uses convolutions to extract topological features while coupling with
an LSTM in order to learn temporal features of the dynamic network. EvolveGCN [47] proposes
two versions that follow a similar approach: (i) EvolveGCN-H, where the GCN parameters are
hidden states of GRUs that take node embeddings as input; and (ii) EvolveGCN-O, where the
GCN parameters are input/output of an LSTM unit. T-GCN [84] uses GCNs to learn topological
structures, then passing these features to GRUs in order to extract temporal dependencies.
Table 3 summarizes the deep learning approach employed by each of the methods based on dynamic
autoencoders.
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Table 3: Dynamic Autoencoders for Dynamic Graph Embedding.
Algorithm Deep Learning Model
TO-GAE [83] GCNs over time

dyngraph2vecAE [27] Fully-Connected (FC) Autoencoders
dyngraph2vecRNN [27] Sparsely Connected LSTMs

dyngraph2vecAERNN [27] FC Encoder, LSTMs and FC Decoder
E-LSTM-D [75] FC Encoder, LSTMs and FC Decoder
AdaNN [94] Spatial, Attribute-Topology and Temporal Attention, and GRUs
TRRN [95] FC Encoder, Transformer-Style Self-Attention and LSTMs

GC-LSTM [72] Graph Convolutions and LSTMs
EvolveGCN-H [47] GCNs and GRUs
EvolveGCN-O [47] GCNs and LSTMs

T-GCN [84] GCNs and GRUs

• Discriminator Networks: This approach considers that a neural network must learn application-
driven representations, such as properly classifying nodes or graphs/subgraphs over time [57],
extracting network properties [82], or predicting a specific global feature [51]. Several approaches
combine GCNs and recurrent networks, such as DynGraph2Seq [82], TSGNet [96] and NAAM [97].
Topological features may also be extracted by other techniques as an alternative to GCNs, as Xu et al.
showed by implementing STAR [78]. Other approaches use convolutions for both spatial and temporal
feature extraction, including Spatio-Temporal Graph Convolutional Network (STGCN) [51].
These discriminator networks are commonly employed to embed graphs constructed from non-
relational data. For instance, DynamicGCN [53] extracts and learns graph representations from
historical event documents, encoding the input data into a sequence of graphs with node embeddings,
and developing a graph convolutional network model to predict the occurrence of certain type of
events. TD-Graph LSTM [54], in the other hand, is applied to action-driven video object detection,
passing each frame through a spatial convolutional network in order to detect similar regions in
consecutive frames, and construct a temporal graph structure by connecting semantically similar
regions. LSTM units take the spatial visual features as the input states, incorporating temporal
motion patterns for participating objects in the action while minimizing an action-driven object
categorization loss. Li et al. [52] propose a spatial-temporal graph embedding model called STG2Vec,
which includes a temporal attention and incorporates multi-source information to fed a collaborative
temporal modeling based on LSTMs.
Table 4 lists the approaches described above and summarizes the deep learning approach employed
by each of them, along with the specific task each method attempts to solve.

Table 4: Discriminator Networks for Dynamic Graph Embedding.
Algorithm Deep Learning Model Task

DynGraph2Seq [82] GCNs, LSTMs and Hierarchical Attention Sequence of Target Health Stages
TSGNet [96] GCNs and LSTMs Node Classification
NAAM [97] GCNs, LSTMs (or BiLSTMs) and Temporal Attention Forecasting User Interactions
STAR [78] Spatio-Temporal Attention and GRUs Node Classification
STGCN [51] GCNs and Gated Convolutional Neural Networks Traffic Forecasting

DynamicGCN [53] GCNs with Updates from Previous Timestamps Event Prediction
TD-Graph LSTM [54] CNNs and LSTMs Missing Label Classification

STG2Vec [52] Temporal Attention and LSTMs Bike-sharing Demand

3.2.2 Generative Models

Generative algorithms attempt to predict features given a certain label, i.e. to learn the data
distribution patterns, in contrast to discriminative models, which attempt to learn representations and
classify each input data. Therefore, these approaches have the power to synthesize data in addition to
compress and to learn embeddings. Regarding generative neural networks for dynamic graph embedding,
two groups of approaches arise: (i) methods based on variational autoencoders (VAEs), which encodes
an input as a distribution over the latent space; and (ii) methods based on generative adversarial
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networks (GANs), which train both a generator network to synthesize graphs and a discriminator network
to distinguish between true graphs and generated ones.

• Based on Variational Autoencoders: The encoder for a variational autoencoder takes a data
point and produces a distribution, usually parameterized as a multivariate Gaussian. In this
case, the encoder predicts the mean and standard deviation of the Gaussian distribution, and
the lower-dimensional embedding is sampled from this distribution. The decoder is a variational
approximation, which takes an embedding and produces an output [86].
Every variational autoencoder for dynamic graphs is inspired by VGAE [88] to address the encoding
of each snapshot, differing on how to handle the graph evolution. These methods include (i)
Dyn-VGAE [31], which addresses a temporal smoothness loss term, (ii) TO-GVAE [83], which
applies VGAE over time to reconstruct subsequent snapshots, and (iii) VGRNN [92], which adopts
VGAE whose prior distribution parameters are based on the hidden states in previous timestamps.
There are several proposals to enhance the encoder model. For instance, Bonner et al. [90] propose
a Temporal Neighbourhood Aggregation (TNA) block to comprise a GCN with a GRU in the
encoder, controlling the combination of topological and temporal learning via a final linear layer.
Zhao et al. [91] have developed a framework called BurstGraph, which splits the adjacency matrix
of a graph into a standard adjacency matrix and a burst adjacency matrix to pick up unexpected
behavior within a time duration. A variational autoencoder is employed using GraphSAGE [81] as
the encoder, and two decoders: a standard decoder, which learns representations Zv, and a bursty
decoder, which learns sparse embeddings Zb.

