
ar
X

iv
:1

90
9.

10
65

8v
2

 [
cs

.C
C

]
 1

8
Fe

b
20

20

Decision list compression by mild random restrictions

Shachar Lovett∗

Computer Science Department

University of California, San Diego

shachar.lovett@gmail.com

Kewen Wu

School of EECS

Peking University, Beijing

shlw kevin@pku.edu.cn

Jiapeng Zhang†

School of Engineering and Applied Science

Harvard University

jpeng.zhang@gmail.com

February 19, 2020

Abstract

A decision list is an ordered list of rules. Each rule is specified by a term, which is a
conjunction of literals, and a value. Given an input, the output of a decision list is the value
corresponding to the first rule whose term is satisfied by the input. Decision lists generalize
both CNFs and DNFs, and have been studied both in complexity theory and in learning theory.

The size of a decision list is the number of rules, and its width is the maximal number of
variables in a term. We prove that decision lists of small width can always be approximated by
decision lists of small size, where we obtain sharp bounds. This in particular resolves a conjecture
of Gopalan, Meka and Reingold (Computational Complexity, 2013) on DNF sparsification.

An ingredient in our proof is a new random restriction lemma, which allows to analyze how
DNFs (and more generally, decision lists) simplify if a small fraction of the variables are fixed.
This is in contrast to the more commonly used switching lemma, which requires most of the
variables to be fixed.

1 Introduction

Decision lists are a model to represent boolean functions, first introduced by Rivest [24]. A decision
list is given by a list of rules (C1, v1), . . . , (Cm, vm). A rule is composed of a condition, given by a
term Ci, which is a conjunction of literals (variables or their negations); and an output value vi in
some set V . A decision list computes a function f : {0, 1}n → V as follows:

If C1(x) = True then output v1,
else if C2(x) = True then output v2,
. . . ,
else if Cm(x) = True then output vm.

The last rule is the default value, where we assume that Cm ≡ True.
Decision lists generalize both CNFs and DNFs. For example, a DNF is a decision list with

v1 = · · · = vm−1 = 1 and vm = 0, and a CNF is a decision list with v1 = · · · = vm−1 = 0

∗Research supported by NSF award 1614023.
†Research Supported by NSF grant CCF-1763299 and Salil Vadhan’s Simons Investigator Award.

1

http://arxiv.org/abs/1909.10658v2

and vm = 1. It can be shown that decision lists are a strict generalization of both DNFs and
CNFs [17,24]. Following Rivest’s original work, decision lists have been studied both in complexity
theory [2, 5, 6, 8, 11,18,26] and in learning theory [3, 7, 12,15,20,27,28].

Complexity measures of decision lists. There are two natural complexity measures of decision
lists: size and width. Let L = ((Ci, vi))i∈[m] be a decision list. Its size is the number of rules in it
(namely m), and its width is the maximal number of variables in a term Ci.

Decision list approximation. A decision list L ε-approximates another decision list L′ if the
two agree on a (1−ε) fraction of the inputs. It is straightforward to see that small-size decision lists
can be approximated by small-width decision lists, by removing rules of large width. Concretely, a
decision list of size m can be ε-approximated by a decision list of width w = log(m/ε), simply by
removing all rules with terms of width more than w. The reverse direction is the main focus of this
work. We prove the following result, which provides sharp bounds on approximating small-width
decision lists by small-size decision lists.

Theorem 1.1 (Main result). Let w ≥ 1, ε > 0. Any width-w decision list L can be ε-approximated

by a decision list L′ of width w and size s =
(

2 + 1
w log 1

ε

)O(w)
. Moreover, L′ is a sub-decision list

of L, obtained by keeping s rules in L and removing the rest. The bound on s is optimal, up to the

unspecified constant in the O(w) term.

The proof of Theorem 1.1 appears in Section 2. We note that the size bound can be simplified,
depending on whether the required error ε is below or above 2−w:

(

2 +
1

w
log

1

ε

)O(w)

=

{

2O(w) ε ≥ 2−w

(

2
w log 1

ε

)O(w)
ε ≤ 2−w.

In both cases, the bound we obtain is sharp, up to the unspecified constant in the O(w) term. We
give examples demonstrating this in Section 3.

1.1 Random restrictions

Random restrictions are an essential ingredient of the proof of Theorem 1.1. H̊astad’s switching
lemma [4, 13, 22] is based on the fact that small-width DNFs simplify under random restrictions.
More concretely, a random restriction that fixes a 1 − O(1/w) fraction of the inputs simplifies a
width-w DNF to a small-depth decision tree. In this work, we study random restrictions where a
small constant fraction of the variables is fixed.

A good example to keep in mind is the TRIBES function: a read-once DNF with 2w terms
of width w on disjoint variables. The TRIBES function does not simplify significantly under a
random restriction, unless one really fixes a 1−O(1/w) fraction of the inputs. For example, if we
randomly fix 50% of the inputs, say, then the TRIBES function simplifies to what is essentially a
smaller TRIBES function (more formally, it simplifies with high probability to a read-once DNF of
width Ω(w)). However, we show that this is in essence the worst possible example.

