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Malicious software (malware) is a major cyber threat that has to be tackled with Machine Learning (ML) tech-
niques because millions of new malware examples are injected into cyberspace on a daily basis. However, ML
is vulnerable to attacks known as adversarial examples. In this article, we survey and systematize the field of
Adversarial Malware Detection (AMD) through the lens of a unified conceptual framework of assumptions,
attacks, defenses, and security properties. This not only leads us to map attacks and defenses to partial or-
der structures, but also allows us to clearly describe the attack-defense arms race in the AMD context. We
draw a number of insights, including: knowing the defender’s feature set is critical to the success of transfer
attacks; the effectiveness of practical evasion attacks largely depends on the attacker’s freedom in conduct-
ing manipulations in the problem space; knowing the attacker’s manipulation set is critical to the defender’s
success; and the effectiveness of adversarial training depends on the defender’s capability in identifying the
most powerful attack. We also discuss a number of future research directions.
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1 INTRODUCTION

Malicious software (malware) is a big cyber threat and has received a due amount of attention.
For instance, Kaspersky reports that 21,643,946 unique malicious files were detected in the year
2018, 24,610,126 in 2019, and 33,412,568 in 2020 [47, 72]. A popular defense against malware is to
use signature-based detectors [44], where a signature is often extracted by malware analysts from
known malware examples. This approach has two drawbacks: signatures are tedious to extract
and can be evaded [34] by a range of techniques (e.g., encryption, repacking, and polymorphism
[7, 21, 63, 86, 106, 111, 139]). This incompetence has motivated the use of Machine Learning

(ML) based malware detectors, which can be automated to some degree and can possibly detect
new malware examples (via model generalization or knowledge adaptation [8, 11, 43, 45, 56, 57,
64, 66, 84, 121, 137, 138, 143]). More recently, Deep Learning (DL) has been used for malware
detection (see, e.g., [99, 103, 125]).

While promising, ML-based malware detectors are vulnerable to attacks known as adversarial

examples [16, 60, 114]. There are two kinds of attacks. One is evasion attack, where the attacker
perturbs test examples to adversarial examples to evade malware detectors [2, 16, 39, 53, 57, 91,
120, 127]. The other is poisoning attack, where the attacker manipulates the training dataset for
learning malware detectors [30, 40, 118]. These attacks usher in the new field of Adversarial

Malware Detection (AMD) [16, 27, 36, 39, 40, 53, 114, 118, 127, 133, 134].
The state-of-the-art in AMD is that there are some specific results scattered in the literature

but there is no systematic understanding. This is true despite that there have been attempts at
systematizing the related field of Adversarial Machine Learning (AML) [9, 26, 60, 140], which
however cannot be automatically translated to AMD. This is so because malware detection has
three unique characteristics which are not exhibited by the other application domains (e.g., image
or audio processing). (i) There are no common, standard feature definitions because both attackers
and defenders can define their own features to represent computer files. As a consequence, attack-
ers can leverage this “freedom” in feature definition to craft adversarial examples. (ii) Malware
features are often discrete rather than continuous and program files are often highly structured
with multiple modalities. This means that arbitrarily perturbing malware files or their feature rep-
resentations might make the perturbed files no more executable. This also means that the discrete
domain makes perturbation a non-differentiable and non-convex task. (iii) Any meaningful pertur-
bation to a malware example or its feature representation must preserve its malicious functionality.
For example, the Android Package Kit (APK) requires that the used permissions are publicized
in the AndroidManifest.xml, meaning that removing permissions in this manifest file would incur
a runtime error. The preceding (ii) and (iii) make both the attacker’s and defender’s tasks more
challenging than their counterparts where small perturbations are not noticeable (e.g., images).
Our Contributions. We propose a conceptual framework for systematizing the AMD field
through the lens of assumptions, attacks, defenses, and security properties. In specifying these,
we seek rigorous definitions whenever possible, while noting that these definitions have been
scattered in the literature. Rigorous definitions are important because they can serve as a
common reference for future studies. The framework allows us to map the known attacks
and defenses into some partial order structures and systematize the AMD attack-defense arms
race.

We make a number of observations, including: (i) the indiscriminate attack that treats malicious
examples as equally important has been extensively investigated, but targeted and availability
attacks are much less investigated; (ii) the evasion attack is much more extensively studied than
the poisoning attack; (iii) there is no silver-bullet defense against evasion and poisoning attacks;
(iv) sanitizing examples (SE) is effective against black-box and gray-box attacks, but not white-
box attacks; (v) AMD security properties have been evaluated empirically rather than rigorously;
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(vi) there is no theoretical evidence to support that the effectiveness of defense techniques on the
training set can generalize to other adversarial examples.

We draw a number of insights, including: (i) knowing defender’s feature set is critical to the suc-
cess of transfer attacks, highlighting the importance of keeping defender’s feature set secret (e.g.,
by randomizing defender’s feature set); (ii) the effectiveness of practical evasion attacks largely
depends on the attacker’s degree of freedom in conducting manipulations in the problem space
(i.e., a small degree of freedom means harder to succeed); (iii) effective defenses often require the
defender to know the attacker’s manipulation set, explaining from one perspective why it is hard
to design effective defenses; (iv) effectiveness of adversarial training (AT) depends on the de-
fender’s capability in identifying the most powerful attack.

Finally, we discuss a number of future research directions, which hopefully will inspire and
encourage many researchers to explore them.

Related Work. The closely related prior work is Maiorca et al. [81], which surveys previous stud-
ies in adversarial malicious PDF document detection. In contrast, we consider the broader context
of AMD and propose novel partial orders to accommodate AMD assumptions, attacks, defenses,
and properties. There are loosely-related prior studies, which survey prior AML studies (but not
focusing on AMD), including [9, 10, 17, 26, 79, 94, 105, 140]. For example, Yuan et al. [140] survey
attack methods for generating adversarial examples, while briefly discussing evasion attacks in the
AMD context; Barreno et al. [9, 10] propose a taxonomy of AML attacks (causative vs. exploratory
attacks, integrity vs. availability attacks, and targeted vs. indiscriminate attacks); Biggio et al. [17]
propose a defense framework for protecting Support Vector Machines (SVMs) from evasion at-
tacks, poisoning attacks, and privacy violations; Papernot et al. [94] systematize AML security and
privacy with emphasis on demonstrating the tradeoff between detection accuracy and robustness.

Paper Outline. Section 2 describes our survey and systematization methodology and framework.
Section 3 applies our framework to systematize the literature AMD studies. Section 4 discusses
future research directions. Section 5 concludes the article.

2 SURVEY AND SYSTEMATIZATION METHODOLOGY

Terminology, Scope, and Notations. In the AMD context, a defender I aims at using ML to
detect or classify computer files as benign or malicious; i.e., we focus on binary classification. An
attacker A attempts to make malicious files evade I’s detection by leveraging adversarial files

(interchangeably, adversarial examples). Adversarial malware examples are often generated by per-
turbing or manipulating malware examples, explaining why we will use the two terms, perturba-
tion and manipulation, interchangeably. Adversarial attacks can be waged in the training phase
of a ML model (a.k.a., poisoning attack) or in the test phase (a.k.a., evasion attack). It is worth
mentioning that the privacy violation attack [60] is waged in addition to the preceding two attacks
becauseA can always probe I’s detectors. A file, benign and malicious alike, is adversarial if it is
intentionally crafted to (help malicious files) evade I’s detection, and non-adversarial otherwise.
We focus on I using supervised learning to detect malicious files, which may be adversarial or
non-adversarial because they co-exist in the real world with no self-identification. This means
that, we do not consider the large body of malware detection literature that does not cope with
AMD, which has been addressed elsewhere (e.g., [101]). Table 1 summarizes the main notations
used in the article.

2.1 Brief Review on ML-based Malware Detection

Let Z be the example space of benign/malicious adversarial/non-adversarial files. Let Y = {+,−}
or Y = {1, 0} be the label space of binary classification, where +/1 (−/0) means a file is
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Table 1. Main Notations Used in the Article

Notation Meaning
R (R+) the set of (positive) real numbers
A,I attacker and defender (treated as algorithms)
P the probability function
z, z ′ ∈ Z Z is example space; z ′ is obtained by perturbing z
S defender I’s feature set for representing files
x, x′ ∈ X X = Rd is d-dimensional feature space; x, x′ ∈ X are, respectively, feature

representations of z, z ′ ∈ Z
Y , y Y is the label space of binary classification, Y = {+/1,−/0}; y ∈ Y
D = Z ×Y the file-label (i.e., example-label) space
Dtr ain ⊂ D,n the training set in file-label space; n = |Dtr ain |
Dtest the test set in file-label space
Dpoison ,D

′
poison D ′poison is set of adversarial file-label pairs obtained by perturbing non-

adversarial files in Dpoison ⊂ D
O (z, z ′) O (z, z ′) : Z × Z → {true, false} is an oracle telling if two files have the

same functionality or not
δ a manipulation for perturbing files with preserving their functionalities
M,ZM ⊆ Z M is manipulation set in the problem space; ZM is set of adversarial files

generated usingM
M, XM ⊆ X M is feature manipulation set; XM is set of adversarial feature vectors gener-

ated using M

Γ(z, z ′) Γ(z, z ′) : Z ×Z → R+ measures the degree of manipulation for perturbing
z ∈ Z into z ′ ∈ Z

C (x, x′) C (x, x′) : X×X → R+ is the function measuring the cost incurred by chang-
ing feature vector x to x

′

δz ∈ M δz is a set of manipulations of z w.r.t. z ′

δx ∈ M δx = x
′ − x is a perturbation vector of x w.r.t. x

′

ϕ : Z → X feature extraction function; x← ϕ (z), x
′ ← ϕ (z ′)

φ, f φ : X → R is classification function; f : Z → R is classifier f = φ (ϕ (·)); by
abusing notation a little bit, we also use “+← f (z)” to mean that f predicts
z as malicious when f (z) ≥ τ for a threshold τ

Fθ : X → R ML algorithm with parameters θ
L : R × Y → R loss function measuring prediction error of Fθ

EL,WR,AT defense techniques: Ensemble Learning, Weight Regularization, AT
VL,RF, IT,CD, SE defense techniques: Verifiable Learning, Robust Feature, Input Transforma-

tion, Classifier ranDomization, SE
BE,OE,BP,OP attack tactics: basic and optimal evasion; basic and optimal poisoning
GO,SF,MI attack techniques: Gradient-based Optimization, Sensitive Features, MImicry
TR,HS,GM,MS attack techniques: TRansferability, Heuristic Search, Generative Model, Mix-

ture Strategy
A1, . . . ,A5 the 5 attributes under I’s control; they are known toA at respective degrees

a1, . . . ,a5

A6, . . . ,A9 the 4 attributes underA’s control; they are known to I at respective degree
a6, . . . ,a9

RR,CR,DR, TR security properties: Representation Robustness, Classification Robustness,
Detection Robustness, Training Robustness
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Fig. 1. Illustration of ML-based malware detector.

malicious (benign). Let D = Z × Y be the file-label (example-label) space. For training and eval-
uating a classifier in the absence of adversarial files, I is given a set D ⊂ D of non-adversarial
benign/malicious files as well as their ground-truth labels. I splits D into three disjoint sets: a
training set Dtr ain = {(zi ,yi )}ni=1, a validation set for model selection, and a test set for evaluation.
Each file zi ∈ Z is characterized by a set S of features and represented by a numerical vector
xi = (xi,1, . . . ,xi,d ) in the d-dimensional feature space X = Rd , which accommodates both contin-
uous and discrete feature representations [1, 55, 56, 69, 113, 121]. The process for obtaining feature
representation xi of zi ∈ Z is called feature extraction, denoted by a function ϕ : Z → X with
xi ← ϕ (S, zi ). Because ϕ can be hand-crafted (denoted by ϕc ), automatically learned (denoted by
ϕa ), or a hybrid of both [13], we unify them into ϕ such that ϕ (S, z) = ϕa (ϕc (S, z)); when only
manual (automatic) feature extraction is involved, we can set ϕa (ϕc ) as the identity map. There
are two kinds of features: static features are extracted via static analysis (e.g., strings, API calls
[4, 129]); dynamic features are extracted via dynamic analysis (e.g., instructions, registry activities
[42, 64]).

