
Who to Watch Next: Two-side Interactive Networks
for Live Broadcast Recommendation

Jiarui Jin
1,∗
, Xianyu Chen

1,∗
, Yuanbo Chen

2,∗
, Weinan Zhang

1,†
, Renting Rui

1
,

Zaifan Jiang
2
, Zhewen Su

2
, Yong Yu

1
.

1
Shanghai Jiao Tong University, China;

2
Alibaba Group, China

{jinjiarui97,xianyujun,wnzhang,ruirenting,yyu}@sjtu.edu.cn,{yuanbo.cyb,zaifan.jzf,zhewen.su}@alibaba-inc.com

ABSTRACT
With the prevalence of live broadcast business nowadays, a new

type of recommendation service, called live broadcast recommen-

dation, is widely used in many mobile e-commerce Apps. Different

from classical item recommendation, live broadcast recommenda-

tion is to automatically recommend user anchors instead of items

considering the interactions among triple-objects (i.e., users, an-

chors, items) rather than binary interactions between users and

items. Existing methods based on binary objects, ranging from early

matrix factorization to recently emerged deep learning, obtain ob-

jects’ embeddings by mapping from pre-existing features. Directly

applying these techniques would lead to limited performance, as

they are failing to encode collaborative signals among triple-objects.

In this paper, we propose a novel TWo-side Interactive NetworkS
(TWINS) for live broadcast recommendation. In order to fully use

both static and dynamic information on user and anchor sides, we

combine a product-based neural network with a recurrent neural

network to learn the embedding of each object. In addition, instead

of directly measuring the similarity, TWINS effectively injects the

collaborative effects into the embedding process in an explicit man-

ner by modeling interactive patterns between the user’s browsing

history and the anchor’s broadcast history in both item and anchor

aspects. Furthermore, we design a novel co-retrieval technique to

select key items among massive historic records efficiently. Offline

experiments on real large-scale data show the superior performance

of the proposed TWINS, compared to representative methods; and

further results of online experiments on Diantao App show that

TWINS gains average performance improvement of around 8% on

ACTR metric, 3% on UCTR metric, 3.5% on UCVR metric.
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1 INTRODUCTION
With the establishment of mobile Internet, the focus of e-commerce

has moved from personal computers to smartphones, which signifi-

cantly encourages the emergence and development of live broadcast

services. Live broadcast recommendation has become popular, espe-

cially in the past two years, because of anchors’ revealing selection

and expressiveness powers, as such, free users from tedious search-

ing and comparing inmobile phones. Figure 1 shows a live broadcast

recommendation example. According to historical information on

user and anchor sides, a list of appropriate anchors will be auto-

matically generated for a user. In a live broadcast recommendation

system, the historical information can be roughly categorized into

two types for both two-fold. The first one is static data, containing

attribute information such as user and anchor profiles. The other

one is dynamic data, containing user browsing history represented

as triple interactions (i.e., ⟨users, anchors, items⟩) and broadcasting
history represented as binary interactions (i.e., ⟨anchors, items⟩).

Notably, the live broadcasting recommendation here is signif-

icantly different from existing recommendation tasks in the fol-

lowing aspects: (1) Different from traditional recommendations of

query [1, 36] or item [14, 38] and recently introduced intent recom-

mendation [5], it recommends anchors instead of queries or items

to users. (2) Our live broadcast recommendation needs to consider

the interactions among triple-objects (i.e., users, anchors, and items)

rather than binary interactions between users and items. (3) Differ-

ent from queries and items, the status of anchors (i.e., broadcasting

or not) always changes frequently.

Existing methods for live broadcast recommendation employed

in industry, such as Taobao and Kuaishou, usually extract hand-

crafted features in user and anchor sides, and then feed these fea-

tures to a classifier ranging from early matrix factorization [16]

to recently emerged deep learning [4]. These approaches heavily

rely on laboring feature engineering and fail to use the rich, dy-

namic interactions among objects fully. However, as the anchors are

rapidly changing the items sold in the broadcast room, it is really

critical to model their interactions to capture the temporal behav-

iors. Moreover, their techniques proposed for binary-objects (i.e.,

users, items), obtaining an object’s embedding by mapping from

pre-existing features; are indirectly to extend to encode collaborate

signals among triple-objects (i.e., users, anchors, items).
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Figure 1: An illustrated live broadcast recommendation ex-
ample for recommending an anchor to a user (while there
will be a list of anchors in real-world Apps).

In summary, we introduce a recently emerged, but seldom ex-

ploited, live broadcast recommendation problem; to handle which,

we are at least required to address the following challenges:

• (C1) How to build correlations between users and anchors, since

their relevance is an inherent attribute hidden in complex static

and dynamic features in both user and anchor sides? Consider the

following scenario (shown in Figure 1). When the teen opens a live

broadcast recommendation App, the recommender system returns

several anchors based on her profile and historical data. For each

pair of user and anchor, we are required to model two kinds of

features; namely static ones often formed as categorical attributes

(e.g., user’s gender and anchor’s broadcast time), and dynamic

ones often formulated as sequential data (e.g., user’s browsing

history and anchor’s broadcasting history). These historical data

consist of related items which also have their own static features

(e.g., item’s price and brand).

• (C2) How to capture the collaborative signals between user and

anchor sides? As stated in [32], the mainstream methods for rec-

ommendation, either early employed shallow or recently proposed

deep models, fail to capture the hidden collaborative information.

Further analysis in [14, 23] reveals the early summarization issue

exists in the structural data, and we argue that similar issue occurs

here, where existing approaches usually compress all the infor-

mation together in each side regardless of rich interactive (i.e.,

‘AND’) patterns between user’s browsing and anchor’s histories.

Take Figure 1 as an instance. The motivation of the teen entering

the live broadcast room can come from the current anchor sell-

ing the item she watched before, which can be modeled by AND
operation over anchor broadcast items and user browsed items.

• (C3) How to distinguish the key information and filter out the

noise? Recent works [20, 25] reveal that observe that long-term

dependencies exist in the historical records. However, since the

length of historical sequences vary for different users due to di-

verse activeness or registration time and some of them are extreme

long, it is not practical to maintain the whole behavior history of

each user for real-time online inference.

