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1 INTRODUCTION
Urban population is increasing strikingly and human mobility is becoming more complex and bulky, affecting
crucial aspects of people lives such as the spreading of viral diseases (e.g., the COVID-19 pandemic) [101, 105,
127, 130, 141, 156], the behavior of people in case of natural disasters [83, 175, 199], the public and private
transportation and the resulting traffic volumes [31, 58, 94, 153], the well-being of citizens [137, 176, 192], the
severity of air pollution, energy and water consumption [19, 126, 178]. Furthermore, crowds’ movement between
cities is influenced by migrations from rural to urban areas, such as those induced by natural disasters, climate
change, and conflicts [2, 70, 117, 144, 149, 166, 169].

Fortunately, policymakers are not unarmed in facing these challenges. The rise of ubiquitous computing (e.g.,
mobile phone, the Internet of Things, social media platforms) provides an always up-to-date and precise way to
sense human movements at various temporal and spatial scales. Examples of mobility data include tracks from
GPS devices embedded in smartphones [21, 106, 123, 143, 232], vehicles [13, 60, 133, 136] or boats [29, 57, 151, 210];
records produced by the communication between phones and the cellular network [18, 65]; and geotagged posts
from social media platforms [17, 41, 88, 111, 146]. This deluge of digital data fostered a vast scientific production
on various aspects of human mobility, such as the mining of trajectory data [84, 119, 193, 226, 230], the uncovering
of the statistical patterns [9, 18, 65, 173], and the estimation of the privacy risk [45, 59, 139, 140, 142, 155]. The
development of powerful Artificial Intelligence (AI) techniques and the availability of big mobility data offered
unprecedented opportunities for researchers to use Deep Learning (DL) approaches to solve mobility-related
challenges. In this survey, we focus on DL solutions to predict or generate human movements and exclude
other approaches solving other problems, such as semantic enrichment of mobility data (e.g., predicting the
purpose of movement) [150], home location detection [132], and population inference [46]. In particular, we
focus on two categories of tasks: predictive and generative (see Figure 1). We discuss two predictive tasks, namely
next-location prediction and crowd flow prediction, and two generative tasks, namely trajectory generation and
flow generation.

Next-location prediction is about forecasting which location an individual will visit given historical data about
their mobility. It is crucial in many applications such as travel recommendation, location-aware advertisements
and geomarketing, early warning of potential public emergencies, and recommendation of friends in social
network platforms [23, 203, 227, 228, 235]. Crowd flow prediction, instead, is the task of forecasting the incoming
and outgoing flows of people on a geographic region, which has an impact on public safety, the definition of
on-demand services, the management of land use, and traffic optimization [50, 81, 164, 204, 219]. Concerning
generative tasks, trajectory generation deals with generating synthetic trajectories that can reproduce, realistically,
the individual statistical patterns of human mobility [9, 74, 171, 194]. Flow generation deals with generating
realistic flows among locations, given their characteristics and the distance among them, and without any
knowledge about the real flows. Although approaches based on Machine Learning (ML) achieve good results
in solving these four tasks [23, 50, 164, 203, 204, 219, 228], multiple reasons pushed researchers to adopt DL
techniques, such as the ability to automatically extract relevant patterns from (un)structured and heterogeneous
data, and the outstanding results obtained in other fields (e.g., computer vision, natural language processing).
Several survey papers that provide interesting perspectives on single mobility tasks [9, 50, 74, 100, 164, 165,

171, 204], mobility data sources [207, 228], or traditional ML approaches [74, 185, 194]. A few surveys discuss DL
approaches to spatio-temporal data mining [197], tasks related to the smart city ecosystem [32] or traffic-related
issues [86, 200], covering some aspects related to human mobility but without a specific focus on the challenges
and solutions to mobility-related tasks.

In this survey, we discuss DL solutions to next-location prediction, crowd flow prediction, trajectory generation
and flow generation, organizing them into a proper taxonomy and discussing why those solutions may overcome
limitations of existing traditional models. In order to find relevant papers for these tasks, we searched on Scopus
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Fig. 1. A taxonomy of the mobility tasks we discuss in this survey. We classify mobility tasks in predictive, aiming at
forecasting future mobility at an individual or collective level (Section 3), and generative, aiming at generating realistic
trajectories of mobility flows (Section 4). Among the predictive tasks, we cover i) next-location prediction, the problem
of forecasting future whereabouts given the mobility history of individuals (Section 3.1), and ii) crowd flow prediction,
whose goal is to forecasting future aggregated flows given historical observations (Section 3.2). On the other hand, we
have two generative tasks: i) trajectory generation aims at generating realistic individual trajectories (Section 4.1), and ii)
flow generation whose goal is to generate realistic flows among locations on a geographic region (Section 4.2). We use this
taxonomy to map relevant works to the task they solve and shape this survey’s structure.

the following keywords: "crowd flow", "next-location", "flow prediction", "flow generation", "trajectory generation",
"mobility generation", and "mobility prediction". Among the obtained results, we selected those using DL, which
are commonly used in subsequent papers as baselines, which are seminal works for the task they address, and
which add some novelty in terms of DL pipelines, how DL modules are combined and data handled. For each task,
we also describe the open mobility datasets used by the papers and the evaluation metrics typically adopted. In
the Appendix, we provide a more detailed description of deep learning modules (Appendix B), datasets (Appendix
C), evaluation metrics (Appendix D), and mobility patterns’ (Appendix E). In summary, this survey provides the
reader with:

• An introduction to the fundamental concepts and nomenclature of human mobility (Section 2.1) and the
key ideas behind the DL modules (Sections 2.2).

• A taxonomy of tasks related to predicting and generating human movements, with a comprehensive dis-
cussion on next-location prediction (Section 3.1), crowd flow prediction (Section 3.2), trajectory generation
(Section 4.1), and flow generation (Section 4.2). For each task, we define the problem, discuss the DL modules

, Vol. 1, No. 1, Article . Publication date: August 2021.



4 • Luca et al.

used in the literature to address it, we highlight the advantages of using DL over traditional models and list
the public datasets and evaluation metrics commonly used for each task.

• A discussion of the most interesting open challenges about the four tasks (Section 5). We also provide a
GitHub repository (bit.ly/DL4HM) where researchers can co-operate to update the list of relevant mobility
datasets and papers.

• An Appendix in which we discuss the characteristics of DL modules, the data sources, the public datasets,
the evaluation metrics used in the selected papers, and the mobility patterns used to assess the realism of
generative models.

The survey is structured as follows. In Section 2, we provide the definition of spatio-temporal trajectories
and spatial aggregations (Section 2.1), and we briefly discuss the key DL modules used by the models tackling
human mobility challenges (Section 2.2). A detailed discussion of such modules and a more detailed overview of
human-mobility well-known laws and patterns are discussed in Appendix E.

In Sections 3 and 4, we explore, respectively, the predictive and generative tasks summarized in Figure 1. For
each task, after discussing why it is a relevant problem, we formally define it. Then, after briefly presenting the
traditional mechanistic and/or ML-based approaches, we describe in detail the aspects that are not captured or
only partially captured by such models. Then, we highlight how DL-models overtake these limitations and which
DL modules are commonly used to succeed. Finally, In Section 5, we discuss some of the open challenges and we
derive some conclusions.

2 BACKGROUND
Here we introduce the notation used in the remainder of the paper. In Section 2.1, we define key mobility concepts,
and in Section 2.2 we briefly introduce the DL concepts and notation used in this survey.

2.1 Spatio-temporal trajectories and spatial aggregations
Mobility data describe the movements of a set of individuals during a period of observation. They are typically
collected through electronic devices and stored in the form of spatio-temporal trajectories or mobility flows.

The trajectory of an individual is a sequence of records that allows for reconstructing their movements during
the period of observation [230, 231]. Typically, each record contains the individual’s identifier, a geographic
location expressed as a spatial point, and a timestamp indicating when the individual went through that location.

Definition 2.1. Let 𝑢 be an individual, a trajectory𝑇𝑢 = ⟨𝑝1, 𝑝2, ..., 𝑝𝑛𝑢 ⟩ is a time-ordered sequence composed by
𝑛𝑢 spatio-temporal points visited by 𝑢. A spatio-temporal point is a pair 𝑝 = (𝑡, 𝑙), where 𝑡 indicates the time
when point 𝑙 = (𝑥,𝑦) is visited by 𝑢, and 𝑥 and 𝑦 are spatial coordinates in a given reference system, e.g., latitude
and longitude. A semantic spatio-temporal point 𝑝 is a tuple 𝑝 = (𝑜, 𝑡, 𝑙), where 𝑡 indicates the time when point
𝑙 = (𝑥,𝑦) is visited by 𝑢, 𝑙 is a pair of coordinates (𝑥,𝑦), and 𝑜 is a parameter that brings some meaning to the
point (e.g., home, workplace, or some other categories), if any.

Typically, stay points (or stops) are detected on spatio-temporal trajectories to find locations in which users
spend a minimum amount of time [135, 230]. In some tasks, the geographic space is discretized by mapping the
coordinates to a spatial tessellation, i.e., a covering of the bi-dimensional space using a countable number of
geometric shapes called tiles, with no overlaps and no gaps. For instance, for crowd flow prediction, a spatial
tessellation is used to aggregate the flows of people moving among the tiles.

Definition 2.2. Given an area 𝐴, a set of geographical polygons called tessellation, G, is defined with the
following properties: (1) G contains a finite number of polygons, 𝑔𝑖 , called tiles, G = {𝑔𝑖 : 𝑖 = 1, ..., 𝑛}; (2) the tiles
are non-overlapping, 𝑔𝑖 ∩ 𝑔 𝑗 = ∅, ∀𝑖 ≠ 𝑗 ; (3) the union of all tiles completely covers 𝐴,

⋃𝑛
𝑖=1 𝑔𝑖 = 𝐴.
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The tiling of the geographic space aims at creating the covering of the entire area of interest using regular
tiles, such as equilateral triangular, squared, quadrilateral, hexagonal tiles, or irregular tiles that define the shape
of buildings, census cells, or administrative units. A spatial join can then be used to associate each trajectory’s
point or stay point with the tile that contains it. Since the tessellation has no overlapping tiles and no gaps, each
point is assigned only to one tile. Further details may be found in Appendix A.

2.2 Deep Learning Modules
Here we introduce the DL notation used in the remainder of the paper. For a detailed description of the DL
modules introduced here, see Appendix B.
FCs: Fully Connected networks (FCs) consist of a series of fully-connected layers, in which all the neurons are

connected to those in the next layer. FCs are universal approximators (i.e., can learn any representation function)
[66]. In human mobility tasks, FC networks are commonly used to capture the impact on individual or collective
mobility of external features and/or preferences (e.g., weather conditions, presence of public events).
RNNs, LSTMs and GRUs: Recurrent Neural Networks (RNNs) [157] can efficiently deal with sequential data,

and they are used to capture spatial and temporal patterns in mobility tasks. For example, RNNs are used in
next-location prediction to find periodic trajectories patterns, represented as stay point sequences. In crowd flow
prediction, RNNs are used to capture the flows’ temporal patterns. However, RNNs suffer from the vanishing
gradient problem [98] and cannot propagate information found at early steps, losing relevant information at the
beginning of a sequence when it is time to analyze its end [98]. Long-short-term Memory networks (LSTMs) [75]
and Gated Recurrent Units (GRUs) [35] are two gate implementations that mitigate this problem. Appendix B.1
provides further details and references on RNNs, LSTMs and GRUs.
Attention mechanisms: These mechanisms are based on the idea that, when dealing with a large amount of

information, our brains focus on the most significant parts and consider all the others as background information.
In attention mechanisms, the information in input is scored according to the context (e.g., attention maps), and
the model focuses more on the information with high scores. In human mobility, attention is widely used for
next-location prediction and crowd flow prediction to capture user preferences and highlight relevant historical
patterns, respectively. Further details can be found in Appendix B.3.
CNNs: Similarly to the visual cortex [78, 79], Convolutional Neural Networks (CNNs) are made of neurons that

react only to certain stimuli in a restricted region of the visual field [103]. They are effective in computer vision
applications such as object recognition [147, 168], image classification and segmentation [53, 103], movement
or event recognition [188], and more [95]. In human mobility tasks, CNNs are widely used to capture spatial
patterns in the data, especially in crowd flow prediction where the distribution of people on a geographic region
is represented as an image. Additional information on CNNs can be found in Appendix B.2.
Generative Models: in human mobility, Variational AutoEncoders (VAEs) and Generative Adversarial Net-

works (GANs) are used to generate realistic trajectories (i.e., synthetic trajectories that realistically reproduce mo-
bility patterns). VAEs transform input data (e.g., trajectories) from a high-dimensional space to a low-dimensional
space, encoding samples as a distribution [96]. GANs [67] set up a game between a generator (e.g., a neural
network) and a discriminator (e.g., a classifier). The generator’s goal is to generate realistic data to fool the
discriminator, whose purpose is to classify real and fake data and provide feedback to the generator to improve
the realism of the generated data. Details about VAEs and GANs can be found in Appendix B.4.

3 PREDICTIVE MODELS
The goal of predictive models for human mobility is to forecast future whereabouts, either at the individual or
collective level. At the individual level, next-location predictors forecast an individual’s future whereabouts,
based on their historical observations (Section 3.1). At the collective level, crowd flow predictors forecast the
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amount of people moving from or to geographic locations given historical information about aggregated crowd
flows (Section 3.2).
In this Section, we describe both tasks, discussing how DL brings significant improvements with respect to

traditional approaches, and describing the relevant state-of-the-art solutions to each task, with a reference to the
public datasets and the metrics used for training and testing the models.

