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ABSTRACT

Neural document ranking approaches, specifically transformermod-
els, have achieved impressive gains in ranking performance. How-
ever, query processing using such over-parameterized models is
both resource and time intensive. In this paper, we propose the
Fast-Forward index – a simple vector forward index that facili-
tates ranking documents using interpolation of lexical and semantic
scores – as a replacement for contextual re-rankers and dense in-
dexes based on nearest neighbor search. Fast-Forward indexes
rely on efficient sparse models for retrieval and merely look up
pre-computed dense transformer-based vector representations of
documents and passages in constant time for fast CPU-based seman-
tic similarity computation during query processing. We propose
index pruning and theoretically grounded early stopping techniques
to improve the query processing throughput. We conduct extensive
large-scale experiments on TREC-DL datasets and show improve-
ments over hybrid indexes in performance and query processing
efficiency using only CPUs. Fast-Forward indexes can provide
superior ranking performance using interpolation due to the com-
plementary benefits of lexical and semantic similarities.
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1 INTRODUCTION

The standard approach for ad-hoc document ranking employs a
retrieval phase for fast, high-recall candidate selection and a more
expensive re-ranking phase. Recent approaches have focused heav-
ily on neural transformer-based models for both retrieval [6, 18, 24]
and re-ranking [1, 4, 12, 14, 22, 29]. However, limited work has been
done in the context of efficient end-to-end solutions for ranking
long documents.

There are challenges in both retrieval and re-ranking of long doc-
uments. The predominant strategy for the retrieval stage is based on
term-based or lexical matching. Towards efficient retrieval, inverted
indexes, referred to as sparse indexes, have been employed as work
horses in traditional information retrieval, exploiting sparsity in the
term space for pruning out a large number of irrelevant documents.
∗Research was primarily conducted while affiliated to L3S Research Center.

Sparse indexes are known to suffer from the vocabulary mismatch
problem, causing them to rank semantically similar documents
low. To alleviate this, dense indexes have been proposed recently
in the context of passage retrieval. However, we find that recall
considerably suffers when retrieving longer documents, i.e. when
there are multiple vectors per document. For example, in one case
the recall for retrieving 1000 documents using a dense index is 0.58,
compared to 0.70 for a sparse index (refer to Table 2).

For the re-ranking stage, cross-attention models are preferred
due to their ability to estimate semantic similarity, but these mod-
els are computationally expensive. Consequently, to keep overall
end-to-end ranking costs manageable, either a smaller number of
documents is considered in the re-ranking phase or leaner mod-
els with fewer parameters are used, resulting in reduced ranking
performance.

The aim of this paper is to propose an efficient end-to-end ap-
proach for ranking long documents without compromising effec-
tiveness. Firstly, we observe that dual-encoder models can be used
to effectively compute the semantic similarity of a document given a
query (cf. Table 1). Based on this observation, we propose a forward
indexing approach that ranks documents based on interpolation,
scoring them using a linear combination of the semantic similar-
ity scores (from the re-ranking phase) and lexical matching scores
(from the retrieval phase) with respect to the query [1].

Our proposed vector forward index of documents, referred to as
the Fast-Forward index, contains a list of pre-computed vectors
for each document corresponding to its constituent passages. Query
processing using a Fast-Forward index entails retrieving docu-
ments using a sparse index, computing the semantic similarities
of the retrieved documents through a sequence of index look-ups
and dot products and interpolating the scores. As a result, Fast-
Forward indexes combine the benefits of both sparse and dense
models, while at the same time eliminating the need for expensive
nearest neighbor search (as used in dense retrieval) or contextual,
GPU-accelerated re-ranking. Consequently, our work is comple-
mentary to and can be combined with other techniques that aim
to improve retrieval, e.g. CLEAR [11] or docT5qery [35]. Fur-
ther, this allows us to re-rank a much higher number of documents
per query, alleviating the aforementioned vocabulary mismatch
problem of the sparse retriever.

Our second observation is that query processing cost in the
re-ranking phase is dominated by dot-product computations be-
tween the query and the passage vectors. Towards this, we propose
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two techniques to improve efficiency in query processing using
Fast-Forward indexes – sequential coalescing and early stopping.
In sequential coalescing, we substantially reduce the number of
vectors per document by combining representations correspond-
ing to adjacent yet similar passages. This not only improves the
query processing efficiency, but also reduces the memory footprint
of the index. Early stopping exploits the natural ordering of the
sparse scores to avoid unnecessary index look-ups by maintaining
a maximum score estimate for the dense scores.