In this paper, we propose a novelTWo-side InteractiveNetworkS
(TWINS) for live broadcast recommendation. In seeking for a

proper way to effectively capture correlations between user and

anchor according to complicated behavior histories in these two

sides, we introduce a new two-side network architecture, where we

combine product-based neural network (PNN) [24] and recurrent

neural network (RNN) [11] in each side to simultaneously model

static and dynamic features. Concretely, for static features usually

formed as categorical data, we establish an embedding vector for

each category and adopt PNN to capture the hidden interactive

patterns; and then incorporate it with contextual information by

feeding the learned embeddings into the RNN model (C1). A prin-

cipal way to discover the hidden collaborative signal is to employ

collaborative filtering methods such as SVD++ [15]; however, these

techniques still suffer from the early summarization issue and can-

not be directly applied to live broadcast recommendation scenarios.

Hence, we first propose interaction networks to measure the simi-

larity of user and anchor in the two-side architecture, in both item

and anchor aspects, which are further aggregated to form our final

objective (C2). To efficiently handle long-sequential data, inspired

by the recently proposed retrieval model [20, 22], we design a novel

co-retrieval mechanism to search and retrieve the relevant items in

user and anchor sides (C3).
We conduct thorough experiments on four real-world datasets to

verify the superiority of TWINS over recent state-of-the-art meth-

ods. Further, TWINS has been deployed on the recommender system

of a mainstream Diantao App, where the online A/B test shows

that TWINS achieves better performance than baseline methods on

all the measurement metrics.

2 PRELIMINARIES
2.1 Problem Formulation
We begin by describing the live broadcast recommendation task

and associated notations.

Definition 1. Live Broadcast Recommendation.Given a triplet
⟨U,A,I⟩, where U = {𝑢1, . . . , 𝑢𝑃 } denotes the set of 𝑃 users, A =

{𝑎1, . . . , 𝑎𝑁 } denotes the set of 𝑁 anchors, and I = {𝑖1, . . . , 𝑖𝑄 } de-
notes the set of𝑄 items. The purpose of live broadcast recommendation
is to recommend the most related anchor 𝑎 ∈ A to a user 𝑢 ∈ U
according to the user’s browsing history H𝑢 and the anchor’s broad-
casting history H𝑎 .

In our application, as shown in Figure 1, a user’s (e.g., the 𝑝-th

user’s) browsing historyH𝑢
𝑝 is constituted by a series of her visited

items with associated anchors. For convenience, we establish a set

of user’s browsed items denoted as H𝑢𝑖
𝑝 and the other set of user’s

visited anchors denoted asH𝑢𝑎
𝑝 . We then haveH𝑢

𝑝 = H𝑢𝑖
𝑝 ∪H𝑢𝑎

𝑝

whereH𝑢𝑖
𝑝 ⊆ I,H𝑢𝑎

𝑝 ⊆ A; and similarly an anchor’s (e.g., the 𝑛-th

anchor’s) broadcasting history H𝑎
𝑛 = H𝑎𝑖

𝑛 ⊆ I holds for any 𝑝 ∈
{1, . . . , 𝑃} and any 𝑛 ∈ {1, . . . , 𝑁 }. Besides the complex interactions

among these triplet-objects (a.k.a., dynamic feature in Figure 1),

there are rich categorical data for these objects (a.k.a., static feature

in Figure 1). We use 𝒙𝑢𝑝 , 𝒙
𝑎
𝑛 , 𝒙

𝑖
𝑞 to denote the feature of the 𝑝-th

user, the 𝑛-th anchor, the 𝑞-th item respectively, and use 𝒙𝑢 𝑗𝑝 , 𝒙𝑎𝑗𝑛 ,

𝒙𝑖 𝑗𝑞 to denote their 𝑗-th categorical features. For convenience, we

use the 1-th categorical feature of each item to denote its category

(e.g., shoes). Namely, 𝒙𝑖1𝑞 represents the 𝑞-th item’s category.

2.2 Related Work

Advanced Recommendation Tasks. Classical item-based recom-

mender systems [4, 16] aim at seeking the favorite item for a user

according to user-item interactions. Influenced by the evolution of

mobile Internet and the development of deep learning techniques,
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Figure 2: The overview of TWINS. The bottom part (i.e., (a)-(d)) shows the two-side architecture where we use the PNN to
encode the static (categorical) attributes and the RNN to encode the dynamic (sequential) histories in user and anchor sides.
The up part (i.e., (e)-(g)) illustrates the interaction networks which take these embedding vectors as input and outputs the
interactive patterns from item and anchor aspects, which are further aggregated with user and anchor static features to make
the final prediction (i.e., 𝑦11 for user 𝑢1 and anchor 𝑎1). Moreover, we design a co-retrieval mechanism, as illustrated in (h), to
decrease the interaction computations by selecting a subset of historical items for the interaction instead of the whole set.

more and more research in recommendation has shifted to invent-

ing new recommendation tasks, which can be roughly categorized

into two lines. One line of literature [5, 10, 25, 28] seeking to bring

more convenience for users by modifying the recommendation task.

For example, Hidasi et al. [10] introduces the session-based recom-

mendation task where the recommender systems are only accessible

to short session-based data instead of long histories. Recently, Fan

et al. [5] proposed an intent recommendation to recommend an in-

tent (i.e., query) to a user since typing words on mobile devices are

much inconvenient than on desktop computers. The other line of

work [3, 27, 31] investigating to include the side information associ-

ated with users and items in the recommendation to better capture

user preference. For example, one promising way is to combine the

structure information hidden in the sequence [33] or the graph [27]

built based on user-item history in the recommendation. Another

direction is to model multimedia data such as image [3] or audio

[31] related with recommendation. To the best of our knowledge,

since the live broadcast recommendation is recently emerged and

is developing rapidly, there is limited literature in this field, and

our paper is proposed to fill this gap.

Collaborative FilteringMethods.Classical recommendationmeth-

ods such as matrix factorization [16] parameterize users and items

as an embedding vector and conduct inner product between them

to predict an interaction. For further mining interactive informa-

tion among features, FM [26] projects each feature into a low-

dimensional vector and models feature interactions by the inner

product. As discussed in [9, 12], although the inner product encour-

ages user and item embeddings of an observed interaction close to

each other, its natural linearity makes it insufficient to discover the

complex correlations between users and items. Influenced by the

stunning success of deep learning, recent efforts [8, 9, 30, 32, 35]

focus on exploiting deep learning techniques to enhance the inter-

action function. For instance, neural collaborative filtering models

such as NeuMF [9] use non-linear functions to capture interactive

patterns between users and items, translation based collaborative

filtering models such as LRML [30] employ Euclidean distance

metrics in modeling interaction. DeepFM [7] incorporates an FM

layer to replace the wide component in Wide & Deep [4], PNN

[24] leverages a multi-layer perceptron (MLP) to model interaction

of a product layer and recently proposed collaborative filtering
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methods working on structured data such as GraphHINGE [13]

propose a new convolution-based interaction module on the hetero-

geneous graph. The live broadcast recommendation scenarios, as

mentioned above, are many complicated and heterogeneous situa-

tions. Hence, we not only extend SVD++ [15] to model correlations

in our two-side architecture but propose a novel co-retrieval model

collaborative filtering user’s and anchor’s relevant histories.

