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ABSTRACT
Nature has, consistently, been an inspiration for scientists and engi-
neers. In this paper, I present a novel paradigm to instrumentation
where we co-develop the sensor andmachine learning algorithms to
bolster the sensor. This is what happens in most species of animals
through generations of coevolution. Such sensor and AI (SensAI)
empowered instruments are expected to be inexpensive as well
as more efficient (in the applications for which they have been
developed). In addition to presenting the modus operandi of this
application specific instrumentation (ASIN) paradigm this paper
shall also, briefly, discuss some of the successful demonstrations of
the ASIN paradigm.
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1 INTRODUCTION: LOOKING AT
NEUROETHOLOGY

Conventional instrumentation systems have always aimed for higher
sophistication to perform better. So the traditional instrumentation
system will measure signals using high resolution sensors. This is
followed by steps to extract information from the signal which then
are interpreted based on the requirements. Finally, some action is
taken based on the interpretation. The inherent philosophy in this
has been the separation between sensor system and the decision-
making system. In other words sensor systems are designed to be
generic. The processing chain is further illustrated in Figure 1. Mark
that all the blocks after the 𝑆𝑒𝑛𝑠𝑜𝑟 block can have human inter-
vention and feedback. And the dashed link between the 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛
and 𝑆𝑒𝑛𝑠𝑜𝑟 is advocated by most of the intelligent instrumenta-
tion work. The work on intelligent and smart instruments [4, 26]
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roughly follows the same chain of action with an added path for
feedback from the decision making block to sensor block.

However, most living organisms follow a different approach in
which they have evolved as a system for a very specific task. Due
to this co-evolution, sensors and sensory data processing hardware
work as a single entity. Many studies into neuroethology have
validated this. Animals co-evolve with many other living organisms
in their niche ecosystem to develop these sophisticated sensing
systems which work very successfully in their niche ecosystem[8,
11, 24]. We shall discuss two neurothological case-studies here.

1.1 How do bats do it?
An example of such co-evolution is shown in Figure 2 taken from
reference [32]. In this interesting figure, the scattered return of
the sound waves generated by a type of pollen-feeding bat from
different types of flowers (of the same species) are shown. As can
be observed, the return is high (over a very wide angle of incidence)
only if the flower is in full bloom and has real nectar in it! So,
the sound wave generated by the bats has been fine-tuned over
generations, so that the current generation can well be termed as
information sensing processors. There are three major observations
from this and other studies done on bats 1. First of all, the sensing
system has evolved for a very particular function. Secondly, there
are multiple sensors that the bat uses during foraging. And none of
these sensors are of high resolution in the traditional meaning of
the word. Lastly, bats brain is very simple and mostly works as a
correlation processor [33]. It can also be noted here that extensive
research on the working of visual cortex [18] have also given similar
conclusions. In other words, even in evolved mammals like the
human brain does not process the sensory output as it is. Rather it
always works in a goal-driven manner, using layers of neurons in
the prefrontal cortex [9] to perform certain predefined tasks.

1.2 How do weakly electrical fishes do it?
Weakly electric fishes are simple creatures with some sophisti-
cated abilities. These fishes, mostly found in deep rivers (with very
little light), use electricity for three major functions; viz. passive
electro-location (by sensing the electric signal emitted by almost all
other animals around); active electro-location (by sensing the reflec-
tion of electric signal generated by their electric organ discharge
(EOD)); and electro-communication (with differentmembers of their
species). The sensory cells responsible for electro-communication

1The choice of bat is because of two reasons. First of all, because of its unique ability
to use sound for visualizing its environment, there has been a lot of study on bat’s
sensors and brain. Secondly, being a small mammal these studies have been quite
confirmatory in terms of how its brain works.
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Figure 1: Chain of action blocks in conventional instrumen-
tation systems

Figure 2: Pollen seeking bats’ transmitted waves have
evolved over generations tomake them a rough information
sensing system [32].

(Knollenorgans Electroreceptors) are phase receptors and respond
to transients [1].

The receptors end in the electrosensory lateral line lobe (ELL).
Something interesting starts happening now. Each electroreceptor
trifurcates to three ELL maps: the centromedial (CMS), centrolateral
(CLS) and lateral (LS) segments. These three are of different sizes
(with CMS being the biggest and LS being the smallest map (In terms
of neurone assigned)). They also process the signal for different
features so that different behaviours aremapped to different types of
burst characteristics. Another interesting phenomena is the fact that
the frequency response of the CLS cells changes as per the context
(e.g. communication or foraging). This multiple parallel mapping of
information is very similar to the way most convolutional neural
network (CNN) work. The big difference, however, lies in the way
these layers are tuneable depending on the context for the fish.