• Based on Generative Adversarial Networks: Generative adversarial networks (GANs) are
algorithmic architectures that use two neural networks, pitting one against the other by designing a
game-theoretical minimax game to combine generative and discriminative models. This approach
has been applied for graph representation learning by a framework called GraphGAN [89]. While a
generator network attemps to approximate the true graph connectivity distribution, the discriminator
network aims to discriminate the connectivity of each node pair. Therefore, the generator network
tries to deceive the discriminator network, whereas the discriminator network improves itself to
distinguish better and better between true edges and generated edges.
Inspired by these recent approach for graph representation learning, some methods arise for dynamic
graph embedding. DynGraphGAN [85] designs the discriminator network with the following
components: (i) a GCN to encode neighborhood features of nodes; and (ii) CNNs to learn temporal
graph evolution along the time dimension. The generator network implements a sigmoid function
of the inner product of two node’s embeddings at a timestamp t to estimate the probability
distribution of an edge connecting these nodes at time t. GCN-GAN [44] displays an architecture
whose generative network consists of a GCN layer, an LSTM layer and a fully-connected output
layer, and the discriminator network is a fully-connected feedforward neural network.
Each of the GAN-based methods previously mentioned are trained with a single graph. Therefore,
the trained model is capable of generating artificial snapshots following a similar structure and
dynamic of the original graph used during training. Also, note that the resulting model is limited to
creating snapshots with the same number of nodes as the graph used in training, given that number
of parameters of the model is proportional to the number of nodes in the TVG. This dependency is
observed, for example, for the last layer of the generative model of the GCN-GAN model, which
builds an adjacency matrix with dimensions N ×N from an embedding vector (outputted by the
LSTM layer).

Table 5 summarizes the generative model and architectures employed by the methods discussed in
this section.
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Table 5: Generative Models for Dynamic Graph Embedding.
Algorithm VAE GAN Deep Learning Models

TO-GVAE [83] X GCNs
Dyn-VGAE [31] X Original VAE with Temporal Smoothness

TNA [90] X GCNs and GRUs
[91] X GraphSAGE [81] and RNNs

VGRNN [92] X GCNs and LSTMs
DynGraphGAN [85] X GCNs and CNNs

GCN-GAN [44] X GCNs and LSTMs

3.3 Random Walk Approaches

Another class of methods for graph embedding functions relies on random walks. Multiple random
walks of fixed length L are considered sentences, generating a context for each node and trying to extract
higher-order dependencies without adjacency matrices.

The node sequence matrix is therefore generated and factorized, usually, by applying a neural
network architecture, the most popular being the Skip-Gram [98, 99], to produce low dimensional vector
representations for each node while maintaining their proximity in the new embedded space.

Random walks applied to dynamic graphs must generate time-dependent contexts C(t) in addition
to sequences that capture topological dependencies. Then, the methods based on random walks are
separated according to how they include the temporal aspect into the calculation: (i) random walk
on snapshots, where a time-dependent node sequence matrix is generated by applying random walks
starting on each node at each snapshot, and further optimizing a joint problem that takes into account
the temporal dependency; (ii) evolving random walks, where the node sequences are generated for the
initial time (first snapshot), then the method incrementally updates node representation by updating
random walks starting on nodes affected by topological evolution; and (iii) temporal random walks, which
define time-dependent context matrices by allowing random walks across consecutive timestamps and
considering time ordering restriction. Also, other node sequence sampling methods besides random walks
may be applied to generate contexts, including neighborhood aggregation. In the following, we further
detail each of these methods.

3.3.1 Random Walks on Snapshots

This approach performs random walks on each snapshot of a dynamic graph, obtaining vector
representations by optimizing a joint problem taking into account temporal dependencies. It is important
to note that methods following this approach generate contexts whose temporal connection between two
matrices at consecutive time points is not modeled by random walks. Instead, the temporal dependency
is defined later in the generation of the embeddings, taking into account the temporal smoothness. For
instance, embeddings may be learned for each graph snapshot independently using methods including
node2vec and DeepWalk, and afterward, the representations may be combined using operations, from
simple vector concatenation to dynamic embeddings and orthogonal transformations to align embedding
vectors at consecutive timestamps.

De Winter et al. [100] and Dyn2Vec [29] apply vector concatenation to node representations over time.
The former applies node2vec for each snapshot, whereas the latter employs a DeepWalk variant, whose
probability of choosing a certain edge depends on the normalized edge weight. Chen et al. [25] initialize
node embeddings by using a Gaussian prior with a diagonal covariance, and learn representations over time
using dynamic Bernoulli embeddings, considering the rows of the node sequence matrix as the context for
each node. tNodeEmbed [101] preserves static network neighborhoods of nodes in a d-dimensional feature
space by using Orthogonal Procrustes, and optimizes a LSTM for specific tasks (i.e., link prediction and
multi-label node classification). DynSEM [62] train node embeddings for each timestamp using node2vec,
align node embeddings into a common space using Orthogonal Procrustes, and optimize a joint loss
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function taking into account temporal smoothness.
Table 6 lists the methods described above and points out both static embedding method applied for

each snapshot and how they handle temporal dependencies.