Our architecture design is also closely related to the two-side

sequential networks. For item recommendation task, there are re-

cently emerged literature [6, 21, 32–34] leveraging the context in-

formation from user and item sides to make the final prediction.

Besides the difference between the live broadcast recommendation

and item recommendation tasks, these approaches either consider

two-side information in an independent fashion [33, 34] or model

two-side correlations among all the high-order neighbor users and

items [6, 21, 32] which is insufficient in filtering out noise and em-

ploying to long sequential data. In contrast, we develop a novel

interactive network with a co-retrieval mechanism to efficiently

capture the key interactive patterns from two sides.

3 THE TWINS MODEL
3.1 Overview
The basic idea of the TWINS is to design a two-side architecture

to capture the rich context hidden in static and dynamic features

in both user and anchor sides. Figure 2 illustrates the overview

of TWINS. First, we use the PNN [24] to model the correlations

among static attributes for each user, anchor, and item, as shown in

(a)-(d). Second, we leverage the RNN [11] to capture the sequential

dependencies hidden in the user’s and anchor’s dynamic histories,

as shown in (b)(c). Third, we design interactive networks for mining

the interactive patterns between user and anchor sides from item

and anchor aspects, as shown in (e)(f). Moreover, notice that the

interaction operations, especially for interactive networks in item

aspect, require the high computation cost; we propose a co-retrieval

mechanism to select the relevant items from the whole user’s and

anchor’s histories to save interaction computations, as shown in

(h). After that, we aggregate these interaction results accompanied

with static features of users and anchors to predict the probability

that a user will browse an anchor’s broadcast room, as shown in (i).

We introduce these steps in detail in the following subsections.

3.2 Object Modeling
In classical recommendation models, there are two main objects

(i.e., users, items), while in the live broadcast recommendation

scenario, there are three main objects (i.e., users, anchors, items).

As illustrated in Figure 1, for each pair of user and anchor, we have

the static features (attributes), which are also called categorical

data. Notably, there are rich correlations among these features.

For example, the reason why the teen would be interested in the

lipstick in a bright color should both rely on her age AND gender.

As discussed in [7, 14, 24], these “AND” operations can’t solely be

modeled by neural networks. Hence, we introduce the PNN, whose

output of the PNN for the 𝑝-th user can be defined as

𝒆𝑢𝑝 B f𝑢PNN (𝒙
𝑢
𝑝 ) = 𝒗𝑢𝑝 ⊙ 𝒙𝑢𝑝 +

𝐽∑︁
𝑗 ′=1

𝐽∑︁
𝑗 ′′=𝑗 ′+1

(𝒗𝑢𝑗 ′ ⊙ 𝒗𝑢𝑗 ′′)𝒙
𝑢 𝑗 ′
𝑝 · 𝒙𝑢 𝑗

′′
𝑝 , (1)

where 𝒗𝑢𝑝 and 𝒗𝑢
𝑗
are trainable latent vectors and ⊙ is the element-

wise product operator. The first term is addition units showing

the influence of (first-order) linear feature interactions, and the

second term is element-wise product units representing the impact

of (second-order) pair-wise feature interactions.

Consider that there are also static features for each anchor and

item. Analogously, we define 𝒆𝑎𝑛 B f𝑎PNN (𝒙
𝑎
𝑛) as the output of the 𝑛-

th anchor and 𝒆𝑖𝑞 B f𝑖PNN (𝒙
𝑖
𝑞) as the output of the 𝑞-th item where

f𝑎PNN (·) and f𝑖PNN (·) share the same formulation with f𝑢PNN (·) but
with different parameters.

Notice that besides the static features, the portrait of a user and

the theme of an anchor are closely related to their dynamic histories,

such as user’s browsing items and anchor’s broadcasting items, as

illustrated in Figure 2(b)(c). A principal way to model these dynamic

histories is to construct a sequential model such as the RNN model.

Let 𝒉𝑖𝑞 denote the output of the 𝑞-th item, which can be calculated

by

𝒉𝑖𝑞 B f𝑖RNN (𝒆
𝑖
𝑞 |𝒃𝑖𝑞−1), (2)

where f𝑖RNN (·) is the RNN cell and 𝒃𝑖
𝑞−1 is the hidden vector com-

puted from the last RNN cell. In our paper, we implement the RNN

cell as a standard LSTM unit [11]. As the major objects for brows-

ing and broadcasting are items, we only build the RNN model for

sequences of items.

3.3 Interactive Network
By encoding the static and dynamic features in triple objects, we

obtain the embedding vectors of the 𝑝-th user (i.e., 𝒆𝑢𝑝 ), the 𝑞-th item

(i.e., 𝒉𝑖𝑞), and 𝑛-th anchor (i.e., 𝒆𝑎𝑛), as shown in Figure 2. We then

consider mining the interactive patterns by the “AND” operation.

The motivation behind this is straightforward. Take Figure 2 as an

instance. The teen 𝑢1 enters the broadcasting room because the

host anchor 𝑎1 sells her favored items AND the anchor 𝑎1 shares

the similar interest with her favored anchors. Thus, we model these

interactive patterns in two aspects, namely item and anchor aspects.

