Check for
Updates

Counterfeiting Congestion Control Algorithms

Margarida Ferreira™, Akshay Narayan*, Inés Lynce', Ruben Martins", Justine Sherry"
t Carnegie Mellon University, L INESC-ID/IST Universidade de Lisboa, * MIT CSAIL

Abstract
Congestion Control Algorithms (CCAs) impact numerous de-
sirable Internet properties such as performance, stability, and
fairness. Hence, the networking community invests substan-
tial effort into studying whether new algorithms are safe for
wide-scale deployment. However, operators today are contin-
uously innovating and some deployed CCAs are unpublished
— either because the CCA is in beta or because it is considered
proprietary. How can the networking community evaluate
these new CCAs when their inner workings are unknown?
In this paper, we propose ‘counterfeit congestion control
algorithms’ — reverse-engineered implementations derived
using program synthesis based on observations of the
original implementation. Using the counterfeit (synthesized)
CCA implementation, researchers can then evaluate the CCA
using controlled empirical testbeds or mathematical analysis,
even without access to the original implementation. Our
initial prototype, ‘Mister 880, can synthesize several basic
CCAs including a simplified Reno using only a few traces.
ACM Reference Format:
Margarida Ferreira, Akshay Narayan, Inés Lynce, Ruben Martins, Justine
Sherry. 2021. Counterfeiting Congestion Control Algorithms. In The
Twentieth ACM Workshop on Hot Topics in Networks (HotNets °21), November

10-12, 2021, Virtual Event, United Kingdom. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3484266.3487381

1 Introduction

Today’s Internet hosts an expanding corpus of Congestion
Control Algorithms (CCAs) including Reno at Netflix [51],
Copa at Facebook [4], and BBR at Google [10]. CCAs deter-
mine important properties such as whether or not competing
applications share network bandwidth fairly [13, 26, 55]; how
stable bandwidth allocations are (or whether performance
oscillates) [1]; how heavily occupied network buffers are
and hence what latency applications can expect [36]; and
whether or not network links are utilized efficiently [25].
These properties and others are a topic of active study for
researchers [1, 3, 6, 32, 37, 52, 60].

This work is licensed under a Creative Commons Attribution International 4.0 License.

HotNets *21, November 10-12, 2021, Virtual Event, United Kingdom
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9087-3/21/11.
https://doi.org/lo.l145/3484266.3487381

132

However, understanding properties like fairness, utiliza-
tion, and stability on the Internet is increasingly challenging
because service providers do not always publish the details
of novel CCAs they deploy. Sometimes CCAs are in a state
of ‘beta’ deployment and unready for public scrutiny (as is
currently the case with Google’s BBRv2 [9]), and other CCAs
are considered proprietary (as are the details of Akamai’s
FastTCP [57] 1). As user-space implementations of CCAs
become more prevalent [38, 43], we expect that unpublished,
experimental CCAs will gain more popularity.

Lack of scrutiny into unpublished algorithms is not
merely an academic disappointment; a buggy CCA can
have damaging performance implications not only for a
service provider deploying the new, buggy CCA X, but also
for competing services using legacy CCAs Y and Z. If X
exhibits unfairness to flows using CCA Y, then services
using Y who share a bottleneck link with service using X
will suffer; if X exhibits highly oscillatory behavior, other
services using CCAs Y or Z and sharing the same bottleneck
link can expect to see performance instability as well. Hence,
research into CCA properties [3, 35, 56, 60] safeguards
Internet performance for all services, even those services
which deploy legacy, well-studied CCAs.

This leads us to our central question in this paper: How can
the Internet community evaluate deployed CCAs for fairness,
utilization, stability, and other properties when the CCA details
have not been made public?

One pragmatic closed-source approach is to use active
measurements and to initiate controlled downloads to public
services and empirically observe the relevant properties (fair-
ness, stability, etc); some researchers have already taken this
tack [5, 45]. As we will discuss in §2, this is a good start, but
unfortunately closed source approaches have fundamental
limitations compared with analytical/mathematical open
source studies of aknown algorithm. For example, they cannot
provide upper and lower bounds on performance nor can they
provide insights into why a CCA behaves in a certain way.

Given that the original implementation remains out of reach,
we propose to use active measurements of the real CCA to
reverse-engineer the underlying algorithm. We refer to this
reverse-engineered CCA as a ‘counterfeit congestion control
algorithm’ or cCCA. Using the cCCA, researchers can then
perform mathematical modeling, explore modifications to the

1Although the early basis of the FastTCP algorithm has been published [57],
its current incarnation remains private.

https://doi.org/10.1145/3484266.3487381
https://doi.org/10.1145/3484266.3487381
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3484266.3487381&domain=pdf&date_stamp=2021-11-04

HotNets ’21, November 10-12, 2021, Virtual Event, United Kingdom

algorithm, or empirically test the cCCA in diverse, controlled
network testbeds. To generate cCCAs, we propose using
program synthesis [30], a technique from the programming
languages community. Program synthesis allows a user to
provide a set of expected input/output pairs to a synthesizer;
the synthesizer then generates a program which, given a
particular input, will produce the corresponding output.