Table 6: Random Walks on Snapshots.
Algorithm Static Embedding Method Temporal Dependence Handling
(Static) [100] node2vec Vector Concatenation
Dyn2Vec [29] DeepWalk variant Vector Concatenation

[25] Gaussian Initialization Dynamic Bernoulli Embeddings
tNodeEmbed [101] node2vec Orthogonal Procrustes and LSTM

DynSEM [62] node2vec Orthogonal Procrustes and Temporal Smoothing Loss Function

3.3.2 Evolving Random Walks

Generating random walks for every timestamp is an expensive time-consuming process. Several
approaches first generate embeddings for the initial timestamp by using a static random walk approach,
then incrementally update node representations taking into account that, in general, only a few nodes are
influenced by topological evolution. Dynnode2vec [102] follows this approach by sampling node sequences
for only evolving nodes instead of generating random walks for all nodes in a given timestamp and
afterward feeding these sequences as an input to a dynamic Skip-Gram model [103], which is initialized
at the first snapshot and used for weight initialization of the Skip-Gram of subsequent timestamps.

Other approaches include EvoNRL [104], which initially employs node2vec, stores the random walks
in memory, and updates the set of random walks when a single new edge arrives in the network. EvoNRL
uses a similar dynamic Skip-Gram model previously mentioned [103]. Sajjad et al. [105] follow the
same Skip-Gram implementation over time and proposes random walk update algorithms aiming to
be statistically indistinguishable from a set of random walks generated from scratch on the new graph.
NetWalk [106] also proposes a network embedding algorithm inspired by the Skip-Gram architecture
(which the authors call Clique Embedding). It uses a deep autoencoder neural network to learn vector
representations through a stream of random walks while minimizes the pairwise distance among all nodes
in each walk. Evolving random walks are used in order to mitigate the computational cost of performing
a full random walk in every snapshot. The former is not expected to be as precise as the latter, as shown
in some approaches [105]. But the small loss in accuracy is compensated by the huge computational
efficiency shown by these methods.

Table 7 lists the methods based on evolving random walks and points out both static embedding
methods applied for each snapshot and how they update random walks and vector representations.

Table 7: Methods based on Evolving Random Walks.
Algorithm Static Embedding Method Update Method

dynnode2vec [102] node2vec Dynamic Skip-Gram Model
EvoNRL [104] node2vec Skip-Gram Model over Time

[105] DeepWalk with Unbiased Random Walk Updates Skip-Gram Model over Time
NetWalk [106] Clique Embedding (AutoEncoder) Vertex Reservoir and Walk Updating

3.3.3 Temporal Random Walk Methods

The methods described in Sections 3.3.1 and 3.3.2 consider that random walks and their updates
are made to each snapshot separately. However, one way to include the time dependency directly in a
sequence of nodes generated by random walks is to build a method to create a corpus of walks over time,
respecting the temporal flux. In the literature, these walks are regarded as temporal walks [34, 6].

It is possible to generalize the Skip-Gram architecture to handle continuous-time dynamic networks,
as described by Nguyen et al. [34]. In particular, the authors propose a general framework called CTDNE
for learning time-preserving embeddings and propose several methods to select the subsequent nodes
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Table 8: Temporal Random Walk Methods.
Algorithm Neural Network Model Comments
CTDNE [34] Skip-Gram model Defined temporal random walk embedding methods
T-EDGE [45] Skip-Gram model Encompasses weighted dynamic networks

[100] (Dynamic) node2vec Continuous version of the first random walks on snapshots
STWalk2 [107] Skip-Gram model Separates temporal random walks and spatial random Walks

LSTM-node2vec [108] node2vec and LSTMs Handles both temporal sequences and static sequences
DeepCas [11] DeepWalk, GRUs and Attention Mechanism Diffusion cascades
DAN [109] Feed-forward neural network and attention mechanism Diffusion cascades

[111] GCNs and GraphSAGE Diffusion cascades
Topo-LSTM [110] LSTMs Diffusion cascades

from a starting node, thus performing a temporal random walk: (i) an unbiased temporal neighbor
selection; (ii) a biased selection, which may be based on temporal exponentially-weighted decay (i.e., older
timestamps have an exponentially lower contribution to the selection) or on temporal linearly-weighted
decay.

Several approaches follow CTDNE’s paradigm, including Wu et al. [45], which developed T-EDGE
to encompass weighted networks, and De Winter et al. [100], proposing a continuous-time version of
node2vec. STWalk2 proposed by Pandhre et al. [107], on the other hand, generates a spatial walk for each
snapshot and a temporal walk, employing a Skip-Gram network to combine the two learned embeddings
to get node representations. LSTM-node2vec [108] trains an LSTM autoencoder with node sequences
generated by temporal random walks, and afterward initialize node2vec with the input layer weights of
the trained LSTM encoder for each snapshot at time t.