Item Aspect. For item aspect, as illustrated in Figure 2(e), TWINS

captures the interactive patterns by measuring the similarities be-

tween user and anchor together with their related items. A principal

way is to follow the basic idea of SVD++ [15] model, and then the

interaction similarity of the 𝑝-th user 𝑢𝑝 and the 𝑛-th anchor 𝑎𝑛
can be formulated as

𝑦𝑖𝑝𝑛 = (𝒆𝑢𝑝 +
∑︁

𝑞′∈H𝑢𝑖
𝑝

𝜆𝑝𝑞′𝒉
𝑖
𝑞′)

⊤ · (𝒆𝑎𝑛 +
∑︁

𝑞′′∈H𝑎𝑖
𝑛

𝛽𝑛𝑞′′𝒉
𝑖
𝑞′′) . (3)

Clearly by assigning 𝜆𝑝𝑞′ and 𝛽𝑛𝑞′′ as 1/
√︃
|H𝑢𝑖

𝑝 | and 0 separately,

we can exactly recover using the classical SVD++ model to measure

the similarity between 𝑢𝑝 and 𝑎𝑛 . Notably, as users browsing the

same items are normally diversified, it’s non-trivial to capture the

useful information from abundant context information of these

users. Hence, the classical SVD++model, originally proposed for the

similarity between users and items, doesn’t involve this information

(i.e., 𝛽𝑛𝑞′′ = 0). Instead, as shown in the right part of Eq. (3), we

use the broadcast items to enrich the representation of 𝑎𝑛 , which is

much clean and informative.
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As discussed in [14, 23, 32], many existing methods (including

the interactive network built following Eq. (3)) suffer from the

“early summarization” issue, as these approaches, when extending

to similarity measurement between users and anchors, usually com-

press user-related and anchor-related items into single user/anchor

embeddings before the final prediction. In this case, only two ob-

jects are activated, yet other related objects (e.g., items) and their

correlations are mixed and relayed. We argue that these rich correla-

tions (i.e., interactive patterns) are essential in the recommendation.

Taking Figure 2(e) as an instance, a system is considering to rec-

ommend an anchor (e.g., 𝑎1) to a user (e.g., 𝑢1). Suppose that 𝑢1’s

personal interest mainly lies in shoes, then the similarity between

(𝑖1 and 𝑖5), (𝑖3 and 𝑖5) should be emphasized. Therefore, we propose

a bi-attention network to better capture these interactive patterns,

which can be formulated as follows:

𝛼𝑖𝑝𝑞′𝑛𝑞′′ = f𝑖softmax (𝒘
𝑖⊤
𝑝𝑞′𝑛𝑞′′ [𝒆

𝑢
𝑝 ,𝒉

𝑖
𝑞′, 𝒆

𝑎
𝑛,𝒉

𝑖
𝑞′′] + 𝑏

𝑖
𝑝𝑞′𝑛𝑞′′),

𝒚𝑖𝑝𝑛 =
∑︁

𝑞′∈H𝑢𝑖
𝑝

∑︁
𝑞′′∈H𝑎𝑖

𝑛

𝛼𝑝𝑞′𝑛𝑞′′ (𝒉𝑖𝑞′′ ⊙ 𝒉𝑖𝑞′′), (4)

where [·, ·] denotes a concatenation operator. and f𝑖
softmax

(·) de-
notes a softmax function. Comparing to Eq. (3), Eq. (4) takes both

user- and anchor-side items to generate differentiable weights dis-

tinctive to different interaction terms.

Anchor Aspect. For the anchor aspect, as shown in Figure 2(f),

TWINS aims to formulate the similarities between the user along

with her browsed anchors and target anchor. Sharing the same

motivationwith an interactive network of item aspect, we formulate

the interaction operation as follows:

𝛼𝑎𝑝𝑛′𝑛 = f𝑎softmax (𝒘
𝑖⊤
𝑝𝑛′𝑛𝑛′′ [𝒆

𝑢
𝑝 , 𝒆

𝑎
𝑛′, 𝒆

𝑎
𝑛] + 𝑏𝑎𝑝𝑛′𝑛),

𝒚𝑎𝑝𝑛 =
∑︁

𝑛′∈H𝑢𝑎
𝑝

𝛼𝑝𝑛′𝑛 (𝒆𝑎𝑛′ ⊙ 𝒆𝑎𝑛), (5)

where f𝑎
softmax

(·) denotes a softmax function with different weight

from f𝑖
softmax

(·).

3.4 Co-Retrieval Mechanism
Notably, comparing Eq. (4) to Eq. (5), one can easily see that inter-

active networks of item aspect require to compute the similarity

among |H𝑢𝑖
𝑝 | × |H𝑎𝑖

𝑛 | operations for each user-anchor pair (𝑢𝑝 , 𝑎𝑛)
which is much more time-consuming than that of anchor aspect

whose computation costs lie in |H𝑢𝑎
𝑝 | operations. Therefore, the

former one blocks TWINS fromworking in the real-world industrial

scenario, especially with long sequential data [20].

In order to effectively implement the interactive network of item

aspect, we introduce a novel co-retrieval mechanism, whose basic

idea is to find a subset of user’s and anchor’s related items to feed

in the network instead of using the whole data.

Inspired by recently merged search-based methods [20, 22], we

design a hard-search co-retrieval model without any parametric,

where only items belongs to the common categories of user and

anchor sides will be selected as the candidate items to feed into the

interactive network. Formally, we first construct a set of categories

for user and anchor sides respectively, namely C𝑢
𝑝 = {𝒙𝑖1

𝑞′ |𝑖𝑞′ ∈
H𝑢𝑖

𝑝 } and C𝑎
𝑛 = {𝒙𝑖1

𝑞′′ |𝑖𝑞′′ ∈ H𝑎𝑖
𝑛 }. We then compute a set of the

Algorithm 1: TWINS

INPUT: dataset D = (U,A) with historical dataH𝑢
, H𝑎

;

OUTPUT: TWINS recommender with parameter 𝜃

1: Initialize all parameters.

2: repeat
3: Randomly sample a batch B from D
4: for each data instance (𝑢𝑝 , 𝑎𝑛) in B do
5: Calculate embedding vectors for all related user, anchors,

items using static features via FM model as Eq. (1).

6: Compute embedding vectors for all sequential items

using dynamic features via RNN model as Eq. (2).

7: Obtain item aspect similarity 𝒚𝑖𝑝𝑛 using Eq. (4).

8: Obtain anchor aspect similarity 𝒚𝑎𝑝𝑛 using Eq. (5).

9: end for
10: Compute L and update 𝜃 by minimizing Eq. (8).

11: until convergence

common categories as C𝑢𝑎
𝑝𝑛 = C𝑢

𝑝 ∩ C𝑎
𝑛 . We establish a retrieved set

ofH𝑢𝑖
𝑝 andH𝑎𝑖

𝑛 in Eq. (4) by following

Ĥ𝑢𝑖
𝑝 = {𝑖𝑞′ |𝑖𝑞′ ∈ H𝑢𝑖

𝑝 and 𝒙𝑖1𝑞′ ∈ C𝑢𝑎
𝑝𝑛 },

Ĥ𝑎𝑖
𝑛 = {𝑖𝑞′′ |𝑖𝑞′′ ∈ H𝑎𝑖

𝑛 and 𝒙𝑖1𝑞′′ ∈ C𝑢𝑎
𝑝𝑛 }.