The following lemma is a special case of Lemma 2.12 applied to DNFs (the full lemma deals
with decision lists). Given a DNF f : {0, 1}n → {0, 1}, let ρ ∈ {0, 1, ∗}n be a restriction, and let
f ↾ρ be the restricted DNF. Clearly, some terms in f might become redundant in f ↾ρ. For example,
they could be false, or they could be implied by other terms. A term that is not redundant is called
useful. We show that after fixing even a small fraction of the variables (say, 1%), a width-w DNF
simplifies to have at most 2O(w) useful terms, and hence cannot be “too complicated”.

2

Lemma 1.2 (DNFs simplify after mild random restrictions). Let f be a width-w DNF, and let f ↾ρ
be a restriction of f obtained by restricting each variable with probability β, where the restricted

variables take values 0 and 1 with equal probability. Then the expected number of useful terms in

f ↾ρ is at most (4/β)w.

1.2 Applications

We discuss some applications of Theorem 1.1 below.

1.2.1 DNF sparsification

This decision list compression problem is a natural generalization of the DNF sparsification problem,
introduced by Gopalan, Meka and Reingold [10] as a means to obtain pseudorandom generators
fooling small-width DNFs. Their main structural result can be summarized as follows.

Theorem 1.3 ([10]). Any width-w DNF can be ε-approximated by a DNF of width w and size

(w log(1/ε))O(w).

They conjectured that a better bound is possible.

Conjecture 1.4 ([10]). Any width-w DNF can be ε-approximated by a DNF of width w and size

s(w, ε), where:

• Weak version: s(w, ε) = c(ε)w for some function c.

• Strong version: s(w, ε) = (log(1/ε))O(w).

The weak version was resolved by Lovett and Zhang [19], where they showed that c(ε) =
(1/ε)O(1) suffices. Our main result, Theorem 1.1, verifies the strong version of their conjecture (and
in fact, proves a sharper bound than the one conjectured).

Corollary 1.5 (This work). Any width-w DNF can be ε-approximated by a DNF of width w and

size
(

2 + 1
w log 1

ε

)O(w)
.

We remark that Corollary 1.5 is also tight, up to the unspecified constant in the O(w) term.
The proof is very similar to the proof in Section 3 that Theorem 1.1 is tight. We sketch the proof
here:

• For 2−2w ≤ ε ≤ 1/3, Claim 3.1 shows the existence of a function f : {0, 1}w → {0, 1} that
cannot be (1/3)-approximated by any decision list of width w and size O(2w/w). In particular,
f cannot be approximated by a DNF of width w and size O(2w/w). Note that f can trivially

be computed by a DNF of width w and size 2w, and that 2Ω(w) =
(

2 + 1
w log 1

ε

)Ω(w)
in this

regime.

• For ε ≤ 2−2w, consider exactly computing the Threshold-w function on log(1/ε) variables,
which amounts to approximation with any error < ε. This requires a width-w DNF of size
(log(1/ε)

w

)

=
(

2 + 1
w log 1

ε

)Ω(w)
.

3

1.2.2 Junta theorem

A k-junta is a function depending on at most k variables. Friedgut’s junta theorem [9] shows that
boolean functions of small influence can be approximated by juntas. For the relevant definitions
see for example [21].

Theorem 1.6 (Friedgut’s junta theorem [9]). Let f : {0, 1}n → {0, 1} be a boolean function with

total influence I. Then for any ε > 0, f can be ε-approximated by a k-junta for k = 2O(I/ε).

It is well known that width-w DNFs have total influence I = O(w), which implies by The-
orem 1.6 that width-w DNFs can be ε-approximated by 2O(w/ε)-juntas. Since a width-w size-s
decision list is a (sw)-junta, as a corollary of Theorem 1.1, we improve the bound, and generalize
it to decision lists.

Corollary 1.7 (This work). Any width-w decision list can be ε-approximated by a k-junta for

k =
(

2 + 1
w log 1

ε

)O(w)
.

This improves previous bounds, even when restricted to DNFs or CNFs. By combining the
results in [10,19] one gets the bound k = min {w log(1/ε), 1/ε}O(w) for width-w DNFs or CNFs. It
can be verified that our new result is indeed better; for example for ε = w−w we obtain (logw)O(w)

instead of wO(w). It is also worthwhile noting that the result of [19], which obtained the bound
(1/ε)O(w), can be extended to decision lists with minimal changes.

1.2.3 Learning small-width DNFs

A class of boolean functions is said to be (ε, δ)-PAC learnable using q queries if there exists a
learning algorithm that, given query access to an unknown function in the class, returns with
probability (1 − δ) a function which ε-approximates the unknown function, while making at most
q queries. In our context we consider membership queries, where the learning algorithm can query
the value of the unknown function on any chosen input.

A celebrated result of Jacskson [14] shows that polynomial-size DNFs can be PAC learned under
the uniform distribution using membership queries.

Theorem 1.8 (Jackson’s harmonic sieve [14]). The class of n-variate DNFs of size s is (ε, δ)-PAC
learnable under the uniform distribution with q = poly(s, n, 1/ε, log(1/δ)) membership queries.

Using Theorem 1.1, we can extend Jackson’s result to small-width DNFs. Note that the DNF
sparsification bound from [10, 19] also works here, if we replace the bound on s with their corre-
sponding bound.

Corollary 1.9 (This work). The class of n-variate DNFs of width w is (ε, δ)-PAC learnable

under the uniform distribution with q = poly(s, n, 1/ε, log(1/δ)) membership queries, where s =
(

2 + 1
w log 1

ε

)O(w)
.