As highlighted in Figure 1, I uses {(zi ,yi )}ni=1 to learn a malware detector or classifier f : Z →
[0, 1], where f (z) = φ (ϕ (S, z)) is composed of feature extraction function ϕ : Z → X and classifi-
cation function φ : X → [0, 1]. Note that f (z) ∈ [0, 1], namely φ (x) ∈ [0, 1] with x ← ϕ (S, z), can
be interpreted as the probability that z is malicious (while noting that calibration may be needed
[90]). For a given threshold τ ∈ [0, 1], we further say (by slightly abusing notations) z is labeled by
f as +, or + ← f (z), if f (z) ≥ τ , and labeled as − or − ← f (z) otherwise. In practice, f is often
specified by a learning algorithm F with learnable parameter θ (e.g., weights) and a hand-crafted
feature extractionϕc ; then, θ is tuned to minimize the empirical risk associated with a loss function
L : [0, 1] × Y → R measuring the prediction error of Fθ [124] (e.g., cross-entropy [49]), namely

min
θ
L (θ ,Dtr ain ) = min

θ

1

n

∑
(zi ,yi )∈Dtr ain

(L(Fθ (ϕc (S, zi )),yi )). (1)

Example 1 (The Drebin Malware Aetector). Drebin is an Android malware detector trained from
static features [8]. Table 2 summarizes Drebin’s feature set, which includes four subsets of fea-
tures S1, S2, S3, S4 extracted from the AndroidManifest.xml and another four subsets of features
S5, S6, S7, S8 extracted from the disassembled DEX code files (recalling that DEX code is compiled
from a program written in some language and can be understood by the Android Runtime). Specif-
ically, S1 contains features related to the access of an APK to smartphone hardware (e.g., camera,
touchscreen, or GPS module); S2 contains features related to APK’s requested permissions listed in
the manifest prior to installation; S3 contains features related to application components (e.g., activ-

ities, service, receivers, and providers.); S4 contains features related to APK’s communications with
the other APKs; S5 contains features related to critical system API calls, which cannot run with-
out appropriate permissions or the root privilege; S6 contains features corresponding to the used
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Table 2. Drebin Features

Feature set

Manifest

S1 Hardware components
S2 Requested permissions
S3 App components
S4 Filtered intents

Dexcode

S5 Restricted API calls
S6 Used permissions
S7 Suspicious API calls
S8 Network addresses

Fig. 2. MalConv architecture [99].

permissions; S7 contains features related to API calls that can access sensitive data or resources
in a smartphone; and S8 contains features related to IP addresses, hostnames and URLs found in
the disassembled codes. The feature representation is binary, meaning ϕ = ϕc : Z 	→ {0, 1}d with
|S | = d and x = (x1, . . . ,xd ), where xi = 1 if the corresponding feature is present in the APK z and
xi = 0 otherwise. A file z in the feature space looks like the following:

x = ϕ (z) →

������������
�

· · ·
0
1
· · ·
1
0
· · ·

������������
�

· · · }
S2

permission::SEND_SMS

permission::READ_CONTACTS

· · · }
S5

api_call::getDeviceID

api_call::setWifiEnabled

· · ·

Drebin uses a linear SVM to learn classifiers.

Example 2 (The MalConv Malware Detector). MalConv [99] is Convolutional Neural Network

(CNN)-based Windows Portable Executable (PE) malware detector learned from raw binary
programs (i.e., end-to-end detection) [67]. Figure 2 depicts its architecture. The sequence of binary
code is transformed into byte values (between 0 to 255) with the maximum length bounded by
Nmax (e.g., Nmax = 221 bytes or 2MB). Each byte is further mapped into a real-valued vector
using the embedding [35]. The CNN layer and pooling layer learn abstract representations. The
embedding, CNN and pooling layers belong to feature extraction ϕa , and the fully-connected and
softmax layers belong to the classification operation φ.

2.2 Framework

We systematize AMD studies through the lens of four aspects: (i) the assumptions that are made;
(ii) the attack or threat model in terms of attacker A’s objective and A’s input, with the latter
including A’s information about the defender I and A’s own; (iii) the defense in terms of I’s
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objective and I’s input, with the latter including I’s information about A and I’s own; (iv) the
security properties that are at stake. These four aspects are, respectively, elaborated below.

2.2.1 Systematizing Assumptions. Five assumptions have been made in the AMD literature. As-
sumption 1 below says that the data samples in D are Independent and Identically Distributed

(IID), which is a strong assumption and researchers have started to weaken it [52, 110].

Assumption 1 (IID Assumption; See, e.g., [107]). Computer files in training data and testing

data are independently drawn from the same distribution.

Assumption 2 below is adapted from AML context, where humans can serve as an oracle O for
determining whether two images are the same [126]. In the AMD context, O can be instantiated as
(or approximated by) malware analysts [2, 27, 65, 114] or automated tools (e.g., Sandbox [36, 134]),
with the latter often using heuristic rules produced by malware analysts (e.g., YARA [3]).

Assumption 2 (Oracle Assumption; Adapted from [126]). There is an oracle O : Z × Z →
{true, false} that tells if two files z, z ′ ∈ Z have the same functionality or not; true ← O (z, z ′) if

and only if z and z ′ have the same functionality.

Assumption 3 below says that there is a way to measure the degree of manipulations by which
one file is transformed to another.

Assumption 3 (Measurability Assumption [36, 68]). There is a function Γ(z, z ′) : Z×Z → R+
that measures the degree of manipulations according to which a file z ′ ∈ Z can be derived from the

file z ∈ Z.

Since Assumption 3 is often difficult to validate, Γ(z, z ′) may be replaced by a function that
quantifies the degree of manipulation that can turn feature representation x into x

′, where x =

ϕ (S, z) and x
′ = ϕ (S, z ′). This leads to:

Assumption 4 (Smoothness Assumption [13]). There is a functionC (x, x′) : X ×X → R+ such

that C (ϕ (S, z),ϕ (S, z ′)) ≈ 0 when (Γ(z, z ′) ≈ 0) ∧ (true← O (z, z ′)).

Assumption 5 below says that the inverse of feature extraction, ϕ−1, is solvable so that a per-
turbed representation x

′ can be mapped back to a legitimate file.

Assumption 5 (Invertibility Assumption [76]). Feature extraction ϕ is invertible, meaning that

given x
′, the function ϕ−1 : X → Z produces z ′ = ϕ−1 (x′).

Recall that the feature extraction function ϕ may be composed of a hand-crafted ϕc and an
automated ϕa , where ϕc may be neither differentiable nor invertible [16, 97]. This means x

′ may
not be mapped to a legitimate file. Researchers tend to relax the assumption by overlooking the
interdependent features [76, 114], while suffering from the side-effect x

′ � ϕ (ϕ−1 (x′)) [97, 114].

2.2.2 Systematizing Attacks. We systematize attacks from two perspectives: attacker’s objective

(i.e., what the attacker attempts to accomplish) and attacker’s input (i.e., what leverages the attacker
can use). Whenever possible, we seek rigorous definitions to specify the attacker’s input, while
noting that these definitions have been scattered in the literature. We believe this specification is
important because it can serve as a common reference for future studies. To demonstrate this, we
discuss how to apply it to formulate a partial-order structure for comparing attacks.

Attacker’s Objective. There are three kinds of objectives: (i) Indiscriminate, meaningA attempts
to cause as many false-negatives as possible [6, 28, 53, 100, 127, 136]; (ii) Targeted, meaning A
attempts to cause specific false-negatives (i.e., making certain malicious files evade the detection
[40, 118]); (iii) Availability, meaningA attempts to frustrate defender I by rendering I’s classifier
f unusable (e.g., causing substantially high false-positives [20, 30, 40, 87, 98]).
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Table 3. Attributes for Specifying A’s and I’s Input

Attributes Attacker A’s input Defender I’s input

Attributes under I’s control but may be known to A to some extent
A1: Training set Dtr ain a1 ∈ [0, 1] 1
A2: Defense technique a2 ∈ {0, 1} 1
A3: Feature set S a3 ∈ [0, 1] 1
A4: Learning algorithm Fθ a4 ∈ [0, 1] 1
A5: Response a5 ∈ {0, 1} 1

Attributes under A’s control but may be known to I to some extent
A6: Manipulation setM 1 a6 ∈ [0, 1]
A7: Attack tactic 1 a7 ∈ {0, 1}
A8: Attack technique 1 a8 ∈ {0, 1}
A9: Adversarial examples 1 a9 ∈ [0, 1]

Attacker’s Input. Table 3 highlights the attributes we define to describeA’s input, including: five
attributes A1, . . . ,A5 that are under I’s control (indicated by 1) but may be known to A at some
extent a1, . . . ,a5, respectively; and four attributesA6, . . . ,A9 that are underA’s control (indicated
by 1). These attributes are elaborated below.

(i)A1: it describes I’s training set Dtr ain for learning classifier f . We use a1 ∈ [0, 1] to represent
the extent at which Dtr ain is known to A. Let D̂tr ain be the training files that are known to A.
Then, a1 = |D̂tr ain ∩ Dtr ain |/|Dtr ain |.

(ii) A2: it describes I’s techniques, which can be Ensemble Learning (EL), Weight Regu-

larization (WR), AT, Verifiable Learning (VL), Robust Feature (RF), Input Transformation

(IT), Classifier ranDomization (CD), and SE. Let A2 ∈ {EL, WR, AT, VL, RF, IT, CD, SE} and
a2 ∈ {0, 1} such that a2 = 0 means A does not know I’s techniques and a2 = 1 means A knows
I’s technique. The techniques are defined as follows. Definition 1 says that I constructs multiple
classifiers and uses them collectively in malware detection.

Definition 1 (Ensemble Learning or EL [142]). Let H be I’s classifier space. Given K classifiers
{ fi }Ki=1 where fi ∈ H and fi : Z → [0, 1], let fi be assigned with weight ωi with

∑K
i=1 ωi = 1 and

ωi ≥ 0. Then, f =
∑K

i=1 ωi fi .

Definition 2 says that I uses regularization (e.g., �2 regularization [89] or dropout [112]) to
decrease model’s sensitivity to adversarial examples.

Definition 2 (Weight Regularization or WR [49]). Given a regularization item Ω (e.g., constraints
imposed on the learnable parameters), the empirical risk is min

θ
[L (θ ,Dtr ain ) + Ω(θ )], where L

is defined in Equation (1).

Definition 3 says that I proactively makes its classifier f perceive some information about
adversarial files. That is, I augments the training set by incorporating adversarial examples that
may be produced by I, A, or both.

Definition 3 (Adversarial Training or AT [53]). Let D ′ denote a set of adversarial
file-label pairs. Then, I tunes model parameters by minimizing the empirical risk:
min

θ

[L (θ ,Dtr ain ) + βL (θ ,D ′)
]
, where β ≥ 0 denotes a balance factor.

Definition 4 says that I intentionally over-estimates the error incurred by A’s manipulations
and then minimizes it.
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Definition 4 (Verifiable Learning or VL [130]). Given (z,y) ∈ Dtr ain and a manipulation set
M̂ known by I, let z (M̂) denote the upper and lower boundaries on M̂. Then, this defense
technique minimizes the following loss function derived from Equation (1): L(Fθ (ϕc (S, z)),y) +

βL(Fθ (ϕc (S, z (M̂))),y).

Definition 5 says that I uses a set of features S∗ ⊆ S that can lead to higher detection capability
against adversarial example attacks.

Definition 5 (Robust Feature or RF; Adapted from [141]). Given a training set Dtr ain ∪ D ′ that
contains (adversarial) file-label pairs, the set of RF set S∗ is

S∗ = arg min
S̃ ⊂S

∑
(z,y )∈Dtr ain∪D′

L(F̃θ (ϕc (S̃, z)),y),

where F̃θ is Fθ or a simplified learning algorithm that is computationally faster than Fθ [141].

Definition 6 says that I aims at using non-learning methods (e.g., de-obfuscation as shown in
Proguard [14]) to offset A’s manipulations.