(6)

Clearly, Ĥ𝑢𝑖
𝑝 and Ĥ𝑎𝑖

𝑛 are subsets of H𝑢𝑖
𝑝 and H𝑎𝑖

𝑛 respectively.

One can directly replaceH𝑢𝑖
𝑝 ,H𝑎𝑖

𝑛 by Ĥ𝑢𝑖
𝑝 , Ĥ𝑎𝑖

𝑛 in Eq. (4) to save

computations.

3.5 Optimization Objective
After primitively modeling each object and further interactive pat-

tern mining, for each user-anchor pair (e.g., (𝑢𝑝 , 𝑎𝑛)), we can obtain

the similarity based on their embedding vector namely 𝒚𝑒𝑝𝑛 = 𝒆𝑢𝑝
⊙ 𝒆𝑎𝑛 . As we have already obtained item aspect interaction result

𝒚𝑖𝑝𝑛 and anchor aspect interaction result 𝒚𝑎𝑝𝑛 , we further aggregate
them together to produce the final similarly by combining a sig-

moid function with a MLP layer over the concatenation of these

embeddings as

𝑦𝑝𝑛 = sigmoid(fMLP ( [𝒚𝑒𝑝𝑛,𝒚𝑖𝑝𝑛,𝒚𝑎𝑝𝑛])). (7)

We then use the log loss as the objective:

L = −
∑︁

(𝑢𝑝 ,𝑎𝑛) ∈D
(𝑦𝑝𝑛 log𝑦𝑝𝑛 + (1 − 𝑦𝑝𝑛) log(1 − 𝑦𝑝𝑛)), (8)

where D = (U,A) denotes the dataset and 𝑦𝑝𝑛 is the label of each

user-anchor instance.

We provide the learning algorithm of TWINS in Algorithm 1. We

also provide the corresponding analysis of TWINS in Appendix A.

4 OFFLINE EXPERIMENTS
4.1 Dataset and Experimental Flow
We conduct offline experiments on four real-world datasets, namely

Yelp business dataset
1
, Trust statement dataset

2
, Aminer citation

1
https://www.yelp.com/dataset/documentation/main

2
http://www.trustlet.org/downloaded_epinions.html

https://www.yelp.com/dataset/documentation/main
http://www.trustlet.org/downloaded_epinions.html


WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France J. Jin, et al.

dataset
3
, Diantao live broadcast dataset, where the first three are

public benchmark datasets and the last one is created by our own.

We provide detailed description of the last dataset as follows, and

offer the description of others in Appendix B.

• Diantao LiveBroadcastRecommendation dataset is collected
from the user interaction logs of Diantao App. It contains more

than 1.46 billion logs of over 10 million users’ browsing histories

with 90 thousand anchors. Features of the user include age, gender,

city, etc., and features of the document include title, time, etc. In

each query, we regard the documents whose playtime are more

than 3s as the clicked ones.

Please refer to Appendix C for detailed experimental configuration.

4.2 Baseline and Evaluation Metric
We make comprehensive comparisons between our model and 9

representative baseline methods, introduced as follows.

• FM [26] is the factorizationmachine that uses the linear projection

and inner product of features to measure the user-item similarity.

• NeuMF [9] is a generalized model consisting of a matrix factor-

ization (MF) and a MLP component.

• DeepFM [7] is a generalized model consisting of a FM as a wide

component and a MLP as a deep component.

• PNN [24] is the product-based neural network consisting of a em-

bedding layer and a product layer to capture interactive patterns.

• LSTM [11] is the long short term memory network widely used

to model sequential data.

• NARM [33] is a sequential recommendation model, which uses

attention mechanism to capture the influence of user behaviors.

• ESMM [17] is a multi-objective model which applies a feature

representation transfer learning strategy on user behaviors.

• DIN [38] designs a local activation unit to adaptively learn the

representation of user interests from historical behaviors.

• DIEN [37] builds an interest extractor layer based on DIN to

capture temporal interests from historical behavior sequence.

Note that as all these methods are originally proposed partic-

ularly for classical item-based recommendation tasks definitively

different from the live broadcast recommendation task, thus we

introduce two versions of implementation. Taking LSTM as an

instance, we use the model for the historical sequences of user

browsed anchors (denoted as LSTM
−
). Also, we can first use LSTM

to model the historical sequences of user browsed anchors, anchor

broadcast items, user browsed items, and then fuse this informa-

tion via a MLP layer with a sigmoid function to generate the final

prediction (denoted as LSTM). For those tabular recommendation

models such as FM, we apply the model for binary interactions

between users and anchors (denoted as FM).

In order to further investigate the effect from each component

of TWINS, we design the following three variants:

• TWINS is our model without co-retrieval mechanism.

• TWINS−
𝑖
is a variant of TWINS, applying the original model

without the interactive network from item aspect.

• TWINS−𝑎 is a variant of TWINS, applying the original model

without the interactive network from anchor aspect.

• TWINS+
co

is a variant of TWINS using co-retrieval mechanism.

3
https://www.aminer.cn/citation

Figure 3: Comparisons of performance of baselines taking
the information of anchor side or user side as the input on
Aminer citation dataset.

To evaluate the above methods, we choose Area user the ROCCurve

(AUC), Accuracy (ACC), LogLoss as evaluation measurements. The

threshold of ACC of all the datasets is set as 0.5.

4.3 Performance Evaluation

Overall Performance. Table 1 summarizes the results. The major

findings from our experiments are summarized as follows.

• Compared to the version of only using user browsed anchors

(denoted as X
−
and X can be DIN, LSTM, NARM, ESMM, DIEN),

in most cases, X achieves better performance, which verifies to

further include user browsed items and anchor browsed items

as the input. One also observe in some cases, X
−
obtains better

performance, which may be explained as a simple aggregation op-

eration (e.g., concatenation) that can not fully use this information,

sometimes even bringing the noise.

• Our model outperforms all these baseline methods, including

widely adopted industrial recommendationmethods (e.g., DeepFM,

ESMM, DIN, DIEN), interaction models (e.g., FM, PNN), and se-

quential models (e.g., NARM, LSTM). As the inputs are the same,

these results would indicate the superiority of developing interac-

tive networks based on the two-side architecture.

• With the comparison between LSTM to other baseline methods,

we see that LSTM can consistently achieve comparable or even

better performance than interaction models (i.e., FM, NeuMF,

DeepFM, PNN), which verifies the necessity of mining the se-

quential patterns of users and anchors.