Despite the considerable literature on program synthe-
sis [2, 7, 22, 24, 29, 33, 50], reverse engineering congestion
control algorithms remains out of reach for existing technol-
ogy. We discuss numerous challenges in §4, but in this vision
paper we focus on the most fundamental obstacle: existing
program synthesizers typically target stateless programs
because exploring the space of possible stateful programs is
computationally much more demanding than exploring only
stateless programs. Typical synthesis-by-example takes a set
of input-output pairs and finds a program such that the output
is the result of applying that program to its respective input.
When synthesizing a stateful program, we are given an initial
state and a final state, and we must find a series of updates
that will update the state to achieve the final state. This is a
much harder problem, as it involves asking the synthesizer to
consider a large number of unknown variables representing
the state of the system at each timestep of the input.

Our prototype synthesis tool, Mister880,” uses domain-
specific knowledge about congestion control to guide the
search for an implementation to produce a cCCA more
quickly. For a simplified version of Reno, Mister880 can
reverse-engineer the correct algorithm in only 13 minutes on
a commodity laptop. Despite many remaining open questions
(§4), our experience with Mister880 leaves us optimistic
that we will be able to generate cCCAs which capture the
behavior of truly unknown algorithms in the future.

2 Motivation and Approach

Congestion control properties such as fairness, utilization,
and stability all impact the performance of Internet appli-
cations; historically, there have been few barriers to their
analysis due to an ‘open source’ ecosystem around CCA
algorithms. Many of the fundamental results about Internet
performance have relied on open source analysis, e.g.:

e TCP-Friendly Rate Control guarantees that a streaming
service will be fair to co-existing Reno flows; the authors
derive their guarantees via mathematical analysis of the
Reno algorithm [26].

e Controlled testbed experiments [21, 47, 54] and math-
ematical modeling [56] using Google’s open sourced
BBR code showed that BBR can be unfair to competing
flows using any loss-based congestion control algorithm;

% As an initial prototype, Mister880 is quite limited in its capabilities — for
example, it can synthesize Reno, but not Tahoe or Cubic. Hence, we name it
for a similarly limited counterfeiter who only ever counterfeited $1 bills [40].

133

Margarida Ferreira et al.

insights from the research community continue to inform
Google’s ongoing design of BBR*v2’ [9].

e PCC Vivace [21] was designed to have fairer interactions
with deployed CCAs after analysis of the original
PCC [20] objective function.

e Finally, researchers can prove properties using mathe-
matical models of CCAs [3, 60, 62]: e.g., whether it fully
utilizes available bandwidth.

It is worth noting that all of the above discoveries relied on
the research community at large having access to the source
code, allowing teams otherthan a CCA’s own developers to
provide insights about the algorithm. Indeed, the research
community can even serve as a ‘watchdog’ to ensure that
deployed algorithms are indeed performing as their creators
claim. Thus, our goal in this paper is to enable open source
analysis like the studies we list above for closed source CCAs.

2.1 Analyzing Closed-Source CCAs

Prior methods of analyzing closed-source CCAs remain more
limited than open-source analysis and experimentation.

Classification. Researchers have proposed tools based
on both machine learning and heuristics to determine
from empirical observations which CCA a flow is using
[28, 41, 44, 46], or a less granular classification of the flow’s
type of CCA [27, 53, 61]. Unfortunately, these classifiers
merely identify CCAs - they can label a particular server as us-
ing BBR, or identify that two servers are using the same CCA,
but they cannot tell researchers anything about the properties
of a previously unseen CCA. Classification is nevertheless
useful in helping us identify servers which are running
unknown CCAs, as these CCAs are the target of our study.

Empirical Studies. Researchers have instrumented network
links to observe utilization and fairness “in the wild” [19]
or initiated controlled downloads to Internet servers and
measured, e.g., the observed throughput of these connections
from the edge [5, 41, 45]. Empirical approaches require no
knowledge of what CCA is running at the server nor how
it works, but by introducing background loss, inflating
latencies, or initiating additional connections through the
same bottleneck link, researchers can study the unknown
CCA under a range of conditions. However, empirical studies
cannot prove properties about CCAs, nor can they identify
performance bounds and edge cases (e.g, under what loss rate,
buffer capacity, and RT T is this CCA’s throughput expected to
be lowest?). Further, empirical approaches are limited by their
vantage points: if the vantage point is 100ms away from the
server, it cannot test CCA’s behavior in lower latency settings.

3 AProof-of-Concept: Mister880

In the absence of the algorithm itself to study, we propose to
reverse engineer deployed closed source CCAs using empirical
observations of the true CCA. Similarly to empirical studies,

Counterfeiting Congestion Control Algorithms

we can observe unknown CCAs, but instead of measuring
throughput or fairness directly we can instead measure
the inputs a CCA uses to make decisions and its resulting
outputs: the number of inflight packets (“visible window”),
rate of packets injected into the network, acknowledgments
returned to the server, and packet RTT. We call this a
network trace. Using this information, we can apply program
synthesis [30] to generate a program which, given the
observed inputs, will generate the observed outputs. We refer
to this generated algorithm as a counterfeit CCA (cCCA).
Researchers can then study the cCCA like any other
open-source algorithm (e.g. with mathematical models or
controlled testbed experiments). As we will discuss further in
§4, although the cCCA is not guaranteed to be identical to the
true algorithm, we believe that generating an algorithm that
is similar will still catalyze new lines of study and research.
To explore the feasibility of finding cCCAs, we design
and test a simplified CCA synthesizer called Mister880.
Mister880 is an early prototype: it operates over traces
generated in simulation where we can perfectly observe
packet arrivals/transmissions in a deterministic setting. Our
goals for Mister880 are very limited: to synthesize a version
of TCP Reno in our simulation environment. We leave more
complex algorithms and real network scenarios (including
packet loss and non-determinism) to future work (§4).