3.1 Next-Location Prediction
Predicting individuals’ future locations is relevant in multiple applications such as monitoring public health
[11, 26], well-being [137, 192], and traffic congestions [164], and to improve travel recommendation, geomarketing,
and link prediction in social network platforms [23, 203, 227, 228, 235]. Next-location predictors may help
policymakers organize the public transportation network, urban planners decide a city’s future developments,
and transportation companies provide citizens with a better service in terms of traffic reduction and ease of
mobility. Predicting an individual’s next location is challenging because it requires capturing the spatial and
temporal patterns that characterize human habits [9], and combining heterogeneous data sources to model
multiple factors influencing human displacements (e.g., weather, transportation mode, presence of POIs).
Problem Definition. Next-location prediction consists of forecasting the next location (stay point) an indi-

vidual will visit in the future, given their historical mobility data. Formally, let 𝑢 be a user,𝑇𝑢 their trajectory, and
𝑝𝑡 ∈ 𝑇𝑢 𝑢’s current location, next-location prediction aims at predicting 𝑢’s next destination 𝑝𝑡+1. This problem
is treated in two ways: (i) as a multi-class classification task, in which we have as many classes as locations
and we aim at predicting the next visited location 𝑝𝑡+1; or (ii) as a regression task, predicting 𝑝𝑡+1 = (𝑥𝑡+1, 𝑦𝑡+1),
where 𝑥𝑡+1 and 𝑦𝑡+1 are the next location’s geographic coordinates. A variant of next-location prediction aims at
forecasting the next Point Of Interest (POI) 𝑝𝑡+1 an individual 𝑢 will visit given their trajectory 𝑇𝑢 . Regardless of
the specific definition, next-location predictors output a ranking of the probability of each location to be 𝑢’s next
destination.
DL vs Traditional approaches. Next-location prediction has been widely explored prior to the DL explosion

using probabilistic or pattern-based approaches, which can work with a reasonably small amount of data [23, 228].
In a seminal work, Calabrese et al. [25] propose a probabilistic model combining people’s trajectories and
geographical features such as land use, POIs, and distance of trips. Ashbrook et al. [6] cluster GPS data into
meaningful locations and incorporate them into a Markov model to predict individuals’ future movements. Gambs
et al. [62] introduce a Mobility Markov Chain (MMC) in which states represent POIs and transitions between
states correspond to a movement between two POIs [62, 63]. Among the pattern-based approaches, Monreale et
al. [121] develop a trajectory pattern mining algorithm to represent movement patterns as sequences of regions
frequently visited with a typical travel time. Although traditional approaches achieve good performance with a
small amount of data, they have substantial limitations. Notably, they require a considerable effort in feature
engineering and cannot capture long-range temporal and spatial dependencies [159].
Next-location predictors should capture the spatial, temporal and social-geographic dimensions of human

mobility (Figure 2). Regarding the spatial and temporal dimensions, predictors must capture at the same time
spatial and temporal regularities hidden in human movements, as well as the tendency of people to get out of the
routine. At the same time, predictors should capture the impact of external factors and individual preferences on
the decision to move (e.g., weather conditions, preference for certain POIs, influence of friendships). Traditional
approaches can only partially capture these aspects, and they particularly struggle in capturing complex sequential
patterns in the data. DL approaches overtake these issues by using mechanisms such as RNNs, LSTMs, GRUs,
FCs, attention mechanisms, and CNNs to capture temporal, spatial, and social-geographic patterns in the data.
Datasets and Evaluation Metrics. Next-location predictors are mainly trained and tested on public datasets

of check-ins, generally coming from geosocial network platforms (e.g., Gowalla, Foursquare), and GPS traces,
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PREDICTION
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RNN [214, 114, 49]

LSTM [182, 153, 64, 99, 214]

GRU [33, 54]
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CNN [64, 118]

Attention [1, 214, 153, 64]

Other Dimensions FC [1, 182, 33, 49, 118]

Fig. 2. a) The aspects next-location predictors should capture regarding the spatial dimension (red), the temporal dimension
(blue), and the social and geographic dimensions (yellow) of human mobility data. b) DL modules that allow to capture each
dimension, with the reference to the selected papers in the literature that implement these modules.

collected with smartphones or vehicles on-board GPS devices. Examples of check-ins’ datasets widely used for
next-location prediction are Cho et al. [34], Feng et al. [54], and Yang et al. [213].
Examples of commonly used trajectory datasets are taxi traces collected in Porto, Portugal [123] and San

Francisco, USA [143]. We refer to Appendix C.2 and C.3 for details on the check-in and trajectory datasets
mentioned above.

Whenever next-location prediction is intended as a regression task, predictors are evaluated using the Haversine
distance or the equirectangular distance between the actual location and the predicted one (see Appendix D.1 for
details). When next-location prediction is intended as a multi-class classification task, predictors are evaluated
with accuracy (ACC/ACC@k), recall (Rec@k), F1-score (F1@k), Mean Average Percentage Error (MAPE) and/or
Area Under the Curve (see Appendix D.2 for details).

DL approaches. Table 1 contains the selected DL approaches to next-location prediction, with the corre-
sponding DL modules, datasets and evaluation metrics used, and link to an implementation (if available).
De Brébisson et al. [44] use an FC to predict taxi’s passenger drop-off locations. The input data consist

of trajectories represented as a variable-length sequence of GPS points and other meta-information, such as
departure time, driver identity, and client information. The model performance is evaluated on the dataset of
taxis in Porto [123] in terms of equirectangular distance to the actual visited location. However, it cannot take
into consideration the temporal dimension of the mobility data.

ST-RNN (Spatial Temporal Recurrent Neural Networks) [114] overtakes this issue by extending RNN with time-
and spatial-specific transition matrices. Each RNN’s layer learns an upper and lower bound for the temporal and
spatial matrices through linear interpolation. The model is evaluated on the datasets of Gowalla [34] and the
Global Terrorism Dataset (GTD) [177] using F1-score, Rec@k, MAPE and AUC.

DeepMove [54] is an attentional recurrent network for mobility prediction from lengthy and sparse trajectories.
First, historical and current trajectories are passed to a multi-modal embedding module to create a dense
representation of the spatio-temporal and individual-specific features. Historical trajectories are handled by an
attention mechanism to extract mobility patterns, while a GRU handles current trajectories. The output of the
multi-modal embedding, the GRU, and the attention mechanism are concatenated and passed to an FC to predict
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Reference Name Year DL Modules Evaluation Dataset Code (https://bit.ly)
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Abideen et al.[1] DWSTTN 2021 Encoder, Decoder, Attention, FC Distance [123] -
Tang et al.[182] CLNN 2021 LSTM, Embedding, FC Distance [123] -
Bao et al.[8] BiLSTM-CNN 2020 Embedding, BiLSTM, CNN ACC@k -

Chen et al.[33] DeepJMT 2020 GRU, FC, Encoder ACC@k [213] -
Yang et al.[212] Flashback 2020 Attention, RNN ACC@k [34] Flashback-1
Ebel et al.[49] - 2020 RNN, FC, Embedding Distance [123, 143] -
Rossi et al.[153] - 2019 Attention, LSTM Distance [123, 143, 184] -
Gao et al.[64] VANext 2019 CNN, GRU, Attention ACC@k [34] -
Kong et al.[99] HST-LSTM 2018 LSTM ACC - HST-LSTM
Lv et al.[118] T-CONV 2018 CNN, FC Distance [123] T-CONV
Feng et al.[54] DeepMove 2018 Attention, GRU, FC ACC [54] DeepMove
Yao et al.[214] SERM 2017 LSTM ACC@k - SERM-Repo
Liu et al.[114] ST-RNN 2016 RNN Rec@k, F1@k, MAPE, AUC [34, 177] STRNN

De Brébisson et al.[44] - 2015 FC Distance [123] next-loc-1

Table 1. List of the selected papers tackling next-location prediction. For each paper, we describe the name of the corresponding
proposed model (if any), the year of publication, the DL modules used in the proposed solution, the metrics used for
performance evaluation, the link to the public datasets used for training and testing the model, and the link to a repository
with the code (if any). The papers are sorted by year of publication in decreasing order.

an individual’s next-location. DeepMove is evaluated, using ACC@k, on Foursquare data [54], private mobile
phone data, and a private dataset from a popular Chinese social network platform.
HST-LSTM (Hierarchical Spatial-Temporal LSTM) [99] aims at predicting an individual’s short-term next-

location. First, the authors design an ST-LSTM (Spatial Temporal LSTM), which combines the spatial and temporal
characteristics of a trajectory using an LSTM. Then, ST-LSTM is extended into HST-LSTM, which models periodic
patterns using an encoder-decoder module. The encoder encodes the locations visited by a user in a given
time span and area of interest, while the decoder predicts the possible areas of interest the user will visit next.
HST-LSTM is evaluated using ACC on private data from Baidu.
T-Conv [118] treats trajectories as images and handle them using CNNs to capture the spatial patterns at

different scales. The output of the CNN, the trajectory’s starting date-time, and other personal information about
the user are passed to an FC that handles the prediction. T-Conv is evaluated using the datasets of taxis in Porto
[123] and the Haversine distance.

Rossi et al. [153] propose an LSTM network equipped with a self-attention module to predict the coordinates
of a taxi’s next drop-off location. Locations are enriched with geographical data to describe the surrounding area
of the location semantically. The model is tested using the Haversine distance and on the datasets of taxis in
Porto [123], New York City [184], and San Francisco [143].

Another strand of research focuses on predicting the next POI an individual will visit using semantic trajectories.
For example, SERM (Semantics-Enriched Recurrent Model) [214] relies on an embedding layer to represent the
timestamp, the location, and the keywords of a social media post concisely. Both the user’s trajectory and the
embedding are fed into an LSTM responsible for predicting the next POI. SERM is evaluated using ACC@k on
Foursquare check-ins in New York City [222] and tweets in Los Angeles [223].

In VANext (Variational Attention based Next Location) [64], the historical trajectories and the current one are
embedded using two separate causal encoders to represent the semantic relationships among POIs. The encoded
historical trajectories are passed to a CNN; the encoded current trajectory is passed to a GRU. The outputs of the
CNN and the GRU are passed to an attention mechanism, which detects the most similar historical trajectory to
the current one and passes it to an FC that predicts the individual’s next POI. VANext is evaluated using ACC@k
on the datasets of Gowalla [34] and Foursquare for Singapore and New York City.
Flashback [212] is based on an RNN and the concept of flashback, a technique that uses a sparse semantic

trajectory to predict the next POI by looking for similar trajectories in terms of temporal characteristics. Flashback
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also uses an embedding to model the preferences of individuals to visit specific POIs. The outputs of the RNN
and the embedding are passed to an FC that predicts the next visited POI. Flashback is evaluated using ACC@k
on check-ins from Gowalla [34] and Foursquare.

DeepJMT (Deep Model for Joint Mobility and Time) [33] can predict an individual’s next POI as well as when
they will visit it. The model is based on four pipelines: a sequential dependency encoder, a spatial context encoder,
a periodicity context extractor, and a social-temporal context extractor. The sequential dependency encoder is
a hierarchical GRU that takes as input an embedding of a user’s trajectories. The high-level GRU captures the
transitions between trajectories; while the low-level GRU models the transition within a trajectory. The spatial
context extractor determines the dynamic influence of spatial neighbors, modeled as a graph in which nearest
points influence the final prediction. The periodicity context extractor is an attentional GRU aiming at extracting
periodicity patterns from an individual’s historical trajectories. The social-temporal context extractor leverages
social relationships using an FC and pooling functions to facilitate both next-POI and time prediction. Finally, the
outputs of the four modules are concatenated to generate the prediction. DeepJMT is evaluated using ACC@k on
Foursquare check-ins in New York City [213], Tokyo [213] and Istanbul.
Ebel et al. [49] propose a model to predict a vehicle’s destinations and routes, given a partial trajectory and

contextual data (e.g., day, time, weather). First, the area is tessellated and GPS points are assigned to these tiles
using a k-d tree-based space partitioning method. The model is based on two main modules. The first module
is an RNN that takes as input the mapped trajectory; while the second module is an FC that takes as input the
embedded contextual data. The two modules’ outputs are merged and passed to an additional FC that produces
the individual’s probabilities to end a trip into a specific tile. The model is evaluated with the mean Haversine
distance and the distance to the actual arrival point on taxis’ traces in Porto [123] and San Francisco [143].

BiLSTM-CNN [8] relies on a spatial clustering algorithm to derive areas of interest from POIs and uses bi-LSTMs
and CNNs to predict the next area an individual will visit. The historical mobility data of people are passed into a
bi-directional LSTM and then to a CNN to capture the overall spatial and temporal patterns. The CNN’s output
is then passed to an FC handling the prediction of the next location. The model is evaluated with ACC@1 and
ACC@5 on a private dataset of Weibo check-ins collected in Wuhan, China.

CLNN (Classification Learning Neural Network) [182] relies on an information extraction module that extracts
coordinates, date, time and driver characteristics, POIs and historical information from mobility data (e.g., similar
trajectories). An LSTM is used to process the coordinates. Date, time, driver characteristics and POIs are embedded
into a dense representation. Two FCs process the embedded and historical information, respectively. The outputs
of the two FCs and the LSTM are fused together with a weighted sum, whose output is fed into an FC to predict
the coordinates of the next taxi’s destination. The model is evaluated using the mean Haversine distance on the
dataset of taxis in Porto [123].
DWSTTN (Deep Wide Spatio Temporal Transformer Network) [1] is a transformer-like architecture that

predicts a taxi’s next destination using historical pick-up and drop-off observations and taxis’ features and
preferences. The model consists of two identical parts, the encoder and the decoder. The encoder is responsible
for the learning phase, the decoder for predicting the coordinates of the taxi’s next location. In both, information
about a taxi (e.g., identifier and stand identifier) and temporal information (e.g., weekday, hour, day type) are
passed to an embedding layer (temporal transformer), while information about locations is embedded by a spatial
transformer. The outputs of the temporal and spatial transformers are passed to two attention mechanisms to
extract further relevant spatial and temporal information. The outputs of the attention mechanisms are fused
together using a weighted sum, whose output is passed to an FC. In the encoder, the FC outputs the learned
features’ representation; in the decoder, the FC outputs the next location’s coordinates. The model is evaluated
using the Haversine distance on the datasets of taxis in Porto [123] and New York [184].
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3.2 Crowd Flow Prediction
Crowd flow prediction is the problem of forecasting the incoming and outgoing flows of locations in a geographic
region, usually split into tiles on a spatial tessellation [204, 231]. It is a crucial problem given its impact on several
aspects of society, from public safety [231] to the definition of on-demand services [234], the management of
land use [81], and traffic optimization [231]. For example, crowd flow predictors may help city managers and
policymakers discover the traffic congestions in the city; people in business find potential areas of business
investment; citizens improve travel plans and stagger the peaks of travel. These predictors may also help prevent
or mitigate dangerous situations, such as creating massive crowds of people streamed into a strip region, by
sending out warnings or evacuating people in advance.