Impact of Interaction Networks. From comparisons between

TWINS and TWINS
−
𝑖
, TWINS and TWINS

−
𝑎 , TWINS consistently

achieves better performance than TWINS
−
𝑖
and TWINS

−
𝑎 in all the

datasets. One explanation is that our interactive networks are able

to provide interactive (i.e., “AND”) patterns, which can not be solely

modeled by employing a neural network. By comparing TWINS
−
𝑖

to TWINS
−
𝑎 , TWINS

−
𝑎 usually can gain better performance. One

possible reason for this is that in the live broadcast recommendation

system, the similarities between users and anchors mainly depend

on their browsed and broadcast items. Namely, the reason that a

user watches an anchor mainly lies in that the anchor is selling

some items that she is interested in.

Impact of Co-Retrieval Mechanism. Comparing TWINS
+
co

to

TWINS, we can observe that TWINS
+
co

can achieve a comparable, or

even better, result in these datasets. This result is consistent with the

result of the hard-search reported in [20], both of which reveal that

https://www.aminer.cn/citation
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Table 1: Comparison of different models on four industrial datasets. Results of Click-Through Rate (CTR) in term of AUC,
ACC, LogLoss are reported. * indicates 𝑝 < 0.001 in significance tests compared to the best baseline.

Methods

Yelp Business Dataset Trust Statement Dataset Aminer Citation Dataset Diantao Live Broadcast Dataset

LogLoss ACC AUC LogLoss ACC AUC LogLoss ACC AUC LogLoss ACC AUC

FM 0.6677 0.5945 0.6233 0.6188 0.7003 0.7574 0.6510 0.6430 0.7071 0.6541 0.6732 0.6896

NeuMF 0.4895 0.7759 0.8424 0.4814 0.7835 0.8440 0.4797 0.7882 0.8542 0.5942 0.7124 0.7229

DeepFM 0.4594 0.7925 0.8658 0.4545 0.8054 0.8756 0.4410 0.8049 0.8826 0.5832 0.7231 0.7345

PNN 0.4581 0.7931 0.8668 0.4452 0.8144 0.8838 0.3932 0.8789 0.9399 0.5432 0.7367 0.7578

DIN
−

0.3256 0.8731 0.9420 0.4164 0.8457 0.9154 0.1847 0.9423 0.9799 0.5231 0.7564 0.7790

DIN 0.3156 0.8782 0.9451 0.3771 0.8394 0.9114 0.1212 0.9581 0.9892 0.5100 0.7784 0.7995

LSTM
−

0.3236 0.8736 0.9433 0.3931 0.8271 0.9012 0.2218 0.9204 0.9708 0.5334 0.7529 0.7602

LSTM 0.3204 0.8783 0.9445 0.3854 0.8325 0.9051 0.1214 0.9575 0.9891 0.5321 0.7602 0.7789

NARM
−

0.3132 0.8811 0.9463 0.3916 0.8306 0.9037 0.2156 0.9216 0.9720 0.5421 0.7432 0.7667

NARM 0.3137 0.8808 0.9463 0.3839 0.8339 0.9060 0.1200 0.9580 0.9893 0.5233 0.7756 0.7953

ESMM
−

0.3224 0.8722 0.9414 0.3959 0.8268 0.9008 0.2402 0.9110 0.9655 0.5334 0.7456 0.7698

ESMM 0.3150 0.8776 0.9448 0.4035 0.8262 0.8991 0.1241 0.9564 0.9887 0.5175 0.7753 0.7985

DIEN
−

0.3198 0.8723 0.9401 0.4018 0.8388 0.9091 0.2254 0.9183 0.9698 0.5252 0.7657 0.7854

DIEN 0.3291 0.8646 0.9395 0.3911 0.8308 0.9022 0.1242 0.9563 0.9887 0.5145 0.7843 0.8046

TWINS
−
𝑖

0.2746 0.8879 0.9538 0.3685 0.8452 0.9174 0.1246 0.9616 0.9893 0.5012 0.7896 0.8010

TWINS
−
𝑎 0.2608 0.8948 0.9583 0.3660 0.8446 0.9170 0.1233 0.9622 0.9895 0.4977 0.7920 0.8024

TWINS 0.2603∗ 0.9120∗ 0.9659∗ 0.3528∗ 0.8501∗ 0.9235∗ 0.1081∗ 0.9631∗ 0.9913∗ 0.4855∗ 0.7934∗ 0.8187∗

TWINS+
co

0.2596∗ 0.8962∗ 0.9593∗ 0.3579∗ 0.8458∗ 0.9194∗ 0.1170∗ 0.9612∗ 0.9903∗ 0.4731∗ 0.8045∗ 0.8205∗
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Figure 4: Training/inference time comparisons of TWINS
and TWINSco against baselines on Aminer citation dataset.

category information plays a vital role in selecting relevant items.

We then further report their training and inference time in Figure 4

to verify that TWINS with the proposed co-retrieval mechanism is

more efficient and thus could deal with long-sequential data.

Impact of Two-Side Information. As introduced in Section 2.1,

there are three sequential data in user and anchor sides, namely

a sequence of user browsed anchors denoted asH𝑢𝑎
, a sequence

of user browsed items denoted as H𝑢𝑖
and a sequence of anchor

broadcast items denoted as H𝑎𝑖
, where the first two sequences are

of user side and the last one sequence is of anchor side. Since the

main difference between live broadcast recommendation and item

recommendation is that the former one requires us to take the infor-

mation of both user and anchor sides into consideration, while the

latter one is designed to model the information from one sequential

data of one side (usuallyH𝑢𝑎
). Results in Table 1 shows the results

of using H𝑢𝑎
(denoted as X

−
) and using all these sequences fused

by a concatenation operation (denoted as X). We further investigate

the performance gain of X
−
by addingH𝑢𝑖

(denoted as User Side)
or H𝑎𝑖

(denoted as Anchor Side) into the input. From Figure 3,

we see thatH𝑎𝑖
is more useful for X

−
thanH𝑢𝑖

. One explanation

is that we already have H𝑢𝑎
as the information on the user side

and no the information on anchor side. Hence, H𝑎𝑖
can offer more

important information thanH𝑢𝑖
.