Proof Sketch. Jackson’s algorithm combines a weak learner based on Fourier analysis and a boosting
algorithm that converts this weak learner to a strong learner. Let f(x) be the target DNF that
we are trying to learn. The weak learner solves the following problem: given a distribution D
on {0, 1}n, output a set S such that the parity χS(x) =

⊕

i∈S xi is correlated with f under the
distribution D. Initially D is the uniform distribution, but the boosting algorithm keeps adapting
D to focus on inputs where it made many mistakes.

In Jackson’s algorithm, the existence of such S is shown by observing that for a size-s DNF, at
least one of the terms must be 1/s correlated to the function; and each term’s contribution can be

4

attributed to the parities supported on it. For width-w terms, this leads to at most a 2−w decrease
in the correlation.

Assume now that f(x) is a width-w DNF with too many terms, so we cannot apply the previous
argument directly. Apply Theorem 1.1 with error γ (to be determined soon), to obtain an approx-

imate width-w DNF g(x) which γ-approximates f(x), where g has at most s =
(

2 + 1
w log 1

γ

)O(w)

terms. Crucially, we obtain g(x) by removing some of the terms in f(x), and hence g(x) ≤ f(x)
for all inputs x. In particular, Prx∼D[f(x) = 1] ≥ Prx∼D[g(x) = 1].

Assume that we know that the distribution D is not too far from uniform. Concretely, that
D(x) ≤ K2−n for some parameter K. This implies that

Pr
x∼D

[f(x) = 1] ≤ Pr
x∼D

[g(x) = 1] + γK.

We will choose γ = 1/12K. We may assume that Prx∼D[f(x) = 1] ∈ [1/3, 2/3], otherwise the
constant 1 function correlates with f under D. Thus Prx∼D[g(x) = 1] ∈ [1/4, 3/4]. This implies,
by the same argument as in the original paper of Jackson, there there is a term C of g which is
Ω(1/s)-correlated with g. One can verify that as g(x) ≤ f(x), C is also Ω(1/s)-correlated with f .

Finally, we need to bound K. It is known (see for example [16]) that boosting algorithms can
be restricted to have K = ε−O(1), which completes the proof.

1.3 Proof overview

We give a high-level overview of the proof of Theorem 1.1. Let L = ((Ci, vi)) be a decision list of
width w and size m.

General Framework. Given a subset J ⊂ [m], we denote by L|J the decision list restricted to
the rules in J , where we delete the rest. Our goal is to find a small subset J ⊂ [m] such that L|J
approximates L. We say that a rule (Ci, vi) of L is hit by an input x if Ci(x) = 1 and Cj(x) = 0
for j < i; in this case, L(x) = vi. The main intuition underlying our approach is:

If a rule is rarely hit by random inputs, then we can safely remove it.

Armed with this intuition, our approach is to choose J to be the set of rules with the highest
probability of being hit. We show that in order to get an ε-approximation, it suffices to keep the

top
(

2 + 1
w log 1

ε

)O(w)
rules.

Our general approach follows that of Lovett and Zhang [19]. They combined two central results
in the analysis of boolean functions: random restrictions and noise stability. The main innovation
in the current work is that we apply random restrictions that fix only a small fraction of the inputs;
this is in contrast to the common use of random restrictions, such as in the proof of H̊astad’s
switching lemma [13], where most variables are fixed. The ability to handle random restrictions
which fix only a small fraction is what allows us to obtain improved bounds.

Mild random restrictions. An index i ∈ [m] is said to be useful if there exists an assignment x
such that the evaluation of L(x) hits the i-th rule (and hence outputs vi). We denote the number
of useful indices in L by #useful (L). This notion is natural, as we can always discard rules if no
assignment hits them. The main point is that restrictions can render some rules in a decision list
useless. Let ρ be a random restriction that keeps each variable alive with probability α. We show

5

that on average, the restricted decision list L ↾ρ has a small number of useful indices:

E
ρ
[#useful (L ↾ρ)] ≤

(

4

1− α

)w

.

The proof is based on an encoding argument. Let ρ be a restriction for which L ↾ρ has T useful
indices. Let t ∈ [T] be uniformly chosen. We construct a new restriction ρ′ by further restricting
the variables in the t-th useful rule so that this rule is satisfied. Then from ρ′ and some small
additional information a, we can recover both ρ and t. This shows that the probability of T being
too large is very low, as the entropy of (ρ′, a) is much lower than that of (ρ, t).

Noise Stability. Since there is no guarantee about the value on each rule of the decision list,
it is convenient to consider the following index function. Let L = ((Ci, vi))i∈[m] be a decision list
on n variables. The index function of L outputs for an input x the index i of the first term in L
satisfied by x. Equivalently, IndL is given by the decision list IndL = ((Ci, i))i∈[m].

We make two important definitions. What we want to analyze are the quantities

pL(i) := Pr
x
[IndL(x) = i] ,

where x is taken from the uniform distribution of the input. In particular, we want to show that
there is a small set of indices J such that

∑

i∈J pL(i) ≥ 1− ε. What we can analyze using random
restrictions are the quantities

qL(α, i) = Pr
ρ
[index i is useful in L ↾ρ] ,

since it holds that
∑

i

qL(α, i) = E
ρ
[#useful (L ↾ρ)] ≤

(

4

1− α

)w

.