The ELL signal are next mapped to torus semicircularis (TS)
where the information is further organised to many more layers
(around 12) and more than 50 neurone types. The exact working of
these layers are not very well understood. However, recent studies
do show that these are linked with very fine feature extraction.

Information from TS goes to tectum (which is equivalent to the
visual cortex of mammals). Both tectum and TS feed information
to pallium (which is similar to cortex of mammals). Pallium can, in
turn, affect the way TS and tectum map sensory information. The
detailed block diagram is given in Figure??, taken from [13].

Figure 3: Mapping of sensory information inweakly electric
fish [13].

A WEF, like many animals, can achieve a range of marvellous
tasks.

(1) Coding based sensor tuning: Depending on its situation
and motif the fish has the ability to tune what information is
collected and represented at the sensors. This is changed by
deciding what coding scheme shall be used by the sensors
in the skin to send across to ELL [23]. This is an elegant way
to fuse symbolic and non-symbolic layers in modern AI. It
is not the best solution (as its not very generic). However, it
can be the starting point.

(2) Hyper-acuity: Many animals can resolve events at a scale
which is finer than what their sensors can achieve. The
WEF’s neurological study seems to suggest that this is achieved
in the fish by the use of multiple spatial representation of the
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information coming from the sensors. And the burst char-
acteristics in these maps represent various events [23, 25].
Hence it seems the ability of apparently higher resolution of
detecting “certain events” comes from blowing up the infor-
mation into a spatial map and inferring from these maps.

(3) Ambiguity of information from a single neuron: Mul-
tiple spatial neural maps are the way to handle and extract
information. A single neuron will be part of multiple such
mappings. Hence, the exact information represented by a
single neuron is ambiguous. This helps in making the whole
system more robust and less dependent on local blocks.

We discussed the working bats and the WEFs. In both these
animals sensors and processing architectures have evolved to create
application specific instruments which can achieve high fidelity
decision-making using non-sophisticated sensors and processing.
From these observations, we have worked on a new design of
instrumentation, which we call application specific instrumentation
(ASIN).

In rest of the paper I shall present the configuration of a generic
ASIN system in Section 2. In Section III a new framework for reso-
lution shall be developed. Section IV will present some applications
using ASIN. Lastly I shall conclude in the last section.

2 ASIN CONFIGURATION
The configuration of the proposed instrumentation is shown in
Figure 4. In the following, we describe the major components of
ASIN system and how they work.

• Sensors: The sensors are the interface of ASIN to the environ-
ment. There are two major ways in which this is different
from the sensor block of Figure 1. First of all, each individual
sensor in ASIN is of low or crude resolution. Secondly, each
sensor interacts with the environment through a preselected
application specific measurement matrix. Usually, if 𝑒 is the
environment parameter to be sensed, a sensor measures 𝑠
through a measurement process 𝑃 . I.e.

𝑠 = 𝑃𝑒

A high resolution sensor is one which measures 𝑒 as truth-
fully as possible, and hence for an ideal sensor 𝑃 should be
as close to an identity matrix as possible. The basic sensor is
fine-tuned in ASIN with application specific measurement
matrix, 𝑃𝐴𝑆𝐼𝑁 . Hence, the final measurement is 𝑠 ′, where

𝑠 ′ = 𝑃𝐴𝑆𝐼𝑁 𝑃𝑒.

The design of a suitable application specific measurement
matrix is one of the major tasks for ASIN design. This needs
focusing the end-goal to as few decisions as possible and
to try to make these decisions binary (to make the whole
system simple).

• Correlator Processor: Given that the sensors have been de-
signed with some intelligence, the next step is a simple corre-
lation type processor, instead of a high performance proces-
sor (which usually handles signal processing and information
extraction).

• Interpreter: The final block is Interpreter which interprets
the output from the correlation processor and gives a final
decision level. And as we discussed before, the final decision

Figure 4: Block diagram of the basic ASIN instrument.

need to be as few as possible and preferably with a binary
value.