Definition 6 (Input Transformation or IT, Adapted from [28]). Let IT : Z → Z denote an IT in
the file space. Given file z and transformation IT, the classifier is f = φ (ϕ (IT(z))).

Definition 7 says that I randomly chooses m classifiers and uses their results for prediction.
That is,I aims at randomizing the feature representation used by f , the learning algorithm, and/or
response to A’s queries (to prevent A from inferring information about f ).

Definition 7 (Classifier Randomization or CD; Adapted from [65]). Given I’s classifier space H
and an input file z, I randomly selects m classifiers from H with replacement, say { fi }mi=1. Then,
f = 1

m

∑m
i=1 fi (z).

Instead of enhancing malware detectors, Definition 8 provides an alternative that detects the
adversarial examples for further analysis.

Definition 8 (Sanitizing Examples or SE; Adapted from [23, 30]). I aims at detecting adversarial
files by using function flag : Z → {yes, no} to flag a file as adversarial (yes) or not (no).

(iii) A3: it describes I’s feature set S . We use a3 ∈ [0, 1] to represent the extent at which A
knows about S . Let Ŝ denote the features that are known to A. Then, a3 = |Ŝ ∩ S |/|S |.

(iv) A4: it describes I’s learning algorithm Fθ , the set of trainable parameters θ , and hyperpa-
rameters (which are set manually, e.g., β in Definition 3) [40, 88]. We use a4 ∈ [0, 1] to represent
thatA knows an a4 degree about A4, where a4 = 0 meansA knows nothing and a4 = 1 meansA
knows everything.

(v) A5: it describes I’s response to A’s query to f (if applicable), which is relevant because A
can learn useful information about f by observing f ’s responses [119]. We define a5 ∈ {0, 1} such
that a5 = 0 means there is a limit on the response that can be made by A to f (referred as LQ)
and a5 = 1 means there is no limit (referred as FQ).

(vi) A6: it describes A’s manipulation set in the problem space, which describes perturbations
for generating adversarial files (adapted from perturbation set in the AML literature [123]):

M = {δ : (z ′ ← A (z,δ )) ∧ (true← O (z, z ′)) ∧ (z ∈ Z) ∧ (z ′ � z)}.
M is application-specific. For instance, an APK permits adding codes or renaming class names
[31, 39, 53, 76], a Windows PE permits adding codes or changing PE section names [5, 37, 38, 68],
and a Portable Document Format (PDF) file permits appending dead-code at its end [114] or
add new instructions [25, 134]. This means that a perturbation δ ∈ M can be a tuple specifying
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an operator (e.g., addition or removal), an object (e.g., a feature used by I), and other kinds of
information (e.g., perturbation location in a file).

Since it is often infeasible to enumerate the entire manipulation set,Amay leverage an empirical

one M̃ [31, 39, 53, 76, 97, 114], which can be defined in the problem or feature space. Manipulations
in the problem space must not violate the relevant constraints (e.g., adding APIs in an APK should
not cause the request of unauthorized permissions). Manipulations in the feature space facilitate
efficient computing via gradient-based methods as long as the inverse feature mapping ϕ−1 is
available. Furthermore, we can use the manipulation setM to define a feature manipulation set M:

M = {δx = x
′ − x : (x = ϕ (z)) ∧ (x′ = ϕ (z ′)) ∧ (z ′ ← A (z,δ )) ∧ (δ ∈ M) ∧ (z ∈ Z)}. (2)

In order to compute M efficiently, one strategy is to estimate a feature-space analog of M̃, denoted
by M̃ [109, 114]. This, however, demands resolving the invertibility Assumption 5.

(vii) A7: it describes A’s attack tactics. We consider two tactics: classifier evasion and clas-
sifier poisoning. For the evasion attack, we consider three variants: basic evasion (BE), opti-

mal evasion 1 (OE1), and optimal evasion 2 (OE2). For the poisoning attack, we consider
two variants: basic poisoning (BP) and optimal poisoning (OP). Correspondingly, we have
A7 ∈ {BE,OE1,OE2,BP,OP}. These tactics are elaborated below, while noting that they do not ex-
plicitly call oracle O because definitions of manipulation setsM already assure that manipulations
preserve functionalities of non-adversarial files.

As shown in Definition 9, the BE attack is that A uses a set of perturbations δz ⊆ M to manip-
ulate a malicious file z, which is classified by I’s classifier f as +← f (z), to an adversarial file z ′

such that − ← f (z ′).

Definition 9 (Basic Evasion or BE [53]). A looks for δz ⊆ M to achieve the following for z ∈ Z
with +← f (z):

− ← f (z ′) where (z ′ ← A (z,δz )) ∧ (δz ⊆ M).

As shown in Definition 10, the attacker attempts to minimize the degree of perturbations. In
other words, this attack tactic is the same as BE, except that A attempts to minimize the manipu-
lation when perturbing a non-adversarial file z ∈ Z into an adversarial file z ′ ∈ Z.

Definition 10 (Optimal Evasion 1 or OE1; Adapted from [24]). A attempts to achieve the following
for z ∈ Z with +← f (z):

min
z′

Γ(z ′, z) s.t. (z ′ ← A (z,δz )) ∧ (δz ⊆ M) ∧ (− ← f (z ′)).

As shown in Definition 11, the attacker attempts to maximize I’s loss for waging high-
confidence evasion attacks, while noting the small perturbations may be incorporated.

Definition 11 (Optimal Evasion 2 or OE2; Adapted from [16]). A attempts to achieve the following
for z ∈ Z with +← f (z):

max
z′

L(Fθ (ϕc (S, z ′)),+) s.t. (z ′ ← A (z,δz )) ∧ (δz ⊆ M) ∧ (− ← f (z ′)).

LetD ′poison ⊂ D be a set of adversarial file-label pairs obtained by manipulating non-adversarial
files in Dpoison . Let D ′tr ain ← Dtr ain ∪ D ′poison be the contaminated training data for learning a
classifier f ′ with parameters θ ′. As shown in Definition 12, the BP attack is that the attacker aims
at making f ′ mis-classify the files in a dataset Dtarдet , while accommodating the attacks that A
manipulates labels of the files in Dpoison [95].
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Definition 12 (Basic Poisoning or BP [9]). Given a set Dtarдet of files where + ← f (ż) for
ż ∈ Dtarдet and a set Dpoison of non-adversarial files, A attempts to perturb files in Dpoison to
adversarial ones D ′poison = {(A (z,δz ),A (y)) : ((z,y) ∈ Dpoison ) ∧ (δz ⊆ M)∧ (A (y) ∈ {+,−})}
such that classifier f ′ learned from D ′tr ain ← Dtr ain ∪ D ′poison mis-classifies the files in Dtarдet .
Formally, the attacker intents to achieve the following for ∀ ż ∈ Dtarдet : − ← f ′(ż) where f ′ is
learned from D ′tr ain ← Dtr ain ∪ D ′poison .

As shown in Definition 13, the OP attack is the same as BF, except that A attempts to maxi-
mize the loss when using classifier f ′ with parameter θ ′ to classify files in Dtarдet . Definition 13
can have multiple variants by considering bounds on |D ′poison | [116] or bounds on the degree of
perturbations |δz | [118].

Definition 13 (Optimal Poisoning or OP [87]). Given Dpoison ,A perturbs Dpoison into D ′poison for
achieving:

max
D′

poison

L (θ ′,Dtarдet ) where θ ′ ← arg min
θ

L (θ ,Dtr ain ∪ D ′poison ).

(viii) A8: it describesA’s attack techniques, such as Gradient-based Optimization (GO), Sen-

sitive Features (SF), MImicry (MI), TRansferability (TR), Heuristic Search (HS), Generative

Model (GM), and Mixture Strategy (MS). We denote this byA8 ∈ {GO, SF, MI, TR, HS, GM, MS}.
Let A have a classifier f̂ , which consists of a hand-crafted feature extraction ϕ̂c and a parameter-
ized model F̂

θ̂
. Let A also have an objective function LA : [0, 1] × Y → R, which measures f̂ ’s

error or A’ failure in evasion [16, 24]. Note that f̂ and LA can be the same as, or can mimic (by
leveraging A’s knowledge about I’s attributes A1, . . . ,A5), I’s classifier f and loss function L,
respectively.

The attack technique specified by Definition 14 is thatA solves the feature-space optimization
problems described in Definitions 10, 11, and 13 by using some GO method and then leverages the
invertibility Assumption 5 to generate adversarial malware examples.

Definition 14 (Gradient-based Optimization or GO, Adapted from [24, 87]). Let x ← ϕ̂c (Ŝ, z) and
x
′ ← x + δx. The feature-space optimization problem in Definition 10 can be written as

min
δx

C (x, x + δx) s.t. (δx ∈ [u, u]) ∧ (F̂
θ̂

(x′) < τ ), (3)

where u and u are, respectively, the lower and upper bounds on M (e.g., δx ∈ [−x, 1− x] for binary
representation x). The feature-space optimization problem in Definition 11 can be written as

max
δx

LA (F̂
θ̂

(x + δx),+) s.t. (δx ∈ [u, u]). (4)

The feature-space optimization problem specified in Definition 13 can be written as

max
δx∈[u,u]

E(ż,ẏ )∈Dt ar дet
LA (F̂

θ̂ ′ (ϕ̂c (Ŝ, ż), ẏ)), ∀(z,y) ∈ Dpoison (5)

where θ̂ ′ ← arg min
θ̂

E(zt ,yt )∈D̂tr ain∪{(ϕ̂−1
c (ϕ̂c (z )+δx ),y′) }LA

(
F̂

θ̂
(ϕ̂c (Ŝ, zt ),yt )

)
.

In order to calculate the gradients of loss function LA with respect to δx in Equations(3) and
(4), inequality constraints can be handled by appending penalty items to the loss function in ques-
tion and box-constraints can be coped with by using gradient projection [24, 78]. Since x + δx is
continuous, the GO attack technique needs to map δx to a discrete perturbation vector in M, for
instance by using the nearest neighbor search [78]. The gradients of loss function LA with respect
to δx in Equation (5) are delicate to deal with. One issue is the indirect relation between LA and
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δx, which can be handled by the chain rule [73]. Another issue is the difficulty that is encountered
when computing the partial derivatives ∂θ̂ ′/∂δx [87]. For dealing with this, researchers often relax
the underlying constraints (e.g., by supposing that F̂

θ̂
is a linear model).

The attack technique specified by Definition 15 is thatA perturbs malware examples by inject-
ing or removing a small number of features to decrease the classification error measured by the
loss function LA as much as possible.

Definition 15 (Sensitive Features or SF, Adapted from [74]). For evasion attacks, A aims at maxi-
mizing the following with respect to a given malware example-label pair (z,+):

max
z′

LA
(
F̂

θ̂
(ϕ̂ (Ŝ, z ′)),+

)
s.t. (z ′ ← A (z,δz )) ∧ (δz ⊆ M) ∧ ( |δz | ≤ m),

wherem is the maximum degree of manipulations.
For poisoning attacks, A aims at maximizing the following with respect to the given Dpoison

and Dtarдet ,

max
D′

poison

E(ż,ẏ )∈Dt ar дet
LA (F̂

θ̂ ′ (ϕ̂c (Ŝ, ż), ẏ)), (6)

where θ̂ ′ is learned from D̂tr ain ∪D ′poison such that ∀z ′ ∈ D ′poison is obtained via the perturbation
δz with obeying (z ′ ← A (z,δz )) ∧ (δz ⊆ M) ∧ (z ∈ Dpoison ) ∧ ( |δz | ≤ m).

The attack technique specified by Definition 16 is that A perturbs malware example z by mim-
icking a benign example, while noting that this attack technique can be algorithm-agnostic.

Definition 16 (MImicry or MI, Adapted from [114]). Given a set of benign examples Dben and a
malware example z, A aims at achieving the following minimization:

min
δz ∈M

Γ(A (z,δz ), zben ) s.t. (∃ zben ∈ Dben ). (7)

The attack technique specified by Definition 16 can be extended to accommodate the similarity
between representations in the feature space [16, 114]. The attack technique specified by Definition
17 is that A generates adversarial examples against a surrogate model f̂ .