We use noise stability to bridge between the two.
Let β = 1 − α. For any x ∈ {0, 1}n, the noise distribution y ∼ Nβ(x) is sampled by taking

Pr [yi = xi] =
1+β
2 independently for i ∈ [n]. Consider sampling x ∈ {0, 1}n uniformly and y ∼

Nβ(x). We can equivalently sample the pair (x, y) by first sampling a common restriction ρ,
where each variables stays alive with probability α, and then sample its completion for x and y
independently. Let

StabL(β, i) := Pr
x,y

[IndL(x) = IndL(y) = i] .

We show that pL(i) and qL(α, i) are both polynomially related, by relating them to StabL(β, i):

pL(i)
2

qL(1− β, i)
≤ StabL(β, i) ≤ pL(i)

2

1+β .

The upper bound is proven by hypercontrativity, and the lower bound by a somewhat delicate
Cauchy-Schwarz inequality. This allows us to obtain that

pL(i) ≤ qL(1− β, i)
1+β

2β .

Finally, we put everything together by optimizing the value of β.

6

Related works. We already discussed the works of Gopalan, Meka and Reingold [10] and Lovett
and Zhang [19] which gave weaker bounds for DNF sparsification than those in Theorem 1.1.

There have been previous works studying how small-width DNFs simplify under mild random
restrictions that fix a small fraction of the variables (say, 1%). Segerlind, Buss and Impagliazzo’s
work [25], improved by Razborov [23], show that width-w DNFs simplify to a decision tree of depth
2O(w). We obtain bounds on size (namely, number of useful terms) in Theorem 1.1, which are
better than bounds on depth. However, we only bound the first moment (that is, expected number
of useful terms), while [23] bounds higher moments as well. So to some extent, the results are
incomparable. We believe that with some further work, one can improve our techniques to obtain
bounds on higher moments as well (this was unnecessary for the current work). Finally, it is also
worthwhile to mention the work by the authors and Alweiss [1], where mild random restrictions
(of a somewhat different flavor) were used to obtain improved bounds for the sunflower lemma in
combinatorics.

Paper Organization. In Section 2, we prove the upper bound on decision list compression. In
Section 3, we give the lower bounds to show the tightness of our result.

Acknowledgements. We thank Ben Rossman for invaluable discussions. We also thank Ryan
Alweiss and the anonymous reviewers for helpful suggestions on an earlier version of this paper.

2 Upper bounds

We start by make some definitions formal. We denote [n] = {1, 2, . . . , n}, variables are x1, . . . , xn,
and literals are x1,¬x1, . . . , xn,¬xn. A term is a conjunction of literals.

Definition 2.1 (Decision list). A width-w size-m decision list is a list L = ((Ci, vi))i∈[m] of rules.

A rule is a pair (Ci, vi), where Ci is a term containing at most w literals and each vi is a value in

some finite set V . We assume Cm ≡ 1, and (Cm, vm) is the final default rule.

For any J ⊆ [m] with m ∈ J , we denote by L|J = ((Cj , vj))j∈J the restriction of L to the rules

in J , where elements of J are taken in ascending order.

The evaluation of L given assignment x is to find the first index i such that Ci(x) = 1 and then
to output L(x) = vi. We make additional remarks for the decision list to avoid potential pitfalls.

• If m /∈ J , we will consider L|J invalid, as it does not have a default rule at the end.

• No variable appears in any single term more than once, which rules out x1∧x1 and x1∧¬x1.

Our goal in this section is to prove the following theorem, which is the upper bound part in
Theorem 1.1.

Theorem 2.2. Let L = ((Ci, vi))i∈[m] be a width-w decision list. Then for every ε > 0, there exists

J ⊆ [m],m ∈ J of size |J | =
(

2 + 1
w log 1

ε

)O(w)
such that Pr [L(x) 6= L|J(x)] ≤ ε.

2.1 Useful indices

Since there is no guarantee about the value on each rule of the decision list, it is convenient to
consider the index function. Let L = ((Ci, vi))i∈[m] be a decision list on n variables. The index
function of L is a function IndL : {0, 1}n → [m], given by

IndL(x) = min {i ∈ [m] | Ci(x) = 1} .

7

Equivalently, IndL is given by the decision list IndL = ((Ci, i))i∈[m]. Using the index function, it
suffices to discard some rules of L and show it still approximates the index function.

Claim 2.3. Let L = ((Ci, vi))i∈[m] be a decision list. Then for any J ⊆ [m],m ∈ J , we have

Pr [L(x) 6= L|J(x)] ≤ Pr [IndL(x) /∈ J] .

Proof. This follows as if IndL(x) = j ∈ J , then L(x) = L|J(x) = vj.

Obviously, if a rule of a decision list is covered by some previous rules, then we can safely remove
it. For example, in (x1, 1), (x1 ∧ x2, 2) the second rule is useless. To make this more formal, we
introduce the following notion of a useful index.

Definition 2.4 (Useful index). Given size-m decision list L, an index i ∈ [m] is said to be useful
if there exists an assignment x such that IndL(x) = i. We denote by #useful (L) the number of

useful indices in L.

Example 2.5. Assume L = ((x1, a), (x1∧¬x2, b), (1, c), (x1 , d), (1, e)). Then indices 1, 3 are useful,

but indices 2, 4, 5 are not. So #useful (L) = 2.