Diffusion prediction problems are related to temporal random walks, but the exact timestamp of
diffusion is not necessarily known. instead only the temporal ordering is defined (i.e., typically one does
not know exactly when some information have passed from a node to another, but the source and the
target of the diffusion process is known). Models following this objective include (i) DeepCas [11], which
uses GRUs and attention mechanisms to predict the future size of the cascade, (ii) DAN [109], which
outputs the probability distribution of the next infected node leveraging feed-forward neural networks
and attention mechanism, and (iii) Topo-LSTM [110], employing LSTMs to handle temporal dependence
over diffusion. Moreover, Yang et al. [111] implement GRUs, GCNs and GraphSAGE to predict next
affected nodes, and a reinforcement learning framework to predict cascade size.

Temporal Random Walks represents a more natural way to deal with dynamic continuous graphs [34,
100], since it does not require any time discretization of the graph into snapshots. It is also the ideal
approach for diffusion problems, as we have shown. Table 8 lists the temporal random walk methods and
points out both static embedding method applied for each snapshot and how they update random walks
and vector representations.

3.3.4 Other Node Sequence Sampling Methods

Some techniques exhibit steps or insights given by two different random walk based approaches. For
instance, several models create a graph containing the nodes at a given time t and their neighbors at
the same timestamp t and the previous timestamps in a defined time window, and employ random walk
procedures leveraging temporal ordering [107, 112]. In particular, DHNE [46] gives exponential-decaying
weights for edges connecting nodes and past neighbors. These approaches share elements from random
walks over snapshots and temporal random walks. Furthermore, StreamWalk algorithm introduced by
Beres et al. [113] compresses both evolving random walks and temporal random walks by updating the
weight for walks to handle more recent edges.

Although most node sequence sampling methods are based on random walks, some techniques rely on
other ways to aggregate the neighborhood. Liu et al. [114] develop a spatial-temporal neural attention
mechanism to estimate the co-occurrence matrix and guide the embedding algorithm to focus on the
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Table 9: Other Node Sequence Sampling Methods.
Algorithm Comments
DHNE [46] Historical-current graphs

STWalk1 [107] Similar to historical-current graphs
DyAne [112] Supra-adjacency representation

StreamWalk [113] Temporal random walks updated for affected nodes
DKGE [115] Attentive GCNs over subgraphs, and online learning

[114] Co-ocurrence matrix using spatial-temporal neural attention model
weg2vec [35] Weighted event graphs

context information with higher importance. Dynamic Knowledge Graph Embedding (DKGE) [115],
on the other hand, applies an attentive GCN (AGCN) to learn contextual subgraph embeddings over
knowledge graphs, integrating them with knowledge embedding of entities and relations to build the joint
representation of each object in the graph. The temporal evolution is leveraged by an online learning
strategy that learns knowledge embeddings and contextual element embeddings of emerging entities and
relations, as well as knowledge embeddings of existing entities and relations with changed contexts (i.e.
whose induced subgraphs are changed). Torricelli et al. [35] introduce weg2vec, which takes a dynamic
network and project it into a weighted link stream (the authors called weighted event graph), sampling
neighborhoods for events (i.e. the edges of the original dynamic graph) from the link stream (i.e. to
create a graph that connects edges concerning involved nodes, co-occurrence, and event time difference),
and inputting sequences of connected events to a Skip-Gram model.

Table 9 lists the methods described in this section and shows comments about their peculiarities, i.e.,
how they leverage temporal dependence or how they choose node context to apply the Skip-Gram model.

3.4 Edge Reconstruction based Optimization with Temporal Smoothing

Following the taxonomic approach proposed by Cai et al. [3] for static graphs, some methods for
dynamic graphs have been identified whose approach is similar to techniques that directly optimize an
objective function based on edge reconstruction. In addition to either maximizing edge reconstruction
probability or minimizing edge reconstruction loss, these approaches also preserve temporal smoothness.
It is noteworthy that these methods may be understood as reconstructing temporal edges between a node
v at a given time ti and the same node at the subsequent timestamp, therefore justifying this category
even more adequately for embedding methods.

DynamicTriad [26] is a representative method of this category, aiming to preserve both structural
information and evolution patterns of a network by modeling how a closed triad (i.e. three vertices
connected) develops from an open triad (i.e. three vertices where two of them are not connected). The
authors define the probability that an open triad (v, u, w) (where v and u are not connected) evolves into
a closed triad, and the probability of the edge (v, u) will not be created, joining these probabilities into
a distance-based loss function. Moreover, the model supposes that highly connected nodes should be
embedded closely in the low-dimensional vector space and imposes this condition by a margin-based rank
loss function, and finally considers temporal smoothness at consecutive time stamps.

Other approaches, solely based on a distance loss function include DNE [30], and Liu et al. [36]. Time-
Aware KB Embedding [116] learns node embeddings by modeling relationships as translation operators in
the low-dimensional vector space [117] and optimizes a joint margin-based ranking loss function concerning
both temporal order score function (the temporal encoding) and translation embeddings (the topological
encoding). Table 10 lists the methods described above, and the loss function each technique aims to
minimize, pointing how they handle temporal dependence.