We perform extensive experimental evaluation to show the per-
formance benefits of Fast-Forward indexes and our query process-
ing techniques. We find that interpolation using dual-encoder mod-
els consistently yields better performance than standard re-ranking
using the same models. Further, increasing the sparse retrieval
depth prior to interpolation improves the final ranking. Finally, we
show how optimized Fast-Forward indexes accelerate the ranking,
substantially decreasing the query processing time compared to
hybrid retrieval, while maintaining comparable performance. To
sum up, we make the following contributions:

• We propose Fast-Forward indexes as an efficient approach
for ad-hoc document ranking tasks.
• We propose novel query processing algorithms – sequential
coalescing and early stopping – that further improve the
overall query processing throughput.
• We perform extensive experimental evaluation to establish
strong efficiency gains due to our forward indexes and query
processing techniques.

2 RELATEDWORK

Classical ranking approaches, such as BM25 or the query likelihood
model [20], rely on the inverted index for efficient first-stage re-
trieval that stores term-level statistics like term-frequency, inverse
document frequency and positional information. We refer to this
style of retrieval as sparse retrieval, since it assumes sparse doc-
ument representations. Recently, Dai and Callan [6, 7] proposed
DEEP-CT, which stores contextualized scores for terms in the in-
verted index for both passage and document retrieval. Similarly,
DeepImpact [31] enriches the document collection with expan-
sion terms to learn improved term impacts. Splade [8] aims to
enrich sparse document representations using a trained contextual
transformer model and sparsity regularization on the term weights.
TILDE [43] ranks documents using a deep query and document
likelihood model. In this work, we use the vanilla inverted index
with standard term statistics for first-stage retrieval.

An alternative design strategy is to use dual-encoders to learn
dense vector representations for passages or documents using con-
textual models [10, 17, 18]. The dense vectors are then indexed
in an offline phase [16], where retrieval is akin to performing an
approximate nearest neighbor (ANN) search given a vectorized
query. Consequently, there has been a large number of follow-up
works that boost the performance of dual-encoder models by im-
proving pre-training [2], optimization techniques [11] and negative
sampling [36, 41]. In this work, we use dual-encoders for com-
puting semantic similarity between queries and passages. Some
approaches have also proposed architectural modifications to the
dual-encoder models by having lightweight aggregations between

the query and passage embeddings [3, 12, 15, 25, 26, 41, 42], showing
promising performance over standard term-based retrieval strate-
gies. Nogueira et al. [35] proposed a simple document expansion
model. Note that these approaches are complementary to our work,
as they can be combined with Fast-Forward indexes.

Models for Semantic Similarity. While lexical matching models
are typically employed in the first-stage retrieval and are known
to achieve high recall, the ability to accurately determine semantic
similarity is essential in the subsequent more involved and compu-
tationally expensive re-ranking stage to alleviate the vocabulary
mismatch problem [5, 7, 28, 30, 34]. Computing the semantic sim-
ilarity of a document given a query has been heavily researched
in IR using smoothing methods [19], topic models [40], embed-
dings [33], personalized models [27] and other techniques. In these
classical approaches, ranking is performed by interpolating the
semantic similarity scores with the lexical matching scores from
the first-stage retrieval. Recent approaches have been dominated
by over-parameterized contextual models used predominantly in
re-ranking [1, 4, 12, 14, 22, 29]. Unlike dual-encoder models used
in dense retrieval, most of the above ranking models take as in-
put a concatenation of the query and document. This combined
input results in higher query processing times for large retrieval
depths since each document has to be processed in conjugation
with the query string. Another key limitation of using contextual
models for document ranking is the maximum acceptable number
of input tokens for transformer models. Some strategies address
this length limitation by document truncation [29] and chunking
into passages [4, 37]. However, the performance of chunking-based
strategies depends on the chunking properties, i.e. passage length or
overlap among consecutive passages [38]. Recent proposals include
a two-stage approach, where a query-specific summary is generated
by selecting relevant parts of the document, followed by re-ranking
strategies over the query and summarized document [13, 23].

Interpolation-based Rankers. Unlike classical methods, where
score interpolation is the norm, semantic similarity using a contex-
tual model is not consistently combined with the matching score.
Recently, Wang et al. [39] showed that the interpolation of BERT-
based retrievers and sparse retrieval methods can boost the perfor-
mance. Further, they analyzed the role of interpolation in BERT-
based dense retrieval strategies (ANCE, RepBERT) and found that
dense retrieval alone is not enough, but interpolation with BM25
scores is necessary.

3 INTERPOLATION-BASED RE-RANKING

In this section we formally introduce the problem of re-ranking.
We further compare standard and interpolation-based re-ranking.