The main intuition underlying our approach is that rules that are hardly hit by random inputs
can be removed. Motivated by this, we define hit probability

pL(i) := Pr [IndL(x) = i] .

Claim 2.6. For any size-m decision list L, we have
∑m

i=1 pL(i) = 1.

Proof. This follows as the events [IndL(x) = i] are a partition of the probability space.

The following is our main technical lemma.

Lemma 2.7. Let L = ((Ci, vi))i∈[m] be a width-w decision list. Sort [m] = {j1, . . . , jm} such that

pL(j1) ≥ pL(j2) ≥ · · · ≥ pL(jm). For any ε > 0, let

t =

(

2 +
1

w
log

1

ε

)O(w)

.

Then for J = {j1, . . . , jt,m} it holds that Pr [IndL(x) /∈ J] ≤ ε.

The proof of Theorem 2.2 follows immediately, by combining Lemma 2.7 and Claim 2.3.

2.2 Random restrictions and encoding

A restriction on n variables is ρ ∈ {0, 1, ∗}n. An (n, k)-random restriction is the uniform distribution
over restrictions ρ ∈ {0, 1, ∗}n with exactly k stars, which we denote by R(n, k). An (n, α)-random
restriction, which we denote by U (n, α), assigns independently each bit of the restriction ρ to 0, 1, ∗
with probability 1−α

2 , 1−α
2 , α respectively. Given a decision list L : {0, 1}n → V , its restriction under

ρ is L ↾ρ: {0, 1}
ρ−1(∗) → V .

Definition 2.8 (Useful probability). Given size-m decision list L and α ∈ (0, 1), the useful prob-

ability of an index i ∈ [m] is

qL(α, i) := Pr
ρ∼U (n,α)

[index i is useful in L ↾ρ] .

8

Note that we assume L initially does not contain useless rules, so for any α and i, we always
have qL(α, i) > 0. We also have the following simple fact regarding useful probability.

Claim 2.9. For any size-m decision list L, we have
∑m

i=1 qL(α, i) = Eρ∼U (n,α) [#useful (L ↾ρ)].

Proof. Let 1ρ,i be the indicator of index i being useful in L ↾ρ. Then

E
ρ∼U (n,α)

[#useful (L ↾ρ)] = E
ρ

[

m
∑

i=1

1ρ,i

]

=

m
∑

i=1

E
ρ
[1ρ,i] =

m
∑

i=1

qL(α, i).

Now we present an encoding/decoding scheme for random restriction and analyze the expecta-
tion in Claim 2.9 explicitly. Let α ∈ (0, 1) be such that αn is an integer. Define:

U :=

{

(ρ, s)

∣

∣

∣

∣

ρ ∈ R(n, αn), s ∈ {1, . . . ,#useful (L ↾ρ)}

}

V :=

{

(ρ′, a)

∣

∣

∣

∣

ρ′ ∈
w
⋃

k=0

R(n, αn − k), a ∈ {Old,New}w
}

.

We define two deterministic algorithms Enc : U → V and Dec : Enc(U) ⊆ V → U such that
Dec(Enc(ρ, s)) = (ρ, s) holds for any (ρ, s) ∈ U .

Algorithm 1: Encoding algorithm Enc(ρ, s)

Input: restriction and index (ρ, s) ∈ U
Output: restriction and string (ρ′, a) ∈ V

1 I ← {i | i is a useful index in L ↾ρ}
2 j ← the s-th element in I
3 ρ′ ← ρ, a← ∅

/* Assume Cj =
∧c

k=1 yjk , yjk ∈ {xjk ,¬xjk} , c ≤ w */

4 for k = 1 to c do

5 if ρ(xjk) ∈ {0, 1} then
6 Append a with Old /* xjk is already set by ρ */

7 else

8 Append a with New /* xjk is newly set to satisfy this term */

9 if yjk = xjk then Update ρ′(xjk)← 1 else Update ρ′(xjk)← 0

10 end

11 Complete a arbitrarily to length w

12 end

13 return (ρ′, a)

The following claim proves the correctness of the encoding and decoding algorithms.

Claim 2.10. Dec(Enc(ρ, s)) = (ρ, s) holds for any (ρ, s) ∈ U .

Proof. Sort literals in each term of L = ((Ci, vi))i∈[m] arbitrarily. To justify the correctness, let
(ρ′, a) = Enc(ρ, s), then we need to ensure:

• Dec(ρ′, a) obtains the same j in line 1 as Enc(ρ, s) does in line 2:

During Enc(ρ, s), index j is useful in L ↾ρ, thus setting unfixed variables to satisfy Cj will
not make any term Ci for i < j satisfied. Hence the first satisfied term in L ↾ρ′ is Cj .

9

Algorithm 2: Decoding algorithm Dec(ρ′, a)

Input: restriction and string (ρ′, a) ∈ Enc(U) ⊆ V
Output: restriction and index (ρ, s) ∈ U

1 j ← index of the first satisfied term in L ↾ρ′

2 ρ← ρ′

/* Assume Cj =
∧c

k=1 yjk , yjk ∈ {xjk ,¬xjk} , c ≤ w */

3 for k = 1 to c do

4 if ak = New then /* xjk was not set by ρ */

5 Update ρ(xjk)← ∗
6 end

7 end

8 I ← {i | i is a useful index in L ↾ρ}
9 s← rank of j in I

10 return (ρ, s)

• Dec(ρ′, a) in line 8 obtains the correct ρ:

Since each term is sorted in advance, and a encodes which variable in Cj is set by Enc(ρ, s)
rather than ρ, the loop in Dec(ρ′, a) will set these variables back to ∗ and recover ρ.