Note that the temporal smoothing given by a distance-based loss is similar to both matrix factorization
problems and skip-gram based models. Indeed, there is a general view that demonstrates the relationship
between network embedding approaches, matrix factorization, and Skip-Gram models [120]. Even
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Table 10: Edge Reconstruction based Optimization.
Algorithm Temporal Dependence Handling Loss Function
DNE [30] Delta of Theoretical Optimal Solution [118] and Temporal Smoothness Based on LINE [119]

DynamicTriad [26] Temporal Smoothness Triadic Closure and Social Homophily
[36] Temporal Smoothness Based on Laplacian Eigenmaps

Time-Aware KB Embedding [116] Temporal Order Score Function Joint Margin-Based Rank

further, Liu et al. [120] provide a fundamental connection from an optimization perspective, which is the
fundamental idea of edge reconstruction based methods. In this survey, these approaches are separated
in the taxonomy to follow more strictly algorithmic properties rather than theoretical aspects of loss
functions.

3.5 Methods based on Graph Kernel

As presented by Cai et al. [3] for static graphs, a few methods handle elementary substructures that
are decomposed from a whole graph structure. They incorporate topological attributes built in the
network processing step, including graphlet transitions count [58], graphlet frequencies over time [59]
and adjacency matrix summation [121], to learn representations capable of reconstructing such elaborate
attributes using a shallow approach of an autoencoder. Hence, since these substructures are used as a
topological building block of a static network, dynamic graph embedding takes into account the transitions
between different elementary structures. In addition, Béres et al. [113] developed an online second-order
similarity (SecondOrder) that learns neighborhood similarity by Min-Hash fingerprinting, modifying the
embedding vector whenever a neighbor of vi gets more similar to vj after adding the edge (vi, vj) into the
network, which may be regarded as a graph kernel based approach.

3.6 Methods based on Temporal Point Process

Several dynamic graph embedding techniques, consider that interactions between nodes are stochastic
processes whose probabilities depend on the topological structure of the network, on node features,
and the network history. For these methods, it is assumed that an event influences a given node and,
consequently, it can interact with other nodes in the network, if they are susceptible to the influence of the
current node. Therefore, there is a probability that the event will propagate based on the mathematical
definitions presented in Section 2.4, such as the conditional intensity function.

Main methods in this category include DyRep [8], handling a continuous-time deep model of a
temporal point process using a conditional intensity function modeling the occurrence of an event p with
time scale k between nodes vi and vj , and DeepCoEvolve [24], modeling the user-item interaction as a
multidimensional temporal point process. Other approaches include KnowEvolve [38], modeling a fact in
a knowledge graph as a temporal point process, M2DNE [122], capturing edge evolution by a temporal
point process with an attentive mechanism, in addition to a general dynamics equation concerning the
linking rate, and HTNE [39] with an attention mechanism for neighborhood formation sequence of a node
as a counting process. Furthermore, Knyazev et al. [40] extend DyRep [8], replacing the original encoder
with a procedure that, given an event between nodes vi and vj : (i) calculates representations of all nodes
at time tk−1; (ii) returns an edge embedding for all pair of nodes; (iii) updates the embedding of node vj
based on all edges connected to it; and (iv) updates the edge embedding between nodes vi and vj .

MHDNE [123] models the edge formation process as two temporal sequences with historical edge
information and network evolution information therein, respectively. In particular, the network evolution
is based on open triangles and triadic closure problem [26], and the intensity function for a new edge
creation at time t is given by a Hawkes process, leveraging a term dependent on node embeddings, a time
decay function on an exponential form, and the distance between node’s neighborhood. Wu et al. [42]
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propose a Graph Biased Temporal Point Process (GBTPP), which aims to compute the probability of an
event propagating to nodes vj ∈ N (vi) in the future timestamp tk+1 given event propagation history and
node vi, which is influenced by the event at time tk.

3.7 Agnostic Models

The models described so far use some algorithmic paradigm as a basis for their development. A
few approaches in the literature are independent of how the vector representations in each timestamp
are obtained. They commit to learning the connections between representations at consecutive time
points, or even within a time window. Because of this property of independence of the algorithmic
procedure, we classify them as Agnostic Models. Two different paradigms may be followed: (i) the
retrofitted model, where vector representations are learned for the initial graph by using any of the
state-of-the-art static network embeddings, then the dynamics are captured by retrofitting the initial
embedding with the subsequent graph snapshots; and (ii) the embedding space transformation method,
where the representations of each graph snapshot are calculated by any static method separately, then a
transformation function that connects an embedding at time t to the embedding at the next timestamp is
learned. In the following, we detail these two paradigms.

3.7.1 Retrofitted Model

The retrofitted model [43] is based on the local temporal smoothness assumption, considering the
vertex-centric evolution of the network. Therefore, for the first timestamp, the model employs an existing
static embedding method to learn vector representations, but for subsequent timestamps, the vectors
are updated by a local update method. In retrofitting, embeddings at previous timestamp zi(t− 1) are
revised by using the embedding of its neighborhood available from the graph snapshot at time t, hence
the resulting vector zi(t) is similar to both the prior vector zi(t− 1) and the vectors of its adjacent nodes
in timestamp t. This update rule is carried out until convergence for each time step. It is noteworthy
that, except for the first timestamp, the retrofitted model does not learn embeddings directly from data,
instead it presumes a temporal smoothing criteria to guarantee node representations over time.

3.7.2 Embedding Space Transformation Model

The second agnostic approach assumes that the network time evolution is a global process attempting
to fulfill the global temporal smoothness objective by considering the temporal evolution of a network as
a transformation over the node embedding vectors of successive timestamps. Once the transformation
operator is learned, it can map the latent representation from a known snapshot to the next unobserved
snapshot.