Crowd flow prediction is challenging because it requires dealing with both spatial and temporal dependencies.
Indeed, a region’s out-flow may affect the in-flows of both near and far regions. At the same time, crowd flows
are characterized by temporal closeness, trends, and periodicity. Temporal closeness marks the dependencies
between events that are close in time; trends highlight patterns that repeat over time (e.g., weekends and working
days); periodicity captures the repetitive nature of relevant events (e.g., rush hours in the morning). Furthermore,
exogenous factors such as weather conditions, holidays, and the presence of public city events may affect crowd
flow patterns.
Problem Definition. Given an individual’s trajectory 𝑇𝑢 and a spatial tessellation G of the geographic space

(generally a 𝑖 × 𝑗 grid), the set of locations (tiles) the trajectory intersects in a time interval Δ𝑡 is:
𝑞𝑡𝑇𝑢

= {(𝑝𝑘 → 𝑡) ∈ Δ𝑡 ∧ (𝑝𝑘 → (𝑥,𝑦)) ∈ (𝑖, 𝑗) | (𝑖, 𝑗)}, (1)

where (𝑖, 𝑗) indicates a location on G and 𝑝𝑘 is the user 𝑢’s current location, identified by the coordinates (𝑥,𝑦).
Let𝑄 be the set of locations covered by all the individual trajectories and let 𝑡 − 1, 𝑡 , and 𝑡 + 1 be three consecutive
time spans, the incoming flow in(𝑖, 𝑗)

𝑡 to a location (𝑖, 𝑗) is the number of the individuals that are in (𝑖, 𝑗) at time 𝑡
but were not in (𝑖, 𝑗) at time 𝑡 −1. Similarly, the outgoing flow out(𝑖, 𝑗)𝑡 to location (𝑖, 𝑗) is the number of individuals
that are in (𝑖, 𝑗) at time 𝑡 and move to another location at time 𝑡 + 1:

in(𝑖, 𝑗)𝑡 =
∑︁
𝑇 ∈𝑄

|{𝑡 > 1| (𝑖, 𝑗) ∉ 𝑞𝑡−1𝑇 ∧ (𝑖, 𝑗) ∈ 𝑞𝑡𝑇 }|; out(𝑖, 𝑗)𝑡 =
∑︁
𝑇 ∈𝑄

|{𝑡 > 1| (𝑖, 𝑗) ∈ 𝑞𝑡𝑇 ∧ (𝑖, 𝑗) ∉ 𝑞𝑡+1𝑇 }|. (2)

We can represent the flows of a region as a tensor 𝑋𝑡 ∈ 𝑅2×𝐼×𝐽 , where one dimension is associated with the
in-flow (𝑋𝑡 )1,𝑖, 𝑗 = in(𝑖, 𝑗)

𝑡 and the other with the out-flow (𝑋𝑡 )2,𝑖, 𝑗 = out(𝑖, 𝑗)𝑡 . Therefore, crowd flow prediction is
the task of predicting 𝑋𝑡+Δ given the historical flows {𝑋𝑡 |1, . . . , 𝑋𝑡 |𝑡}. In most of the selected papers, Δ = 1. When
Δ > 1 (e.g., in [196, 233]), the problem is named multi-step crowd flow prediction.
A variant of crowd flow prediction aims at forecasting the entire origin-destination matrix (i.e., flows among

pairs of locations) given the historical observations of crowd flows [152].
DL vs Traditional approaches. Crowd flow prediction may be tackled using classic time-series prediction

models based on autoregression (AR), such as the AutoRegressive Moving Average (ARMA) [20], the Autore-
gressive Integrated Moving Average (ARIMA) [107, 122], and variants like the Stationary and Seasonal ARIMA
(SARIMA) [201], vector ARMA [89] and space-time ARIMA [90]. Since ARMA and ARIMA can make predictions
only out of stationary time-series that do not statistically change over time, they cannot accurately predict
new events. SARIMA, vector ARMA and space-time ARMA are designed to overtake this assumption, but they
present other issues. For instance, SARIMA’s predictive performance decreases when dealing with patterns
with long seasonal periods. In general, the AR predictors have difficulties handling spatial dependencies and
short-term samples, capturing patterns way before in the time series, and including additional features (e.g.,
weather conditions, presence of public city events), making them ineffective for crowd flow prediction.

In contrast, DL approaches can effectively model spatial and temporal dependencies and capture the influence
of external factors (see Figure 3). Since spatial tessellations describe a bidimensional space, DL predictors represent
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CROWD FLOW 
PREDICTION

Spatial Patterns
External Factors (e.g.,

weather conditions)
Temporal Patterns

User Preferences (e.g.,
POIs, friendships)

Spatial Dimension Temporal Dimension Other Dimensions

Close (e.g., influence 

of near-by areas)

Distant (e.g, influence

of distant areas)

Periodic (e.g, patterns
of previous weeks)

Trends (e.g., patterns

from previous month)

Recent (e.g. patterns
from previous hours)

Spatial Dimension CNN [43, 196, 211, 148, 183, 221, 124,

112, 109, 47, 215, 87, 224]

ConvLSTM [82, 113, 124, 3]

ConvGRU [237]

Attention [85, 43, 196, 221, 233, 109, 215]

GCN [180]

FC [237]

Temporal Dimension CNN [43, 211, 124, 112, 237, 224]

LSTM [196, 148, 109, 47, 215, 87]

ConvLSTM [82, 183, 113, 124, 3]

ConvGRU [237]

Attention [82, 43, 196, 183, 237, 109, 215]

GCN [180]

FC [237]

Other Dimensions FC [82, 43, 211, 148, 221, 124, 109, 

47, 87, 237, 224] 

CNN [196, 112]

a)              b)

Fig. 3. a) The aspects crowd flow predictors should capture regarding the spatial dimension (red), the temporal dimension
(blue), and the social and geographic dimensions (yellow) of human mobility data. b) DL modules that allow capturing each
dimension, with reference to the selected papers in the literature that implement these modules.

crowd flows as matrices and exploit the effectiveness of CNNs in detecting near and far away spatial and temporal
dependencies in matrices. At the same time, since gated RNNs such as LSTMs and GRUs may be used to model
complex sequential patterns in the data, DL approaches may efficiently capture patterns in the temporal evolution
of crowd flows. CNNs and RNNs may be combined in ConvLSTMmodels, which may capture spatial and temporal
patterns at the same time. Finally, we should also consider other aspects that may affect crowd flows, such as
weather conditions and the presence of public events in the city. Such external factors may be handled with FCs
and combined with the output of the CNN/RNN modules.
Datasets and Evaluation metrics. The most used datasets to train and evaluate crowd flow predictors are

the Citi Bike dataset [14], which describes the trips between bike-sharing stations in New York City, and Zhang
et al.’s dataset [224], which provides the aggregated incoming and outgoing flows for each tile of a squared
tessellation of New York City and Beijing, extracted from raw taxis’ GPS traces. Some papers use a dataset about
the bike-sharing system of Washington D.C. [15], and a dataset describing the pick-up and drop-off locations of
taxis in New York City [184]. We refer to Appendix C.2 and C.3 for details about these datasets.

The performance of crowd flow predictors is evaluated as the error between the empirical crowd flows and the
predicted ones. Commonly used error metrics are Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),
and Mean Absolute Percent Error (MAPE) (see Appendix D.3 for definitions and details).
DL approaches.
Table 2 shows the selected papers on crowd flow prediction, highlighting the DL modules, evaluation metrics,

and datasets they use, with a link to an implementation (if available).
In their seminal work, Zhang et al. propose ST-ResNet [224], which consists of three modules that rely on

CNNs to capture trends, periodic patterns, and temporal closeness. The modules’ output is combined with the
output of an FC that deals with external factors such as weather conditions and presence of public events. The
model is evaluated on the datasets of taxis in Beijing and bikes in New York City [224] using RMSE.
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Reference Name Year DL Modules Evaluation Dataset Code (https://bit.ly)

C
ro
w
d
Fl
ow

Pr
ed

ic
ti
on

Jiang et al.[82] DeepCrowd 2021 ConvLSTM, Attention, FC MSE, MAE, MAPE, RMSE [82] DeepCrowd
Dai et al.[43] - 2021 Attention, CNN, FC RMSE [224] -

Wang et al.[196] SeqST 2020 LSTM, CNN, Attention MAE, RMSE [14, 184] -
Yang et al.[211] ST-ESNet 2020 CNN, FC RMSE [224] -
Ren et al.[148] HIDLST 2020 LSTM, CNN, FC RMSE [224] -
Tian et al.[183] LDRSN 2020 CNN, ConvLSTM, Attention RMSE, MAPE, MAE [14, 184] -
Yuan et al.[221] MV-RANet 2020 CNN, Attention, FC RMSE, MAPE [224] -
Liu et al.[113] ATFM 2020 ConvLSTM RMSE [224] ATFM-2
Sun et al.[180] MVGCN 2020 GCN, FC RMSE, MAE [14, 15, 184, 224] -

Mourad et al.[124] ASTIR 2019 ConvLSTM, CNN, FC RMSE [224] ASTIR_Model
Zhou et al.[233] ST-Attn 2019 Attention, FC RMSE [14, 224] ST-Attn
Rong et al. [152] 2019 CNN, ResNet RMSE, MAE - -
Li et al.[109] ST-DCCNAL 2019 CNN, Attention, LSTM, FC RMSE [224] ST-DCCNAL
Lin et al.[112] DeepSTN+ 2019 CNN RMSE, MAE [14] DeepSTN
Du et al.[47] DST-ICRL 2019 CNN, LSTM, FC RMSE, MAE [224] DST-ICRL
Ai et al.[3] - 2018 ConvLSTM RMSE, MAE - -

Yao et al.[215] STDN 2018 CNN, LSTM, Attention, FC RMSE, MAPE [14] STDN-2
Jin et al. [87] STRCN 2018 CNN, LSTM, FC RMSE [224] -

Zonoozi et al.[237] PCRN 2018 ConvGRU, CNN, FC RMSE [224] -
Zhang et al.[224] ST-ResNet 2017 CNN, FC RMSE [224] ST-ResNet

Table 2. List of selected papers tackling crowd flow prediction. For each paper, we describe the name of the corresponding
proposed model (if any), the year of publication, the DL modules used in the proposed solution, the metrics used for
performance evaluation, the link to the public datasets used for training and testing the model, and the link to a repository
with the code (if any). The papers are sorted by year of publication in decreasing order.

ST-ESNet [211] extends STRes-Net [224] by adding convolutional layers to upsample and downsample the
matrices representing crowd flows. The model is evaluated with the datasets of taxis in Beijing [224] using RMSE.

Many works in the literature combine CNNs with RNNs to exploit the latter’s capability to deal with temporal
patterns. STRCN (Spatio-Temporal Recurrent Convolutional Network) [87] uses three CNNs to capture close,
short-term (daily influence), and mid-term (the difference between workdays and weekends) spatial patterns.
The output of the CNNs is fed into three LSTMs, which handle temporal dynamics. STRCN also uses external
features, such as weather conditions and features to distinguish between workdays and holidays, through an FC.
The output of the FC and the LSTMs are combined. Model’s performances are evaluated on the datasets of taxis
in Beijing and bikes in New York City [224] using RMSE.

STDN (Spatial-Temporal Dynamic Network) [215] consists of two CNNs: the first one captures the local spatial
dependencies based on the similarities of historical traffic volumes to uncover the flows; the second CNN captures
the traffic flows. The outputs of the two CNNs are pairwise multiplied and summed with an FC’s output that
handles external features (e.g., weather events). Moreover, STDN uses three LSTMs to capture the temporal
dependencies of historical data describing the crowd flows. CNNs and LSTMs work on two separate pipelines,
the outputs of which are summed together and forwarded to another LSTM with an attention mechanism that
analyzes the temporal dynamics of the current day. Finally, the output of this latter LSTM is passed to an additional
FC to perform crowd flow and traffic prediction. The model performance is evaluated on the New York City’s
bikes dataset [14] and on a dataset of taxis’ flows in New York City [184] using MAPE.

DST-ICRL (Deep Spatio-Temporal with Irregular Convolutional Residual Network) [47] combines convolutional
residual units with LSTMs to capture the irregular properties of traffic flows in different transportation lines.
Similarly to STDN [215] and ST-RESNET [224], DST-ICRL uses three pipelines to uncover daily, weekly, and
recent spatio-temporal dynamics and handles external features using an FC. The authors evaluate DST-ICRL on
two private datasets of checkins from e-cards on buses and subways in Beijing, using MAE and RMSE.
Another category of crowd flow predictors exploits attention mechanisms. ST-DCCNAL (Spatio-Temporal

Densely Connected Convolutional Networks and Attention LSTM) [109] combines a CNN with an attentional
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LSTM to simplify the selection of the inputs. The authors use DenseNet [77] to cope with the spatial patterns and
FCs to deal with the external features. The outputs of DenseNet and the FCs are fed into an attentional LSTM to
extract temporal patterns and make the prediction. The performances are evaluated on the datasets of taxis in
Beijing and bikes in New York City [224] using RMSE.
MV-RANet (Multi-View Residual Attention Network) [221] uses two pipelines to deal with spatio-temporal

patterns and mobility patterns. The first pipeline models the closeness, the periods, and the trends of crowd
flows using three attention residual networks, the outputs of which are fused and passed to a convolutional
layer. The output of the convolutional layer is then passed to an FC. The second pipeline captures the mobility
patterns in the data, generating three graphs: one for the transition probability, one for the transition distance,
and one that mimics the flow patterns. The three graphs are then encoded using Node2Vec [71], an algorithmic
framework that learns a continuous feature representation of the nodes of a graph, and passed to an FC to extract
relevant mobility patterns. The outputs of the FC handling the graph representation and the FC that handles
the spatio-temporal patterns are fed into an additional FC responsible for making the prediction. MV-RANet is
evaluated using RMSE, MAPE, and MAE on the flows of taxis in Beijing [224] and a private mobile phone data
(CDRs) for the city of Sanya.

LDRSN (Local-Dilated Region-Shifting Network) [183] consists of five modules. The first one is a CNN that
handles local spatial dependencies; the second one uses dilated units to deal with distant spatial dependencies. A 𝑘-
dilated unit is a convolution that captures the correlation of two regions with a distance of 𝑘 . The outputs of these
two modules are fused and forwarded to two other modules: one handles long-term temporal dependencies, the
other deals with short-term temporal patterns. The long-term module consists of three pipelines with consecutive
convolutional layers, each followed by attention LSTMs. A single ConvLSTM handles the short-term patterns.
The outputs of the two temporal modules are fed into a final module: as a first step, it sums the outputs of the
two temporal modules and forwards the result to a convolutional layer to make the prediction. The model is
evaluated on the dataset of bikes’ [224] and taxis’ in New York City [184] using MAE, MAPE, and RMSE.

To capture long-range spatial dependencies, DeepSTN+ (Deep Spatio Temporal Network Plus) [112] replaces
the traditional residual units and the convolutional layers with ResPlus and ConvPlus. ResPlus units employ a
ConvPlus layer and a standard convolutional layer to capture distant spatial dependencies. The idea beyond a
ConvPlus layer is to separate the channels of the input matrix and use an FC to capture the long-range spatial
dependencies among each pair of regions. Finally, DeepSTN+ uses an average pooling layer before the FC to
reduce the number of parameters. Another peculiarity of DeepSTN+ is that it uses temporal factors and the
distribution of POIs to gain prior knowledge of the crowd flows. The experiments are conducted on the dataset of
bikes in New York City [14] and a private dataset from the most popular social network vendor in China using
MAE and RMSE.