Corollary 2.11. |U| ≤ |V|.

Proof. Enc is an injection from U to Enc(U) ⊂ V.

Lemma 2.12. Let L be a width-w decision list on n variables and let α ∈ (0, 1). Then

E
ρ∼U (n,α)

[#useful (L ↾ρ)] ≤

(

4

1− α

)w

.

Proof. We first prove the bound for ρ ∼ R(n, αn) and then increase the number of variables to
infinity, by adding dummy variables. This proves the desired bound as for n′ →∞, the restriction
of R(n′, αn′) to the first n variables converges to U (n, α). We have

E
ρ∼R(n,αn)

[#useful (L ↾ρ)] =
1

|R(n, αn)|

∑

ρ∈R(n,αn)

#useful (L ↾ρ)

=
|U|

|R(n, αn)|
≤

|V|

|R(n, αn)|
≤

(

∑w
k=0

(n
αn−k

)

2(1−α)n+k
)

× 2w

(n
αn

)

2(1−α)n

≤

(

∑w
k=0

(n
αn−k

)

)

× 4w

(n
αn

) ≤

(

n+w
αn

)

× 4w
(n
αn

) ≤

(

4

1− α

)w

.

2.3 Noise stability

We use noise stability as a bridge between pL(i) and qL(α, i).

10

Definition 2.13 (Noisy distribution). Given x ∈ {0, 1}n and a noise parameter β ∈ (0, 1), we

denote by Nβ(x) the distribution over y ∈ {0, 1}n, where Pr [yi = xi] =
1+β
2 ,Pr [yi 6= xi] =

1−β
2

independently for all i ∈ [n].

Definition 2.14 (Stability). Let g : {0, 1}n → {0, 1} be a boolean function. The β-stability of g is

Stabβ(g) = Pr
x∈{0,1}n,y∼Nβ(x)

[g(x) = g(y) = 1] .

The hypercontractive inequality (see for example [21], page 259) allows us to bound the stability
of a boolean function by its acceptance rate.

Fact 2.15. Let g : {0, 1}n → {0, 1} and β ∈ (0, 1). Then Stabβ(g) ≤ (Pr [g(x) = 1])
2

1+β .

Next, we define index stability and relate it to useful probability qL(·, ·) and hit probability
pL(·).

Definition 2.16 (Index stability). Given a size-m decision list L on n variables, the β-stability of

index i ∈ [m] is
StabL(β, i) := Pr

x∈{0,1}n,y∼Nβ(x)
[IndL(x) = IndL(y) = i] .

Lemma 2.17 (Bridging lemma). Let L be a size-m width-w decision list on n variables. Then for

any index i ∈ [m] and β ∈ (0, 1), we have

pL(i)
2

qL(1− β, i)
≤ StabL(β, i) ≤ pL(i)

2

1+β .

Proof. We first prove the upper bound. Let g : {0, 1}n → {0, 1} be an indicator boolean function
for IndL(x) = i. Then using Fact 2.15, we have

StabL(β, i) = Stabβ(g) ≤ (Pr [g(x) = 1])
2

1+β = (Pr [IndL(x) = i])
2

1+β = pL(i)
2

1+β .

We now turn to prove the lower bound. Let α = 1 − β. Observe that we can sample (x, y)
where x ∈ {0, 1}n, y ∼ Nβ(x) as follows:

• Sample restriction ρ ∼ U (n, α);

• Sample uniform x′ ∈ {0, 1}ρ
−1(∗) and complete stars in ρ with it as x;

• Sample uniform y′ ∈ {0, 1}ρ
−1(∗) and complete stars in ρ with it as y.

We thus have
StabL(β, i) = Pr

ρ,x′,y′

[

IndL ↾ρ (x
′) = IndL ↾ρ (y′) = i

]

.

We now make a seemingly redundant, but surprisingly useful, conditioning. Let E(ρ, i) denote the
event

E(ρ, i) := [i is useful in L ↾ρ] .

Then we can equivalently write

StabL(β, i) = Pr
ρ,x′,y′

[

IndL ↾ρ (x′) = IndL ↾ρ (y
′) = i ∧ E(ρ, i)

]

.

11

For any fixed ρ, define
rρ(i) := Pr

x′

[

IndL ↾ρ (x
′) = i

]

.

Since x′, y′ are independent for any fixed restriction, we have

StabL(β, i) =Pr
ρ
[E(ρ, i)] · Pr

ρ,x′,y′

[

IndL ↾ρ (x
′) = IndL ↾ρ (y′) = i

∣

∣

∣

∣

E(ρ, i)

]

=qL(α, i) · E
ρ

[

rρ(i)
2

∣

∣

∣

∣

E(ρ, i)

]

≥qL(α, i) ·

(

E
ρ

[

rρ(i)

∣

∣

∣

∣

E(ρ, i)

])2

(Cauchy-Schwarz inequality)

=
1

qL(α, i)

(

qL(α, i) · E
ρ

[

rρ(i)

∣

∣

∣

∣

E(ρ, i)

])2

=
1

qL(α, i)

(

Pr
ρ,x′

[

IndL ↾ρ (x
′) = i ∧ E(ρ, i)

]

)2

=
1

qL(α, i)

(

Pr
ρ,x′

[

IndL ↾ρ (x
′) = i

]

)2

=
1

qL(α, i)

(

Pr
x
[IndL(x) = i]

)2
=

pL(i)
2

qL(α, i)
.