Saha et al. [43] introduce two paradigms for embedding space evolution: (i) homogeneous trans-
formation, where the transformation is assumed to be the same across any two successive timestamps;
and (ii) heterogeneous transformation, which refrains from the uniformity assumption i.e. every pair
of timestamps has a different transformation procedure. These two paradigms are further discussed in
the following:

• Homogeneous Transformation: This transformation is shared across timestamps, and Saha et
al. [43] have proposed a linear transformation in order to learn these mappings between embedding
spaces.

• Heterogeneous Transformation: Methods based on heterogeneous transformation learn a dif-
ferent projection matrix for each pair of network snapshots. Saha et al. [43] employ a linear
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heterogeneous transformation model, learning NS − 1 different transformation matrices and obtain-
ing a final transformation matrix by combining these different matrices.

3.8 Other Dynamic Graph Embedding Approaches

At last, some methods do not fit into any of the discussed categories, either by presenting some specific
methodology and different from all approaches, or by combining different techniques without having one in
particular as the main one. It is also interesting to note that some methods aggregate temporal information
of the dynamic network into a static graph (i.e. a network containing all interactions and vertices that
were present from the beginning of a network until the final timestamp of analysis) [5, 33]. Therefore,
these works use static embedding methods over a network that encompasses temporal information stored
at its edges.

4 Dynamic Graph Embedding Applications

In this section, we provide an overview of different network applications that are typically improved by
the embedding methods for dynamic graphs presented so far. Applications of dynamic graph embeddings
for network mining can be divided into which elements of the network they are oriented to or focused
on: (i) node related, including node classification, recommendation systems, and trajectory analysis;
(ii) edge related, including link prediction and event time prediction; and (iii) graph related, including
graph classification over time, network visualization and diffusion prediction. The complete list of tasks
discussed in this survey is shown in Figure 10.

Main Embedding Applications for Dynamic Networks

Node Related Edge Related Graph Related

Dynamic Link
Prediction
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Node Clustering

Recommender
Systems

Event Time
Prediction

Edge
Classification

Graph
Classification

Network
Visualization

Graph
Reconstruction

Node Attribute
Prediction

Trajectory
Tracking

Anomaly
Detection

Diffusion
Prediction

Node & Edge
Related

Figure 10: Every embedding application for dynamic networks covered in this survey, organized by which
elements of the network they are oriented to or focused on.

4.1 Node-Related Applications

Node embeddings are used for various purposes on network analysis, with applications already
known in static graphs, but handled over time, including node classification, node clustering, and
recommendation systems, up to novel applications, specific within the dynamic scenario, such as the
node feature prediction and trajectory tracking.

• Node Classification: The node classification problem focuses on the assignment of a class label
to each node in a graph based on the rules learned from the labelled nodes. In a dynamic network,
it is possible to (i) classify nodes whose labels are unknown in a given timestamp t, considering
behavior and labels of the other nodes in the network; or (ii) to predict the classification of a
node in the future, given that node labels can vary over time [124]. Approaches concerning node
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classification apply a classifier on labeled node embeddings for training, including: (i) linear layer [54];
(ii) SVM [50, 48, 46, 125, 123, 58, 121]; (iii) logistic regression [7, 31, 39, 122, 100, 31, 108, 114,
105, 112, 30, 36, 125]; (iv) softmax [47, 96, 93, 101, 78, 10]; and (v) random forests and gradient
boosting techniques [100, 58, 121].

• Node Clustering: While the classification task is supervised, clustering similar nodes is an
unsupervised task, aiming to group similar vertices when information about labels is unavailable.
An important challenge in this task is to ensure that the embeddings of similar nodes are close
to each other in the vector space while being able to capture possible node transitions between
different clusters over time, as in DynGem [10] and dyngraph2vec variations [27]. Clusters in the
embedding space can also represent different behavior patterns of nodes over time, which is defined
by Rossi et al. [55] as an analysis of the role evolution of each node in the network.

• Recommender Systems: A dynamic network consisting of users, items, and timestamped
interactions between users and items may be explored by embedding methods to recommend items
to users according to their interests over time. As discussed by Kazemi et al. a[12], recommendations
may suggest items not exactly similar to user’s interest in order to attract the user to a novel
interest, and recommendations may arouse a future desire for items of certain type even if the user
does not display any immediate interest.

• Node Attribute Prediction: It is important to predict time-varying attributes of network nodes.
Formally, given a time-varying graph G = {G(t0), ..., G(tNS−1)} with additional node attributes
X(t) ∈ Rf (where f is the number of these attributes) as the training data, this task aims to
estimate the real-valued variable X(tNS

) ∈ Rf at time tNS
for each node in the graph [124]. This

problem is also known as relational time series regression, and node embeddings over time can serve
as input to time series prediction models, such as ARIMA or recurrent neural networks, to enhance
prediction by leveraging topological information along with attribute evolution.

• Trajectory Tracking: From the representations obtained by embedding over time, it is possible
to make an analysis of the trajectories of each entity. Ferreira et al. [28] capture ideological changes
of two diverse party systems (Brazil and the United States), as expressed by members’ voting
behavior, by mapping the network into a temporal latent ideological space. Therefore, the authors
have tracked individual members overtime in the low-dimensional vector space, analyzing how
vector representations of individual members change and then measure ideological shifts over time.
Although this task shares similarities with the node clustering problem, the focus of trajectory
tracking is not on the groups themselves, but on the transitions between them.