3.1 Problem Statement

The retrieval of documents or passages given a query typically
happens in two stages: In the first stage, a term-frequency-based
(sparse) retrieval method retrieves a set of documents from a large
corpus. In the second stage, another model, which is usually much
more computationally expensive, re-ranks the retrieved docu-
ments again. The re-ranking step is deemed very important for
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Doc’19 Doc’20 Passage’19

Re-Ranking

TCT-ColBERT 0.685 0.617 0.694
BERT-CLS 0.520 0.522 0.578

Interpolation

TCT-ColBERT 0.696 0.637 0.708

BERT-CLS 0.612 0.626 0.617
Table 1: Performance comparison (nDCG@10) between re-

ranking and interpolation at retrieval depth 𝑘𝑆 = 1000.

tasks that require high performance for small retrieval depths, such
as question answering.

In sparse retrieval, we denote the top-𝑘𝑆 documents retrieved
from the sparse index for a query 𝑞 as 𝐾𝑞

𝑆
. The sparse score of

a query-document pair (𝑞, 𝑑) is denoted by 𝜙𝑆 (𝑞, 𝑑). For the re-

ranking part, we focus on self-attention models (such as BERT)
in this work. These models operate by creating (internal) high-
dimensional dense representations of queries and documents, fo-
cusing on their semantic structure. We refer to the outputs of these
models as dense or semantic scores and denote them by 𝜙𝐷 (𝑞, 𝑑).
Due to the quadratic time complexity of self-attention w.r.t. the
document length, long documents are often split into passages, and
the score of a document is then computed as the maximum of its
passage scores:

𝜙𝐷 (𝑞, 𝑑) = max
𝑝𝑖 ∈𝑑

𝜙𝐷 (𝑞, 𝑝𝑖 ) (1)

This approach is referred to as maxP [4].
The retrieval approach for a query 𝑞 starts by retrieving 𝐾𝑞

𝑆

from the sparse index. For each retrieved document 𝑑 ∈ 𝐾𝑞

𝑆
, the

corresponding dense score 𝜙𝐷 (𝑞, 𝑑) is computed. This dense score
may then be used to re-rank the retrieved set to obtain the final
ranking. However, recently it has been shown that the scores of
the sparse retriever, 𝜙𝑆 , can be beneficial for re-ranking as well [1].
To that end, an interpolation approach is employed, where the final
score of a query-document pair is computed as follows:

𝜙 (𝑞, 𝑑) = 𝛼 · 𝜙𝑆 (𝑞, 𝑑) + (1 − 𝛼) · 𝜙𝐷 (𝑞, 𝑑) (2)

Setting 𝛼 = 0 recovers the standard re-ranking procedure.
Since the set of documents retrieved by the sparse model is

typically large (e.g. 𝑘𝑆 = 1000), computing the dense score for each
query-document pair can be very computationally expensive. In
this paper, we focus on efficient implementations of interpolation-
based re-ranking, specifically the computation of the dense scores
𝜙𝐷 .

3.2 Re-Ranking vs. Interpolation

In order to compare traditional re-ranking with interpolation (cf.
Section 3.1), we retrieve 𝑘𝑆 = 1000 documents from a sparse BM25
index and compute the corresponding semantic scores for each of
the query-document pairs using dense methods. We then re-rank
the documents with and without interpolation. The results (cf. Ta-
ble 1) clearly show that interpolation improves over the purely
semantic scoring in both document and passage re-ranking. This

confirms that the lexical scores indeed hold complementary rele-
vance signals in comparison to semantic scores. We also observe
that the dual-encoder approach has better re-ranking performance.

4 EFFICIENT INTERPOLATION

Interpolation-based re-ranking, as described in Section 3, is known
to improve performance when applied to the results of a first-stage
(sparse) retrieval step. However, the computation of 𝜙𝐷 (cf. Equa-
tion (2)) can be very slow, where cross-attention models [4, 37]
are more expensive than dual-encoder-based ranking strategies [2,
26]. In this section we propose several means of implementing
interpolation-based re-ranking more efficiently.

4.1 Hybrid Retrieval

Hybrid retrieval is similar to standard interpolation-based re-ranking
(cf. Section 3). The key difference is that the dense scores 𝜙𝐷 (𝑞, 𝑑)
are not computed for all query-document pairs. Instead, this ap-
proach operates under the assumption that 𝜙𝐷 is a dense retrieval
model, which retrieves documents 𝑑𝑖 and their scores 𝜙 (𝑞, 𝑑𝑖 ) us-
ing nearest neighbor search given a query 𝑞. A hybrid retriever
combines the retrieved sets of a sparse and a dense retriever.