ST-Attn [233] is specifically designed for multi-step crowd flow prediction. It relies on an encoder and a decoder
based on two attention mechanisms (one capturing spatial patterns and one capturing temporal patterns) and
several FCs. The encoder is a stack of a spatial and temporal attention mechanism and FC layers. The decoder
has two consecutive attention mechanisms to capture spatial and temporal patterns: the first one uses historical
observations about crowd flows, the second one uses the output of the first attention mechanism and the output
of the encoder. The decoder’s output is passed to an FC layer to predict the Δ next crowd flows. The model is
evaluated for Δ ∈ 1 . . . 6 on the datasets of taxis in Beijing [224], taxis in New York City [184], and bikes in New
York City [14] using RMSE.

ASTIR [124] consists of three pipelines each using ConvLSTMs to capture periodic, long, and short-terms spatial
and temporal dependencies, respectively. The outputs of the three ConvLSTMs are passed to three attention
mechanisms, whose outputs are passed to three ConvLSTMs. The outputs of the three pipelines are combined
with the results of an FC handling external factors and passed to a tanh activation function to perform the
prediction. ASTIR is evaluated on the dataset of taxis in Beijing and bikes in New York City [224] using RMSE.
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SeqST [196] performs multi-step crowd flow prediction using a sequence to sequence GAN. The GAN’s
generator and discriminator rely on CNNs and LSTMs to extract spatio-temporal patterns from the data. In the
generator, they use further CNNs to consider the impact of external factors, while the discriminator drives the
generator to predict realistic crowd flows. The model is evaluated on the dataset of taxis [184] and bikes in New
York City [14] using MAE and RMSE.

DeepCrowd [82]uses three pipelines to capture patterns in previous hours, days, and weeks. It consists of
three ConvLSTMs that downsample and upsample the input data. Each convLSTM is followed by an attention
mechanism to extract relevant local spatio-temporal patterns. The outputs of the three attention mechanisms are
concatenated and passed to an additional attention mechanism to further extract relevant patterns. The output of
the attention mechanism is passed to a CNN to predict crowd flows. DeepCrowd is evaluated on a public dataset
of crowd flows in Tokyo and Osaka, Japan [82] using MSE, MAE, MAPE, and RMSE.

In contrast with the majority of solutions to crowd flow prediction, Dai et al. [43] uses only a single pipeline to
capture both near and far away temporal and spatial patterns. All the matrices representing crowd flows are
passed to a temporal attention mechanism, whose output is passed to a spatial attention mechanism. The output
of the spatial attention mechanism is fed into a CNN to extract spatio-temporal patterns. The output of this CNN
is fused with the results of a FC which handles external features. The model is evaluated on the dataset of taxis in
Beijing and bikes in New York City [224] using RMSE.

Some other models address slightly different definition of crowd flow prediction [3, 180, 237]. PCRN (Periodic
Convolutional Recurrent Networks) [237] solves the problem of predicting the distribution of presences in a city.
The authors use a pyramidal model made of three ConvGRUs (which has both the advantages of CNNs and GRUs)
with an external module that captures the patterns’ periodicity by memorizing the periodic representations
learned by the stacked ConvGRUs. The authors propose three ways to retrieve and update the periodic patterns:
using a sequential periodic representation, using an estimated average of periodic representation, adopting a
temporally ordered representation. The outputs of the periodic module and the ConvGRUs are fused. The model
is evaluated on the datasets of taxis in Beijing and bikes in New York City [224] using RMSE.
Ai et al. [3] aim to predict the short-term distribution of features that describe the movements of bikes of

a dockless bike-sharing system. They rely on ConvLSTMs to address the spatial and temporal dependencies.
ConvLSTMs take as input a spatio-temporal sequence composed of the number of bicycles in an area, the
distribution uniformity, the usage distribution, and the time of the day to predict their values in the near future.
The authors evaluate their model using private datasets from two bike-sharing companies in Chengdu, China.
The metrics used for the evaluation are MAE and RMSE.

Some recent works solves the problem of flow prediction, a variant of crowd flow prediction in which they aim
to use historical observations of crowd flows to forecast the entire origin-destination matrix, i.e., flows among
pairs of locations.

MVGCN (Multi-View Graph Convolutional Network) [180] does so handling the external features (e.g., weather
data) with two FCs, which deals with weather information and meta-information such as time and day of the
week. The authors select key time snapshots to process graphs representing recent, daily, weekly, monthly and
quarterly mobility flows. Each node in these graphs represents a region with time-varying flows. The graphs are
forwarded to five graph convolutional networks and the outputs of the seven networks (five graph convolutional
networks and two FCs for the external features) are fused using a multi-view fusion mechanism. The fusion
module’s output is fed into an additional FC that outputs the predicted graph, in which each node is a region and
the links are the predicted flows. The experiments are conducted on the dataset of bikes [14] and taxis [184] in
New York City, bikes in Washington D.C. [15], and taxis in Beijing [224]. In both cases, RMSE and MAE are used
to evaluate the model’s performance.
Rong et al. [152] use a distinct CNN for each location represented as an image-like matrix, to extract long

and short-terms spatial and temporal features. Each matrix is made of several channels, each corresponding to
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one time interval of the historical observations. The model is evaluated on a private dataset of a Chinese social
network referring to flows in Beijing using MAE and RMSE.

4 GENERATIVE MODELS
Generative models of human mobility aim at generating realistic spatio-temporal trajectories (trajectory genera-
tion, Section 4.1) or mobility flows (flow generation, Section 4.2).
In this Section, we describe both tasks, discussing how DL brings significant improvements with respect to

traditional approaches, and describing the relevant state-of-the-art solutions to each task, with a reference to the
public datasets and the metrics used for training and testing the models.

4.1 Trajectory Generation
The goal of generative models of individual human mobility is to generate synthetic trajectories with realistic
mobility patterns [9, 55, 74, 92, 165, 194]. The generated synthetic trajectories must reproduce a set of spatial and
temporal mobility patterns, such as the distribution of characteristic distances traveled and the predictability of
human whereabouts (see Appendix E). The use of generative mobility models is crucial in many applications.
First, synthetic trajectories are useful to the performance analysis of networking protocols such as mobile ad
hoc networks, where the displacements of network users are exploited to route and deliver the messages [74, 92,
186]. Second, synthetic trajectories are fundamental for urban planning, what-if analysis, and computational
epidemiology, e.g., simulating changes in urbanmobility in the presence of new infrastructures, epidemic diffusion,
terrorist attacks, or international events [42, 190, 208, 209]. Furthermore, generative models are a viable solution
to protect geo-privacy of trajectory data [59, 120, 140]: while disclosing real data requires a hard-to-control
trade-off between uncertainty and utility, synthetic records that preserve statistical properties may achieve in
multiple tasks comparable performance to real data.

Solving trajectory generation requires capturing, simultaneously, the temporal and spatial patterns of individual
human mobility. A realistic generative model should reproduce the temporal statistics observed empirically,
including the number and sequence of visited locations together with the time and duration of the visits. In
particular, the biggest hurdle consists of the simultaneous description of an individual’s routine and sporadic
out-of-routine mobility patterns. Regarding spatial patterns, a generative model should reproduce the tendency
of individuals to move preferably within short distances [65, 133], the heterogeneity of characteristic distances
[65, 133] and their scales [4], the tendency of individuals to split into returners and explorers [136], the routinary
and predictable nature of human displacements [173], and the fact that individuals visit a number of locations
that are constant in time [5].
Problem Definition. A generative mobility model𝑀 is any algorithm able to generate a set of 𝑛 synthetic

trajectories T𝑀 = {𝑇𝑎1 , . . . ,𝑇𝑎𝑛 }, which describe the movements, during a certain period of time, of 𝑛 independent
agents 𝑎1, . . . , 𝑎𝑛 . The synthetic trajectory generated for a single agent 𝑎𝑖 should be in the form of Definition 2.1,
i.e., a time-ordered sequence 𝑇𝑎𝑖 = ⟨𝑝1, 𝑝2, ..., 𝑝𝑘⟩ composed by spatio-temporal points, describing the 𝑘 locations
visited by 𝑎𝑖 . The realism of𝑀 is evaluated with respect to:

(1) A set of spatial patterns (𝑠1, . . . , 𝑠𝑚𝑠
) and temporal patterns (𝑡1, . . . , 𝑡𝑚𝑡

) K = {𝑠1, . . . , 𝑠𝑚𝑠
, 𝑡1, . . . , 𝑡𝑚𝑡

} (see
Appendix E). The patterns refer to the distributions of individual measures, which quantify aspects related
to the mobility of a single individual (e.g., radius of gyration, mobility entropy), or collective measures,
which quantify aspects related to the mobility of a region as a whole (e.g., OD matrices). A realistic T𝑀 is
expected to reproduce as many mobility patterns as possible.

(2) A set X = {𝑇𝑢1 , . . . ,𝑇𝑢𝑚 } of real mobility trajectories corresponding to𝑚 real individuals 𝑢1 . . . 𝑢𝑚 that
move on the same region as the one on which synthetic trajectories are generated. Generally, a portion
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Xtrain ∈ X is used to train𝑀 or to fit its parameters. The remaining part Xtest is used to compute the set K
of patterns, which are compared with the patterns computed on T𝑀 .

(3) A function 𝐷 that computes the dissimilarity between two distributions, such as the KL divergence or
the JS (see Appendix D.4 for definitions). Specifically, for each measure in 𝑓 ∈ K , 𝐷 (𝑃 (𝑓 ,T𝑀 ) | |𝑃 (𝑓 ,Xtest) )
indicates the dissimilarity between 𝑃 (𝑓 ,T𝑀 ) , the distribution of the measures computed on the synthetic
trajectories in T𝑀 , and 𝑃 (𝑓 ,Xtest) , the distribution of the measures computed on the real trajectories in Xtest.
The lower 𝐷 (𝑃 (𝑓 ,T𝑀 ) | |𝑃 (𝑓 ,Xtest) ), the more realistic model𝑀 is with respect to 𝑓 and Xtest.

DL vs Traditional approaches. There is a vast literature on mechanistic generative models that reproduce
simple temporal, spatial, and social patterns of humanmobility [9, 74, 92, 134, 194]. For example, in the Exploration
and Preferential Return (EPR) model [172], an agent can choose between two competing mechanisms: exploration,
during which an agent chooses a new location never visited before, based on a random walk process with a
power-law jump-size distribution; and preferential return, in which an agent returns to a previously visited
location based on its frequency. Several studies subsequently improved the EPR model by adding increasingly
sophisticated spatial or social mechanisms [5, 10, 39, 136, 187]. EPR and its extensions focus mainly on the spatial
aspects of human mobility, implementing unrealistic temporal mechanisms. TimeGeo [85] and DITRAS [134]
improve the temporal mechanism integrating into an EPR-like model a data-driven model that captures the
circadian propensity to travel and out-of-routine trips. Although mechanistic models have the advantage of being
interpretable by design, their realism is limited because of the simplicity of the implemented mechanisms.

TRAJECTORY
GENERATION

Individual Spatial
Patterns

External Factors (e.g.,
weather conditions)

Individual Temporal
Patterns

User Preferences (e.g.,
POIs, friendships)

Spatial Dimension Temporal Dimension Other Dimensions

Regular Mobility

Out-of-Routine
Mobility

Regular Mobility

Out-of-Routine
Mobility

Spatial Dimension CNN [198, 55, 218]

LSTM [198, 76, 218]

Attention [55]

RNN [104]

FC [115]

Temporal Dimension CNN [198, 55, 218]

LSTM [198, 55 76, 218]

Attention [55]

RNN [104]

FC [115]

Other Dimensions CNN [218, 55]

a)

 

b)

Fig. 4. a) The aspects trajectory generators should capture regarding the spatial dimension (red), the temporal dimension
(blue), and the social and geographic dimensions (yellow) of human mobility data. b) DL modules that allow to capture each
dimension, with the reference to the selected papers in the literature that implement these modules.

The limitations mentioned above can be tackled using DL generative paradigms such as GANs and VAEs.
In both cases, models rely on DL modules to learn the distribution of data and generate mobility trajectories
coming from the same distributions (Figure 4). Thanks to the versatility of DL modules, GANs and VAEs can
capture different aspects simultaneously (e.g., spatial, temporal, social dimensions of mobility) while traditional
approaches can capture peculiar aspects of mobility only (e.g., only the spatial dimension). Moreover, DL models
can capture complex and non-linear relationships in the data that traditional approaches may fail to capture.
Therefore, such models can generate more realistic data than traditional models.

Datasets and evaluationmetrics. Trajectory generators are commonly trained and evaluated onGPS datasets
such as Geolife [232], MDC [106], and taxi traces in San Francisco [143]. Additional information about these
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Reference Name Year DL Modules Evaluation Dataset Code (https://bit.ly)

T
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y
G
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at
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Wang et al. [198] TSG 2021 GAN, CNN, LSTM distances, 𝑟𝑔 , 𝑝 (𝑟,𝑑) [123] TSG_Model

Feng et al. [55] MoveSim 2020 GAN, self-attention
CNN

distances, 𝑟𝑔 , 𝑝 (𝑟,𝑑) ,
DailyLoc, G-rank, I-rank [232]

Huang et al. [76] SVAE 2019 VAE, LSTM MDE - -

Ouyang et al. [128] Ouyang GAN 2018 WGAN, CNN
𝑝 (𝑟 ) , 𝑝 (𝑟, 𝑡 ) , 𝑝 (𝑟,𝑑) ,
𝑝 (𝑟, 𝑑𝑡𝑜𝑡𝑎𝑙 ) , 𝑝𝑑𝑡𝑜𝑡𝑎𝑙 ,
location frequency

[106] -

Kulkarni et al. [104] - 2018 RNN, GAN
visitation frequency,
statistical similarity,

privacy tests
[106] -

Yin et al. [218] - 2018 GAN, FC reconstruction error, utility loss [143] -
Liu et al. [115] trajGANs 2018 GANs - - -

Table 3. List of selected papers tackling trajectory generation. For each paper, we describe the name of the corresponding
proposed model (if any), the year of publication, the DL modules used in the proposed solution, the metrics used for
performance evaluation, the link to the public datasets used for training and testing the model, and the link to a repository
with the code (if any). Papers are sorted by year of publication in decreasing order.

datasets can be found in Appendix C.2. The distance between the distribution measures the performances of
trajectory generators (e.g., using KL or JS divergence, see Appendix D.4 for details) of standard mobility metrics
computed on a real dataset and the generated dataset. Appendix D.1 describes a set of standard mobility metrics
commonly used to evaluate the realism of trajectory generators.
DL approaches. Most of the DL approaches to trajectory generation are based on GANs, while a few are

based on VAEs. Table 3 reports a selection of the most relevant DL approaches to trajectory generation.
In their vision paper, Liu et al. [115] propose the trajGANs framework to address the potential and challenges

of using GANs for trajectory generation. Similar to a typical GAN [67], a trajGAN consists of a generator 𝐺 ,
which accepts a random vector 𝑧 and generates a dense representation of synthetic trajectories samples, and a
discriminator 𝐷 , which classifies an input trajectory sample into “real” or “fake”. Liu et al. [115] suggest the use
of Recurrent Neural Networks (RNNs) to create dense representations of trajectories and transform between
trajectories and distributional representations.