Definition 17 (TRansferability or TR, Adapted from [91]). A learns a surrogate model f̂ of f

from D̂tr ain , Ŝ , ϕ̂c and F̂ . For evasion attacks, A achieves − ← f̂ (z ′) by perturbing malware
example z to z ′ and then attacks f with z ′. For poisoning attacks, A contaminates f̂ to f̂ ′ such
that − ← f̂ ′(ż) for ∀(ż, ẏ) ∈ Dtarдet , by poisoning the training set D̂tr ain with D ′poison and the
attacks f with D ′poison .

The attack technique specified by Definition 18 is thatA searches perturbations inM via some
heuristics, while leveraging oracle O’s responses toA’s queries and f ’s responses toA’s queries.
Since M is defined with respect to the problem space, this attack technique does not need the
invertibility Assumption 5.

Definition 18 (Heuristic Search or HS). Let h be a function taking O’s response and f ’s response
as input. Given a malware example z, A looks for anm-length manipulation path

〈z (0), z (1), . . . , z (m)〉 s.t. z (i+1) = A (z (i ),δz, (i ) ) ∧ (δz, (i ) ∈ M) ∧ (h(O, f , z, z (i ) ) ≤ h(O, f , z, z (i+1) ))

where z (0) = z.

The attack technique specified by Definition 19 is thatA uses a generative modelG with param-
eters θд to perturb malware representation vectors and then leverages the invertibility Assumption
5 to turn the perturbed vector into an adversarial malware example.
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Fig. 3. A portion of the partial order defined over (a1, . . . ,a5).

Definition 19 (Generative Model or GM). Given a malware representation vector x = ϕ̂c (Ŝ, z),A
achieves

max
θд

LA
(
F̂

θ̂
(Gθд

(x)),+
)

s.t. Gθд
(x) ∈ [u − x, u − x]

and leverages the invertibility Assumption 5 to obtain an adversarial example z ′ = ϕ̂−1
c (Gθд

(x)).

The attack technique specified by Definition 20 is thatA combines multiple perturbation meth-
ods to perturb an example.

Definition 20 (Mixture Strategy or MS [76]). LetHA denote the space of generative methods and
Wa = {wa : wa = (wa,1, . . . ,wa,K ),wa,i ≥ 0} with i = 1, . . . ,K denote the weights space. Given
a malware example z, A aims at achieving

max
wa

LA (F̂
θ̂

(ϕ̂ (z ′)),+) s.t. �
�
z ′ =

K∑
i=1

wa,iдi (z)�
�
∧ (O (z, z ′) = true)) ∧ (дi ∈ HA) ∧ (wa ∈ Wa ).

(ix)A9: it corresponds toA’s adversarial files. Given file manipulation setM, the corresponding
set of adversarial files is defined as ZM = {A (z,δz ) : (z ∈ Z) ∧ (δz ⊆ M)}. Given feature
manipulation set M, the set of adversarial feature vectors is: XM = {x′ : (x′ = x + δx) ∧ (δx ∈ M)}.
On the Usefulness of the Preceding Specification. The preceding specification can be applied
to formulate a partial order in the attribute space, which allows to compare attacks unambigu-
ously. Figure 3 depicts how vector (a1, . . . ,a5) formulates a partial order between the widely-used
informal notions of black-box attack, namely (a1,a2,a3,a4,a5) = (0, 0, 0, 0, 0), and white-box attack,
namely (a1,a2,a3,a4,a5) = (1, 1, 1, 1, 1); there are many kinds of gray-box attacks in between.

2.2.3 Systematizing Defenses. Similarly, we systematize defenses from two perspectives: de-

fender’s objective (i.e., what the defender aims at achieving) and defender’s input (i.e., what leverages
the defender can use). We also discuss how to apply the specification to formulate a partial-order
structure for comparing defenses.

Defender’s Objectives. I aims at detecting ideally all of the malicious files, adversarial and non-
adversarial alike, while suffering from small side-effects (e.g., increasing false-positives).
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Fig. 4. A portion of the partial order defined over (a6, . . . ,a9).

Defender’s Input. As highlighted in Table 3, I’s input includes attributes A1, . . . ,A5, which
are under I’s control, and the extent a6, . . . ,a9 at which I, respectively, knows about attributes
A6, . . . ,A9, which are under A’s control. Note that A1, . . . ,A9 have been defined above.

— We define a6 ∈ [0, 1] to represent the extent at which I knowsA’s manipulation setM. Let
M̂ ⊆ M denote the subset ofA’s manipulation set known toI. Then, we set a6 = |M̂ |/|M|.

— We define a7 ∈ {0, 1} such that a7 = 0 means I does not know A’s attack tactic A7 ∈
{BE,OE1,OE2,BP, OP} and a7 = 1 means I knows A’s tactic.

— We define a8 ∈ {0, 1} such that a8 = 1 (a8 = 0) means the defender does (not) know I’s
attack technique A8 ∈ {GO, SF, TR,MI,HS,GM,MS}.

— We use a9 = |ẐM |/|ZM | to represent the extent at which I knows about A’s adversarial
files, where a9 ∈ [0, 1] andZM is A’s adversarial files and ẐM ⊆ ZM is known to I.

On the Usefulness of the Preceding Specification. Similarly, the defense specification can be
used to formulate a partial order in the attribute space, paving the way for comparing defenses
unambiguously. Figure 4 depicts how vector (a6, . . . ,a9) formulates a partial order between the
widely-used informal notions of black-box defense (a6,a7,a8,a9) = (0, 0, 0, 0) and white-box de-
fense (a6,a7,a8,a9) = (1, 1, 1, 1, 1); there are many kinds of gray-box defenses in between.

2.3 Systematizing Security Properties

Since f = φ (ϕ (·)), we decompose f ’s security properties into φ’s and ϕ’s. We consider: Repre-

sentation Robustness (RR), meaning that two similar files have similar feature representations;
Classification Robustness (CR), meaning that two similar feature representations lead to the
same label; Detection Robustness (DR), meaning that feature extraction function ϕ returns simi-
lar representations for two files with the same functionality; Training Robustness (TR), meaning
that small changes to the training set does not cause any significant change to the learned classi-
fier. With respect to small perturbations, Definitions 21 and 22 below collectively say that when
two files z and z ′ are similar, they would be classified as the same label with a high probability.
Since the classification function φ is linear, we can obtain a ϵ-robust φ analytically, where ϵ is
a small scalar that bounds the perturbations applied to feature vectors [80]. This means that the
main challenge is to achieve RF extraction.

Definition 21 (RR or (ϵ,η)-robust Feature Extraction; Adapted from [126]). Given constants ϵ,η ∈
[0, 1], and files z, z ′ ∈ Z such that (Γ(z, z ′) ≈ 0) ∧ (true ← O (z, z ′)), we say feature extraction
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function ϕ is (ϵ,η)-robust if

P(C (x, x′) ≤ ϵ ) = P(C (ϕ (z),ϕ (z ′)) ≤ ϵ ) > 1 − η.

Definition 22 (CR or ϵ-robust Classification [12]). Given constant ϵ ∈ [0, 1] as in Definition 21
and any feature vectors x, x′ ∈ X, we say classification function φ is ϵ-robust if

(C (x, x′) ≤ ϵ ) → ((φ (x) > τ ) ∧ (φ (x′) > τ )).

Definition 23 specifies DR, which says that feature extraction function ϕ returns similar repre-
sentations for two different files as long as they have the same functionality. Note that Definitions
22 and 23 collectively produce a malware detector with DR.

Definition 23 (DR or (O,η)-robust Feature Extraction; Adapted from [2]). Given constantη ∈ [0, 1]
and two files z, z ′ ∈ Z such that (Γ(z, z ′) >> 0) ∧ (true← O (z, z ′)), we say feature extraction ϕ
is (O,η)-robust if P(C (ϕ (z),ϕ (z ′)) ≤ ϵ ) > 1 − η.

Suppose, we impose a restriction on the adversarial files set D ′poison such that |D ′poison | ≤
γ |Dtr ain | for some constant γ ∈ [0, 1]. Let classifier f ′ be learned from Dtr ain ∪ D ′poison . Defi-
nition 24 says that a classifier f ′ learned from poisoned training set can predict as accurately as f
learned from Dtr ain with a high probability.

Definition 24 (TR or (γ , ζ )-robust Training; Adapted from [116]). Given classifiers f learned from
Dtr ain and f ′ learned from Dtr ain ∪ D ′poison where |D ′poison | ≤ γ |Dtr ain |, and small constants
ζ ∈ [0, 1], we say f ′ is (γ , ζ )-robust if ∀z ∈ Z(

( f (z) > τ ) ∧ ( |D ′poison | ≤ γ |Dtr ain |)
)
→ (P( f ′(z) > τ ) > 1 − ζ ).

3 SYSTEMATIZING AMD ARMS RACE

We systematize attacks according toA’s objective, input, assumptions, the security properties that
are broken, and the types of victim malware detectors (e.g., Windows vs. Android). Similarly, we
systematize defenses according to I’s objective, input, assumptions, the security properties that
are achieved, and the types of enhanced malware detectors (e.g., Windows vs. Android). We group
attacks (defenses) according to the attacker’s (defender’s) techniques and then summarize them
in a table according to the publication date in chronological order. For convenience, we will use
wildcard ∗ to indicate any value in a domain (e.g., [0, 1]); we will use ∨ to describe A’s and I’s
“broader” input (if applicable). For example, (0, 1, 0, 1, 0|A6, . . . ,A9)∨ (1, 0, 1, 1, 1|A6, . . . ,A9) means
that A has either (a1,a2,a3,a4,a5) = (0, 1, 0, 1, 0) or (a1,a2,a3,a4,a5) = (1, 0, 1, 1, 1). Finally, we
will present the attack-defense escalation.

3.1 Systematizing Attack Literature

3.1.1 Attacks Using GO. Biggio et al. [16] propose solving the problem of optimal evasion at-
tacks by leveraging GO techniques. They focus on high-confidence evasion attacks with small
perturbations (cf. Definition 11). Given a malware representation-label pair (x,y = +), the opti-
mization problem specified in Equation(4) with respect to GO is instantiated as

max
δx

LA (F̂
θ̂

(x + δx),y = +) = min
δx

(L(Fθ (x + δx,y = −)) − βaK (x + δx))

s.t. (δx ∈ [0, u]) ∧ (C (x, x + δx) ≤ m),

where βa ≥ 0 is a balance factor and K is a density estimation function for lifting x + δx to
the populated region of benign examples. Since δx ≥ 0, the manipulation only permits object
injections to meet the requirement of preserving malicious functionalities. The attack is validated
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Table 4. Summary of AMD attacks (�means applicable, means 0,

means 1, and means a value in [0, 1])
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Grosse et al. [53] � M OE2 SF XM � � � � � �
Chen et al. [29] � M OE2 SF XM � � � � �
Khasawneh et al. [65] � M

M
BE

BE

TR

TR

XM

ZM
� � � �

Dang et al. [36] � M BE HS ZM � �
Muñoz-González et al. [87] � M OP GO XM � � � �
Yang et al. [136] � M BE HS ZM � � � �
Rosenberg et al. [100] � M

M
BE

BE

TR

TR

XM

ZM
� � � � �

Anderson et al. [5] � M OE2 GM ZM � � � � � �
Kreuk et al. [70] � M OE2 GO XM � � � � �

Chen et al. [30] � M BP SF XM � � � � �

Al-Dujaili et al. [2] � M OE2 GO XM � � � �

Suciu et al. [118] � M

M
BP

BP

SF

SF

XM

ZM
� � � � �

Kolosnjaji et al. [68] � M OE2 GO XM � � � � �
Suciu et al. [117] � M OE2 GO XM � � � � �

Chen et al. [31] � M

M

OE1

OE2

GO

SF

XM

XM

� � � � �

Pierazzi et al. [97] � M OE2 MI ZM � � �
Li and Li [76] � M

M
OE2

OE2

MS

MS

XM

ZM
� � � �

by using the PDF malware detector and the feature representation is the number of appearances
of hand-selected keywords (e.g., JavaScript). Because the perturbation is continuous, the authors
suggest searching a discrete point close to the continuous one and aligning the point with∇LA (x+
δx,y = +). This attack makes the invertibility Assumption 5 because it operates in the feature space.
Experimental results show that when I employs no countermeasures, knowing I’s feature set S
and learning algorithm F are sufficient for A to evade I’s detector. This attack and its variants
have been shown to evade PDF malware detectors [17, 102, 114, 141], PE malware detectors [68],
Android malware detectors [76], and Flash malware detectors [83]. The kernel density estimation
item makes the perturbed representation x+δx similar to the representations of benign examples,
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explaining the successful evasion. In summary, the attack works under the Oracle, Measurability,
and Invertibility assumptions.A’s input is, orA can be characterized as, (a1, . . . ,a5 |A6, . . . ,A9) =
(1, 1, 1, 1, 1|M, OE2, GO, XM) ∨ (0, 0, 1, ∗, 0|M, OE2, GO, XM) and A breaks the CR property.