3.1 Program Synthesis Basics
Programming-by-example (PBE) [2, 17] is a sub-field of
program synthesis where the user provides input-output
examples as the behavioral specification of the program to
be synthesized. A program synthesizer takes as input (1)
a set of input-output examples and (2) a Domain-Specific
Language (DSL) describing the space of possible programs
(in our case, a language describing the arithmetic operations
that make up a CCA). Synthesizers use DSLs to guide the
analysis towards programs which are likely to be useful
for the given task. The synthesizer then returns a program
written in the provided DSL that will produce the correct
output for the corresponding input in the examples. PBE
is a common approach to solve many practical problems
such as data structure transformations [24], spreadsheet data
manipulation [29], data preparation tasks [23], as well as
applications to computer networks [11, 48, 59].

There are multiple approaches to explore the space of
feasible programs, but the predominant approaches use
constraint solving [33, 50], machine learning [7, 34, 39],
or a combination of both [12, 22]. In our experience,
constraint-based approaches tend to outperform machine
learning approaches when (a) the input/output specification
can be encoded using logic, and (b) the space of satisfying
programs is highly constrained, i.e. much smaller than the

134

HotNets ’21, November 10-12, 2021, Virtual Event, United Kingdom

space of possible programs. Since both of the above hold for
CCA synthesis, we take a constraint-based approach.

3.2 Challenges and Key Ideas

Constraint solvers rely on a translation (“encoding”) of a
problem into logical formulae. The algorithms that solvers
run over these formulae can have exponential [15] or even un-
decidable [8] complexity, so it is crucial to limit the encoding’s
size to avoid passing an intractable query to the solver. Unfor-
tunately, in the domain of CCAs, the encoding grows with the
size of the trace. There are, of course, more inputs and outputs
to represent (‘known variables’), but most costly is the need to
encode the unknown state at every timestep, creating many
‘unknown variables’ for the synthesizer to reason about.
Thus, our key challenge in designing Mister880 is to encode
a broad range of candidate cCCAs while using a minimal
encoding to increase the likelihood that the synthesizer will
output a cCCA before we timeout the search (we typically set
a limit of four hours). Mister880 thus applies two key ideas:

(1) Event-Driven Structure. CCA implementations have
aregular structure: all deployed frameworks have an event-
driven structure with handlers for events such as timeouts and
incoming acknowledgments, and further use a standard set
of congestion signals [16, 43]. Even a hypothetical non-event-
driven CCA implementation which made state changes at any
time would only have its output (i.e., a congestion window or
pacing rate) manifest when the network stack sent the next
packet, and by that time an event-driven implementation
could make the same update. Therefore, instead of synthesiz-
ing a CCA as one big program, we decompose a CCA as a set
of event handlers and synthesize them independently, leading
to smaller and more tractable queries to the constraint solver.

(2) Arithmetic Pruning. As we will discuss in §3.3, our DSL
can generate arbitrary arithmetic functions which update the
cCCAs congestion window or CWND. However, many such
functions can be pruned easily. With Mister880, we encode
a few CCA prerequisites, or properties we know must hold
for a cCCA to be a viable match for the true CCA.

One such prerequisite is unit agreement. Since the conges-
tion window has units bytes, we only allow event handlers
whose output is in bytes. For example, CWNDx* AKD is byt632
and thus invalid. We also know that CCAs both increase and
decrease the CWND, and hence an ACK handler which only
decreases the window size is an invalid candidate algorithm.
We enforce these two prerequisites with Mister880, and
in future work expect to include more as we tackle more
complex cCCAs.

*While prior work (e.g. in synthesizing SDN policies [59]) also considered
state, synthesizing a CCA requires reasoning about its internal state
iteratively through the trace, unlike previously considered domains.

HotNets ’21, November 10-12, 2021, Virtual Event, United Kingdom

all traces]

shortest trace —— SMT

DSLs —» solver “candidate

cCCA
failed trace l
no Correct?

Figure 1: Mister880 iteratively generates candidate cCCAs
with the SMT solver and checks them against the corpus of
traces.

Simulation

yes

cCCA

3.3 Design Sketch

From §3.1, we know that we need to pass a DSL and a trace
encoding to a constraint solver such as an SMT solver. We
discuss how to build these two components.

Domain-Specific Language. Recall that to improve
tractability, we design our cCCAs as a set of independent
event handlers. Mister880 supports two event handlers:
(i) win-ack handler, used when the trace shows an ACK,
and (ii) win-timeout handler, used when the trace shows a
timeout. The event handlers update the congestion window
(CWND) given the sender’s state (the previous window size
CWND and the initial window w;) and a set of input values
(the number of acknowledged bytes at the current timestep
AKD and the maximum segment size MSS). We plan to extend
this in the future to (a) include more handlers, e.g. for triple
dup-acks or more general timers, and (b) to provide a richer
set of congestion signals as input values (e.g. average ACK
arrival rate [10]; RTT gradient [42]).