For a query 𝑞, we retrieve two sets of documents, 𝐾𝑞

𝑆
and 𝐾𝑞

𝐷
,

using the sparse and dense retriever, respectively. Note that the two
retrieved sets are usually not equal. One strategy proposed in [26]
ranks all documents in 𝐾𝑞

𝑆
∪ 𝐾𝑞

𝐷
, approximating missing scores. In

our experiments, however, we found that only considering docu-
ments from 𝐾

𝑞

𝑆
for the final ranking and discarding the rest works

well. The final score is thus computed as follows:

𝜙 (𝑞, 𝑑) = 𝛼 · 𝜙𝑆 (𝑞, 𝑑) + (1 − 𝛼) ·
{
𝜙𝐷 (𝑞, 𝑑) 𝑑 ∈ 𝐾𝑞

𝐷

𝜙𝑆 (𝑞, 𝑑) 𝑑 ∉ 𝐾
𝑞

𝐷

(3)

The re-ranking step in hybrid retrieval is essentially a sorting op-
eration over the interpolated scores and takes negligible time in
comparison to standard re-ranking.

4.2 Fast-Forward Indexes

The hybrid approach described in Section 4.1 has two distinct disad-
vantages. Firstly, in order to retrieve 𝐾𝑞

𝐷
, an (approximate) nearest

neighbor search has to be performed, which is time consuming.
Secondly, some of the query-document scores are missed, leading
to an incomplete interpolation.

In this section we propose Fast-Forward indexes as an efficient
way of computing dense scores for known documents that alleviates
the aforementioned issues. Specifically, Fast-Forward indexes
build upon two-tower dense retrieval models that compute the
score of a query-document pair as a dot product

𝜙𝐷 (𝑞, 𝑑) = 𝜁 (𝑞) · 𝜂 (𝑑), (4)

where 𝜁 and 𝜂 are the query and document encoders, respectively.
Examples of such models are ANCE [41] and TCT-ColBERT [26].
Since the query and document representations are independent for
two-tower models, we can pre-compute the document represen-
tations 𝜂 (𝑑) for each document 𝑑 in the corpus. These document
representations are then stored in an efficient hash map, allowing
for look-ups in constant time. After the index is created, the score
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embedding space

index
look-up

(a) Sequential coalescing of maxP in-

dexes.

Retrieved
documents

matching
score

semantic
similarity

current top - k

early stopping for top - 1

est. best possible semantic score

(b) Early stopping during interpolation.

Figure 1: The optimization techniques that can be applied to Fast-Forward indexes. Sequential coalescing combines the rep-

resentations of similar consecutive passages as their average. Note that 𝑝3 and 𝑝5 are not combined, as they are not consecutive

passages. Early stopping reduces the number of interpolation steps by computing an approximate upper bound for the dense

scores. This example depicts the most extreme case, where only the top-1 document is required.

Algorithm 1: Compression of dense maxP indexes by se-
quential coalescing
Input: list of passage vectors 𝑃 (original order) of a

document, distance threshold 𝛿
Output: coalesced passage vectors 𝑃 ′

1 𝑃 ′ ← empty list
2 A ← ∅
3 foreach 𝑣 in 𝑃 do

4 if first iteration then

// do nothing

5 else if cosine_distance(𝑣,A) ≥ 𝛿 then
6 append A to 𝑃 ′

7 A ← ∅
8 add 𝑣 to A
9 A ← mean(A)

10 end

11 append A to 𝑃 ′

12 return 𝑃 ′

of a query-document pair can be computed as

𝜙𝐹𝐹𝐷 (𝑞, 𝑑) = 𝜁 (𝑞) · 𝜂
𝐹𝐹 (𝑑), (5)

where the superscript 𝐹𝐹 indicates the look-up of a pre-computed
document representation in the Fast-Forward index. At retrieval
time, only 𝜁 (𝑞) needs to be computed once for each query. As
queries are usually short, this can be done on CPUs.

4.3 Index Compression via Seq. Coalescing

A major disadvantage of dense indexes and dense retrieval in gen-
eral is the size of the final index. This is caused by two factors:
Firstly, in contrast to sparse indexes, the high-dimensional dense
representations can not be stored as efficiently as sparse vectors.
Secondly, the dense encoders are typically transformer-based, im-
posing a (soft) limit on their input lengths due to their quadratic
time complexity with respect to the inputs. Thus, long documents
are split into passages prior to indexing (maxP indexes).

As an increase in the index size has a negative effect on retrieval
latency, both for nearest neighbor search and Fast-Forward in-
dexing as used by our approach, we exploit a sequential coalescing
approach as a way of dynamically combining the representations
of consecutive passages within a single document in maxP indexes.
The idea is to reduce the number of passage representations in the
index for a single document. This is achieved by exploiting the
topical locality that is inherent to documents [21]. For example, a
single document might contain information regarding multiple top-
ics; due to the way human readers naturally ingest information, we
expect documents to be authored such that a single topic appears
mostly in consecutive passages, rather than spread throughout the
whole document. Our approach aims to combine consecutive pas-
sage representations that encode similar information. To that end,
we employ the cosine distance function and a threshold parameter
𝛿 that controls the degree of coalescing. Within a single document,
we iterate over its passage vectors in their original order and main-
tain a set A, which contains the representations of the already
processed passages, and continuously compute A as the average
of all vectors in A. For each new passage vector 𝑣 , we compute
its cosine distance to A. If it exceeds the distance threshold 𝛿 , the
current passages in A are combined as their average representa-
tion A. Afterwards, the combined passages are removed from A
and A is recomputed. This approach is illustrated in Algorithm 1.
Figure 1a shows an example index after coalescing. To the best
of our knowledge, there are no other forward index compression
techniques so far.