Ouyang et al. [128] represent a trajectory as a sequence of stays, each with a geographic location, start time and
duration. Specifically, a trajectory is an 𝑛1 ×𝑛2 ×𝑘 matrix, where 𝑛1 ×𝑛2 is the size of a squared tessellation, and 𝑘
is the maximum number of stay repetitions for each location (set in the experiments to 𝑘 = 4). AWasserstein GAN
[72] is used to train a trajectory generator. Both the generator and the discriminator are based on a CNN. The
experiments are conducted on the MDC dataset [106] using a 64× 64 squared tessellation on the city of Lausanne,
Switzerland. The similarity between synthethic and real trajectories is evaluated using the JS divergence on the
popularity 𝑝 (𝑟 ) and temporal popularity 𝑝 (𝑟, 𝑡 ) of locations, the staying patterns 𝑝 (𝑟, 𝑑), the semantic importance
𝑝𝑑𝑡𝑜𝑡𝑎𝑙 (𝑟 ), the semantic distance, and G-rank.

Song et al. [174] use a CNN with four layers within a GAN framework to generate trajectories represented as
512 × 512 matrices. In a data convolution process, the input 512 × 512 matrices are resized into a 32 × 32 matrix.
Given the small size of the available (private) mobile phone datasets, the experiments include synthetic ones
obtained by randomly shuffling the real trajectories. In a deconvolution process, the GAN’s output (a 32 × 32
matrix) is resized back to a 512 × 512 matrix using the nearest neighbor function. No quantitative evaluation of
the model’s realism is provided.

Huang et al. [76] present SVAE (Sequential Variational Autoencoder), a generativemodel based on a combination
of a Variational Autoencoder (VAE) and an LSTM, combining the ability of VAEs to construct a latent space
that captures salient features of the training data with the ability of LSTMs to process sequential data. In a data
processing phase, they force the input trajectories to have fixed timestamps, and in the experiments they evaluate
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the realism of SVAE through the Mean Distance Error (MDE) between each step of real and synthetic trajectory
pairs, finding that the reconstruction error of SVAE is smaller than 800 meters.
Kulkarni et al. [104] benchmark the performance of RNNs, SeqGAN [220], RGAN [52] and nonparametric

copulas to generate synthetic trajectories. They compare the generated trajectories with real ones extracted from
the MDC dataset [106] based on geographic and semantic similarity, statistical similarity, long-range dependencies
and privacy tests. They find that copulas have an advantage over all other methods in terms of both model
performance and computational time.
MoveSim [55] is a model-free GAN framework that integrates the domain knowledge of human mobility

regularity. The generator consists of a self-attention-based sequential model to capture the temporal transitions
in human mobility. The discriminator consists of a mobility regularity-aware loss to distinguish the generated
trajectory from a fake one. The mobility regularities of spatial continuity and temporal periodicity are used to
pre-train the generator and discriminator to accelerate the learning procedure. They conduct experiments on a
private mobile phone dataset, using the base station as the spatial unit, and on GeoLife [232], projecting GPS
coordinates into a grid. As for the temporal granularity set the basic time slot of a trajectory as half an hour of
the day. The realism of MoveSim is evaluated based on the distribution of distances, radius of gyration, number
of locations visited daily, G-rank, and I-rank using the JS divergence with respect to real trajectories.

Yin et al. [218] use a GAN-based framework to generate density distributions rather than trajectories, i.e., the
number of users in each location at each time slot. Both the generator and the discriminator are implemented
with FCs. Experiments are conducted on a dataset extracted from MoMo (spatial resolution 2km, time slots of
30 minutes) and on the dataset of taxis in San Francisco (squared tessellation of 50km×50km, time slots of two
minutes) [143]. The proposed model is evaluated in terms of reconstruction error and utility loss outperforms the
differential privacy approach in data utility and attack error.
TSG (Two-Stage GAN) [198] consists of two GANs with different objectives. The first GAN captures spatio-

temporal patterns from the trajectories, mapped into a spatial tessellation leveraging CNNs (both for generator
and discriminator). The generated matrices are then processed and the origin (enter point) and destination (exit
point) of the trips are extracted. The second GAN extracts road information from road maps using CNNs, and
uses LSTMs to generate a trajectory between an origin road and a destination road on the road network. The
model performance is evaluated using the dataset of taxis in Porto [123] by measuring the JS divergence between
the distribution of trajectory lengths and the frequencies of the top 50 visited places.

4.2 Flow Generation
Flow generation consists of generating the flows between a set of geographic locations, given some locations’
characteristics (e.g., population, POIs, land use, distance to other locations) and without any information about
the real flows, [9]. Flow generation is crucial to many aspects of our society, such as transport planning [51]
and spatial economics [93, 138, 145] to reduce inequalities and to design more sustainable communities, and the
modeling of epidemic spreading patterns [7, 28, 110, 225]. Solving flow generation requires capturing the spatial
patterns of close and distant flows, dependencies in the mobility network, and the characteristics of the locations.

Problem definition. Given a tessellation G over a region 𝐴, the flow, 𝑦 (𝑔𝑖 , 𝑔 𝑗 ), between locations 𝑔𝑖 and 𝑔 𝑗
represents the number of people moving from 𝑔𝑖 to 𝑔 𝑗 . The total outflow, 𝑂𝑖 , from location 𝑔𝑖 is the total number
of people originating from location 𝑔𝑖 , i.e., 𝑂𝑖 =

∑
𝑗 𝑦 (𝑔𝑖 , 𝑔 𝑗 ). Flow generation aims to estimate 𝑦 (𝑔𝑖 , 𝑔 𝑗 )∀ 𝑖, 𝑗 ∈ G,

𝑖 ≠ 𝑗 , i.e., the flow between each pair of locations (𝑔𝑖 , 𝑔 𝑗 )in given their total outflows 𝑂𝑖 and 𝑂 𝑗 .
DL vs Traditional approaches. Flow generation has attracted interest for a long time ago. Notably, in 1946

George K. Zipf proposed a model to estimate mobility flows, drawing an analogy with Newton’s law of universal
gravitation [236]. This model, known as the gravity model, is based on the assumption that the number of
travelers between two locations (flow) increases with the locations’ populations while decreases with the distance
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between them [9]. Despite the significant results achieved by the gravity model, it suffers from several drawbacks,
including the inability to capture the structure of the real flows accurately and the more significant variability of
real flows than expected [166]. Moreover, generations are done without considering other factors (e.g., POIs, street
networks and others). Other mechanistic approaches aim to extend the gravity model by capturing additional
information like the radiation model. All the models mentioned cannot capture non-linear relationships in the
data and rely on a limited set of parameters.

FLOW
GENERATION

Spatial Patterns
Geographic Characteristics

(e.g., POIs)

Spatial Dimension Other Dimensions

Close (e.g., influence

of near-by areas)

Distant (e.g., influence

of distant areas)

Spatial Dimension FC [166]

GCN [217,116]

Attention [116]

Other Dimensions FC [166]

a) b)

Fig. 5. a) The aspects flow generators should capture regarding the spatial dimension (red) and the social and geographic
dimensions (yellow) of human mobility data. b) DL modules that allow to capture each dimension, with the reference to the
selected papers in the literature that implement these modules.

In contrast, DL approaches can capture complex and non-linear relationships in the data and easily integrate
additional information about locations such as population, POIs, population (Figure 5). For example, an FC can be
fed with data representing POIs and, similarly, POIs can be a node feature in a graph neural network. Finally,
CNNs can capture spatial relationships that traditional approaches cannot capture. Similarly, FC networks can be
fed with additional features representing areas near the origin and the destination of a flow to characterize its
spatial patterns.
Datasets and evaluationmetrics. Flow generators are generally evaluated on commuting data from censuses

from official statistics institutes [91, 166]. An alternative dataset is the set of traces by taxis in Beijing [217, 229]
aggregated into flows (see Appendix C for details). Flow generation is commonly evaluated as the CPC (Common
Part Of Commuters) between real and generated flows. Other metrics commonly used for this purpose are MAE,
RMSE and MAPE. Additional information about these metrics can be found in Appendix D.3.
DL approaches. There is a limited literature tackling flow generation (Table 4).
DeepGravity [166] use FCs to extend the original gravity model with the ability to capture non-linear relation-

ships and the possibility to integrate additional information to characterize the locations easily (e.g., population,
POIs). The model is evaluated on commuting data from official statistics in the UK and Italy and a dataset of flows
aggregated from individual trajectories in the US [91] using CPC and RMSE. The authors also provide meaningful
explanations of the generated flows in terms of features of the origin and destination locations.

SI-GCN (Spatial Interaction GCN) [217] consists of three parts: (i) a layer for managing the spatial representation
of the data (e.g., construct the local graph, negative sampling, features organization); followed by (ii) an encoder
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Reference Name Year DL Modules Evaluation Dataset Code (https://bit.ly)

F.
G
. Yao et al. [217] SI-GCN 2020 GCN RMSE, MAPE, CPC [229]

Simini et al. [166] Deep Gravity 2020 FC CPC [91] DeepGravity
Liu et al. [116] GMEL 2020 GNN, Attention RMSE, MAE, CPC GMEL-Code

Table 4. List of selected papers tackling flow generation. For each paper, we describe the name of the corresponding proposed
model (if any), the year of publication, the DL modules used in the proposed solution, the metrics used for performance
evaluation, the link to the public datasets used for training and evaluating the model, and the link to a repository with the
code (if any). The papers are sorted by year of publication in decreasing order.

that uses graph convolutions to generate a representation in a latent space for all the geographical units; and (iii)
a decoder in charge of generating the missing flows starting from the latent representation. SI-GCN is evaluated
on the dataset of T-Drive [229] using RMSE, MAPE and CPC as evaluation metrics.
GML (Geocontextual Multitask Embedding Learner) [116] captures the spatial correlation from geographic

contextual information and relies on two graph neural networks with attention (GAT). The role of the GATs is to
learn an embedding representation that is then passed to a gradient boosting that is in charge of generating the
flows. The model is evaluated on commuting data regarding New York City using MAE, RMSE, and CPC.

5 CONCLUSIONS
In this survey, we proposed a perspective on DL approaches to human mobility, focusing on next-location
prediction, crowd flow prediction, trajectory generation, and flow generation. For each task, we highlighted the
challenges related to solving it and how DL may help capture human mobility better than traditional models.
We described a selection of relevant state-of-the-art solutions to each task. As an additional contribution to the
community, we created a GitHub repository (bit.ly/DL4HM) where researchers can contribute to maintaining the
list of relevant papers always up-to-date. Our survey reveals that predictive tasks (next-location and crowd flow
prediction) are well established in the community and addressed by a significant variety of DL approaches. In
contrast, the usage of DL for generative tasks (trajectory generation and flow generation) is more recent and
should require more attention in the future.

Our overview of the state of the art of DL for human mobility reveals that existing solutions suffer from several
limitations, and many relevant aspects need to be addressed in the future. In particular, we identify the following
open challenges.

Geographic Transferability. Although DL models can capture complex mobility patterns automatically, they
strictly depend on the data used for training and may not be geographically transferable, i.e., one model trained
on a specific region can be used to predict locations or crowd flows or to generate synthetic trajectories on a
distinct, non-overlapping region. Geographic transferability can be crucial in situations where there is a scarcity
or even absence of mobility data for a region, and it poses several challenges related, for example, to the design
of a suitable encoder of the mobility trajectories or flows. As a first tentative in this direction, RegionTrans [195]
provides insights on how transferability can be tackled for crowd flow prediction. Still, more work is needed to
address this open challenge.

Explainability. DL models are by nature opaque, i.e., they are black-boxes from which it is hard to reconstruct
the reasoning that led to the generation of a trajectory or the prediction of a location or flow. Nonetheless,
explainability is crucial for gaining a deeper understanding of mobility patterns and highlighting the presence of
biases in the model’s reasoning. It is important to develop mobility-related explanations that provide examples
and counter-examples to validate trajectories and crowd flows from different perspectives. While models rely on
many features, either external ones (e.g., weather data, POIs) or spatio-temporal ones, it is not clear what the role
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of each feature is to the model’s prediction or generation. Designing explainable DL models for human mobility
is essential to gain knowledge that can be useful for possible users, such as policymakers and urban planners.

Privacy. DLmodels raise privacy issues both in the training and the prediction or generation phase. For example,
in trajectory generation, evaluating the risk of re-identifying a real user from synthetic trajectories is crucial,
especially when there is a scarcity of data to train the models. A synthetic trajectory may resemble a real one and
a malicious adversary may use this information for re-identification. In the training phase, the risk of leaking
private data is high regardless of the mobility task, as the portions of information used cannot be controlled
directly. The extent training trajectories or crowd flows can be perturbed without degrading the realism of the
generative models and the accuracy of predictive ones is an aspect that is barely investigated in the literature.

Tunability. Meaningful predictions and simulations require models that can be controlled along relevant
mobility dimensions, such as geographic space, time granularity, presence of mobility restrictions or other events
that may alter mobility, predictability of trajectories or crowd flows, and more. Current DL models have a limited
degree of tunability, which limits their usability in practice. For example, it is not clear to what extent the models’
realism or accuracy depends on the size or shape of the spatial tessellation, which may vary according to the
user’s needs. For example, suppose the decision-maker is interested in identifying the most active areas of a city
in terms of daily mobility. In that case, the usage of administrative tiles may provide more interpretable results.
In contrast, if they want to understand how the transportation and road networks affect and are affected by big
events in a city, the usage of fine-grained grid-like tessellations may be helpful.