4.2 Edge-Related Applications

Edge-related tasks comprise the most commonly explored problem by the techniques presented in this
survey: dynamic link prediction. However, a novel application, when compared with static methods,
appears in the literature: event time prediction, whose focus is on the detection of the time instant
when a new edge should appear. Finally, the edge classification may also be treated on heterogeneous
dynamic graphs where edges have labels.

• Dynamic Link Prediction: Link prediction in dynamic networks is more complex than in
static networks, since it comprises two different tasks: (i) temporal link prediction, (the
prediction of new edges) [126], where, given a sequence of snapshots of an evolving network
G = {G(t0), ..., G(tNS−1)}, aims to predict the links in G(tNS

) (where NS is the total number of
snapshots), i.e. to construct a function f(v, u) that predicts whether an edge (v, u) exists between
nodes v and u at time tNS

[43]; and (ii) link completion (prediction of previously observed
edges) [126], which consists of finding the missing links along the evolving network. Most approaches
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consider link prediction as a classification task, where labels are (i) existence; or (ii) non-existence of
an edge. Junuthula et al. [126] provides a deeper discussion regarding evaluation of link prediction
on dynamic networks, and Yu et al generalizes temporal link prediction to include: (i) prediction of
link weights, considering henceforth the aforementioned definition as a particular case when the
link weight is restricted to 0 or 1, and (ii) prediction at timestamp N(S) + α, where α ≥ 0, and the
classical definition above regards the special case α = 0.

• Event Time Prediction: In dynamic networks it is valid to question at which timestamp a given
interaction can occur, configuring the event time prediction task. Methods based on temporal point
process have a mathematical formulation to predict the next time point tk for an event given a pair
of nodes v and u and network history (i.e. a list of interactions over time), including DyRep [38]
and DeepCoevolve [24].

• Edge Classification: When the edges of a network can belong to certain classes, the problem of
classifying the edges shares similarities with the node classification task. For instance, interactions
between nodes may be associated with a trustworthy rating (i.e. users who trust others, or not),
or sentiment analysis (i.e. a post on a social network). Therefore, predicting the label of an edge
(vi, vj) over time may be done concatenating node embeddings or operating over them to obtain
edge embeddings, and applying a classifier afterward [47].

4.3 Node- and Edge-Related Tasks

Some tasks can be applied to both nodes and edges in a graph, depending on how the problem is
formulated. In this context, two tasks have been identified so far: (i) anomaly detection, which can be
related to a node with anomalous behavior or to an unwanted or unexpected edge; and (ii) diffusion
prediction, which can either identify which nodes will be affected by a diffusion process or detect edges
most likely to diffuse information.

• Anomaly Detection: Anomaly detection is an important application for detecting malicious
activity in networks. These anomalies can be detected by unexpected changes in the vector
representation of nodes and edges, suggesting that some non-expected activity is arising at some
timestamp. Goyal et al. [10] propose the definition of δt = ‖Z(tk+1)− Z(tk)‖F as the change in
embedding between time tk and tk+1, and a threshold to consider the node behavior as anomalous
when its embeddings change above this value. This threshold value can be calibrated diferently
to each specific problem, and can be tuned to identify certain types of anomalies based on node
behavior changes, where each type of behavior is encoded differently. A similar approach is presented
by Rossi et al. [55], which defines several groups of behaviors for the nodes of the network based on
node embeddings (i.e. similar to node clustering), hence the authors claim to detect anomalous
behaviors from abrupt node transitions between different clusters. Khoshraftar et al. [108] formulate
the anomaly detection as a classification task, where edges may belong to anomalous or normal
class labels, therefore using node embeddings to compute edge representations and then using their
method (LSTM-Node2vec) to classify the edges.

• Diffusion Prediction: Diffusion problems solved by embeddings methods may be categorized
as (i) a sequence prediction problem (i.e. a microscopic diffusion problem), willing to predict the
future affected node given the previously affected ones [109, 111, 110, 127, 128]; or (ii) a regression
problem, which predicts the future numerical properties of the network (e.g. the total number of
infected nodes in a macroscopic diffusion problem) [11, 111].
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4.4 Graph-Related Applications

Problems related to the whole graph usually analyze the network globally, therefore dealing with
tasks that are not centered on vertices or edges. The main examples verified in the literature are: graph
classification, network visualization, and graph reconstruction.

• Graph Classification: Classifying the whole graph over time into one class from a set of predefined
categories LG is a relevant problem when the topological structure and possible attributes of each
node in a network configure a global classifiable behavior [49, 48]. By obtaining a whole graph
embedding over time (either by aggregating node embeddings, or using graph kernels, as in
Section 3.5), it is possible to use the same classifiers presented in the node classification task to
either perform classifications at known timestamps or to predict the classification of the graph in
the future.

• Network Visualization: It is also possible to visualize dynamic graphs in 2D or 3D space by
applying dimensionality reduction techniques that preserve the embedding structure, such as t-
SNE [129], to node embeddings. Goyal et al. [10] state that, to avoid visualization instability (i.e.
embedding instability over time), t-SNE needs to be initialized with an identical random state for
all timestamps.

• Graph Reconstruction: The learned vector representations may reconstruct the dynamic graph
through operations in the vector space that decode similarity information between pairs of nodes,
such as a dot product or pairwise distance to estimate the adjacency matrix or the weight matrix.
Goyal et al. [10] propose a methodology to rank pair of nodes according to their corresponding
reconstructed similarity, then define the reconstruction precision as the ratio of real links in the top
k pair of nodes.