The event handlers operate over these inputs using DSLs
of arithmetic integer operators. The operands can be either
the functions’ input values (CWND, AKD, MSS, w,) or
arbitrary integer constants (const). Equations 1a and 1b show
Mister880’s DSLs for win-ack and win-timeout, respectively:

Int— CWND| MSS| AKD
| const| Int+ Int
| Intx Int | Int[Int

Int— CWND| wy | const
| Int/ Int| max(Int,Int)
(1b)

(1a)
Equation 2 shows a simple CCA (hereafter referred to as
Simple Exponential A or SE-A for short) that can be built
from these DSLs:

win-ack(CWND,AKD,MSS) = CWND+ AKD,
win-timeout(CWND,w;) = w.

(2a)
(2b)

Constraint-Based Search. We represent the search space
of all event handlers as an abstract syntax tree — deeper trees
represent longer expressions. Even our simple DSL has a large
search space, and naively enumerating its abstract syntax tree
is infeasible. Following Occam’s razor (‘the simplest solution
is often the best one’), Mister880 considers simpler event
handler expressions before more complex ones; if there is a

135

Margarida Ferreira et al.

win-ack handler with a depth-3 expression tree that satisfies
the trace, we will not consider depth-4 (or greater) trees.

Partitioning the search into smaller searches for individual
handlers rather than one big program improves performance.
For example, just encoding Reno’s win-ack handler (Equa-
tion 1a) requires exploring the tree to depth 4, which encom-
passes 20,000 possible functions. If we further consider all
possible win-ack handlers in combination with all win-timeout
handlers, there are several hundred million possible cCCAs.

To limit the number of combinations to consider, we can
check the win-ack function independently of the win-timeout
function. In the initial portion of the input trace, we know
no loss-timeout has occurred yet; until this first timeout we
can thus consider only the win-ack function. If at some point
before the first timeout the win-ack function produces a
visible window not compatible with the trace, we know that
it will never fit the whole trace (regardless of win-timeout)
and thus we can discard that win-ack function without ever
considering win-timeout. So, in practice, we can split the
synthesis into two parts, which reduces the search space com-
binatorially: first, we find a win-ack that is consistent with the
start of the trace. This uses a smaller encoding, since the initial
portion of the trace is smaller and there is only one event
handler. After we find a win-ack function that passes this
check, we move on to a win-timeout using the rest of the trace.

To additionally simplify our search, we prune the set of
possible handlers by enforcing arithmetic prerequisites as
discussed in §3.2. We tell the solver not to consider functions
which, e.g., would always result in a decreasing CWND for
a win-ack. As we will show in §3.4, arithmetic pruning allows
us to quickly discard non-viable solutions and subtrees
- synthesizing Reno does not complete with a four hour
timeout without this aspect of our design.

Putting it together. We collect dozens of traces at varying
RTTs and loss rates for each true CCA. However, encoding
all traces to input into the SMT solver results in a formula
that is too complex to solve efficiently. Instead, we split the
synthesis into the two stages depicted in Figure 1: SMT solving
and simulation. The SMT solver takes as initial input only
one encoded trace (the shortest one) and the DSL above. The
solver will then return a candidate cCCA whose execution
satisfies just one trace.

This ‘candidate’ cCCA may satisfy all of the remaining
traces — or it may satisfy just the shortest trace, but not all of
the others. Consider Equation 3, which shows another simple
CCA, SE-B:

win-ack(CWND,AKD,MSS) = CWND+ AKD, (3a)
win-timeout(CWND,w,) = CWND/ 2. (3b)
Suppose Mister880 is synthesizing SE-B from 2 traces:

trace g, with duration 200ms, and trace b, with duration
400ms. However, by just observing the first trace — of 200ms

Counterfeiting Congestion Control Algorithms

led

Trace
Synth.

Trace
Synth.

Window (bytes)
IS

N
Window (bytes)

T T T
200 300 400

Time (ms)

T T T T T
100 150 200 0 100

Time (ms)

T
0 50

Figure 2: The dashed line shows the visible window pro-
duced by the candidate cCCA (win-ack : CWND + AKD;
win-timeout = wp), compared to the trace’s CCA
(win-ack : CWND + AKD; win-timeout : CWND/2) shown by
the solid line, for two traces with durations 200ms on the
left and 400ms on the right.

— the SMT solver might produce SE-A instead of SE-B as a
candidate cCCA. Figure 2 shows how using only one trace
under-specifies the CCA: SE-A produces the same visible
window as SE-B, and hence the SMT solver cannot tell that
SE-A is the wrong solution.

Rather than feeding all traces into the SMT solver — which
would explode the search space — we instead test each
candidate cCCA in simulation, which is only a linear-time
test. For each trace, we run the candidate cCCA on the inputs
for the trace and verify that the candidate cCCA produces the
expected outputs. In Figure 2, we would see that SE-A would
provide incorrect outputs with the second trace of 400ms (on
the right). If the candidate cCCA produces the wrong output,
we end simulation and add just the discordant trace to the
encoded SMT input. We then ask the SMT solver for a new
candidate cCCA and repeat the process until the SMT solver
provides a cCCA which satisfies all of the remaining traces
in simulation. Of the four algorithms we tested in §3.4, two
required multiple traces to find a satisfying cCCA.