Interaction Dimension. Next-location predictors and trajectory generators assume the independence of the
individuals’ mobility, even though social purposes or collective needs can explain a significant portion of human
movements. People’s movements are not entirely independent of each other and they can lead to situations like
traffic jams, accidents, or massive commuting patterns. Models that can include these aspects need to be designed
to capture human mobility’s complexity more comprehensively.
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A SPATIAL TESSELLATIONS
Spatial tessellations may be computed using several open-source tools. Figure 6 shows examples of tessellations
in New York City.
Library scikit-mobility [135] allows for creating a squared spatial tessellation, given a reference geographic

area and a tile size expressed in meters.
S2 Geometry is an open-source project that represents spatial data on a three-dimensional sphere. It provides

efficient and scalable spatial indexing techniques to carry out operations such as testing relationships among
objects, measuring centroids, distances, and more. S2 Geometry decomposes the unit sphere into a hierarchy of
cells (tiles), each of which is a quadrilateral bounded by four geodesics. The top level of the hierarchy is obtained
by projecting the six faces of a cube into the unit sphere, and lower levels are obtained by subdividing each cell
into four sub-cells recursively. Each cell in the hierarchy has a level, defined as the number of times the cell has
been subdivided (starting with a face cell). Cells’ levels range from 0 to 30. The smallest cells at level 30 are called
leaf cells; there are 6 × 430 cells in total, each about 1cm across on the Earth’s surface.
The H3 geospatial indexing system consists of a hexagonal tiling of the sphere with hierarchical indexes.

The hexagonal grid system is created on the planar faces of a sphere-circumscribed icosahedron, and the grid
cells are then projected to the surface of the sphere using a specific projection. The H3 grid is constructed by
recursively creating increasingly higher precision hexagon grids until the desired resolution is achieved. The first
H3 resolution (resolution 0) consists of 122 base cells, and each subsequent resolution is created splitting each
cell into seven children recursively. H3 provides 15 finer grid resolutions in addition to resolution 0. The finest
resolution, resolution 15, has cells with an area of less than 1𝑚2.

Uber H3 Administrative Squared S2 Geometry

Fig. 6. Examples of spatial tessellations constructed over New York City. On the left, the city is tessellated in hexagons using
H3 (resolution 6). In the second image, the area is split according to the administrative boundaries described in the GeoJSON
file downloaded from New York City’s open data portal. In the third image, we use scikit-mobility to split an area into a
squared grid with tiles of 1km×1km. In the last image, we make a tessellation using S2 Geometry.

B DEEP LEARNING MODULES

B.1 Recurrent Neural Networks
A fully connected neural network (FC) consists of a series of fully-connected layers. All the neurons in one layer
are connected to the neurons in the next layer. An FC layer, therefore, is a function that, given an input 𝑥 ∈ R𝑚 ,
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map values in R𝑚 → R𝑛 where𝑚 and 𝑛 are the number of neurons in two consecutive layers. FCs are universal
approximators (i.e., can learn any representation function) [66] but they are not able to deal with sequential data.

Recurrent Neural Networks (RNNs) [157] can efficiently deal with sequential data such as time series, in which
values are ordered by time, or sentences in natural language, in which the order of the words is crucial to shaping
its meaning. An RNN consists of a sequence of gates 𝐺 = {𝐺0, . . . ,𝐺𝑛−1}, each one producing an hidden state ℎ𝑖
based on the current input 𝑥𝑖 and the output from the previous gate ℎ𝑖−1 (Figure 7). In Vanilla RNNs, a gate 𝐺𝑖
is implemented by using a hyperbolic tangent function (tanh), which takes as input 𝑥𝑖 and ℎ𝑖−1 and computes
the current state ℎ𝑖 . RNNs suffer from the vanishing gradient problem [98] and cannot propagate information
found at early steps, losing relevant information at the beginning of a sequence when it is time to analyze its
end [98]. Long-short-term Memory networks (LSTMs) [75] and Gated Recurrent Units (GRUs) [35] are two gate
implementations that mitigate this problem (Figure 7).
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Fig. 7. (Top) An example of a Recurrent Neural Network (RNN). The right term of the equation corresponds to the unrolled
version of the network on the left term. In general, an RNN takes as input a sequence 𝑋 = ⟨𝑥0, 𝑥1, . . . 𝑥𝑛⟩ and produces an
output ℎ𝑖 that, at a certain moment 𝑖 , is based on the current input 𝑥𝑖 and the output of the previous gate ℎ𝑖−1. Usually, in
Vanilla RNNs, the tanh function (green circle) is used to combine the current input 𝑥𝑖 and the previous hidden state ℎ𝑖−1.
(Bottom) The structure of an LSTM gate (left) and a GRU gate (right). In the LSTM gate, we highlight with a dashed line the
cell state (in blue), the forget gate (in orange), the input gate (in green), and the output gate (in purple). In the GRU gate, we
highlight with the dashed line the reset gate (in red) and the update gate (in green).

In LSTMs, the cell state 𝑐𝑖 carries the data through the network, while the internal gates remove useless
information from the flow or add relevant knowledge to the cell state. There are three internal gates: forget,
input, and output gate (Figure 7). The forget gate passes the information of the previous hidden state ℎ𝑖−1 and
of the current input 𝑥𝑖 to a sigmoid activation function which ranges in [0, 1]. The closer the sigmoid’s output
(𝑓𝑖 ) is to 0, the less likely the information is to be considered relevant. The sigmoid’s output 𝑓𝑖 is then pointwise
multiplied with previous cell state 𝑐𝑖−1 forming 𝑐∗𝑖−1. Values of 𝑐

∗
𝑖−1 close to 0 are not taken into consideration by

the current cell state. The input gate passes ℎ𝑖−1 and 𝑥𝑖 to a sigmoid activation function and to a tanh activation
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function. The sigmoid function outputs 𝑖𝑛𝑖 , i.e., the relevance of the new data (0 is not relevant; 1 is relevant).
The tanh outputs, 𝑐𝑖 ∈ [−1, 1], is multiplied with 𝑖𝑛𝑖 , and the resulting product is pointwise summed with 𝑐∗𝑖−1
to obtain the new cell state 𝑐𝑖 . The output gate generates the hidden state ℎ𝑖 . The previous hidden state ℎ𝑖−1
and the current input 𝑥𝑖 are passed to a sigmoid activation function, which generates 𝑜𝑖 . This value is pointwise
multiplied with the output of a tanh applied on the new cell state 𝑐𝑖 , to form the new hidden state ℎ𝑖 . The hidden
state ℎ𝑖 and the cell state 𝑐𝑖 are passed to the next gate of the recurrent network. In some works, bidirectional
LSTMs (Bi-LSTMs) [161] are adopted instead of LSTMs. Bi-LSTMs duplicate the recurrent layer: the sequence is
provided as input to one layer and its reverse as input to the other layer. Analyzing time dependencies in both
directions gives an advantage in scenarios like speech recognition, in which the context is essential to interpret
the meaning of a sentence [68, 69].
In GRUs, the relevant information is propagated throughout the network using hidden states only (Figure 7).

GRUs have two types of internal gates. The reset gate decides how much to forget and consists of a sigmoid
function that takes as input the hidden layer of the previous step ℎ𝑖−1 and the current input 𝑥𝑖 . The output of the
sigmoid, 𝑟𝑖 , is pairwise multiplied with ℎ𝑖−1, generating ℎ∗𝑖−1. Depending on ℎ∗𝑖−1, we can determine which past
information to forget (low values) or keep (high values). The update gate establishes whether the past information
is relevant for future predictions and, therefore, should be propagated to the next steps. It is composed of a
sigmoid function that takes as input ℎ𝑖−1 and 𝑥𝑖 and outputs 𝑧𝑖 . The next hidden state, ℎ𝑖 , is obtained by: (i)
computing ℎ̂𝑖 , which is the output of a tanh function of ℎ∗𝑖−1 and the current input 𝑥𝑖 ; (ii) multiplying 1 − 𝑧𝑖 with
ℎ𝑖−1; and (iii) adding the resulting sum to the product between 𝑧𝑖 and ℎ̂𝑖 .

Further mathematical details and formalizations can be found in [163] for RNNs and LSTMs and [36] for GRUs.
RNNs are widely used in next-location prediction (Section 3.1), often in combination with attention mechanisms,

to capture the temporal relationships in individual trajectories. Moreover, RNNs are often combined with
convolutional neural networks in crowd flow prediction (Section 3.2) and trajectory generation (Section 4.1), to
capture temporal and spatial patterns at the same time.

B.2 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are widely used in computer vision for their efficacy in object recognition
[147, 168], image classification and segmentation [53, 103], movement or event recognition [188], and more [95].
Similarly to the visual cortex [78, 79], a CNN is a network made of neurons that react only to certain stimuli in a
restricted region of the visual field [103].
CNNs alternate two types of layers: (i) the convolutional layers reduce the size of the matrix by applying a

kernel function, or filter, that keeps all the relevant information; (ii) the pooling layers reduce the spatial size of
the convoluted features to decrease the computational power required to process the data. Figure 8 shows an
example of a CNN architecture with two convolutional layers and two pooling layers. Usually, at the end of the
CNN, an FC is used to compute the output.
The convolutional layers apply one or more filters to the input matrix 𝐴 to extract relevant features and

summarize the characteristics of an 𝑖 × 𝑗 area of 𝐴 into a single value. Specifically, given an input matrix 𝐴 of size
𝑛 ×𝑚, a filter is a mathematical operation between the original matrix 𝐴 and another matrix 𝐵 of size 𝑘 × 𝑙 , with
𝑘 < 𝑛 and 𝑙 < 𝑚. The filter is generally applied with a sliding window mechanism called stride.

The pooling layers aim at downsampling the input matrix, replacing each portion of it with summary statistics.
In practice, pooling layers are either max pooling or average pooling. Max pooling returns the maximum value
from the part of the matrix convoluted by a given size and stride filter. Average pooling returns the average
of the values produced by the filter operations. Pooling layers create representations of the matrix that are
approximately invariant to small translations of the input.
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Fig. 8. Example of architecture of a CNN. The neural network consists of two convolutions and two pooling layers. After the
convolution/pooling layers, there is an FC that outputs the prediction. For instance, to classify a sample into one of 𝑛 classes,
the last layer is usually fed into an FC that outputs a 1 × 𝑛 vector containing the probabilities of the sample to belong to a
specific class.

A significant limitation of CNNs, especially relevant for networks with many layers, is the vanishing gradient
issue [98]. The so-called residual units are a solution to this problem [73]. A residual unit implements the skip
connection also known as identity connection. Given a network with 𝑙1, . . . , 𝑙𝑘 layers, the output of a layer 𝑙𝑖 is
added to the output of the layer 𝑙𝑖+𝑗 so to preserve the loss of information. The variable 𝑗 represents the skip size,
and it is usually smaller than 4.
A mathematical formalization of CNNs can be found in [202].
Differently from RNNs, where the input is processed sequentially, CNNs are not designed to process sequences,

and they are used mainly in crowd flow prediction (Section 3.2): the evolution of the incoming (outgoing) flows
within a city is represented as a sequence of matrices. CNNs are used to capture the dynamics of the spatial
dependencies among the areas of a city. CNNs are often combined with RNNs to capture temporal dependencies
(e.g., ConvLSTM [205]). CNNs are also used in trajectory generation (Section 4.1): real trajectories are represented
as images and used to train a Generative Adversarial Network (GAN), in which two CNNs are used as generator
and discriminator to generate realistic trajectories.

B.3 Attention Mechanism
Attention mechanisms are based on the idea that, when dealing with a large amount of information, our brains
focus on the most significant parts and consider all the others as background information. Initially introduced
for natural language processing (e.g., machine translation [36, 181] and speech recognition tasks [38]), the
usage of attention mechanisms rapidly extended to computer vision, healthcare, and recommendation systems
[37, 162, 206]. Given the current input 𝑥 and a context, an attention mechanism produces a score for each element
of 𝑥 . These scores are usually computed using adequate activation functions (e.g., softmax) and organized in a
vector 𝑠 . A context vector 𝑐 is computed as the pairwise multiplication between 𝑠 and 𝑥 . The context plays a
crucial role in the establishment of which features should be the most important to the model.

B.4 Generative Models
Dimensionality reduction consists in transforming data from a high-dimensional space to a low-dimensional one
retaining important properties and information of the original data [102]. In general, this is done by employing
a module called encoder (i.e., a neural network), which reduces the space of the original features generating
a latent space; and a decoder (i.e., a neural network), which transforms the latent space back to the original
space. AutoEncoders (AEs) [102] reduce the reconstruction error while decoding. AEs are designed to encode
a sample always in the same way and, therefore, cannot be considered a generative model as they are not
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Fig. 9. Visual representation of a Generative Adversarial Network (GAN). A GAN is composed of a generator 𝐺 , and a
discriminator 𝐷 . The generator is a differentiable function𝐺 (𝑧;Θ(𝐺) ) which outputs the new data according to a distribution
𝑝𝑔 , where Θ(𝐺) are the parameters of the generative model. The discriminator represents a differentiable function 𝐷 (𝑥 ;Θ(𝐷) ),
whereΘ(𝐷) are the parameters of the discriminative model, which produces the probability that 𝑥 comes from the distribution
of training data 𝑝𝑑𝑎𝑡𝑎 . The aim is to obtain a generator that is a good estimator of 𝑝𝑑𝑎𝑡𝑎 . When this occurs, the discriminator
is "fooled" and can no longer distinguish the samples from 𝑝𝑑𝑎𝑡𝑎 from those from 𝑝𝑔 .

capable of decoding (i.e., generate) data with different charateristics with repsect to the original data. Variational
AutoEncoders (VAEs) [96] solve this problem by encoding a sample as a distribution instead of a set of fixed
values. In this way, the decoder can be used to generate data that are similar to the original ones (e.g., realistic as
they should follow similar patterns) but diverse.

Generative adversarial networks (GANs) [67] are an example of generative models, i.e., any model that takes
a training set, consisting of samples drawn from a distribution, and learns to represent an estimate of that
distribution. A generative mobility model can generate synthetic spatio-temporal trajectories that realistically
reproduce mobility patterns. Recently, GANs are being used to generate synthetic mobility trajectories [115, 128].
The basic idea of a GAN is to set up a game between a generator (e.g., a neural network) and a discriminator

(e.g. a classifier) (Figure 9). The generator creates samples from the distribution 𝑝𝑔 that are intended to come
from the same distribution as the training data 𝑝𝑑𝑎𝑡𝑎 and hence similar to the original ones. The discriminator
examines the generated samples to determine whether they are real or fake. In other words, the generator is
trained to fool the discriminator by generating samples that are indistinguishable from real ones.
Mathematically, the generator and the discriminator are two functions that are differentiable with respect to

both the inputs and the parameters. The discriminator is a function 𝐷 that takes 𝑥 (e.g., a trajectory) as input
and uses Θ(𝐷) as parameters. The generator is a function 𝐺 that takes 𝑧 (e.g., set of trajectories) as input and
uses Θ(𝐺) as parameters. 𝐷 wishes to minimize a cost function 𝐽 (𝐷) (Θ(𝐷) ,Θ(𝐺) ) while controlling only Θ(𝐷) .
Similarly, 𝐺 wishes to minimize a cost function 𝐽 (𝐺) (Θ(𝐷) ,Θ(𝐺) ) while controlling only Θ(𝐺) . This scenario is a
game the solution of which is a Nash equilibrium [66], i.e., a tuple (Θ(𝐷) ,Θ(𝐺) ) that is a local minimum of 𝐽 (𝐷)
with respect to Θ(𝐷) and a local minimum of 𝐽 (𝐺) with respect to Θ(𝐺) .