Al-Dujaili et al. [2] propose evasion attacks against DNN-based malware detectors in the feature
space. In this attack,A generates adversarial examples with possibly large perturbations in the fea-
ture space. More precisely, given a representation-label pair (x,y = +), the optimization problem
of Equation (4) with respect to GO is instantiated as: maxδx

L(Fθ (x+δx),y = +) s.t. δx ∈ [0, 1−x].
The attack has four variants, with each perturbing the representation in a different direction (e.g.,
normalized gradient of the loss function using the �∞ norm). A “random” rounding operation is
used to map continuous perturbations into a discrete domain. When compared with the basic
rounding (which returns 0 if the input is smaller than 0.5, and returns 1 otherwise), the “ran-
dom” rounding means that the threshold of rounding is sampled from the interval [0, 1] uniformly.
For binary feature representation, the manipulation set Mx = [0, 1 − x] assures the flipping of
0–1. The effectiveness of the attack is validated using Windows malware detector in the feature
space. In summary, the attack works under the Oracle and Invertibility assumptions withA input
(a1, . . . ,a5 |A6, . . . ,A9) = (0, 1, 1, 1, 1|M,OE2,GO,XM) and breaks the DR property.

Kreuk et al. [70] propose an evasion attack in the feature space against MalConv, which is an
end-to-end Windows PE malware detector (as reviewed in Section 2.1) [99]. Given a malware
embedding code x, the optimization problem of Equation (4) with respect to GO is instantiated as:
minδx

L(Fθ ([x|δx]),y = −) s.t. ‖δx‖p ≤ ϵ, where | means concatenation and ‖ · ‖p is the p norm
where p ≥ 1. Because MalConv is learned from sequential data, perturbation means appending
some content to the end of a PE file. Perturbations are generated in a single step by following
the direction of the �∞ or �2 normalized gradients of the loss function [51, 71]. For instance, the
attack based on the �∞ norm is x̃

′ = x − ϵ · sign(∇x (L(Fθ (x),−)), where sign(x ) = +1 (−1) if
x ≥ 0 (x < 0). Since the embedding operation uses a look-up table to map discrete values (0,
1, . . ., 255) to the learned real-value vectors, the attack uses a nearest neighbor search to look
for the learned embedding code close to x̃

′. In summary, the attack works under the Oracle and
Invertibility assumptions with input (a1, . . . ,a5 | A6, . . . ,A9) = (0, 1, 1, 1, 1|M, OE2, GO, XM) and
breaks the RR and CR properties.

Kolosnjaji et al. [68] and Suciu et al. [117] independently propose gradient-based attacks in the
feature space to evade MalConv [99]. Both studies also use the loss function exploited by Kreuk
et al. [70]. Kolosnjaji et al. [68] use the manipulation setM corresponding to appending instruc-
tions at the end of a file. This attack proceeds iteratively and starts with randomly initialized
perturbations. In each iteration, continuous perturbations are updated in the direction of the �2
normalized gradient of the loss function with respect to the input, and then a nearest neighbor
search is applied to obtain discrete perturbations. Suciu et al. [117] perturb embedding codes in
the direction of the �∞ normalized gradient of the loss function, while adding instructions in the
mid of a PE file (e.g., between PE sections) while noting that appended content could be trun-
cated by MalConv. Both attacks work under the Oracle and Invertibility assumptions with input
(a1, . . . ,a5 |A6, . . . ,A9) = (0, 1, 1, 1, 1|M,OE2,GO,XM) and break the RR and CR properties.

Muñoz-González et al. [87] propose the OP attack in the feature space (Definition 13), which is
NP-hard. In this case, the optimization problem of Equation (5) is relaxed by supposing that the
classifier is linear to render the optimization problem tractable [20, 87, 132]. The attack is waged
against Windows PE malware detectors. Feature set includes API calls, actions, and modifications
in the file system; each file is represented by a binary vector. The attack has two variants: one
uses white-box input, where A derives D ′poison from I’s detector f ; the other uses gray-box in-
put, where A knows I’s training set as well as feature set and trains a surrogate detector. The
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attack works under the Oracle and Invertibility assumptions with input (a1, . . . ,a5 |A6, . . . ,A9) =
(1, 1, 1, 1, 1|M, OP, GO, XM) ∨ (1, 0, 1, 0, 0|M, OP,GO,XM) and breaks TR.

3.1.2 Attacks Using SF. Demontis et al. [39] propose the OE2 in the feature space to perturb
important features in terms of their weights in the linear function φ (x) = w

�
x + b, where w =

(w1,w2, . . . ,wd ) is a weight vector, b is the bias, and d is the dimension of feature space. The attack
is waged against Drebin malware detector (which is reviewed in Section 2.1). A manipulates the
xi ’s with largest |wi |’s as follows: flip xi = 1 to xi = 0 if wi > 0, flip xi = 0 to xi = 1 if wi < 0, and
do nothing otherwise, while obeying the manipulation set M corresponding to the injection or re-
moval of features. The attack works under the Oracle, Measurability, and Invertiblity assumptions
with input (a1, . . . ,a5 |A6, . . . ,A9) = (1, 1, 1, 1, 1|M,OE2, SF,XM)∨ (0, 0, 1, ∗, 0|M,OE2, SF,XM) and
breaks the CR property.

Grosse et al. [53] propose a variant of the Jacobian-based Saliency Map Attack (JSMA) [92]
in the feature space against the Drebin malware detector (which is reviewed in Section 2.1). In-
stead of using SVM, Deep Neural Network (DNN) is used to build a detector. Important fea-
tures are identified by leveraging the gradients of the softmax output of a malware example with
respect to the input. A large gradient value indicates a high important feature. A only injects
manifest features to manipulate Android Packages and generates adversarial files from I’s detec-
tor f . The attack works under the Oracle, Measurability, and Invertiblity assumptions with input
(a1, . . . ,a5 |A6, . . . ,A9) = (0, 1, 1, 1, 1|M,OE2, SF,XM) and breaks the RR and CR properties.

Chen et al. [29] propose an evasion attack in the feature space by perturbing the important
features derived from a wrapper-based feature selection algorithm [27, 29, 96, 141]. The attacker’s
loss function LA has two parts: (i) the classification error in the mean squared loss and (ii) the
manipulation cost C (x, x′) =

∑d
i=1 ci |xi − x ′i |, where x = (x1, . . . ,xd ), x

′ = (x ′1, . . . ,x
′
d

), and ci is
the hardness of perturbing the ith feature while preserving malware’s functionality. The attack is
waged against Windows PE malware detector that uses hand-crafted Windows API calls as features
and the binary feature representation. However, there are no details about the composition of
manipulation set. This attack works under the Oracle, Measurability, and Invertibility assumptions
with input (a1, . . . ,a5 |A7, . . . ,A9) = (1, 1, 1, 1, 1|M,OE2, SF,XM)) and breaks CR.

Chen et al. [31] propose evasion attacks in the feature space against two Android malware de-
tectors, MaMaDroid [84], and Drebin [8]. The manipulation set M corresponds to the injection of
manifest features (e.g., activities) and API calls. A evades MaMaDroid by using the OE1 (Defini-
tion 10) and OE2 (Definition 11), and evades Drebin by using OE2. The optimization problem of
OE1 Equation (3) is solved using an advanced gradient-based method known as C&W [24]. OE2 is
solved using JSMA [92]. Because JSMA perturbs SF, we categorize this attack into the SF group. The
OE2 attack works under the Oracle, Measurability, and Invertibility assumptions, with four kinds
of input (a1, . . . ,a5 |A6, . . . ,A9) = (0, 0, 1, 0, 0|M,OE2, SF,XM) ∨ (0, 0, 1, 0, 1|M,OE2, SF,XM) ∨
(1, 0, 1, 0, 0|M,OE2, SF,XM) ∨ (1, 0, 1, 0, 1|M,OE2, SF,XM), and breaks the CR property. The OE1

attack works under the same assumptions with the same input except using attack technique GO,
and breaks the CR property.

Chen et al. [30] propose a BP attack in the feature space against Android malware detec-
tors. The feature set contains syntax features (e.g., permission, hardware, and API) and se-
mantic features (e.g., sequence of pre-determined program behaviors such as getDevicedID→
URL→openConnection). The ML algorithm used is SVM, random forest, or K-Nearest Neigh-
bor (KNN) [22, 107]. The malware representations are perturbed using a JSMA variant [92]
against the SVM-based classifier (while noting JSMA is applicable neither to random forests
nor to KNN because they are gradient-free). Feature manipulation set M corresponds to the
injection of syntax features. A poisons I’s training set by injecting perturbed perturbations
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with label −. The attack works under the Oracle, Measurability, and Invertibility assumptions
with input (a1, . . . ,a5 |A6, . . . ,A9) = (1, 1, 1, 1, 1|M,BP, SF,XM) ∨ (0, 0, 0, 1, 1|M,BP, SF,XM) ∨
(1, 0, ∗, 1, 1|M,BP, SF,XM) and breaks TR.

Suciu et al. [118] propose a BP attack in both feature and problem spaces. The authors obtain
D ′poison by applying small manipulations to non-adversarial benign files and then obtain their la-
bels as given by VirusTotal service [108]. A’s objective is to make I’s classifier f mis-classify
a targeted malware file zmal as benign. A proceeds as follow: (i) obtain an initial benign file
zben , where zben ≈ zmal in the feature space with respect to the �1 norm; (ii) use the JSMA
method [92] to manipulate zben to z ′

ben
by making a small perturbation so that they have simi-

lar feature representations; (iii) add z ′
ben

and its label obtained from VirusTotal to D ′poison and use
Dtr ain ∪D ′poison to train classifier f ′ (Definition 15); (iv) undo the addition if z ′

ben
lowers the clas-

sification accuracy significantly, and accept it otherwise. The attack is waged against the Drebin
malware detector and the manipulation set corresponds to the feature injection of permission,
API, and strings. This attack works under the Oracle, Measurability, and Inversiability assump-
tions with input (a1, . . . ,a5 |A6, . . . ,A9) = (∗, 0, 1, ∗, 0|M,BP, SF,XM)∨ (1, 1, 1, 1, 1|M,BP, SF,XM)∨
(1, 0, ∗, ∗, 0|M,BP, SF,XM)∨ (1, 0, 1, 0, 0|M,BP, SF,XM) and breaks the TR property. The study gen-
erates adversarial malware examples, but does not test their malicious functionalities.

3.1.3 Attacks Using MI. Smutz and Stavrou [109] propose a mimicry attack in the feature space
to modify features of a malicious file to mimic benign ones, where A knows I’s classifier f . Dis-
criminative features are identified by observing their impact on classification accuracy. The at-
tack perturbs features of malware examples by replacing their value with the mean of the benign
examples. The attack is leveraged to estimate the robustness of PDF malware detectors without
considering the preservation of malware functionality. The attack works under the Measurabil-

ity assumption with input (a1, . . . ,a5 |A6, . . . ,A9) = (1, 1, 1, 1, 1|M,OE2,MI,X) and breaks the CR

property.
Maiorca et al. [82] propose a reverse mimicry attack against PDF malware detectors in the

problem space. Instead of modifying malicious files to mimic benign ones, A embeds mali-
cious payload (e.g., JavaScript code) into a benign file. The attack can be enhanced by using
parser confusion strategies, which make the injected objects being neglected by feature extrac-
tors when rendered by PDF readers [25]. The attack works under the Oracle assumption with
input (a1, . . . ,a5 |A6, . . . ,A9) = (0, 0, 0, 0, 0| M,BE,MI,ZM ) and breaks the DR property.