Complexity Analysis. We investigate the time complexity of

TWINS and TWINSco against baseline methods such as PNN, LSTM,

NARM, ESMM, DIN, DIEN, and report the training and inference

times for one round of the whole data. As Figure 4 depicts, se-

quential methods (e.g., NARM, DIEN) are less efficient than other

methods (e.g., PNN). Also, we can see that TWINS
+
co

is more effec-

tive, as it can reduce the computation costs of interactive networks.

One can also use the co-retrieval mechanism in object modeling,

where only retrieved items are fed into the RNN model instead of

the whole set of items, to reduce the computation costs from the

RNN model.
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5 ONLINE EXPERIMENTS
5.1 Experimental Flow
In order to verify the effectiveness of TWINS

+
co

in real-world live

broadcast recommendation applications, we deploy our method in

Diantao App, a main-stream live broadcast App sharing all the an-

chors with Taobao e-commerce platform, which has tens of millions

of daily active users who create hundreds of millions of user logs

every day in the form of implicit feedbacks such as click, watch

behaviors. For simplicity, we use TWINS to denote our method

and use TWINS
+
co

as the implementation. We develop two kinds

of techniques to light the current TWINS model and develop an

effective data structure, as shown in Figure 7. We further introduce

their details along with our hands-on experience of implementing

TWINS in Alibaba in Appendix D.

Table 2: Improvement of TWINS against current production
method on real-world recommendation scenarios.

Recommender ACTR UCTR UCVR

TWINS 8.11% 2.01% 3.52%

For the online experiment, we conduct A/B testing comparing

the proposed model TWINS with the current production method.

The whole experiment lasts a week, from September 25, 2021 to

October 2, 2021. During A/B testing, 5% of the users are presented

with the recommendation by the current production method, while

5% of the users are presented with the recommendation by TWINS.

5.2 Performance Evaluation
We examine the online performance using three metrics. The first

one is to measure the CTR performance from the anchor aspect,

which is calledACTRmetric defined asACTR = #clicks on anchors

#impressions on anchors

where #clicks on anchors and #impressions on anchors are the num-

ber of clicks and impressions on all the anchors. The second one

is to measure the CTR performance from the user aspect, which is

called UCTR metric defined as UCTR = #clicks on users

#impressions on users
where

#clicks on users is the number of users that have performed click be-

haviors, and #impressions on users is the total number of users. The

third one is to measure the CVR performance from the user aspect,

which is called UCVRmetric defined as UCTR = #conversions on users

#impressions on users

where #conversions on users is the number of users that have per-

formed conversion behaviors, and #impressions on users is the total

number of users. We report the average results in Table 2. One can

notice that TWINS consistently achieves better performance in

terms of all the metrics.

5.3 Case Study
Finally, we conduct case study to reveal the inner structure of

TWINS on Diantao App. Figure 5 illustrates the interaction pat-

terns between each pair of items in user and anchor sides, where

the ones with similar colors means the high interaction weights.

As expected, we can see that these interaction weights can well re-

flect the corresponding correlations. For example, clothes including

pants and shirt have the same color (i.e., yellow), and have the sim-

ilar color with cosmetics containing perfume and lipstick (i.e., red).

user

anchor (high 
popularity)

anchor (low 
popularity)

anchor (medium 
popularity)

meat seafood perfumepants piano shoes carrot

drink cheese meatpants

pipe

shoes

past 60 mins past 30 mins

shirt eggplant
now

cloth bread

past 60 mins past 30 mins

tea

now
bag seafood vegetable

past 60 mins past 30 mins

now

mirrormilk lipstick meat

Figure 5: Illustration of the interaction patterns of TWINS
in the case of predicting the relevance between a user and
different anchors with the different popularity. Each pair of
Items with similar color demonstrates the high interaction
weights (i.e., correlations) between two items.

Based on them, TWINS can recommend appropriate anchors to the

user. We note that as shown in Figure 5, the recommended anchors

can be in range from high popularity to low popularity. We argue

that it is quite meaningful in the practice nowadays where the top

popular anchors can usually attach most users’ attentions, which

is similar to the popularity bias [2] in traditional recommendation

task. Therefore, the proposed method can simultaneously improve

the performance of the recommendation while mitigating the bias

issue (i.e., not always recommending the anchors with the high

popularity to different users).

6 CONCLUSION AND FUTUREWORK
In this paper, we investigate a recently emerged live broadcast

recommendation and propose a novel two-side framework named

TWINS, where we design interactive networks from item and an-

chor aspects to capture the rich interactive patterns in user and

anchor sides. In addition, we also develop a co-retrieval mechanism

to reduce the high computation costs of the interactive network

from the item aspect. For future work, it would be interesting to

combine TWINS with multi-tasking learning techniques to effec-

tively use user various behaviors (e.g., click, like, comment).
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A MODEL ANALYSIS OF TWINS
The learning algorithm of TWINS is given in Algorithm 1. As clas-

sical item recommendation methods [16, 24] often use the inner-

product of user and item embedding vectors (i.e., 𝒚𝑒𝑝𝑛) to measure

their similarity, we further clarify our motivations to involve in-

teraction results from both item and anchor aspects. Solely using

𝒚𝑒𝑝𝑛 for learning the model may be sufficient to fit the true condi-

tional probability 𝑃 (𝑦𝑝𝑛 | (𝑢𝑝 , 𝑎𝑛),H𝑢
𝑝 ,H𝑎

𝑛 ), if we are accessible to
the labels of all the possible user-anchor pairs. However, the limited

user observations over anchors in practice would lead the limited

performance. Concretely, we can divide those unobserved sam-

ples into two parts, namely, unobserved positive and unobserved

negative samples. The former class refers to samples where the

users would show positive feedbacks (e.g., click) if browsing the an-

chors, while the latter class refers to samples where the users would

show negative feedbacks (e.g., not click) if browsing the anchors.

As under most circumstances, there is no auxiliary information to

distinguish these two classes; all the unobserved samples are often

directly treated as negative samples, which indeed provides wrong

supervisions for learning the model.