The training process consists of two simultaneous Stochastic Gradient Descent (SGD) [66]. SGD is a stochastic
approximation of gradient descent optimization that replaces the actual gradient with an estimate, thus achieving
faster iterations in trade for a lower convergence rate. Two gradient steps are made simultaneously: one updating
Θ(𝐷) to reduce 𝐽 (𝐷) and one updating Θ(𝐺) to reduce 𝐽 (𝐺). Usually, the cost function used for the discriminator
and the generator is the cross-entropy [66], defined as: 𝐻 (𝑃,𝑄) = −𝐸𝑃 [𝑙𝑜𝑔𝑄], where 𝑃,𝑄 are two distributions
and 𝐸𝑃 is the expected value of 𝑙𝑜𝑔𝑄 according to 𝑃 .

A formalization of the concept of GAN can be found in [67]
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C DATA
The last decade has witnessed the emergence of massive datasets of digital traces that portray human movements
at an unprecedented scale and detail. Examples include tracks generated by GPS devices embedded in smartphones
[232] or private vehicles [133]; mobile phone records [18]; and geotagged posts from social media platforms [125].
Unfortunately, most of these datasets are proprietary and not publicly available, making research on human
mobility hard to reproduce. In this Section, we discuss the peculiarities of various mobility data sources and, for
each of them, provide a reference to a list of public datasets commonly used to train and test models presented in
this survey (Table 5).

C.1 Mobile Phone Records
Mobile phones are ubiquitous, with coverage in most countries that reaches almost 100% of the population
[18, 189]. Telco companies record the activity of mobile phone users for billing and operational purposes, hence
storing an enormous amount of information on where, when, and with whom users communicate [18]. Every
time a user engages a telecommunication interaction – calls, text messages, data connections – the operator
assigns a Radio Base Station (RBS) to deliver the communication through the network. Since the position and the
coverage area of each RBS are known, a user’s telecommunication interaction reflects their geographic location.
Each interaction generates several mobile data formats [18, 131].
Every time a user makes/receives a call or sends/receives an SMS, a new Call Detail Record (CDR) is created.

A CDR is a tuple (u𝑜 , u𝑖 , 𝑡, 𝐴𝑜 , 𝐴𝑖 , 𝑑), where u𝑜 and u𝑖 are the identifiers of the caller and the callee, and 𝑡 is a
timestamp of when the call starts. In turn,𝐴𝑜 and𝐴𝑖 are the RBSs that manage the outgoing call and the receiving
call, and 𝑑 is the call duration. An individual’s mobility can be reconstructed from CDRs assuming a movement
between the RBSs of any two consecutive records [18]. Aggregated mobility, such as flows, can be inferred by
counting the number of users that move, in a given time window, between two RBSs or spatial aggregations
of them (e.g., neighborhoods or municipalities) [24]. CDRs are sparse in time, i.e., a user’s position is known
when they make or receive a call or a text message only, leading to sparse and incomplete mobility trajectories.
Notwithstanding, they are the most common format in human mobility studies [10, 18, 40, 65, 136, 167].
When a user uploads or downloads data from the Internet using their phone’s connection, they generate

an eXtended Detail Record (XDR), a tuple (u, 𝑡, 𝐴, 𝑘) where 𝐴 is the RBS that serves the connection, and 𝑘 the
amount of uploaded/downloaded information. XDRs are less common in the literature than CDRs, mainly because
the advent of the mobile data connection is relatively recent. XDRs partially overcome the problem of sparsity
present in CDRs [30], because mobile connections are more frequent than calls and text messages.

For both CDRs and XDRs, the spatial granularity is at the level of RBS, i.e., the user position is approximated
with the location of the RBS used for the telecommunication activity. This approximation implies that the user’s
position within an RBS’s coverage area is unknown and that user tracking depends on the spatial distribution of
antennas on the territory, which depends on population density. Nevertheless, mobile phone data may cover a
large sample size on a national scale. An advantage of mobile phone data is its multidimensionality: CDRs also
provide information about the social interactions between users; both CDRs and XDRs may be accompanied by
socio-demographic information about the users (e.g., age, sex).

C.1.1 Available datasets. Since mobile phone data contain sensitive information [45, 139], they are not typically
publicly available, and any data collected by a specific group of researchers may not be shared with other groups,
making reproducibility difficult.

C.2 GPS traces
Global Navigation Satellite Systems (GNSS) use satellites to provide geo-spatial positioning, allowing electronic
receivers to determine their location (longitude, latitude, and altitude) and time, using signals transmitted along a
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line of sight from satellites. The US Global Positioning System (GPS) is the most popular one, and GPS receivers
are ubiquitous in many tools of everyday life, such as mobile phones [5, 179, 232], vehicles [61, 133, 136], vessels
[158, 170, 191], and wearable devices [154]. On mobile phones, GPS receivers are activated by apps that require
the user’s position (e.g., Google Maps). On vehicles, GPS devices automatically turn on when the vehicle starts,
sending positions to a server with a frequency of a few seconds. The precision of GPS receivers varies from a
few centimeters to meters, depending on the device’s quality and the errors generated by the system [27]. GPS
cannot track the devices in enclosed spaces, such as buildings and tunnels. A typical GPS trace is a set of tuples
(𝑢, 𝑡, 𝑙𝑎𝑡, 𝑙𝑛𝑔) where 𝑢 is a user, 𝑡 is a timestamp of the measurement and 𝑙𝑎𝑡, 𝑙𝑛𝑔 are the position’s latitude and
longitude. GPS traces may require several preprocessing tasks aimed to mitigate errors and extract meaningful
semantics. For example, since GPS traces are dense sequences of spatio-temporal points, they do not explicitly
define semantic locations, which must be inferred through specific preprocessing techniques [56, 230, 231].

C.2.1 Available datasets. GeoLife [232] is a publicly available dataset describing the GPS trajectories of 182 users
over 4.5 years, collected using different devices (e.g., GPS receivers and mobile phones) every 1-5 seconds or 5-10
meters. GeoLife covers a broad range of users’ outdoor movements, from life routines like go home and go to
work to entertainment and sports activities. Each point in a GeoLife’s trajectory contains latitude, longitude,
altitude, and the timestamp. Moreover, the user’s transportation mode is also available for most of the trajectories.

Other public datasets provide information about the trips of GPS-equipped taxis in several cities. Piorkowski
et al. [143] provide the trajectories, sampled on average every 10 seconds, of taxis in San Francisco, in May
2008. Each point of a trajectory consists of the taxi’s identifier, the latitude, the longitude, the timestamp, and
the occupancy. Moreira et al. [123] (ECML/PKDD Challenge) provide the trips of taxis in Porto, Portugal, in
which points contain the latitude, the longitude and a timestamp indicating when the trip started. Data are
collected approximately every 15 seconds. For each trip, the dataset provides several auxiliary information, such
as the trip’s typology (e.g., dispatched from the central, demanded to the operator, requested to the driver), the
stand from which the taxi departed, and an identifier of the passenger’s phone number. The Taxi and Limousine
Commission of New York City collected a dataset on yellow and green taxis operating in the city starting from
2009 [184]. The dataset provides information on pick-up and drop-off dates/times and locations, trip distances,
itemized fares, rate types, payment types, and driver-reported passenger counts.

The T-Drive dataset [229] describes the trajectories of about 10,000 taxis in Beijing, China, for one week. Points
are sampled every 177 seconds and contain the taxi’s identifier, the latitude, the longitude, and the timestamp.
Zhang et al. [224] create a squared tessellation on New York City and Beijing and, for each tile, provide the
incoming and the outgoing flows. Beijing’s flows are captured based on taxis’ GPS signal; the New York City
ones are based on the city’s bike-sharing system.
Similarly, Jiang et al. [82] generated a tessellation of 450 × 450 meters over Tokyo and Osaka, Japan and, for

each tile, they provide people density and incoming and outgoing flows. The mobility is captured using GPS
devices.
Citi Bike by Lyft [14] provides a dataset describing the trips between bike-sharing stations in New York

City. Each record describes the stations where the trip started and ended when it took place and the stations’
coordinates. There are similar open datasets for other cities, such as Washington DC [15].

The Mobile Data Challenge dataset (MDC) [106] describes the trajectories of 185 participants of a data collection
campaign in Lausanne, collected from mobile phones [97]. The dataset offers various information (e.g., calendar
logs, data from accelerometers), including two files describing the individuals’ mobility through GPS receivers
and Wireless Local Area Networks (WLANs). Each record in the first file describes the user’s identifier, latitude,
longitude, altitude, timestamp, speed, heading direction, and accuracy. Records in the second file describe the
user’s identifier, a timestamp, the first three bytes of the device’s MAC address, and the access points’ location.
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Recently, to take countermeasures for the COVID-19 pandemic, companies such as Cuebiq and SafeGraph are
providing free access upon request to their data.1

C.3 Social Media Data
Users’ posts on social media (e.g., photos, text, videos) can be associated with a geographic location and time
(geotagged). The presence of spatial and temporal information allows the reconstruction of users’ trajectories
from the sequence of published posts. Some platforms like Twitter provide either the post’s precise geotag (i.e., a
latitude and longitude pair, a format recently removed) or the position of a predefined location suggested by the
platform (e.g., a city, an area, a restaurant). In other platforms like Foursquare and Facebook, users can check-in
in predefined locations called venues, i.e., POIs that provide information about social, cultural, and infrastructural
components of a geographic area (e.g., cities, shops, museums). A venue is associated with a physical location
(latitude and longitude pair) and textual information (a description of the place or the activities related to the
place) and can follow a hierarchical categorization that provides different levels of detail about the activities (e.g.,
Food, Asian Restaurant, Chinese Restaurant) [12].
In general, a geotagged record describes the posting user’s identifier, the resource identifier (e.g., post, tweet,

photo), the time of posting, and, depending on the platform, the venue identifier/category or a location as a string
(e.g., Statue of Liberty, New York) or a latitude/longitude pair.

For most of the social media platforms, geotagged posts are downloadable through their APIs. APIs impose
limitations on the number of downloadable posts and queries per day or require authorization from the platform’s
users to download the data. Users’ location is available only when they post something or check-in into a venue,
leading to a data sparsity problem. Nevertheless, social media data bring the advantage that an objective definition
of location is available, facilitating the data preprocessing phase [41].

C.3.1 Available datasets. Datasets about check-ins on social media platforms that are not active anymore, such
as Gowalla and Brightkite, are freely available. Gowalla was a location-based social network platform in which,
similarly to Foursquare, the users were allowed to check-in in the so-called spots (venues) through a website
or the app. The related dataset [34] consists of more than six million check-ins over one year and a half from
February 2009 to October 2010. Each check-in describes the user identifier, the location identifier, the latitude
and longitude pair, and a timestamp. The dataset also provides information about the users’ friendship network,
which contains about 200,000 nodes and one million edges [34]. In Brightkite, another platform that is not active
anymore, users were allowed to check-in in POIs, to specify who is nearby at the moment and who went to a
POI before. The dataset contains almost 4.5 million check-ins from April 2008 to October 2010 and the users’
friendship network with about 60,000 nodes and 220,000 edges [34].

A dataset collected through Foursquare APIs is introduced in [54] and contains check-ins of 16,000 users over
one year in New York City.
Twitter provides several open datasets, in which location is usually expressed as a semantic point of interest

either suggested by the platform (e.g., Empire State Building, NYC) or typed by the users (e.g., Home), or as a
latitude and longitude pair. Geotagged tweets may be retrieved directly using Twitter APIs. For example, Zhang et
al. [223] (GMove) provide a Twitter dataset describing 1.4 million tweets from August to November 2014 covering
the area of Los Angeles.
A comprehensive list of Twitter datasets is available at github.com/shaypal5/awesome-twitter-data.

1Cuebiq: cuebiq.com/visitation-insights-covid19/, SafeGraph: safegraph.com/covid-19-data-consortium. For instance, [91] is a recently
published dataset based on SafeGraph. It contains aggregated daily mobility flows at different spatial aggregations such as country to country,
state to state and census tract to census tract flows.
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Ref. Name Items Time span Area Used By Task Link
(https://bit.ly/)

G
PS

tr
ac
es

[232] GeoLife 182 4.5 Years Asia [55] Traj. Gen. Geolife
[229] T-Drive 10k 1 Week Beijing, China [80] Flow. Pred. T-Drive-Data
[82] DeepCrowd - 4 months Tokyo and Osaka,

Japan
[82] Crowd Flow Pred. DeepCrowd

[224] ST-ResNet taxis - 4, 6 months Beijing, China [47, 87, 109, 113, 148,
180, 221, 224, 237]

Crowd Flow Pred. ST-ResNet

[224] ST-ResNet bikes - 6 months New York City, USA [47, 87, 109, 113, 148,
180, 221, 224, 237]

Crowd Flow Pred. ST-ResNet

[143] Taxi San Francisco 500 30 days San Francisco, USA [49, 153, 218] Next-Loc., Traj. Gen. TaxiSF
[123] ECML-PKDD taxi 441 9 months Porto, Portugal [44, 49, 118, 153] Next-Loc. TaxiPorto
[184] Taxi New York City - From 2009 New York City [153, 180, 183] Next-Loc. TaxiNYC-2
[106] MDC 185 2 years Lausanne, Switzer-

land
[104, 129] Traj. Gen MDC-2

[91] COVID 19 US Flows - From 2019 United States [166] Flow Gen. USFlows

ch
ec
k-
in
s

[34] Gowalla 196k 20 months California &Nevada,
USA

[64, 114, 212] Next-Loc. GowallaData

[34] Brightkite 58k 30 months - [64, 114, 212] Next-Loc. Brightkite
[54] DeepMove 16k 1 Year New York City [54] Next-Loc. DeepMove
[223] GMove 1.4M 4 Months Los Angeles [214] Next-Loc. SERM-Repo
[14] New York City bikes - from 2013 New York City, USA [112, 180, 183, 216] Crowd Flow Pred. BikeNYCData
[15] Washington DC

bikes
- from 2010 Washington DC ,

USA
[180] Crowd Flow Pred. BikeWashington

Table 5. Public mobility datasets used in the selected papers. For each dataset, we provide a reference to the paper introducing
it, the number of items (users or points) in the dataset (symbol “-” indicates that the dataset is aggregated, that the number
is not available, or that the dataset is continuously updated), its time span, the geographic area covered, the list of selected
papers that use it, the mobility tasks the dataset is used for, and the link to download it.