Pierazzi et al. [97] propose a white-box evasion attack against the Drebin malware detector and
then an enhanced version of the detector in the problem space [8, 39]. They intend to bridge the
gap between the attacks in the problem space and the attacks in the feature space. In addition, four
realistic constraints are imposed on the manipulation setM, including available transformation,
preserved semantics, robustness to preprocessing, and plausibility. In order to cope with the side-
effect features when incorporating gradient information of I’s classifier, the attacker first harvests
a set of manipulations from benign files; Manipulations in the problem space are used to query
I’s feature extraction for obtaining perturbations in the feature space; an adversarial malware
example is obtained by using the manipulations corresponding to the perturbations that have a
high impact on the classification accuracy. This attack works under the Oracle assumption with
input (a1, . . . ,a5 |A6, . . . ,A9) = (1, 1, 1, 1, 1|M,OE2,MI,ZM ) and breaks the DR property.

3.1.4 Attacks Using TR. Šrndić and Laskov [114] investigate the mimicry attack and the afore-
mentioned gradient descent and kernel density estimation attack against the PDFrate service,
whereA knows some features used by I.A makes the representation of an adversarial malware
example similar to a benign one. Manipulation setM corresponds to adding objects into PDF files.
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Both attacks perturb feature vectors against a surrogate model, and then map the perturbed feature
representations to the problem space by injecting manipulations between the body and the trailer
of a PDF file. For the mimicry attack,A uses Nben > 0 benign examples to guide manipulations, re-
sulting in Nben perturbed examples. The example incurring the highest classification error is used
as an adversarial example. The attack works under the Oracle and Invertibility assumptions with
input (a1, . . . ,a5 |A6, . . . ,A9) = (0, 0, ∗, 0, 0|M,BE, TR,XM) ∨ (0, 0, ∗, ∗, 0|M,BE, TR,XM) ∨ (1, 0, ∗,
0, 0|M,BE, TR,XM) ∨ (1, 0, ∗, ∗, 0|M,BE, TR,XM) ∨ (0, 0, ∗, 0, 0|M,BE, TR,ZM ) ∨ (0, 0, ∗, ∗, 0|M,
BE, TR,ZM ) ∨ (1, 0, ∗, 0, 0|M,BE, TR,ZM ) ∨ (1, 0, ∗, ∗, 0|M,BE, TR,ZM ) and breaks DR. The
gradient-based attack neglects the constraint of small perturbations and works under the same
assumptions with the same input except using the attack technique OE2.

Khasawneh et al. [65] propose an evasion attack in both the feature and problem spaces against
malware detectors learned from dynamic hardware features (e.g., instruction frequency), where
A knows some features used by I. The attack proceeds as follows. A first queries I’s classifier
to obtain a surrogate model and then generates adversarial files against the surrogate model. Ma-
nipulation setM corresponds to the injection of some features because the others (e.g., memory
access) are uncontrollable. Perturbations are conducted to the important features that are identified
by large weights in the model. The attack works under the Oracle and Invertibility assumptions
with input (a1, . . . ,a5 |A6, . . . ,A9) = (0, 0, ∗, 0, 1|M,BE, TR,XM) ∨ (0, 0, ∗, 0, 1|M,BE, TR,ZM ) and
breaks the CR property.

Rosenberg et al. [100] propose an evasion attack in both the feature and problem spaces against
a Recurrent Neural Network (RNN) based surrogate model, which is learned from API call
sequences. In this attack, A’s training data is different from I’s, but the labels are obtained by
querying I’s detector. In order to reduce the number of queries to I’s detector, A augments its
training data using the Jacobian-based augmentation technique [91] and modifies the API sequence
of an example in the direction of the �∞ normalized gradient of the loss function. Manipulation
set M corresponds to inserting no-op API calls. Experimental results show that adversarial ex-
amples generated from a surrogate RNN model can evade SVM, DNN, and RNN detectors. The
attack works under the Oracle and Invertibility assumptions with input (a1, . . . ,a5 |A6, . . . ,A9) =
(0, 0, 1, 0, 1|M,BE, TR,XM) ∨ (0, 0, 1, 0, 1|M,BE, TR,ZM ) and breaks the RR and CR properties.

3.1.5 Attacks Using HS. Xu et al. [134] propose black-box evasion attacks in the problem space
against two PDF malware detectors known as PDFrate [109] and Hidost [115], respectively. Given
a malicious file z, A uses a genetic algorithm to iteratively generate z ′ from z as follows: (i) A
manipulates a set of candidates (or z in the initial iteration) via object deletion, insertion, or re-
placement. (ii) A queries these variants to O and f . (iii) A succeeds when obtaining a successful
adversarial example z ′, namely (True ← O (z, z ′)) ∧ (− ← f (z ′)); otherwise, A uses a score
function to select candidates for the next iteration or aborts after reaching a threshold number of
iterations. The score function h varies with classifiers; for PDFrate, h(O, f , z, z ′) = 0.5 − f (z ′) if
O (z, z ′) = true, and returns -0.5 if O (z, z ′) = false. This attack models an Oracle and works with
the input (a1, . . . ,a5 |A6, . . . ,A9) = (0, 0, 0, 0, 1|M,BE,HS,ZM ) and breaks the DR property.

Yang et al. [136] propose evasion attacks against Android malware detectors in the problem
space. In this attack, A also uses a genetic algorithm to perturb a malware example z iteratively.
In each iteration,A extracts some features and calculates similarity scores between the malicious
APKs in the feature space; the features that have high impact on the similarity scores are selected;
the manipulations are to perturb the selected features. The attack works under the Oracle and
Measurability assumptions with input (a1, . . . ,a5 |A6, . . . ,A9) = (0, 0, 0, 0, 1|M,Z,BE,HS,ZM )
and breaks the DR property.
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Dang et al. [36] propose a black-box evasion attack against malware detectors (e.g., PDFrate)
in the problem space. Given a malicious file z, A uses the hill-climbing algorithm to iteratively
generate adversarial file z ′ from z. In each iteration, A generates a path of variants sequentially,
each of which is perturbed from its predecessor using manipulations corresponding to object
deletion, insertion, or replacement. A score function h is leveraged to select candidates, such as
h(O, f , z, z ′) = malz′ − clfz′ or h(O, f , z, z ′) = malz′/clfz′ , where malz′ denotes the length of the
first example turned from malicious to benign (obtaining by using an oracle) on the manipulation
path (cf. Definition 18) and clfz′ denotes the length of the first malware example that has success-
fully misled the classifier f . Both examples of interest are obtained by a binary search, effectively
reducing the number of queries to oracle O and f . The attack models an Oracle and works with
input (a1, . . . ,a5 |A6, . . . ,A9) = (0, 0, 0, 0, 0|M,BE,HS,ZM ) and breaks the DR property.

3.1.6 Attacks Using GM. Hu and Tan [58] propose an evasion attack against Windows mal-
ware detectors in the feature space, by using Generative Adversarial Networks (GAN) [50].
In this attack, A modifies the binary representation of Windows API calls made by malicious
files, namely flipping some feature values from 0 to 1. A learns a generator Gθд

and a discrim-
inator from A’s training dataset. The discriminator is a surrogate detector learned from fea-
ture vectors corresponding to A’s benign files and those produced by Gθд

, along with labels ob-
tained by querying I’s detector f . An adversarial example feature vector is generated by using
x
′ = max(x, round(Gθд

(x, a))), where a is a vector of noises, round is the round function, and max
means element-wise maximum. Hu and Tan [59] also propose another evasion attack using the
Seq2Seq model [33]. Both attacks work under the IID, Oracle, and Invertibility assumptions with
input (a1, . . . ,a5 |A6, . . . ,A9) = (0, 0, 1, 0, 1|M,BE,GM,XM) and break the DR property.

Anderson et al. [5] propose a Reinforcement Learning (RL)-based evasion attack against
Windows PE malware detectors in the problem space. Manipulation setM is the RL action space,
which includes some bytecode injections (e.g., API insertion) and some bytecode deletion. At-
tacker A learns an RL agent on A’s data, with labels obtained by querying defender I’s de-
tector f . The learned agent predicts manipulations sequentially for a given malware example.
Moreover, A is restricted by only applying a small number of manipulations to a malicious
PE file. Experimental results show that the attack is not as effective as others (e.g., gradient-
based methods). The attack works under the Oracle and Measurability assumptions with input
(a1, . . . ,a5 |A6, . . . ,A9) = (0, 0, 0, 0, 1|M,OE2,GM,ZM ) and breaks the RR and CR properties.

3.1.7 Attacks Using MS. Li and Li [76] propose evasion attacks against DNN-based Android
malware detectors in both feature and problem spaces. Given four gradient-based attack meth-
ods, the attack looks for the best one to perturb malware representations. A can iteratively
perform this strategy to modify the example obtained in the previous iteration. Experimental
results show that the mixture of attacks can evade malware detectors effectively. The attack
works under the IID, Oracle, and Invertibility assumptions with input (a1, . . . ,a5 |A6, . . . ,A9) =
(1, 1, 1, 1, 1|M,BE,MS,XM) ∨ (1, 1, 1, 1, 1|M,BE,MS,ZM ) and breaks the DR property.

3.1.8 Drawing Observations and Insights. We summarize the preceding reviews with the follow-
ing observations. (i) Indiscriminate attacks have been much more extensively investigated than
targeted attacks and availability attacks. (ii) Evasion attacks have been much more extensively
studied than poisoning attacks. (iii) The Oracle assumption has been widely made. In addition, we
draw the following insights.

Insight 1. (i) Knowing the defender’s feature set is critical to the success of transfer attacks,

highlighting the importance of keeping the defender’s feature set secret (e.g., randomizing the de-

fender’s feature set). (ii) The effectiveness of evasion attacks largely depends on the attacker’s degree of
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Table 5. Summary of AMD Defenses (�Means Applicable, Means 0,

Means 1, and Means a Value in [0, 1])
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Biggio et al. [15] � Dtr ain EL S Fθ FQ � � �
Smutz and Stavrou [110] � Dtr ain SE S Fθ FQ � � �
Zhang et al. [141] � Dtr ain RF S Fθ FQ � � � � � �
Demontis et al. [39] � Dtr ain WR S Fθ FQ � � � �
Wang et al. [127] � Dtr ain IT S Fθ FQ � � �
Grosse et al. [53] � Dtr ain WR S Fθ FQ � � � �
Grosse et al. [53] � Dtr ain AT S Fθ FQ � � � � �
Chen et al. [29] � Dtr ain AT S Fθ FQ � � � �
Khasawneh et al. [65] � Dtr ain CD S Fθ FQ � � �
Dang et al. [36] � Dtr ain SE S Fθ LQ � � �
Yang et al. [136] � D∗tr ain AT S Fθ FQ � � �
Yang et al. [136] � Dtr ain SE S Fθ FQ � � �
Chen et al. [27] � Dtr ain RF S Fθ FQ � � � � � �
Incer et al. [61] � Dtr ain VL S Fθ FQ � � � � �
Chen et al. [30] � Dtr ain SE S Fθ FQ � � �
Al-Dujaili et al. [2] � Dtr ain AT S Fθ FQ � � �
Chen et al. [28] � Dtr ain IT S Fθ FQ � � �
Jordan et al. [62] � Dtr ain RF S Fθ FQ � � � �
Li et al. [77] � Dtr ain AT S Fθ FQ � � � � � �
Tong et al. [122] � Dtr ain RF S Fθ FQ � � � � �
Li and Li [76] � Dtr ain AT S Fθ FQ � � �
Chen et al. [32] � Dtr ain VL S Fθ FQ � � � � � �
Li et al. [78] � Dtr ain EL+AT+RF S Fθ FQ � � � �

D∗
t r ain

contains Dt r ain and a portion of A’s adversarial examples.

freedom in conducting manipulations in the problem space (i.e., a smaller degree of freedom means it

is harder for the attack to succeed).