4.4 Faster Interpolation by Early Stopping

As described in Section 3, by interpolating the scores of sparse and
dense retrieval models we perform implicit re-ranking, where the
dense representations are pre-computed and can be looked up in
a Fast-Forward index at retrieval time. Further, increasing the
sparse retrieval depth 𝑘𝑆 , such that 𝑘𝑆 > 𝑘 , where 𝑘 is the final
number of documents, improves the performance. A drawback of
this is that an increase in the number of retrieved documents also
results in an increase in the number of index look-ups.
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Algorithm 2: Interpolation with early stopping
Input: query 𝑞, sparse retrieval depth 𝑘𝑆 , cut-off depth 𝑘 ,

interpolation parameter 𝛼
Output: approximated top-𝑘 scores 𝑄

1 𝑄 ← priority queue of size 𝑘
2 𝑠𝐷 ← −∞
3 𝑠𝑚𝑖𝑛 ← −∞
4 foreach 𝑑 in sparse(𝑞, 𝑘𝑆 ) do
5 if 𝑄 is full then

6 𝑠𝑚𝑖𝑛 ← remove smallest item from Q
7 𝑠𝑏𝑒𝑠𝑡 ← 𝛼 · 𝜙𝑆 (𝑞, 𝑑) + (1 − 𝛼) · 𝑠𝐷
8 if 𝑠𝑏𝑒𝑠𝑡 ≤ 𝑠𝑚𝑖𝑛 then

// early stopping

9 put 𝑠𝑚𝑖𝑛 into 𝑄
10 break

// approximate max. dense score

11 𝑠𝐷 ← max(𝜙𝐷 (𝑞, 𝑑), 𝑠𝐷 )
12 𝑠 ← 𝛼 · 𝜙𝑆 (𝑞, 𝑑) + (1 − 𝛼) · 𝜙𝐷 (𝑞, 𝑑)
13 put max(𝑠, 𝑠𝑚𝑖𝑛) into 𝑄
14 end

15 return 𝑄

In this section we propose an extension to Fast-Forward in-
dexes that allows for early stopping, i.e. avoiding a number of un-
necessary look-ups, for cases where 𝑘𝑆 > 𝑘 by approximating the
maximum possible dense score. The early stopping approach takes
advantage of the fact that documents are ordered by their sparse
scores 𝜙𝑆 (𝑞, 𝑑). Since the number of retrieved documents, 𝑘𝑆 , is
finite, there exists an upper limit 𝑠𝐷 for the corresponding dense
scores such that 𝜙𝐷 (𝑞, 𝑑) ≤ 𝑠𝐷∀𝑑 ∈ 𝐾

𝑞

𝑆
. Since the retrieved docu-

ments𝐾𝑞

𝑆
are ordered by their sparse scores, we can simultaneously

perform interpolation and re-ranking by iterating over the ordered
list of documents: Let 𝑑𝑖 be the 𝑖-th highest ranked document by the
sparse retriever. Recall that we compute the final score as follows:

𝜙 (𝑞, 𝑑𝑖 ) = 𝛼 · 𝜙𝑆 (𝑞, 𝑑𝑖 ) + (1 − 𝛼) · 𝜙𝐷 (𝑞, 𝑑𝑖 ) (6)

If 𝑖 > 𝑘 , we can compute the upper bound for 𝜙 (𝑞, 𝑑𝑖 ) by exploiting
the aforementioned ordering:

𝑠𝑏𝑒𝑠𝑡 = 𝛼 · 𝜙𝑆 (𝑞, 𝑑𝑖−1) + (1 − 𝛼) · 𝑠𝐷 (7)

In turn, this allows us to stop the interpolation and re-ranking if
𝑠𝑏𝑒𝑠𝑡 ≤ 𝑠𝑚𝑖𝑛 , where 𝑠𝑚𝑖𝑛 denotes the score of the 𝑘-th document in
the current ranking (i.e. the currently lowest ranked document). In-
tuitively, this means that we stop the computation once the highest
possible interpolated score 𝜙 (𝑞, 𝑑𝑖 ) is too low to make a difference.
The approach is illustrated in Algorithm 2 and Figure 1b. Since the
dense scores 𝜙𝐷 are usually unnormalized, the upper limit 𝑠𝐷 is
unknown in practice. We thus approximate it by using the highest
observed dense score at any given step.