D EVALUATION METRICS

D.1 Distance metrics
The Haversine distance is the distance on the spherical earth2 between two points 𝑝1 and 𝑝2:

𝑑ℎ (𝑝1, 𝑝2) = 2𝑅

(√︄
𝑎(𝑝1, 𝑝2)

𝑎(𝑝1, 𝑝2) − 1

)
; 𝑎(𝑝1, 𝑝2) = 𝑠𝑖𝑛2

(
𝜙2 − 𝜙1

2

)
+ 𝑐𝑜𝑠 (𝜙1)𝑐𝑜𝑠 (𝜙2)𝑠𝑖𝑛2

(
𝜆2 − 𝜆1

2

)
(3)

where 𝑅 is the earth radius and 𝜆𝑖 and 𝜙𝑖 , with 𝑖 = 1, 2, are the longitude and the latitude of 𝑝𝑖 , respectively. The
Haversine distance range in [0,∞] and lower values indicate better performance. The equirectangular distance is
defined as:

𝑑𝑒𝑞 (𝑝1, 𝑝2) = 𝑅

√︄(
(𝜆𝑝2 − 𝜆𝑝1 )𝑐𝑜𝑠

(
𝜙𝑝2 − 𝜙𝑝1

2

))2
+ (𝜙𝑝2 − 𝜙𝑝1 )2 (4)

where 𝜆𝑝𝑖 and 𝜙𝑝𝑖 are the longitude and latitude of point 𝑝𝑖 , respectively.

D.2 Classification metrics
Accuracy (ACC) indicates how many of the locations an individual will visit are correctly predicted. The k-
accuracy (ACC@k) is often used instead of ACC: predictors output a list of all possible locations an individual
can visit next, ranked from the most to the least likely, and ACC@k is the fraction of times the real location

2Flat earthers can simply use the Euclidean distance, defined as follows: given two points 𝑝1 = (𝑥1, 𝑦1) and 𝑝2 = (𝑥2, 𝑦2) ,
𝑑flatearth=

√︁
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2

, Vol. 1, No. 1, Article . Publication date: August 2021.

https://bit.ly/Geolife
https://bit.ly/T-Drive-Data
https://bit.ly/DeepCrowd
https://bit.ly/ST-ResNet
https://bit.ly/ST-ResNet
https://bit.ly/TaxiSF
https://bit.ly/TaxiPorto
https://bit.ly/TaxiNYC-2
https://bit.ly/MDC-2
https://bit.ly/USFlows
https://bit.ly/GowallaData
https://bit.ly/Brightkite
https://bit.ly/DeepMove
https://bit.ly/SERM-Repo
https://bit.ly/BikeNYCData
https://bit.ly/BikeWashington


40 • Luca et al.

is among the 𝑘 most likely locations predicted by the model, i.e., the percentage that a list of predictions with
length 𝑘 covers the ground truth location (ACC = ACC@1).
Precision measures how accurate the predictor is on the positive class. Recall measures the True Positive

Rate (TPR), i.e., the fraction of positive instances correctly predicted by the model. F1-score summarizes the
performance of a model and it is computed as the harmonic mean of Precision and Recall. Given the number of
True Positives (TPs), False Positives (FPs), and False Negatives (FNs), we define Precision, Recall, and F1-Score as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃) ; 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁 ) ; 𝐹1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(5)

The Receiver Operating Characteristic Curve (ROC) visualizes a classifier’s performance by plotting the Recall
against the False Positive Rate (FPR). FPR is the ratio of FPs over the sum of FPs and True Negatives (TNs).
AUC (∈ [0, 1]) measures the area under the ROC. It is scale-invariant and provides an aggregate measure of
performance across all possible classification thresholds. The higher the AUC, the better the model, where
AUC=0.50 indicates the performance of a model that makes predictions at random.

D.3 Error metrics
Commonly used error metrics are Mean Average Error (MAE), Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), and MAPE (Mean Average Percentage Error), defined as follows:

MAE =
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |; MSE =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2; RMSE =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2; MAPE =

(
1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |
|𝑦𝑖 |

)
∗ 100 (6)

where𝑦𝑖 indicates the predicted value,𝑦𝑖 indicates the actual value, and 𝑛 is the number of predictions. All metrics
range in [0,∞] and lower values indicate better performance. Since MAE uses the error’s absolute value, it does
not consider whether the model overestimates or underestimates the actual value. MSE weighs large errors more
than MAE, and it is sensitive to outliers. RMSE weighs the errors more than MAE, hence penalizing models that
produce large errors. As the values are squared, the RMSE is expressed in the same unit as the predicted one.
The Sørensen-Dice index, also called Common Part of Commuters (CPC) [9, 108]. It is a well-established

measure to compute the similarity between real flows, 𝑦𝑟 , and generated flows, 𝑦𝑔:

𝐶𝑃𝐶 =
2
∑
𝑖, 𝑗𝑚𝑖𝑛(𝑦𝑔 (𝑙𝑖 , 𝑙 𝑗 ), 𝑦𝑟 (𝑙𝑖 , 𝑙 𝑗 ))∑
𝑖, 𝑗 𝑦

𝑔 (𝑙𝑖 , 𝑙 𝑗 ) +
∑
𝑖, 𝑗 𝑦

𝑟 (𝑙𝑖 , 𝑙 𝑗 )
(7)

CPC is always positive and contained in the closed interval (0, 1) with 1 indicating a perfect match between the
generated flows and the ground truth and 0 highlighting bad performance with no overlap.

D.4 Divergence metrics
The Kullback-Leibler (KL) divergence measures how different a probability distribution is from a reference
probability distribution. It is used to assess the performance of a generative mobility model by calculating the
extent to which synthetic trajectories and real trajectories are similar with respect to relevant mobility patterns.
Formally, given two discrete probability distributions 𝑃 and 𝑄 , defined on the same probability space 𝑋 , the KL
divergence from 𝑃 to 𝑄 is defined as:

𝐷KL (𝑃 | |𝑄) =
∑︁
𝑥 ∈𝑋

𝑃 (𝑥)𝑙𝑜𝑔
(
𝑃 (𝑥)
𝑄 (𝑥)

)
. (8)

Formally, given two probability distributions 𝑃 and 𝑄 , KL divergence is the expectation of the logarithmic
difference between the probabilities of 𝑃 and 𝑄 , where the expectation is taken using the probabilities of 𝑃 . KL
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divergence is always non-negative (𝐷KL (𝑃 | |𝑄) ≥ 0) and not symmetric, i.e., 𝐷KL (𝑃 | |𝑄) ≠ 𝐷KL (𝑄 | |𝑃). 𝑃 and 𝑄 are
the same distribution if 𝐷KL (𝑃 | |𝑄) = 0.
The Jensen-Shannon (JS) divergence is a measure to assess the similarity between two distributions. It is

based on the KL divergence but it is symmetric (𝐽𝑆 (𝑃 | |𝑄) = 𝐽𝑆 (𝑄 | |𝑃)) and ranges in [0, 1]. Formally, given two
probability distributions 𝑃 and 𝑄 , and𝑀 = 1

2 (𝑃 | |𝑄), we define the JS divergence as:

𝐷JS (𝑃 | |𝑄) =
1
2
𝐷KL (𝑃 | |𝑀) + 1

2
𝐷𝐾𝐿 (𝑄 | |𝑀) . (9)

The JS divergence is used, as an alternative to KL, to assess the performance of generative mobility models.

E HUMAN MOBILITY PATTERNS
Human movements, far from being random, follows well-defined statistical patterns [9, 194]. In this Section, we
revise the most relevant spatial (Section E.1) and temporal (Section E.2) patterns of human mobility.

E.1 Spatial patterns
Displacements. The distance between two consecutive locations visited by an individual is called jump length

or displacement [22, 65]. The term location usually indicates a spatial point in which an individual spent a
minimum amount of time reflecting human behavioral tendencies that motivate people to move between two
places. Formally, a jump length Δ𝑟 = 𝑑 (𝑠𝑖 , 𝑠𝑖+1) is the distance between two spatio-temporal points 𝑠𝑖 and 𝑠𝑖+1 in a
trajectory 𝑇𝑢 = ⟨𝑠1, 𝑠2, ..., 𝑠𝑛⟩. A truncated power-law well approximates the empirical distribution 𝑃 (Δ𝑟 ) within
a population of individuals, with the value of the exponent slightly varying based on the type of data and the
spatial scale [22, 65].

Radius of gyration. The characteristic distance traveled by an individual 𝑢 during a period of time can be
quantified by their radius of gyration [65], defined as 𝑟𝑔 (𝑢) =

√︃
1
𝑛𝑢

∑𝑛𝑢
𝑖=1 𝑑 (𝑠𝑖 , 𝑠𝑐𝑚)2, where 𝑛𝑢 is the number of

points in 𝑇𝑢 , 𝑠𝑖 ∈ 𝑇𝑢 and 𝑠𝑐𝑚 = 1
𝑛𝑢

∑𝑛𝑢
𝑖=1 𝑠𝑖 is the position vector of the center of mass of the set of points in 𝑇𝑢 . A

truncated power-law well approximates the distribution of 𝑟𝑔 [65, 133]. At a collective level, the evolution in time
of the average 𝑟𝑔 of individuals follows a logarithmic curve ⟨𝑟𝑔 (𝑡)⟩ ∼ 𝛼 + 𝛽 ln 𝑡 [65, 172].

The 𝑘-radius of gyration of an individual 𝑢 is defined as the radius over their 𝑘 most frequented locations [136],
𝑟
(𝑘)
𝑔 (𝑢) =

√︃
1
𝑁𝑘

∑𝑘
𝑖=1 𝑛𝑖𝑑 (𝑠𝑖 − 𝑠

(𝑘)
𝑐𝑚 )2, where 𝑠𝑖 ∈ 𝑇𝑢 , 𝑁𝑘 is the sum of the visits to 𝑢’s 𝑘 most frequented locations,

and 𝑠 (𝑘)𝑐𝑚 = 1
𝑁𝑘

∑𝑘
𝑖=1 𝑠𝑖 is the center of mass computed on 𝑢’s 𝑘 most frequented locations. The comparison of 𝑟𝑔

and 𝑟 (𝑘)𝑔 over an entire population revealed the existence of a returners and explorers dichotomy [136].

Mobility entropy. The temporal-uncorrelated entropy of an individual 𝑢 characterizes the predictability of
their spatial movements, and it is defined as 𝑆𝑢𝑛𝑐 (𝑢) = −∑𝑛𝑢

𝑖=1 𝑝𝑢 (𝑖) log2 𝑝𝑢 (𝑖), where 𝑛𝑢 is the number of distinct
locations visited by𝑢 and 𝑝𝑢 (𝑖) is the probability that𝑢 visits location 𝑖 [48, 173]. The real entropy of an individual
𝑢 considers also the order in which the places were visited and the time spent at each location, and it is defined
as 𝑆 (𝑢) = −∑

𝑇 ′
𝑢 ⊂𝑇𝑢 𝑃 (𝑇

′
𝑢 ) log2 𝑃 (𝑇 ′

𝑢 ) [173], where 𝑃 (𝑇 ′
𝑢 ) is the probability of finding a particular time-ordered

subsequence 𝑇 ′
𝑢 in the trajectory 𝑇𝑢 . The distribution of both 𝑆𝑢𝑛𝑐 and 𝑆 are peaked and in particular 𝑃 (𝑆) peaks

around 𝑆 ≈ 0.8, indicating that the real spatio-temporal uncertainty in a typical user’s whereabouts is 20.8 = 1.74,
i.e., fewer than two locations [173].

I-rank and G-rank. Location ranks identify the importance of a location to an individual’s mobility: the most
visited location (likely home or work) has rank 1, the second most visited location (e.g., school or local shop) has
rank 2, and so on. The visitation frequency of locations 𝑃 (𝐿), or I-rank, follows a Zipf law: the probability of
finding an individual at a location of rank 𝐿 is well approximated by 𝑃 (𝐿) ∼ 1/𝐿 [65, 133]. Similarly, the collective
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visitation frequency of a location 𝑃 (𝑟 ), or G-rank, indicates the popularity of locations according to how people
visit them on the geographic space [128, 134].

Semantic importance. For an individual’s trajectory 𝑇𝑢 , we define 𝑝𝑑total (𝑟 ) =
𝑑𝑡𝑜𝑡𝑎𝑙 (𝑟 )∑
𝑟
′ 𝑑𝑡𝑜𝑡𝑎𝑙 (𝑟 ′ )

, where 𝑑𝑡𝑜𝑡𝑎𝑙 (𝑟 ) is the
total stay duration in location 𝑟 interpreted as 𝑟 ’s semantic importance [16, 128]. The semantic distance between
two trajectories 𝑇𝑢 and 𝑇𝑣 is the distance between the distribution of the 𝑝𝑑𝑡𝑜𝑡𝑎𝑙 (𝑟 ) for 𝑢 and 𝑣 .

Mean Distance Error. Given two equal-sized sets of trajectories T = {𝑇1, . . . ,𝑇𝑁 } and T̂ = {𝑇1, . . . ,𝑇𝑁 }, the
Mean Distance Error (MDE) between T and T̂ is defined as𝑀𝐷𝐸 =

∑𝑁
𝑖 𝑑 (𝑇𝑖 ,𝑇𝑖 )
𝑁

, where 𝑑 is the distance between
two points [76].

Mobility networks. In an individual mobility network (IMN), nodes represent locations and directed edges
represent an individual’s trips between locations [150, 160]. The vast majority of individuals’ trips can be described
with a limited number of daily motifs which represent the underlying regularities in daily movements [160].
Individual trajectories may be aggregated to study the flows of individuals between locations at different spatio-
temporal scales. Flows can typically be described by an Origin-Destination (OD) matrix, or mobility network,
which has a specific structure and dynamics [167].

E.2 Temporal metrics
Waiting time and circadian rhythm. The waiting time Δ𝑡 is the elapsed time between two consecutive points in

the mobility trajectory of an individual𝑢, or equivalently as the time spent in a location: Δ𝑡 = 𝑡𝑖 − 𝑡𝑖−1. Empirically
the distribution of waiting times is well approximated by a truncated power-law [172] The movements of
individuals are not distributed uniformly during the hours of the day but follow a circadian rhythm [92, 134];
people tend to be stationary during the night hours while prefer moving at specific times of the day, for example,
to reach the workplace or return home.

Temporal location patterns. The temporal popularity 𝑝 (𝑟, 𝑡) measures the visiting probability for a location 𝑟 at
any time 𝑡 [128]. The staying patterns 𝑝 (𝑟, 𝑑) measures the probability of visiting a location 𝑟 for a duration 𝑑
[128].
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