Corollary 2.18. Let L be a size-m width-w decision list. Then for any index i ∈ [m] and β ∈ (0, 1),
we have

pL(i) ≤ qL(1− β, i)
1+β

2β .

As a remark, we note that Lemma 2.17 can be generalized to arbitrary boolean functions with
a similar proof.

Lemma 2.19. Let g : {0, 1}n → {0, 1} be a boolean function which is not identically zero. Set

|g| = Pr [g(x) = 1]. Then for any β ∈ (0, 1), we have

|g|2

Pr
ρ∼U (n,1−β)

[g ↾ρ 6≡ 0]
≤ Stabβ(g) ≤ |g|

2

1+β .

2.4 Putting everything together

Now we put everything together and give the proof of Lemma 2.7.

Proof of Lemma 2.7. Recall that we sorted [m] = {j1, . . . , jm} such that pL(j1) ≥ pL(j2) ≥ · · · ≥
pL(jm). Let J = {j1, . . . , jt,m} for t to be optimized later.

Next, let β ∈ (0, 1) to be optimized later and set α = 1 − β. Sort [m] = {i1, . . . , im} such that
qL(α, i1) ≥ qL(α, i2) ≥ · · · ≥ qL(α, im). By Claim 2.9 and Lemma 2.12, we have

m
∑

k=1

qL(α, ik) = E
ρ∼U (n,α)

[#useful (L ↾ρ)] ≤

(

4

1− α

)w

=

(

4

β

)w

.

12

Note that we have sorted qL in decreasing order, so

qL(α, ik) ≤
1

k

(

4

β

)w

.

Observe that j1, . . . , jt have the largest hit probability, and apply Corollary 2.18, then

∑

j /∈J

pL(j) ≤
m
∑

k=t+1

pL(jk) ≤
m
∑

k=t+1

pL(ik) ≤
m
∑

k=t+1

qL(α, ik)
1+β

2β

≤

(

4

β

)w× 1+β

2β ∑

k≥t+1

(

1

k

)
1+β

2β

≤

(

4

β

)w× 1+β

2β

×
2β

1− β
× t−

1−β

2β .

If we restrict β ≤ 1/2 and choose

t =

(

1

ε

)
2β

1−β
(

4

β

)w× 1+β

1−β
(

2β

1− β

)
2β

1−β

≤ 4

(

1

ε

)4β (4

β

)3w

,

then
Pr [IndL(x) /∈ J] =

∑

j /∈J

pL(j) ≤ ε.

Now we divide ε into two cases. Assume ε = 2−ℓw. Then:

• If ℓ ≤ 2 we set β = 1/2 and get t = 2O(w).

• If ℓ ≥ 2 we set β = 1/ℓ and get t = ℓO(w).

One can verify that in either case we get

t =

(

2 +
1

w
log

1

ε

)O(w)

.

3 Lower bounds

In this section, we prove two lower bounds for decision list compression, which show that the bounds
in Theorem 1.1 are tight up to constants.

Claim 3.1. For any w, there is a width-w decision list L : {0, 1}w → {0, 1} such that

Pr
[

L(x) 6= L′(x)
]

> 1/3

for any width-w decision list L′ of size at most 2w/100w.

Proof. Since any boolean function on w variables can be expressed as some width-w decision list,

13

there are 22
w

possible L. On the other hand, for any fixed L′, it can approximate at most

(

2w

2w/3

)

× 22
w/3 ≤ 20.97×2w

different boolean functions within distance 1/3; and for fixed size m, there are at most (3w × 2)m

distinct size-m width-w decision lists. As small-size decision lists can be embedded in larger ones,
when restricted to size at most 2w/100w, width-w decision lists only approximate at most

(3w × 2)
2w

100w × 20.97×2w < 22
w

different boolean functions on w variables.

Claim 3.2. For any w and n > 2w, there is a width-w decision list L : {0, 1}n → {0, 1} which is

not equivalent to any width-w decision list L′ of size smaller than
(n
w

)

/n2.

Proof. Let m =
(

n
w

)

and sort all
(

n
w

)

subsets of [n] with size w as {S1, . . . , Sm} arbitrarily. For any
i ∈ [m], define Ci =

∧

j∈Si
xj . For any v ∈ {0, 1}m, let Lv = ((C1, v1), . . . , (Cm, vm), (1, 0)) be a

size-(m + 1) width-w decision list.
As small-size decision lists can be embedded in larger ones, assume towards a contradiction that

any Lv is equivalent to some size-(m/n2) width-w decision list L′
v. Given L′

v, we can recover Lv

by enumerating all assignments, since all rules in Lv are useful. Thus, by counting argument, the
number of possible L′

v is upper bounded by

(

2×
w
∑

k=0

2k
(

n

k

)

)(nw)/n
2

≤

(

n

w

)2m/n2

< 2m.