4.4.1 Theoretical Analysis. We first show that the early stopping
criteria, when using the true maximum of the dense scores, is
sufficient to obtain the top-𝑘 scores.

Theorem 4.1. Let 𝑠𝐷 , as used in Algorithm 2, be the truemaximum

of the dense scores. Then the returned scores are the actual top-𝑘 scores.

Proof. First, note that the sparse scores, 𝜙𝑆 (𝑞, 𝑑𝑖 ), are already
sorted in decreasing order for a given query. By construction, the
priority queue 𝑄 always contains the highest scores corresponding
to the list parsed so far. Let, after parsing 𝑘 scores, 𝑄 be full. Now
the possible best score 𝑠𝑏𝑒𝑠𝑡 is computed using the sparse score
found next in the decreasing sequence and the maximum of all
dense scores, 𝑠𝐷 (cf. line 7). If 𝑠𝑏𝑒𝑠𝑡 is less than the minimum of
the scores in 𝑄 , then 𝑄 already contains the top-𝑘 scores. To see
this, note that the first component of 𝑠𝑏𝑒𝑠𝑡 is the largest among all
unseen sparse scores (as the list is sorted) and 𝑠𝐷 is maximum of
the dense scores by our assumption. □

Next, we show that a good approximation of the top-𝑘 scores
can be achieved by using the sample maximum. To prove our claim,
we use the Dvoretzky–Kiefer–Wolfowitz (DKW) [32] inequality.

Lemma 4.2. Let 𝑋1, 𝑋2, ..., 𝑋𝑛 be 𝑛 real-valued independent and

identically distributed random variables with the cumulative dis-

tribution function 𝐹 (·). Let 𝐹𝑛 (·) denote the empirical cumulative

distributive function, i.e.

𝐹𝑛 (𝑥) =
1
𝑛

𝑛∑︁
𝑖=1

1{𝑋𝑖 ≤𝑥 }, 𝑥 ∈ R. (8)

According to the DKW inequality, the following estimate holds:

Pr
(
sup
𝑥 ∈R
(𝐹𝑛 (𝑥) − 𝐹 (𝑥)) > 𝜖

)
≤ 𝑒−2𝑛𝜖

2
∀𝜖 ≥

√︂
1
2𝑛

ln 2. (9)

In the following we show that, if 𝑠𝐷 is chosen as the maximum
of a large random sample drawn from the set of dense scores, then
the probability that any given dense score, chosen independently
and uniformly at random from the dense scores, is greater than 𝑠𝐷
is exponentially small in the sample size.

Theorem 4.3. Let 𝑥1, 𝑥2, ..., 𝑥𝑛 be a real-valued independent and

identically distributed random sample drawn from the distribution of

the dense scores with the cumulative distribution function 𝐹 (·). Let
𝑧 = max (𝑥1, 𝑥2, ..., 𝑥𝑛). Then, for every 𝜖 > 1√

2𝑛
ln 2, we obtain

Pr(𝐹 (𝑧) < 1 − 𝜖) ≤ 𝑒−2𝑛𝜖
2
. (10)

Proof. Let 𝐹𝑛 (·) denote the empirical cumulative distribution
function as above. Specifically, 𝐹𝑛 (𝑥) is equal to the fraction of
variables less than or equal to 𝑥 . We then have 𝐹𝑛 (𝑧) = 1. By
Lemma 4.2, we infer

Pr(𝐹𝑛 (𝑧) − 𝐹 (𝑧) > 𝜖) ≤ 𝑒−2𝑛𝜖
2
. (11)

Substituting 𝐹𝑛 (𝑧) = 1, we obtain Equation (10). □

This implies that the probability of any random variable 𝑋 , cho-
sen randomly from the set of dense scores, being less than or equal
to 𝑠𝐷 , is greater than or equal to 1 − 𝜖 with high probability, i.e.

Pr(𝑃𝐷 (𝑋 ≤ 𝑠𝐷 ) ≥ 1 − 𝜖) ≥ 1 − 𝑒−2𝑛𝜖
2
, (12)

where 𝑃𝐷 denotes the probability distribution of the dense scores.
This means that, as our sample size grows until it reaches 𝑘 , the
approximation improves. Note that, in our case, the dense scores are
sorted (by corresponding sparse score) and thus the i.i.d. assumption
can not be ensured. However, we observed that the dense scores
are positively correlated with the sparse scores. We argue that, due
to this correlation, we can approximate the maximum score well.
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5 EVALUATION SETUP

We consider the following baselines:
Lexical or sparse retrievers rely on term-based matching be-

tween queries and documents. We consider BM25, which uses term-
based retrieval signals, and DEEP-CT [6], which is similar to BM25,
but the term weights are learned in a contextualized fashion.