3.2 Systematizing Defense Literature

3.2.1 Defenses Using EL. Biggio et al. [15] propose a one-and-a-half-class SVM classifier
against evasion attacks, by leveraging an interesting observation (i.e., decision boundaries of
one-class SVM classifiers are tighter than that of two-class SVM classifiers) to facilitate outlier
detection. Specifically, the authors propose an ensemble of a two-class classifier and two one-
class classifiers, and then combine them using another one-class classifier. The defense can en-
hance PDF malware detectors against gradient-based attacks [16], which can be characterized
as (a1, . . . ,a5 |A6, . . . ,A9) = (1, 1, 1, 1, 1|M,OP2,GO,XM). However, the defense cannot thwart
attacks incurring large perturbations. Independent of this study, other researchers propose us-
ing the random subspace and bagging techniques to enhance SVM-based malware detectors,
dubbed Multiple Classifier System SVM (MCS-SVM), which leads to evenly distributed weights
[18, 39]. These defenses work under the IID assumption with input (A1, . . . ,A5 |a6, . . . ,a9) =
(Dtr ain , EL, S, Fθ , FQ |0, 1, 0, 0) and achieves the CR property.

3.2.2 Defenses Using WR. Demontis et al. [39] propose enhancing the Drebin malware detector
φ (x) = w

�
x+b by using box-constraint weights. The inspiration is that the classifier’s sensitivity to
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perturbations based on the �1 norm is bounded by the �∞ norm of the weights. This defense hardens
the Drebin detector against a mimicry attack with input (a1, . . . ,a5 |A6, . . . ,A9) = (0, 0, 1, 0, 0|M,BE,
MI, XM), obfuscation attack [41] with input (a1, . . . ,a5 |A6, . . . ,A9) = (0, 0, 0, 0, 0|M, BE,−,ZM ),
and the attack that modifies important features [39] with input (a1, . . . ,a5 |A6, . . . , A9) =
(1, 1, 1, 1, 1|M, OE2, SF, XM), here “−” means inapplicable. Experimental results show this defense
outperforms MSC-SVM [18]. The defense works under the IID, Oracle, and Measurability assump-
tions with input (A1, . . . ,A5 |a6, . . . ,a9) = (Dtr ain ,WR, S, Fθ , FQ |1, 1, 0, 0) and achieves CR.

Grosse et al. [53] investigate how to apply two defense techniques known as distillation [93]
and retraining [120] to enhance the DNN-based Drebin malware detector. The distillation tech-
nique can decrease a model’s generalization error by leveraging a teacher to relabel the train-
ing data represented by real-value vectors (rather than one-hot encoding). It uses retraining to
tune a learned model with respect to an augmented training set with adversarial examples. Both
defenses are estimated against a variant of JSMA and can be characterized by their input as
(A1, . . . ,A5 |a6, . . . ,a9) = (0, 1, 1, 1, 1|M,OE2, SF,XM). Experimental results show the two defenses
achieve limited success. The defense based on the distillation technique works under the IID as-
sumption with input (A1, . . . ,A5 |a6, . . . ,a9) = (Dtr ain ,WR, S, Fθ , FQ |0, 1, 0, 0) and achieves the
RR and CR properties. The defense based on the retraining technique works under the IID and
Measurability assumptions with input (A1, . . . ,A5 |a6, . . . ,a9) = (Dtr ain ,AT, S, Fθ , FQ |1, 1, 1, 0)
and achieves the RR and CR properties.

3.2.3 Defenses Using AT. Chen et al. [29] adapt a generic retraining framework proposed in
the AML context [75] to enhance linear malware detectors. The defense uses a label smooth-
ness regularization technique to mitigate the side-effect of AT [135]. The defense is evaluated
using Windows malware detectors against “feature selection”-based evasion attacks, which can
be characterized as (A1, . . . ,A5 |a6, . . . ,a9) = (1, 1, 1, 1, 1|M,OE2, SF,XM). The defense works un-
der the IID and Measurability assumptions and can be characterized as (A1, . . . ,A5 |a6, . . . ,a9) =
(Dtr ain ,AT, S, Fθ , FQ |1, 1, 1, 0), while assuring the CR property.

Yang et al. [136] propose a defense against genetic algorithm-based evasion attacks that can be
characterized as (A1, . . . ,A5 |a6, . . . ,a9) = (0, 0, 0, 0, 1|M,BE,HS,ZM ). The defense uses three
techniques: AT, SE, and WR [39]. The AT uses one half of A’s adversarial examples. The de-
fense works under the IID assumption and can be characterized as (A1, . . . ,A5 |a6, . . . ,a9) =
(D ′tr ain ,AT, S, Fθ , FQ |0, 1, 0, ∗), where D ′tr ain is the union of Dtr ain and a portion (e.g., one
half) of A’s adversarial examples. The defense of SE is learned from manipulations used
by the attacker and works under the IID assumption with input (A1, . . . ,A5 |a6, . . . ,a9) =
(Dtr ain , SE, S, Fθ , FQ |1, 1, 1, 0). Both defenses achieve the DR property. The defense of wight reg-
ularization is reviewed in Section 3.2.2.

Al-Dujaili et al. [2] adapt the idea of minmax AT (proposed in the AML context) to enhance
DNN-based malware detectors. In this defense, the inner-layer optimization generates adver-
sarial files by maximizing the classifier’s loss function; the outer-layer optimization searches
for the parameters θ (of DNN Fθ ) that minimize the classifier’s loss with respect to the ad-
versarial files. The defense enhances Windows malware detectors against attacks with input
(A1, . . . ,A5 |a6, . . . ,a9) = (0, 1, 1, 1, 1|M,OE2,GO,XM). Experimental results show that malware
detectors that are hardened to resist one attack may not be able to defend against other attacks.
By observing this phenomenon, researchers propose using a mixture of attacks to harden DNN-
based malware detectors [76]. The defense works under the IID assumption and can be charac-
terized as (A1, . . . ,A5 |a6, . . . ,a9) = (Dtr ain ,AT, S, Fθ , FQ |1, 1, 0, 0). The defense assures the DR

property.
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Li et al. [77] propose a DNN-based attack-agnostic framework to enhance adversarial malware
detectors. The key idea is dubbed adversarial regularization, which enhances malware detectors
via the (approximately) optimally small perturbation. The framework wins the AICS’2019 adver-
sarial malware classification challenge organized by MIT Lincoln Lab researcher [131], without
knowing anything about the attack. The defense works under the IID, Measurability, and Smooth-

ness assumptions with input (A1, . . . ,A5 |a6, . . . ,a9) = (Dtr ain ,AT, S, Fθ , FQ |0, 1, 0, 0) and assures
the RR and CR properties. In the extended study [78], the authors further enhance the framework
with six defense principles, including EL, AT, and RR learning. The enhanced defense is validated
with 20 attacks (including 11 gray-box attacks and 9 white-box attacks) against Android malware
detectors. The enhanced defense works under the IID and Measurability assumptions with input
(A1, . . . ,A5 |a6, . . . ,a9) = (Dtr ain ,AT + EL + RF, S, Fθ , FQ |1, 1, 0, 0) and assures the DR property.

3.2.4 Defenses Using Verifiable Learning (VL). Incer et al. [61] propose using monotonic mal-
ware classifiers to defend against evasion attacks, where monotonic means φ (x) ≤ φ (x′) when
x ≤ x

′ [54]. Technically, this can be achieved by using (i) RFs that can only be removed
or added but not both and (ii) monotonic classification function (e.g., linear models with non-
negative weights). The resulting classifier can thwart any attack that perturbs feature values
monotonically. The defense works under the IID assumption with input (A1, . . . ,A5 |a6, . . . ,a9) =
(Dtr ain ,VL, S, Fθ , FQ |1, 1, 0, 0) and assures the RR, CR, and DR properties.

Chen et al. [32] propose a defense to enhance PDF malware detectors against evasion attacks,
by leveraging the observation that manipulations on PDF files are subtree additions and/or re-
movals. They also propose new metrics for quantifying such structural perturbations. This allows
to adapt the symbolic interval analysis technique proposed in the AML context [128] to enhance
the PDF malware detectors. The defense can cope with attacks leveraging small perturbations in
the training phase. This defense works under the IID, Measurability, and Smoothness assumptions
with input (A1, . . . ,A5 |a6, . . . ,a9) = (Dtr ain ,VL, S, Fθ , FQ |1, 1, 0, 0) and achieves the RR and CR

properties.

3.2.5 Defenses Using RF. Zhang et al. [141] propose leveraging optimal adversarial attacks for
feature selection. The defense enhances PDF malware detectors against gradient-based attacks,
which can be characterized as (A1, . . . ,A5 |a6, . . . ,a9) = (1, 1, 1, 1, 1|M,OE2,GO,XM). The defense
works under the IID, Measurability, and Smoothness assumptions and can be characterized as
(A1, . . . ,A5 |a6, . . . ,a9) = (Dtr ain ,RF, S, Fθ , FQ |1, 1, 0, 0). The defense assures the RR and CR prop-
erties.

Tong et al. [122] propose refining features into invariant ones to defend against genetic
algorithm-based evasion attacks with input (A1, . . . ,A5 |a6, . . . ,a9) = (0, 0, 0, 0, 1|M,BE,HS,ZM ).
Experimental results show that AT can be further leveraged to enhance the robustness of
the defense. The defense works under IID assumption with input (A1, . . . ,A5 |a6, . . . ,a9) =
(Dtr ain ,RF, S, Fθ , FQ |1, 1, 0, 0), and achieves RR, CR, and DR.

Chen et al. [27] propose mitigating evasive attacks by filtering features according to their
importance |wi |/ci with respect to the linear function φ (x) = w

�
x + b, where xi , wi , and

ci denote, respectively, the ith component of x, w, and the constraint on manipulation cost
c. The defense enhances Android malware detectors against three attacks: a random attack
with input (A1, . . . ,A5 |a6, . . . ,a9) = (0, 0, 1, 0, 0|M, BE,−,XM), a variant of the mimicry at-
tack with input (0, 0, 1, 0, 0|M, BE, MI, XM), and the attack that modifies important features
with input (A1, . . . ,A5 |a6, . . . ,a9) = (1, 1, 1, 1, 1|M, BE, SF,XM), where “−” means inapplica-
ble. The defense works under the IID, Measurability, and Smoothness assumptions with input
(A1, . . . ,A5 |a6, . . . ,a9) = (Dtr ain ,RF, S, Fθ , FQ |1, 1, 0, 0) and achieves RR and CR.
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Jordan et al. [62] propose a robust PDF malware detector against evasion attacks by
interpreting JavaScript behaviors using static analysis. A PDF file is classified as mali-
cious when it calls a vulnerable API method or when it exhibits potentially malicious
or unknown behaviors. The defense is validated against the reverse mimicry attack [82]
with input (A1, . . . ,A5 |a6, . . . ,a9) = (0, 0, 0, 0, 0|M,BE,MI,ZM ). The defense has input
(A1, . . . ,A5 |a6, . . . ,a9) = (Dtr ain ,RF, S, Fθ , FQ |1, 1, 0, 0) and achieves RR, CR, and DR.

3.2.6 Defenses Using IT. Wang et al. [127] propose the random feature nullification to en-
hance DNN-based malware detectors against the attack of Fast Gradient Sign Method

(FGSM) [51] by nullifying (or dropping) features randomly in both training and testing
phases. This offers a probabilistic assurance in preventing a white-box attacker from de-
riving adversarial files by using gradients of the loss function with respect to the input.
The defense enhances Windows malware detectors against the FGSM attack with input
(A1, . . . ,A5 |a6, . . . ,a9) = (0, 1, 1, 1, 1|M,OE2,GO,XM). The defense works under IID assumption
with input (A1, . . . ,A5 |a6, . . . ,a9) = (Dtr ain , IT, S, Fθ , FQ |0, 1, 0, 0) and achieves CR.