5 Conclusion and Future Directions

In this survey, we conducted a comprehensive review of the literature in embedding methods for
dynamic graphs. We defined the problem of embeddings for dynamic graphs inspired by previous surveys
on static graph embeddings, whereas introducing some important concepts to consider scenarios for
dynamic graphs. We proposed a taxonomy to classify the problem settings for dynamic graph embedding
problems, broadening the design presented in the static scenario by introducing fundamental time
aspects in embeddings, such as the different dynamic graph models that can be embedded, in addition
to embedding outputs that aggregate temporal information or track representation trajectories. We
also proposed a taxonomy for the different embedding paradigms for dynamic graphs, classifying them
according to the methodology they use, topological-temporal properties that preserve, and assumptions
made for the method to be valid. After that, we summarized the applications that the embedding of
dynamic graphs enables.

• Development and Expansion of Libraries and Frameworks for Dynamic Graph Embed-
ding: With the increasing number of dynamic graph embedding techniques, it is interesting to invest
in developing and expanding a framework capable of unifying the different algorithms, applications,
and standard benchmark datasets. Goyal et al. [130] propose DynamicGEM, an open-source Python
library consisting of state-of-the-art algorithms for dynamic graph embeddings, focusing on node
embeddings. The library contains the evaluation framework for graph reconstruction, static and
temporal link prediction, node classification, and temporal visualization, with various metrics
implemented to evaluate the state-of-the-art methods, and examples of evolving networks from
various domains. Since DynamicGEM provides a template to add new algorithms, it would be
interesting to invest in further developing the package so as to incrementally insert new techniques.
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In addition, expanding the framework to include embeddings of other types (such as edges, hybrids,
and whole graphs), as well as methods for continuous-time dynamic graphs. Building a reference
package of embedding methods for dynamic graphs (be it DynamicGEM or other) would benefit
the community interested in this topic.

• Mathematical Analysis and Different Stability Metrics: To define useful and accurate
stability metrics is a future research field in the area, with a more theoretical focus. Goyal et al. [10]
suggest a metric considering the adjacency matrix and snapshot models. Nevertheless, it is necessary
to explore these metrics in more detail, by testing them on real-world networks and checking the
behavior of embeddings for different methods and problems. In addition, a more sophisticated
mathematical analysis may promote a research field direction to improve understanding of the
relationship between representations and the evolution of dynamic graphs.

• Temporal Multiscale Evolution Embedding: In real networks, the phenomena of temporal
evolution may be associated with different scales (e.g. daily, weekly, monthly, and yearly phenomena).
It would be interesting to investigate embedding techniques capable of efficiently capturing these
peculiarities in a methodology that deals with temporal multiscale evolution. Trivedi et al. [8] make
an important step forward in this direction by considering two different timescales: for dynamics on
the network and dynamics of the network.

• Dynamic Hypergraph Embedding: The existing models for dynamic graphs only consider
edges connecting two nodes in the graph, therefore not being able to expand to hypergraphs, where
sets of nodes form connections without necessarily having binary ordered relations. Although there
are a few works in hypergraph embedding [131] and even fewer that are extended to dynamic
hypergraphs [132], a promising area of research is to develop new methods for dynamic hypergraphs,
as well as extending some of the existing dynamic graph embedding methods, allowing them to
handle hyperedges.

• Capturing Latencies and Spatial-Temporal Edge Patterns: Although the methods described
in the survey capture dynamic behaviors such as topological evolution, feature evolution and processes
on the network, more sophisticated temporal models take into account that nodes and edges are
not created or removed instantaneously in the network [6]. Thus, latency is an important feature
of dynamic networks, as it carries information about the affinity between nodes or a node within
the network, and no method described above has a methodology for dealing with such factors. In
addition, spatio-temporal edges make embedding of dynamic graphs more complex than extracting
information from snapshots, or from timestamped edges, as temporal correlations are more complex
between non-consecutive timestamps [22].

• Generalization of Graph Embedding to Higher-Order Dimensional Networks: With the
diversity of models for dynamic graphs, it is noted that there is no consensus to define a more
general model and, consequently, an embedding that can be generalized to as many dynamic graphs
as possible. Keeping this in mind, there are graph generalization models, including MAGs [22] and
Stream Graphs [23], and a future direction of research may be the application of embedding methods
in such models. Even more, it is interesting to suggest extending embedding for higher-order graphs,
allowing not only the capture of temporal and topological properties but also of multilayer structures
at a different time and connectivity scales.

• Generation of Property-Preserving Network Evolution in Embedding Space: Several
complex network properties, such as pathways, degree distribution, and scale invariance, may change
over time, and finding out which patterns of temporal evolution conserve or change these properties is
challenging. Cheng et al. [133] propose a structure-preserving model reduction procedure developed
for linear network systems, whereas Rossi et al. [55] propose a matrix factorization to discover
roles of certain vertices in a network and study possible changes in these roles over time. One
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possible direction for future research is to use representations in low-dimensional spaces to study and
generate evolutions in a network that are capable of preserving certain properties of interest. One
possible way to pursue this idea is to explore generative models, such as variational autoencoders
and GANs, and use learned distributions of input data to generate new networks that are similar to
training, and thereby capture patterns associated with their characteristics.
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