3.4 Testing our Synthesis Approach

We implemented Mister880 on Python 3.9, using Z3 (version
4.8.10) [18] to encode and solve all SMT formulas. We ran
Mister880 on a laptop with a dual-core Intel Core i5 (2.9
GHz) with 8GB of RAM, running MacOS Big Sur 11.4. We
tested our synthesizer for 4 CCAs supported by our DSLs:
the previously introduced SE-A and SE-B (Equations 2 and
3, respectively), SE-C, described in Equation 4:

win-ack(CWND,AKD,MSS) = CWND+ 2AKD,
win-timeout(CWND,w,) = max(1,CWND/8).
and a simplified version of Reno shown in Equation 5:
win-ack(CWND,AKD,MSS) = CWND+ AKD* MSS| CWND
(5a)
win-timeout{ CWND,w;) = w. (5b)
We generated 16 simulator traces for each true CCA with
durations ranging from 200 to 1000ms, RTTs between 10 and
100ms, and loss rates at 1 and 2%. Table 1 shows that it took

(4a)
(4b)

136

HotNets ’21, November 10-12, 2021, Virtual Event, United Kingdom

le5

Synth. internal "-i Synth. internal
4} ——- Trace internal | & | === Trace internal
R 2]
52 Visible i B Visible -
2 | 2
2 / | 2 n ,’ :
8, / | ;| 8] S | Y |
£ / | /| £ AN -
2 - [Pt Ml |
od U G o 0 £ U 16 O Y
T T T T T T T T T T
0 50 100 150 200 0 100 200 300 400 500
Time (ms) Time (ms)

Figure 3: The solid line shows the internal window
sizes produced by the ¢cCCA (win-ack : CWND + 2AKD;
win-timeout : CWND/3) compared to the trace’s, dashed
(win-ack : CWND + 2AKD; win-timeout : max(1, CWND/8))
for 2 traces, with 200ms duration on the left and 500ms on
the right. The dotted line shows the visible window, which is
identical for both CCAs.

CCA Synthesis time (s)

SE-A 0.94

SE-B 64.28

SE-C 83.13
Simplified Reno 782.94

Table 1: Synthesis times for each tested CCA. SE-C is shaded
because the synthesized cCCA’s win-timeout handler differs
from the ground truth.

from less than one second for SE-A to several minutes for
Reno to synthesize cCCAs the CCAs we considered.

SE-A. SE-A is the fastest because its event handler implemen-
tations are among the first few functions the solver considers:
CWND + AKD is the third win-ack function, and wj is the
second win-timeout. In this case, the SMT solver produces
the correct solution with the shortest trace, so the synthesis
cycle in Figure 1 executes only once.

SE-B. The synthesis of SE-B takes slightly over a minute. As
Figure 2 illustrated, the shortest trace (trace a) under-specifies
SE-B, so Mister880 needs to encode a second trace into the
SMT formula. The synthesizer produces the initial candidate
cCCA in 1 second, but takes another 1 minute to get a cCCA
(the correct one) for the encoding with 2 traces.

SE-C. The synthesis of SE-C takes over a minute as well.
Because CWND+2AKD has more DSL components than the
previous win-ack handlers, a few more functions need to be
considered before arriving at the correct one. To find a CCA
compatible with all traces for SE-C, Mister880 must encode
3 traces, with durations of 200, 400 and 500ms.

Surprisingly, the resulting synthesized win-ack is the
correct one, but win-timeout is incorrect: CWD/3, instead
of win-timeout (CWND, wy) = max(1, CWND/ 8). Digging
deeper, Figure 3 reveals the slight difference in the internal
window size when executing the traces. They are the same for
all but a few timesteps right after a timeout, where the trace
CCA’s window decreases faster. However, this difference in

HotNets ’21, November 10-12, 2021, Virtual Event, United Kingdom

the internal window size does not affect the visible window
size; the correct bytes are still sent in the correct timesteps.

Simplified Reno. Simplified Reno’s win-ack handler has
more operators than the previous CCAs. Because Mister880
considers event handlers in increasing order of number of DSL
components, it takes longer to arrive at the correct win-ack
handler. Even though a single trace is sufficient to arrive at
the correct event handlers, it takes 13 minutes to synthesize.

Due to the larger depth of Simplified Reno’s win-ack
handler, the advantage of arithmetic pruning techniques
becomes apparent. If we leave out the SMT constraints
enforcing the non-increasing property for win-ack handlers,
the synthesis time doubles. If we remove the unit agreement
constraints (that ensure the handlers’ output is in bytes)
Mister880 is no longer able to find a cCCA for Simplified
Reno - the synthesis times out after 4 hours.

4 Conclusion and Future Work

As deploying new CCAs becomes easier, it will be more
common to encounter unknown CCAs in the Internet.
To make analyzing these CCAs possible, we propose
counterfeiting, or reverse-engineering, them using program
synthesis. Our initial prototype, Mister880, shows that
reverse engineering is indeed feasible for an initial limited set
of simple CCAs. While this leaves us optimistic that reverse
engineering richer, truly unknown CCAs is possible, there
remain numerous technical challenges to resolve first. We
thus conclude with some open questions to the community.