3 REDEFINING RESOLUTION
One of the major figures of merit of any instrumentation system is
its resolution. As per the Measurement Systems Analysis Manual
“ the resolution of an instrument is 𝛿 if there is an equal proba-
bility that the indicated value of any artifact, which differs from
a reference standard by less than 𝛿 , will be the same as the indi-
cated value of the reference”. There are few ways in which we will
refine this definition to create a new definition of resolution for
ASIN. Depending on that we shall define two different types of
resolutions.

3.1 Neyman-Pearson Principle based
Definition

For a generic instrument, as it says in the definition of the reso-
lution, they measure the “value of any artifact”. In the context of
ASIN this becomes the “value of any artifact of interest”. Secondly
the way we measure this artifact using ASIN is by using pattern
recognition algorithms. Hence the output from ASIN is mostly a
propbability, 𝑃𝑝 that a certain “artifact of interest” is present. Let
us represent the artifact of interest as \ . For a given task there will
always be cases of misclassification which will create events of
false alarm giving a probability of false present, 𝑃𝑓 𝑝 . Then using
Neyman-Pearson principle the goal of desinging an ASIN is to max-
imize 𝑃𝑝 for a given 𝑃𝑓 𝑝 .
Definition I:TheNeyman-Pearson principle based resolution (𝛿𝑁𝑃 )
can be defined as the maximum change in the artifact of interest,
Δ\ , which for a given ASIN makes sure that the change in the
probability of false present Δ𝑃𝑓 𝑝 ≤ an arbitrary small number 𝜖 .

3.2 Cramer-Rao Bound based Definition
From a data-centric point of view for an “artifact of interest”, \ ,
we use ASIN system to capture some signal Z . One of the major
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empowering concept of ASIN is the hypothesis that we can estimate
\ from Z even when the exact phenomenological link from \ to Z is
not well-modeled. This way of putting the ASIN operation helps in
looking at the problem from a parameter-estimation point of view.
And in parameter estimation one of the important figures of merit
is Cramer-Rao lower bound (CRLB) which is the lowest variance in
the estimate. CRLB is the inverse of Fisher information2

𝐼 (\ ) = 𝐸

[(
𝜕𝑙 (Z ;\ )

𝜕\

)2]
, where 𝑙 (Z ;\ ) is the natural logarithm of the likelihood function
and 𝐸 represents the expectation operation. For ill-defined mapping
like what we deal with in ASIN Fisher information can be found
numerically as well [31].
Definition II: The Cramer-Rao principle based resolution (𝛿𝐶𝑅 )
can be defined as the maximum change in the artifact of interest,
Δ\ , which for a given ASINmakes sure that the change in the Fisher
information Δ𝐼 (\ ) ≤ an arbitrary small number 𝜖 .

4 SOME APPLICATIONS
In this section, we describe two simulation based validation of a
limited version of the ASIN system we discussed in the last section.
The limitation of the version of ASIN used lies in the fact that the
sensors used in this setup are generic instead of being customized
for the final goal.

4.1 Target specific waveform
As we discussed in Section 1.1, bats have co-evolved with other
species to have highly specific waveform fine-tuned to their task.
This results in a higher return amplitude of the scattered signal
when the target is the one for which the wave has been designed
for. This methodology of outsourcing sensor intelligence to the
sensing signal itself makes the sensor signal processing algorithms
extremely simple. Just threshold based detection can directly rec-
ognize the target. Inspired by this, we tried to develop methods
in radar signal processing where the radar signal is designed for
different targets[14–16]. This resulted in much simple algorithms
for target recognition.

4.2 ASIN based breast tumor detection
In the first demonstration we use UWB based Radar to measure
breast tumor. This is an active area of research [7, 10]. But most of
the work in this domain follow the conventional instrumentation
path as elucidated in Figure 1. The main focus is on the develop-
ment of a generic instrument of high resolution. In the ASIN based
approach, we fix the end goal first. We fixed the final goal to be
the detection of the presence of tumor in breast. For this instead of
generating a 3D image of the breast tissues, which requires the use
of a UWB Radar array, we used just one UWB sensor node. The
correlation processor block of Figure 4 was simulated using a single
layer neural network, which was first trained with few training
measurements (all using single UWB sensor). The final system was
able to detect tumor with an accuracy of 98% even in the presence
of tissue bundles whose relative permitivity was much higher than
2As we are discussing about resolution with respect to any given artifact of interest
we will only deal with scalar \ .