Now the general lower bound follows immediately.

Corollary 3.3. For any w and ε ≤ 1/3, there is a width-w decision list L such that

Pr
[

L(x) 6= L′(x)
]

> ε

holds for any width-w decision list L′ of size at most

(

2 +
1

w
log

1

ε

)O(w)

.

Proof. For ε ≥ 2−2w, let L be the decision list in Claim 3.1. Then it cannot be approximated
within ε < 1/3 by a decision list L′ of size at most

2w

100w
=

(

2 +
1

w
log

1

ε

)O(w)

.

For ε < 2−2w, let L be the decision list in Claim 3.2 with n = log(1/ε). Since now ε = 2−n, the
desired L′ must be equivalent to L. Thus it cannot be realized by a decision list L′ of size at most

(

n
w

)

n2
=

(

log 1
ε

w

)O(1)

=

(

2 +
1

w
log

1

ε

)O(w)

.

14

References

[1] R. Alweiss, S. Lovett, K. Wu, and J. Zhang. Improved bounds for the sunflower lemma. arXiv
preprint arXiv:1908.08483, 2019.

[2] V. Arvind, J. Köbler, S. Kuhnert, G. Rattan, and Y. Vasudev. On the isomorphism problem
for decision trees and decision lists. Theoretical Computer Science, 590:38–54, 2015.

[3] G. Bagallo and D. Haussler. Boolean feature discovery in empirical learning. Machine learning,
5(1):71–99, 1990.

[4] P. Beame. A switching lemma primer. Technical report, Technical Report UW-CSE-95-07-01,
Department of Computer Science, 1994.

[5] A. Blum. Rank-r decision trees are a subclass of r-decision lists. Information Processing

Letters, 42(4):183–185, 1992.

[6] A. Chattopadhyay, M. Mahajan, N. S. Mande, and N. Saurabh. Lower bounds for linear
decision lists. CoRR, abs/1901.05911, 2019.

[7] A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower bound on the number
of examples needed for learning. Information and Computation, 82(3):247–261, 1989.

[8] T. Eiter, T. Ibaraki, and K. Makino. Decision lists and related boolean functions. Theoretical
Computer Science, 270(1-2):493–524, 2002.

[9] E. Friedgut. Boolean functions with low average sensitivity depend on few coordinates. Com-

binatorica, 18(1):27–35, 1998.

[10] P. Gopalan, R. Meka, and O. Reingold. DNF sparsification and a faster deterministic counting
algorithm. Computational Complexity, 22(2):275–310, 2013.

[11] D. Guijarro, V. Lavin, and V. Raghavan. Monotone term decision lists. Theoretical Computer

Science, 259(1-2):549–575, 2001.

[12] T. Hancock, T. Jiang, M. Li, and J. Tromp. Lower bounds on learning decision lists and trees.
Information and Computation, 126(2):114–122, 1996.

[13] J. H̊astad. Computational Limitations of Small-depth Circuits. MIT Press, Cambridge, MA,
USA, 1987.

[14] J. C. Jackson. An efficient membership-query algorithm for learning DNF with respect to the
uniform distribution. Journal of Computer and System Sciences, 55(3):414–440, 1997.

[15] M. Kearns, M. Li, L. Pitt, and L. Valiant. On the learnability of boolean formulae. In
Annual ACM Symposium on Theory of Computing: Proceedings of the nineteenth annual ACM

conference on Theory of computing, volume 1987, pages 285–295. Citeseer, 1987.

[16] A. R. Klivans and R. A. Servedio. Boosting and hard-core set construction. Machine Learning,
51(3):217–238, 2003.

15

[17] R. Kohavi and S. Benson. Research note on decision lists. Machine Learning, 13(1):131–134,
1993.

[18] M. Krause. On the computational power of boolean decision lists. computational complexity,
14(4):362–375, 2006.

[19] S. Lovett and J. Zhang. DNF sparsification beyond sunflowers. In Proceedings of the 51st

Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA,

June 23-26, 2019., pages 454–460, 2019.

[20] Z. Nevo and R. El-Yaniv. On online learning of decision lists. Journal of Machine Learning

Research, 3(Oct):271–301, 2002.

[21] R. O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

[22] A. A. Razborov. Bounded arithmetic and lower bounds in boolean complexity. In Feasible

Mathematics II, pages 344–386. Springer, 1995.

[23] A. A. Razborov. Pseudorandom generators hard for k-dnf resolution and polynomial calculus
resolution. Annals of Mathematics, pages 415–472, 2015.

[24] R. L. Rivest. Learning decision lists. Machine learning, 2(3):229–246, 1987.

[25] N. Segerlind, S. Buss, and R. Impagliazzo. A switching lemma for small restrictions and lower
bounds for k-dnf resolution. SIAM Journal on Computing, 33(5):1171–1200, 2004.

[26] G. Turán and F. Vatan. Linear decision lists and partitioning algorithms for the construction
of neural networks. In Foundations of Computational Mathematics, pages 414–423. Springer,
1997.

[27] F. Wang and C. Rudin. Falling rule lists. In Artificial Intelligence and Statistics, pages 1013–
1022, 2015.

[28] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal. Data Mining: Practical machine learning

tools and techniques. Morgan Kaufmann, 2016.

16