Noisy Network Traces. While our simulator provides
ground truth traces, in a real network any tap or vantage point
will incur measurement noise. For example, the network could
drop a packet the true CCA sees before it reaches our vantage
point (or, conversely, it could drop an ACK our vantage point
observes before it reaches the CCA), or ACK compression
could obscure the inter-packet timings the CCA used.
Mister880’s looks for an exact match between the true
CCA'’s inputs/outputs and the cCCA’s, which is impossible
to find with noisy traces. Inspired by ongoing work in noisy
data and program synthesis [31], we propose that instead
of asking for an exact match, we can ask the SMT solver to
maximize an objective function measuring how closely a
cCCA matches a given trace. For instance, we can consider
the number of time steps where cCCA produces the same
output as observed in the trace. This turns generating a cCCA
from a decision problem into an optimization problem.
Solving an SMT optimization problem is more compu-
tationally challenging than solving a decision problem: a
single optimization problem can involve multiple solver calls.
We believe our system design can address this additional
scalability challenge because of our decomposition of event
handlers: we can separately enumerate event handlers that

137

Margarida Ferreira et al.

satisfy a given similarity threshold with the trace before con-
sidering the following event handler. Similarly, the simulation
validation step could return a score indicating how close the
cCCA is to the trace rather than a boolean success value.

More complex CCAs. Our proof-of-concept DSL only
encodes the minimum number of operators needed to express
Simplified Reno; more complex CCAs require more operators.
For instance, slow-start requires conditionals, Cubic requires
exponentiation, and BBR requires pacing rate enforcement.
Extending our DSL to support these features will be
straightforward; we simply need to support additional event
handlers, state variables, and congestion signals. Importantly,
while the DSL will need some additional operators, the set of
operators is finite since CCAs have regular structure [14, 43].

However, some CCA proposals may break some of
the assumptions in Mister880. For example, rate-based
algorithms are not technically CWND based, and hence
break out of Mister880’s window-based model. As we saw
in §3.3, different CCAs can still produce the same external
behavior. Synthesis may thus help uncover properties about
known algorithms; e.g. recent results have showed that
BBRv1 (which was initially promoted as rate-based) typically
operates in a windowed fashion [56], so a window-based
c¢CCA would capture its behavior.

More challenging are machine learning based CCAs [21,49].
It is unlikely that our DSL can ever incorporate enough
expressivity to synthesize CCAs which use, e.g., deep
reinforcement learning (although it is feasible to express
some learning-based approaches, such as the decision trees
used in Remy [58]). Here, we do not hope to generate an
exact-match cCCA to correspond to the true CCA, but we
do curiously ask: is it possible to find cCCAs that use simpler
functions and yet have similar properties to complex CCAs?

Furthermore, it would be a surprising (but interesting)
result if we are able to generate new, simple algorithms with
Mister880’s successor which exhibit similar behavior to more
complex, ML-based approaches. Here, we expect that our
solution for noise will help us: rather than attempt to search
for a cCCA that exactly replicates the true ML-based CCA’s
behavior, we will search for the most similar cCCA we can
generate with our DSL. Thus, we end with this thought:
perhaps the most valuable lessons from reverse-engineering
CCAs will lie not in the algorithms we counterfeit identically,
but in those we counterfeit imperfectly, but more simply.

Acknowledgments

This work was supported by NSF Awards No. CCF-
1762363 and CNS-1850384, a VMware Systems Research
Award, a CMU Portugal Dual Degree PhD scholarship,
project ANI 045917 funded by FEDER and FCT, and project
UIDB/50021/2020 funded by FCT. We also thank Carlos
Xavier for sleeping well the night of the paper deadline.

Counterfeiting Congestion Control Algorithms

References

[1] A. Akella, S. Seshan, R. Karp, S. Shenker, and C. Papadimitriou. 2002.
Selfish Behavior and Stability of the Internet: A Game-Theoretic
Analysis of TCP. In SIGCOMM. 1

Rajeev Alur, Rishabh Singh, Dana Fisman, and Armando Solar-Lezama.
2018. Search-Based Program Synthesis. CACM 61, 12 (2018). 1,3.1
Venkat Arun, Mina Arashloo, Ahmed Saeed, Mohammad Alizadeh,
and Hari Balakrishnan. 2021. Formally Verifying Congestion Control
Performance. In SIGCOMM. 1,2

Venkat Arun and Hari Balakrishnan. 2018. Copa: Congestion Control
Combining Objective Optimization with Window Adjustments. In
NSDI 1

Rukshani Athapathu, Ranysha Ware, Aditya Abraham Philip, Srinivasan
Seshan, and Justine Sherry. 2020. Prudentia: Measuring Congestion
Control Harm on the Internet. In SSIGCOMM N2Women Workshop. 1,2.1
Hamsa Balakrishnan, Nandita Dukkipati, Nick McKeown, and Claire J
Tomlin. 2007. Stability Analysis of Explicit Congestion Control
Protocols. IEEE Communications Letters 11, 10 (2007). 1

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian
Nowozin, and Daniel Tarlow. 2017. DeepCoder: Learning to Write
Programs. In ICLR (Poster). 1,3.1

Nikolaj Bjerner, Nikolai Tillmann, and Andrei Voronkov. 2009. Path
Feasibility Analysis for String-Manipulating Programs. In TACAS. 3.2
Neal Cardwell. 2020. BBR Update. https://datatracker.ietf.org/meeting/
109/materials/slides-109-iccrg-update-on-bbrv2-00. (2020). 1,2

Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. 2016. BBR: Congestion-Based Congestion
Control. ACM Queue 14, 5 (Oct. 2016). 1, 3.3

Haoxian Chen, Anduo Wang, and Boon Thau Loo.
Towards Example-Guided Network Synthesis. In
https://doi.org/10.1145/3232565.3234462 3.1

Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. 2020.
Multi-Modal Synthesis of Regular Expressions. In PLDI. 3.1