Figure 5: Setup for measuring sludge volume in oil tanks us-
ing a single UWB Radar sensor.

that of normal tissue. Further details of the work can be found in
[19].

4.3 ASIN based sludge volume estimation
In a second attempt to implement an ASIN type system, we tried to
build an instrument using UWB Radar to measure sludge volume in
oil tanks. The experimental setup is shown in Figure 5. Again, the
conventional approach is to use an array of UWB transceiver sensor
nodes to first form a 3D image of the tank bottom, and finally to
use image processing steps to estimate the volume of sludge. In
the ASIN based approach, we first trained the correlator processor,
again implemented by a single layer neural network. In the testing
phase, we changed the volume of sludge in incremental steps and for
each volumewe also changed the sludge profile. The performance of
the system is best represented by a regression coefficient, between
the actual volume and the estimated volume. We got a regression
value of 0.91 using simulation based experiments, and of 0.88 using
practical measurements.

4.4 ASIN based Fake-medicine Detection
Counterfeit medicines have become one of the world’s fastest grow-
ing industries, becoming a global pandemic as it jeopardizes patient
health and recovery. It has been reported that the use of counterfeit
drugs has been linked to an increase in morbidity, drug resistance,
and in the most severe cases, death [5]. A similar problem is that
of pesticide residue ingested from fruit and vegetables which has
been linked to an increase in cancer, as well as negative effects
on the reproductive, immune and nervous systems [17] [12]. Spec-
troscopy and chromatography methods are often used to test for
contaminants. However, they are expensive and complicated to use.
There is a need for an inexpensive and easy-to-use technological
solution to detect counterfeit medicines or contaminated food. If
we analyze this problem from the end-user’s point of view then it
usually is a YES-NO question the user is interested in. For example,
a healthcare worker in a remote village would just want to know if
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a given medicine sample is the medicine it says on the cover or not.
This problem statement aligns nicely with the ASIN’s description.

We have worked on an ASIN-based solution for this[22]. We de-
veloped a visible spectroscopy based counterfeit medicine detector
using machine learning. This technique allows reliable predictions
to be made without requiring the necessary knowledge of pharma-
ceutics. The device was proposed as a solution to combat medica-
tion adulteration. The system was also used for the detection of
lethal doses of pesticide residue in fruit juice which poses a threat
in nearly 70% of all commercial fruit sold [6]. The spectrometer
diffracts the continuous spectrum produced by an incandescent
light-bulb throughout the visible region of the electromagnetic spec-
trum, 390 − 700𝑛𝑚. The incident light travels through the entrance
slit where it is then scattered by the sample of interest. Finally the
scattered light is diffracted by the DVD diffraction grating in order
to produce a continuous visible spectrum which is then captured
by the CMOS detector, a logitech C170 webcam. In lab-conditions,
we achieved remarkable accuracies of up to 100% thus proving that
the concept is not only possible but feasible. The interested readers
are requested to refer [22] for further details.

4.5 ASIN based CommSense
The effort to use existing communication systems as radars and
vice versa has been there since the last great war. One of the ways
we can exploit communication signal to know about the immediate
environment is by exploiting the pilot signal. Pilot signals are used
to estimate channel noise. This information is used in channel
equalization in the receivers. Changes in the pilot signal are not
fine enough to detect individual targets. However, they can be used
to identify changes in the environment. If we know the kind of
changes we are looking for then we can use machine learning to
identify the “events of interest” from the changes incurred by the
pilot signals. This way to sense, invented by the author, was named
communication based sensing or CommSense[20, 21]. Over the last
five years we have demonstrated its feasibility using both GSM[2]
and LTE[28] communication signals and its application in various
domains[3, 27, 29, 30].

5 CONCLUSION
In nature, most animals co-evolve their sensors in their ecosystem
for very specific problems. Inspired by this, in this paper a new
way to instrumentation was presented named application specific
instrumentation (ASIN). This way of co-designing sensors and AI
(SensAI) algorithms for a specific problem is inspired by neuroethol-
ogy. This is a biologically inspired scheme, where the focus is on
designing instruments for very focused problems, so focused that
the decision can be made binary. The proposed scheme is expected
to be less costly, require much less computational overhead and
to perform better for specialized applications. We have also dis-
cussed a few pieces of work where we have developed interesting
innovations and solutions based on ASIN design-principle. It is
expected that more solutions would emerge in the future where
sensors and machine learning algorithms are jointly developed for
highly specialized applications.
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