DroidEye [28] defends Android malware detectors against evasion attacks by quantizing bi-
nary representations, namely transforming binary representations into real values and then us-
ing compression to reduce the effect of adversarial manipulations. The defense enhances linear
malware detectors against a “feature selection”-based attack with input (A1, . . . ,A5 |a6, . . . ,a9) =
(1, 1, 1, 1, 1|M,OE2, SF,XM) [29] and the FGSM attack with input (A1, . . . ,A5 |a6, . . . ,a9) =
(0, 1, 1, 1, 1|M,OE2,GO,XM) [51]. The defense works under IID assumption with input
(A1, . . . ,A5 |a6, . . . ,a9) = (Dtr ain , IT, S, Fθ , FQ |0, 1, 0, 0) and achieves CR.

3.2.7 Defenses Using CD. Khasawneh et al. [65] propose randomizing classifiers (i.e., using
one randomly chosen from a pool of classifiers that use heterogeneous features) to defend against
transfer attacks. The defense is validated against an attack which perturbs important features
with input (a1, . . . ,a5 |a6, . . . ,a9) = (0, 0, ∗, 0, 1|M,BE, SF,ZM ). The defense works under the IID

assumption with input (a1, . . . ,a5 |a6, . . . ,a9) = (Dtr ain ,CD, S, Fθ , FQ |0, 1, 1, 0) and achieves the
CR property.

3.2.8 Defenses Using SE. Smutz and Stavrou [110] propose an ensemble classifier to defend
against gray-box evasion attacks by returning classification results as benign, uncertain and ma-
licious according to the voting result (e.g., [0%, 25%] classifiers saying malicious can be treated
as benign, [25%, 75%] saying malicious can be treated as uncertain, and [75%, 100%] saying ma-
licious can be treated as malicious). The defense enhances a PDF malware detector against
three types of evasion attacks: gradient-based attack [114] with input (a1, . . . ,a5 |A6, . . . ,A9) =
(1, 0, ∗, ∗, 0|M,OE2, TR,ZM), mimicry attack with input (1, 0, ∗, ∗, 0|M,BE, TR,ZM), and reverse
mimicry attack with input (0, 0, 0, 0, 0|M,BE,MI,ZM) [82]. The defense works under the IID as-
sumption with input (A1, . . . ,A5 |a6, . . . ,a9) = (Dtr ain , SE, S, Fθ , FQ |0, 1, 0, 0) and achieves DR.

Dang et al. [36] propose enhancing PDF malware detectors by lowering the classification
threshold τ and restricting the maximum query times, rendering genetic algorithm-based eva-
sion attacks harder to succeed. This defense works under the IID assumption with input
(A1, . . . ,A5 |a6, . . . ,a9) = (Dtr ain , SE, S, Fθ , LQ |0, 1, 0, 0) and achieves DR.

Chen et al. [30] investigate defending Android malware detectors against poisoning attacks
with input (a1, . . . ,a5 |A6, . . . ,A9) = (1, 1, 1, 1, 1|M,BP, SF,XM). The idea is to filter adversarial
files that are distant from non-adversarial ones, where distance is measured by the Jaccard index,
Jaccard-weight similarity, and cosine similarity. The defense works under the Measurability as-
sumption with input (A1, . . . ,A5 |a6, . . . ,a9) = (Dtr ain , SE, S, Fθ , FQ |0, 1, 0, 0) and achieves TR.
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3.2.9 Drawing Observations and Insights. Summarizing the preceding discussions, we draw the
following observations. (i) Most studies focus on black-box defenses (i.e., the defender knows little
about the attacker), which is against the principle of “knowing yourself and knowing your en-
emy”. (ii) Most studies focus on defenses against evasion attacks rather than poisoning attacks.
(iii) There is no silver bullet defense against evasion attacks or poisoning attacks, at least for now.
(iv) Sanitizing adversarial files as outliers is effective against black-box and gray-box attacks, but
not white-box attacks. (v) The security properties achieved by defenses have been evaluated em-
pirically rather than rigorously proven (despite that provable security is emerging on the small
degree of perturbations; see for example [32, 48]). (vi) There is no theoretical evidence to support
that the effectiveness of defense tactics on the training set (e.g., AT and verifiable learning) can
generalize to other adversarial examples. In addition, we draw the following insights:

Insight 2. (i) Effective defenses often require the defender to know the attacker’s manipulation set.

In the real world, it is hard to achieve this, explaining from one perspective why it is hard to design

effective defenses. (ii) The effectiveness of adversarial training depends on the defender’s capability in

identifying the most powerful attack.

3.3 Systematizing AMD Arms Race

Figure 5 displays AMD attack-defense arms race surrounding three malware detectors: PDFrate,
Drebin, and DNN-based detector. For a better visual effect, we group papers that proposed defense
methods in terms of a common input (a6, . . . ,a9). For example, we group [136],[53], and [29]
together because the defenders in both papers have input (a6, . . . ,a9) = (1, 1, 1, 0), while noting
that their input on (A1, . . . ,A5) may or may not be different. We also simplify attack and defense
inputs while preserving the critical information when an attack (defense) works for multiple inputs.
For example, (a1, . . . ,a5 |A6, . . . ,A9) = (0, 0, 1, 0, 0|M,OE2, SF,XM) is the critical information for
attack input (a1, . . . ,a5 |A6, . . . ,A9) = (0, 0, 1, 0, 0|M,OE2, SF,XM) ∨ (0, 0, 1, 0, 1|M,OE2, SF,XM) ∨
(1, 0, 1, 0, 0|M,OE2, SF,XM) ∨ (1, 0, 1, 0, 1|M,OE2, SF,XM) because it is the weakest attack input
in the partial order formulated by these (a1, . . . ,a5)’s. This suggests us to focus on attack input
(0, 0, 1, 0, 0|M,OE2, SF,XM) because it is already able to break some defense and automatically
implies that a stronger input can achieve the same (while noting some special cases, see discussion
in Section 3.2.1). Multiple defense inputs are simplified in the same manner.

Arms race in PDF malware detection: We summarize two sequences of escalations caused by
PDFrate [109]. In one sequence, PDFrate is defeated by transfer attacks, which are realized by
gradient-based and mimicry methods against surrogate models [114]. These attacks trigger the
defense escalation to an ensemble detector built on top of some diversified classifiers [110]. This
defense [110] triggers attack escalation to reverse mimicry attacks [82], which trigger the defense
escalation of using robust hand-crafted features [62]. This defense represents the state-of-the-art
PDF malware detector, but still incurs a high false-positive rate. In the other sequence of arms race,
PDFrate is defeated by genetic algorithm-based attacks [134]. These attacks trigger the defense
escalation to [36] and [122]. The former defense [36] restricts the responses to attacker queries,
but can be defeated by the escalated attack that leverages the hill-climbing algorithm (also shown in
[36]). The latter defense [122] uses invariant features to thwart the attacks and represents another
state-of-the-art PDF malware detectors.

Arms race in android malware detection: Drebin is defeated by the attack that modifies a limited
number of important features [39], which also proposes the new defense to defeat the escalated
attack. This defense [39] triggers the attack escalation to, and is defeated by, the genetic algorithm-
based attack [136] and the mimicry-alike attack [97]. The former attack [136] triggers the escalated
defense (also presented in [136]) that leverages attack mutations to detect adversarial examples
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[136]. The latter attack [97] injects objects in APKs and (in principle) can be defeated by the mono-
tonic classifier [61, 97]. These escalated defenses represent the state-of-the-art Android malware
detectors, but still incur a high false-positive rate.

Arms race in DNN-based malware detection: The DNN-based detector [53] triggers four gradient-
based evasion attacks presented in [2], which also hardens the DNN malware detector by using an
minmax adversarial training instantiation to incorporates the �∞ normalized gradient-based attack.
This escalated defense [2] triggers the mixture of attacks presented in [76]. The defense of minmax

adversarial training incorporating a mixture of attacks can defeat a broad range of attacks, but still
suffers from the mimicry attack and other mixtures of attacks [76]. As a consequence, there are no
effective defenses can thwart all kinds of attacks.

Independent arms race: There are studies that have yet to trigger cascading arms races, including:
(i) Studies [29, 30, 118, 127] propose independent attacks and then show how to defeat these attacks.
(ii) Studies [31, 58, 59, 68, 70, 87, 100, 117] propose attacks to defeat naive malware detectors. (iii)
Studies propose defenses to counter some attacks [15, 27, 28, 32, 77].

4 FUTURE RESEARCH DIRECTIONS (FDRS)

FRD 1: Pinning down the root cause(s) of adversarial malware examples. Speculations on root
cause(s) include: (i) invalidity of the IID assumption because of distribution drifting, namely that
testing files and training files are drawn from different distributions [16, 19, 52]); (ii) incompetent
feature extraction [39, 134]; (iii) high dimensionality of malware representations [48]; (iv) insuffi-
cient scale of training data [104]; (v) low-probability “pockets” in data manifolds [120]; (vi) linearity
of DNNs [51]; and (vii) large curvature of decision boundaries [46, 85].Although these speculations
may be true, more studies are needed in order to (in)validate them.

FRD 2: Characterizing the relationship between transferability and vulnerability. In the AMD con-
text, an attacker may use a surrogate model to generate adversarial examples and a defender may
use a surrogate model for AT. Transferability is related to the extent at which knowledge gained
by a surrogate model may be the same as, or similar to, what is accommodated by a target model.
The wide use of surrogate models in the AMD context suggests that there may be a fundamental
connection between knowledge transferability and model vulnerability.

FRD 3: Investigating adversarial malware examples in the wild. In the AMD context, it is challeng-
ing to generate practical adversarial malware examples to correspond to perturbations conducted
in the feature space, owing to realistic constraints. On the other hand, an attacker can directly
search for manipulations in the problem space. This may cause large perturbations, putting the
value of studies on small perturbations in question. This represents a fundamental open problem
that distinguishes the field of AMD from its counterparts in other application settings. This is-
sue is largely unaddressed by assuming that there is an oracle for telling whether manipulated or
perturbed features indeed correspond to a malware sample or not.

FRD 4: Quantifying the robustness and resilience of malware detectors. Robustness and resilience
of malware detectors against adversarial examples need to be quantified, ideally with a provable
guarantee. For this purpose, one may adapt the reduction-based paradigm underlying the provable
security of cryptographic primitives and protocols.

FRD 5: Designing malware detectors with provable robustness and resilience guarantees. Having un-
derstood the root cause(s) of adversarial examples, characterized the effect of transferability, inves-
tigated the effectiveness of practical attacks, and designed metrics for quantifying the robustness
and resilience of malware detectors, it is imperative to investigate robust malware detectors with
provable robustness, ideally as rigorous as what has been achieved in the field of cryptography. In
this regard, RF extraction, AL, and VL are promising candidates for making breakthroughs.
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Fig. 5. Arms race in AMD attack and defense escalations.

FRD 6: Forecasting the arms race in malware detection. Arms race is a fundamental phenome-
non inherent to the cybersecurity domain. In order to effectively defend against adversarial mal-
ware, one approach is to deploy proactive defense, which requires the capability to forecast the
arms race between malware writers and defenders. For instance, it is important to predict how
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attacks will evolve and what kinds of information would be necessary in order to defeat such
attacks.

5 CONCLUSION

We have presented a framework for systematizing the field of AMD through the lens of assump-
tions, attacks, defenses, and security properties. This paves the way for precisely relating attacks
and defenses. We have also shown how to apply the framework to systematize the AMD litera-
ture, including the arms race between AMD attacks and defenses. We have reported a number of
insights.

The study leads to a set of future research directions. In addition to the ones described in Sec-
tion 4, we mention the following two, which are discussed here, because there are rarely studies on
these aspects. (i) To what extent explainability (or interpretability) of ML models can be leveraged
to cope with adversarial malware examples? It is intuitive that explainability could be leveraged
to recognize adversarial examples because they may not be explainable [37]. (ii) To what extent
uncertainty quantification can be leveraged to cope with adversarial malware examples? If the un-
certainty associated with detectors’ predictions on adversarial malware examples are inherently
and substantially higher than the uncertainty associated with non-adversarial malware examples,
this fact can be leveraged to recognize adversarial malware examples. Finally, we reiterate that the
research community should seek to establish a solid foundation for AMD. Although this founda-
tion can leverage ideas and techniques from AML, the unique characteristics of AMD warrant the
need of a unique foundation.
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