D-M. Chiu and R. Jain. 1989. Analysis of the Increase and Decrease
Algorithms for Congestion Avoidance in Computer Networks.
Computer Networks and ISDN Systems 17 (1989). 1

Christian Benvenuti. 2009. Understanding Linux Network Internals.
O’Reilly Media. 4
Stephen A. Cook. 1971.
Procedures. In STOC. 3.2
[16] Jonathan Corbet. 2005. Pluggable Congestion Avoidance Modules.
https://lwn.net/Articles/128681/. (2005). 3.2

Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman,
David Maulsby, Brad A. Myers, and Alan Turransky (Eds.). 1993. Watch
What I Do: Programming by Demonstration. MIT Press. 3.1

Leonardo Mendonca de Moura and Nikolaj Bjerner. 2008. Z3: An
Efficient SMT Solver. In TACAS. 3.4

A. Dhamdhere, D. Clark, A. Gamero-Garrido, M. Luckie, R. Mok, G.
Akiwate, K. Gogia, V. Bajpai, A. Snoeren, and k. claffy. 2018. Inferring
Persistent Interdomain Congestion. In SIGCOMM. 2.1

Mo Dong, Qingxi Li, Doron Zarchy, Philip Brighten Godfrey, and
Michael Schapira. 2015. PCC: Re-architecting Congestion Control for
Consistent High Performance. In NSDI 2

Mo Dong, Tong Meng, D Zarchy, E Arslan, Y Gilad, B Godfrey, and M
Schapira. 2018. PCC Vivace: Online-Learning Congestion Control. In
NSDI 2,4

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program
Synthesis Using Conflict-Driven Learning. In PLDI. 1, 3.1

Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat
Chaudhuri. 2017. Component-Based Synthesis of Table Consolidation
and Transformation Tasks From Examples. In PLDL 3.1

—
Do
—

2018.
APNet.

(12]

(13]

(14]

[15] The Complexity of Theorem-Proving

(17]

(18]

(19]

[20]

[21]

[22]

(23]

138

HotNets ’21, November 10-12, 2021, Virtual Event, United Kingdom

[24] JohnK.Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data
Structure Transformations From Input-Output Examples. In PLDI. 1, 3.1

[25] Sally Floyd. 2003. HighSpeed TCP for Large Congestion Windows.
https://www.ietf.org/rfc/rfc3649.txt. (2003). 1

[26] S.Floyd, M. Handley, J. Padhye, and J. Widmer. 2000. Equation-Based
Congestion Control for Unicast Applications. In SSIGCOMM. 1,2

[27] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. 2017.
Dapper: Data Plane Performance Diagnosis of TCP. In SOSR.
https://doi.org/10.1145/3050220.3050228 2.1

[28] Sishuai Gong, Usama Naseer, and Theophilus A Benson. 2020.
Inspector Gadget: A Framework for Inferring TCP Congestion Control
Algorithms and Protocol Configurations. In IFIP TMA. 2.1

[29] Sumit Gulwani, William R. Harris, and Rishabh Singh. 2012. Spreadsheet

Data Manipulation Using Examples. CACM 55, 8 (2012). 1, 3.1

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program

Synthesis. Foundations and Trends in Programming Languages 4 (2017).

https://doi.org/10.1561/2500000010 1,3

Shivam Handa and Martin C. Rinard. 2020.

Synthesis over Noisy Data. In ESEC/FSE. 4

Mario Hock, Roland Bless, and Martina Zitterbart. 2017. Experimental

Evaluation of BBR Congestion Control. In ICNP. 1

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010.

Oracle-Guided Component-Based Program Synthesis. In ICSE. 1, 3.1

Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Pra-

teek Jain, and Sumit Gulwani. 2018. Neural-Guided Deductive Search

for Real-Time Program Synthesis from Examples. In ICLR (Poster). 3.1

Muhammad Khan, Yasir Zaki, Shiva Iyer, Talal Ahamd, Thomas

Poetsch, Jay Chen, Anirudh Sivaraman, and Lakshmi Subramanian.

2021. The Case for Model-Driven Interpretability of Delay-Based

Congestion Control Protocols. SSIGCOMM CCR 51,1 (2021). 1

[36] Leonard Kleinrock. 2018. Internet Congestion Control Using the Power
Metric: Keep the Pipe Just Full, But No Fuller. Ad Hoc Networks (2018). 1

[37] T. Lan, D. Kao, M. Chiang, and A. Sabharwal. 2010. An Axiomatic
Theory of Fairness. In INFOCOM. 1

[38] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles

Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan

Iyengar, Jeff Bailey, Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik

Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton, Victor Vasiliev,

Wan-Teh Chang, and Zhongyi Shi. 2017. The QUIC Transport Protocol:

Design and Internet-Scale Deployment. In SSIGCOMM. 1

Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. 2018. Accel-

erating Search-Based Program Synthesis Using Learned Probabilistic

Models. In PLDI. 3.1

St. Clair McKelway. 1949. Old Eight-Eighty. The New Yorker (Aug.