Semantic or dense retrievers retrieve documents that are se-
mantically similar to the query in a common embedding space. We
consider TCT-ColBERT [26] and ANCE [41]. Both approaches are
based on BERT encoders. Large documents are split into passages
before indexing (maxP). These dense retrievers use exact (brute-
force) nearest neighbor search as opposed to approximate nearest
neighbor (ANN) search.

Hybrid retrievers interpolate sparse and dense retriever scores.
We consider CLEAR [11], a retrieval model that complements lexi-
cal models with semantic matching. Additionally, we consider the
hybrid strategy described in Section 4.1 as a baseline, using the
dense retrievers above.

Contextual dense re-rankers operate on the documents re-
trieved by a sparse retriever (BM25). Each query-document pair is
input into the re-ranker, which outputs a corresponding score. In
this paper, we use a BERT-CLS re-ranker, where the output corre-
sponding to the classification token is used as the score. Note that
re-ranking is performed using the full documents (i.e. documents
are not split into passages). If an input exceeds 512 tokens, it is
truncated.

Datasets and Hyperparameters. We conduct experiments on three
datasets from the TREC Deep Learning track, Doc’19, Doc’20 and
Passage’19, to evaluate the effectiveness and efficiency of retrieval
and re-ranking strategies on the MS MARCO collection. Each test
set has a total of 200 queries. We use the Pyserini toolkit [25] for
our retrieval experiments and the MS MARCO development set
to determine 𝛼 = 0.2 for TCT-ColBERT, 𝛼 = 0.5 for ANCE and
𝛼 = 0.7 for BERT-CLS. Latency is computed as the sum of scoring,
interpolation and sorting cost. Tokenization cost is ignored. We
report the average processing time per query in the test set. Where
applicable, dense models use a batch size of 256. More details can
be found in Appendix A.1.

6 EXPERIMENTAL RESULTS

In this section we perform large-scale experiments to show the
effectiveness and efficiency of the proposed Fast-Forward indexes.

RQ1. How does interpolation-based re-ranking with dual-encoders

compare to other methods? In Table 2, we report the performance of
sparse, dense and hybrid retrievers, re-rankers and interpolation.

First, we observe that dense retrieval strategies perform better
than sparse ones in terms of nDCG, but have poor recall except
on Passage’19. The contextual weights learned by DEEP-CT are
better than tf-idf based retrieval (BM25), but fall short of dense
semantic retrieval strategies (TCT-ColBERT and ANCE). However,
the overlap among retrieved documents is rather low, reflecting
that dense retrieval cannot match query and document terms well.

Second, dual-encoder-based (TCT-ColBERT and ANCE) per-
form better than contextual (BERT-CLS) re-rankers. In this setup,
we first retrieve 𝑘𝑆 = 1000 documents using a sparse retriever

and re-rank them. This approach benefits from high recall in the
first stage and promotes the relevant documents to the top of the
list through the dense semantic re-ranker. However, re-ranking
is typically time-consuming and requires GPU acceleration. The
improvement of TCT-ColBERT and ANCE over BERT-CLS also sug-
gests that dual-encoder-based re-ranking strategies are better than
cross-interaction-based methods. However, the difference could
also be attributed to the fact that BERT-CLS does not follow the
maxP approach (cf. Section 3.1).

Finally, interpolation-based re-ranking, which combines the ben-
efits of sparse and dense scores, significantly outperforms the
BERT-CLS re-ranker and dense retrievers. Recall that dense re-
rankers operate solely based on the dense scores and discard the
sparse BM25 scores of the query-document pairs. The superiority
of interpolation-based methods is also supported by evidence from
recent studies [2, 3, 10, 11].

RQ2. Do Fast-Forward indexes allow for efficient interpolation at

higher retrieval depths? Tables 3 and 4 show results of re-ranking,
hybrid retrieval and interpolation on document and passage datasets,
respectively. The metrics are computed for two sparse retrieval
depths, 𝑘𝑆 = 1000 and 𝑘𝑆 = 5000.

We observe that taking the sparse component into account in the
score computation (as is done by the interpolation and hybrid meth-
ods) causes performance to improve with retrieval depth. Specifi-
cally, some queries receive a considerable recall boost, capturing
more relevant documents with large retrieval depths. Interpolation
based on Fast-Forward indexes achieves substantially lower la-
tency compared to other methods. Pre-computing the document
representations allows for fast look-ups during retrieval time. As
only the query needs to be encoded by the dense model, both re-
trieval and re-ranking can be performed on the CPU while still
offering considerable improvements in query processing time. Note
that for BERT-CLS, the input length is limited, causing documents
to be truncated, similarly to the firstP approach. As a result, the
latency is much lower, but in turn the performance suffers. It is
important to note here, that, in principle, Fast-Forward indexes
can also be used in combination with firstP models.