Fortunately, we reveal that TWINS is an effective solution to alle-

viate the issue above. Compared with unobserved negative samples,

we argue that unobserved positive samples are more likely to have

correlations with observed positive samples. Such correlations can

either come from sharing similar anchors or similar items in users’

browsing historyH𝑢
𝑝 and anchor’s broadcast historyH𝑎

𝑛 . We argue

that the former correlations can be captured by our anchor aspect

interactions, and the latter ones can be modeled by our item aspect

interactions. Take Figure 6 as an instance, where the original posi-

tion of each sample represents the probability of receiving positive

feedbacks from users solely governed by 𝒚𝑒𝑝𝑛 , and arrows denote

the force from 𝒚𝑢𝑝𝑛 and 𝒚𝑎𝑝𝑛 . We consider two specific user-anchor

pairs (𝑢1, 𝑎1) and (𝑢2, 𝑎2). Suppose that 𝑎1 has a strong correlation

with one of 𝑢1’s desired anchors, then 𝒚𝑎𝑝𝑛 would push the sample

to a relatively high probability from anchor aspect interaction. Sim-

ilarly, assume that 𝑢2’s browsed items is correlated with one of 𝑎2’s

broadcast items, then 𝒚𝑢𝑝𝑛 would push the sample to a relatively

high probability from item aspect interaction. Notably, these two

samples are common among all unobserved samples. Therefore,

once the loss L that fuses all these information converges, the

unobserved positive samples would be more likely to be located at

the right or upper side of the decision boundary than the negative

ones.

B DATASET DESCRIPTION
We provide the detailed description for three real-world public

benchmark datasets as follows.

• Yelp business dataset4 is formed of Yelp business data recording

business interactions among businessmen. It consists of around

35,943,096 interactions among 1,233,453 businessmen through

more than 160,310 business cases.We treat the interaction between

two businessmen as the interaction between a user and an anchor.

Andwe regard those business cases as items. The average sequence

length of browsing logs of users and anchors is 5.17.

4
https://www.yelp.com/dataset/documentation/main
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Figure 6: An illustrated example of training for TWINSwith
item aspect and anchor aspect interactions, where the orig-
inal position of each sample represents the probability of
receiving positive feedbacks from users (e.g., click) solely ac-
cording to𝒚𝑒𝑝𝑛 , and arrows show the force from𝒚𝑢𝑝𝑛 and𝒚𝑎𝑝𝑛 .

• Trust statement dataset5 is collected by Paolo Massa from the

Epinions.com Web site in a 5-week period from November, 2003

to December, 2003. It contains the logs of 49,290 people who

rated a total of 139,738 different documents at least once, writing

664,824 reviews and 487,181 issued trust statements. People and

documents are represented by anonimized numeric identifiers.

We treat the trust record between two people as the interaction

between a user and anchor. And we regard those documents as

items. The average sequence length of browsing logs of users and

anchors is 16.55.

• Aminer citation dataset6 [29] is extracted from DBLP, ACM,

MAG (Microsoft Academic Graph), and other sources. It contains

622,196 authors writing 243,266 papers, and 10,368,942 citations.

Each paper is associated with abstract, authors, year, venue, and

title. We treat the citation-relation between two authors as the

interaction between a user and an anchor. And we regard those

papers as items. The average sequence length of browsing logs of

users and anchors is 2.33.

We don’t use some widely adapted e-commerce datasets created

by Alibaba or Amazon, because they only can provide the sequen-

tial data in other sides. More specifically, these datasets such as

Tmall dataset
7
, Taobao E-Commerce dataset

8
, Alipay dataset

9
only

contain user’s browsing logs (i.e., the sequential data in user side),

which are definitely not suitable to simulate the live broadcast triple-

object interaction cases. Notice that although some entities in the

above dataset can be used as either users or anchors, our model

will not reduce the one-side architecture, because the two-side ar-

chitecture of TWINS is asymmetric, as we involve the interactive

network from user aspect.

5
http://www.trustlet.org/downloaded_epinions.html

6
https://www.aminer.cn/citation

7
https://tianchi.aliyun.com/dataset/dataDetail?dataId=42

8
https://tianchi.aliyun.com/datalab/dataSet.html?dataId=408

9
https://tianchi.aliyun.com/dataset/dataDetail?dataId=53

https://www.yelp.com/dataset/documentation/main
http://www.trustlet.org/downloaded_epinions.html
https://www.aminer.cn/citation
https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
https://tianchi.aliyun.com/datalab/dataSet.html?dataId=408
https://tianchi.aliyun.com/dataset/dataDetail?dataId=53
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Figure 7: Online live broadcast recommender system with
proposed TWINS model that partly shares similar idea with
[20]. The new system lightens the TWINSmodel, and builds
tree structures for user browsing histories and anchor his-
tories in a offline fashion to save computation and latency
costs for online serving.

C EXPERIMENTAL CONFIGURATION
We randomly split each dataset into training/validation/test sets at

6:2:2. The learning rate is decreased from the initial value 1 × 10
−2

to 1× 10
−6

during the training process. The batch size is set as 2000.

The weight for L2 regularization term is 4 × 10
−4
. The dropout rate

is set as 0.5. The dimension of embedding vectors is set as 64. The

length of co-retrieval is set as 10. All the models are trained under

the same hardware settings with 16-Core AMD Ryzen 9 5950X

(2.194GHZ), 62.78GB RAM, NVIDIA GeForce RTX 3080 cards.

D DEPLOYMENT DISCUSSION
In this section, we introduce our hands-on experience of deploying

TWINS in the live broadcast recommender system in Alibaba. As

industrial recommender or ranker systems are required to response

to massive traffic requests in a short time interval (e.g., one second

[20]), then the storage and latency constraints would become the

main bottleneck for deploying existing search-based model [20]

and sequential model [19] to the online system. We here develop

two kinds of techniques to light the current TWINS model and

develop an effective data structure, and introduce a new online live

broadcast recommender system in Figure 7. We further show the

details as follows.

Light Version of Module. As the main computation costs come

from the RNN model (as shown in Eq. (2)) and the bi-attention

model (as shown in Eqs. (4) and (5)), we tweak the original version

of the TWINS model to obtain its light version. Specifically, for

the RNN model, inspired by LightRNN [18], we use 2-Component

(2C) shared embedding for item representations; while for the bi-

attention model, we remove 𝒆𝑢𝑝 and 𝒆𝑎𝑛 to reduce the computation

costs.

Tree Structure of Data. Following the main idea of the implemen-

tation part in [20], we build two-level structured index for each user

and anchor, which we call as user browsing tree and anchor broad-

cast tree respectively as illustrated in Figure 7. More concretely,

these trees follow the Key-Key-Value data structure where the first

key is user id, the second keys are category ids of browsed items,

and the last values are the specific behavior items that belong to

each category. For each user-anchor pair, we take the categories of

the common ones in user’s browsed items and anchor’s broadcast

items. After applying the proposed co-retrieval mechanism, the

length of user’s and anchor’s item sequences can be significantly

reduced which indeed releases much storage pressure in the online

system. Besides, these tree structures can be pre-built in an offline

manner.
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