1949). 2

Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi,

and Ben Leong. 2019. The Great Internet TCP Congestion Control

Census. Proc. ACM Meas. Anal. Comput. Syst. 3,3 (2019). 2.1

Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem,

Hassan Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David

Wetherall, and David Zats. 2015. TIMELY: RTT-based Congestion

Control for the Datacenter. In SIGCOMM. 3.3

Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal,

Srinivas Narayana, Radhika Mittal, Mohammad Alizadeh, and Hari

Balakrishnan. 2018. Restructuring Endpoint Congestion Control. In

SIGCOMM. 1,3.2,4

[44] Jitendra Pahdye and Sally Floyd. [n. d.]. On Inferring TCP Behavior.
In SIGCOMM. 2.1

[45] Jan Riith, Ike Kunze, and Oliver Hohlfeld. 2019. An Empirical View
on Content Provider Fairness (IFIP TMA). 1, 2.1

[46] Constantin Sander, Jan Riith, Oliver Hohlfeld, and Klaus Wehrle.
2019. DeePCCI: Deep Learning-Based Passive Congestion Control

[30]

[31] Inductive Program

[32]
[33]

[34]

[35]

[39]

[40]

[41]

[42]

[43]

https://datatracker.ietf.org/meeting/109/materials/slides-109-iccrg-update-on-bbrv2-00
https://datatracker.ietf.org/meeting/109/materials/slides-109-iccrg-update-on-bbrv2-00
https://doi.org/10.1145/3232565.3234462
https://lwn.net/Articles/128681/
https://www.ietf.org/rfc/rfc3649.txt
https://doi.org/10.1145/3050220.3050228
https://doi.org/10.1561/2500000010

HotNets '21, November 10-12, 2021, Virtual Event, United Kingdom

[47

[48

[49

[50

(51

[52
(53

(54

—

—_ =

=

—

[e

Identification. In NetAlL 2.1

Dominik Scholz, Benedikt Jaeger, Lukas Schwaighofer, Daniel Raumer,
Fabien Geyer, and Georg Carle. 2018. Towards a Deeper Understanding
of TCP BBR Congestion Control. In IFIP Networking. 2

Lei Shi, Yahui Li, Boon Thau Loo, and Rajeev Alur. 2021. Network
Traffic Classification by Program Synthesis. In TACAS. 3.1

Viswanath Sivakumar, Tim Rocktischel, Alexander H. Miller, Heinrich
Kiittler, Nantas Nardelli, Mike Rabbat, Joelle Pineau, and Sebastian
Riedel. 2019. MVFST-RL: An Asynchronous RL Framework for Con-
gestion Control with Delayed Actions. http://arxiv.org/abs/1910.04054.
(2019). 4

Armando Solar-Lezama, Rodric M. Rabbah, Rastislav Bodik, and
Kemal Ebcioglu. 2005. Programming by Sketching for Bit-Streaming
Programs.In PLDI. 1,3.1

Bruce Spang, Brady Walsh, Te-Yuan Huang, Tom Rusnock, Joe
Lawrence, and Nick McKeown. 2019. Buffer Sizing and Video QoE
Measurements at Netflix. In Workshop on Buffer Sizing. 1

R. Srikant. 2004. The Mathematics of Internet Congestion Control.
Birkhauser. 1

Belma Turkovic and Fernando Kuipers. 2020. P4air: Increasing Fairness
among Competing Congestion Control Algorithms. In ICNP. 2.1
Belma Turkovic, Fernando A. Kuipers, and Steve Uhlig. 2019. Fifty
Shades of Congestion Control: A Performance and Interactions

139

[55]

[56]

[57]

[58]
[59]
[60]
[61]

[62]

Margarida Ferreira et al.

Evaluation. https://arxiv.org/abs/1903.03852. (2019). 2

Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine
Sherry. 2019. Beyond Jain’s Fairness Index: Setting the Bar for the
Deployment of Congestion Control Algorithms. In HotNets. 1
Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine
Sherry. 2019. Modeling BBR’s Interactions with Loss-Based Congestion
Control. In IMC ’19. https://doi.org/10.1145/3355369.3355604 1, 2, 4
D.X. Wei, C. Jin, S.H. Low, and S. Hegde. 2006. FAST TCP: Motiva-
tion, Architecture, Algorithms, Performance. IEEE/ACM Trans. on
Networking 14, 6 (2006), 1246-1259. 1,1

Keith Winstein and Hari Balakrishnan. 2013. TCP ex Machina:
Computer-Generated Congestion Control. In SIGCOMM. 4

Yifei Yuan, Dong Lin, Rajeev Alur, and Boon Thau Loo. 2015.
Scenario-Based Programming for SDN Policies. In CoNEXT. 3.1,3
Doron Zarchy, Radhika Mittal, Michael Schapira, and Scott Shenker.
2019. Axiomatizing Congestion Control. SIGMETRICS (2019). 1, 2
Yin Zhang, Lee Breslau, Vern Paxson, and Scott Shenker. 2002. On the
Characteristics and Origins of Internet Flow Rates. In SIGCOMM. 2.1
Yibo Zhu, Monia Ghobadi, Vishal Misra, and Jitendra Padhye. 2016.
ECN or Delay: Lessons Learnt from Analysis of DCQCN and TIMELY.
In CoNEXT. 2

http://arxiv.org/abs/1910.04054
https://arxiv.org/abs/1903.03852
https://doi.org/10.1145/3355369.3355604

	Abstract
	1 Introduction
	2 Motivation and Approach
	2.1 Analyzing Closed-Source CCAs

	3 A Proof-of-Concept: Mister880
	3.1 Program Synthesis Basics
	3.2 Challenges and Key Ideas
	3.3 Design Sketch
	3.4 Testing our Synthesis Approach

	4 Conclusion and Future Work
	References