The hybrid retrieval strategy, as described in Section 4.1, shows
good performance. However, as the dense indexes require nearest
neighbor search for retrieval, the query processing latency is much
higher than for interpolation using Fast-Forward indexes.

Finally, dense re-rankers do not profit reliably from increased
sparse retrieval depth; on the contrary, the performance drops
in some cases. This trend is more apparent for the document re-
trieval datasets with higher values of 𝑘𝑆 . We hypothesize that dense
rankers only focus on semantic matching and are sensitive to topic
drift, causing them to rank irrelevant documents in the top-5000
higher.

RQ3. Can the re-ranking efficiency be improved by reducing the

Fast-Forward index size using sequential coalescing? In order to
evaluate this approach, we first take the pre-trained TCT-ColBERT
dense index of the MS MARCO corpus, apply sequential coalescing
with varying values for 𝛿 and evaluate each resulting compressed
index using the Doc’19 testset. The results are illustrated in Figure 2.
It is evident that, by combining the passage representations, the
number of vectors in the index can be reduced by more than 80%
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Doc’19 Doc’20 Passage’19

AP1k R1k nDCG10 AP1k R1k nDCG10 AP1k R1k nDCG10

Sparse Retrieval

BM25 0.331 0.697 0.5191−3 0.404 0.809 0.5271−3 0.301 0.750 0.5061−3
DEEP-CT - - 0.544 - - - 0.422 0.756 0.551

Dense Retrieval

TCT-ColBERT 0.279 0.576 0.6121 0.372 0.728 0.5861,2 0.391 0.792 0.670
ANCE 0.254 0.510 0.6331 0.401 0.681 0.633 0.371 0.755 0.645

Hybrid Retrieval

CLEAR - - - - - - 0.511 0.812 0.699

Re-Ranking

TCT-ColBERT 0.370 0.697 0.685 0.414 0.809 0.617 0.423 0.750 0.694
ANCE 0.336 0.697 0.654 0.426 0.809 0.630 0.389 0.750 0.679
BERT-CLS 0.283 0.697 0.5201−3 0.329 0.809 0.5221−3 0.353 0.750 0.5781,2

Interpolation

TCT-ColBERT1 0.406 0.697 0.696 0.469 0.809 0.637 0.438 0.750 0.708
ANCE2 0.387 0.697 0.673 0.490 0.809 0.655 0.417 0.750 0.680
BERT-CLS3 0.365 0.697 0.612 0.460 0.809 0.626 0.378 0.750 0.617

Table 2: Retrieval performance. Retrievers use depths 𝑘𝑆 = 1000 (sparse) and 𝑘𝐷 = 10000 (dense). Dense retrievers retrieve

passages and perform maxP aggregation for documents. Scores for CLEAR and DEEP-CT are taken from the corresponding

papers [10, 11]. Superscripts indicate statistically significant improvements using two-paired tests with a sig. level of 95% [9].

Doc’19 Doc’20

millisec.
per query

𝑘𝑆 = 1000 𝑘𝑆 = 5000 𝑘𝑆 = 1000 𝑘𝑆 = 5000

AP1k R1k nDCG20 AP1k R1k nDCG20 AP1k R1k nDCG20 AP1k R1k nDCG20

Hybrid Retrieval

BM25, TCT-ColBERT 582 0.394 0.697 0.655 0.385 0.729 0.645 0.463 0.809 0.615 0.469 0.852 0.621
BM25, ANCE 582 0.379 0.697 0.633 0.373 0.727 0.628 0.479 0.809 0.624 0.488 0.846 0.632

Re-Ranking

TCT-ColBERT 1189 + 2 0.370 0.697 0.632 0.334 0.703 0.6091 0.414 0.809 0.5871 0.405 0.794 0.5851,3,4
ANCE 1189 + 2 0.336 0.697 0.614 0.304 0.647 0.607 0.426 0.809 0.5953 0.422 0.761 0.604
BERT-CLS 185 + 2 0.283 0.697 0.4941−5 0.159 0.559 0.289 0.329 0.809 0.5121−5 0.221 0.727 0.3751−5

Interpolation

TCT-ColBERT1 1189 + 14 0.406 0.697 0.655 0.411 0.745 0.653 0.469 0.809 0.621 0.478 0.838 0.626
Fast-Forward 253 0.406 0.697 0.655 0.411 0.745 0.653 0.469 0.809 0.621 0.478 0.838 0.626
coalesced2 109 0.379 0.697 0.630 0.379 0.732 0.625 0.440 0.809 0.5941 0.447 0.837 0.607

ANCE3 1189 + 14 0.387 0.697 0.638 0.393 0.732 0.639 0.490 0.809 0.630 0.502 0.828 0.640
Fast-Forward 253 0.387 0.697 0.638 0.393 0.732 0.639 0.490 0.809 0.630 0.502 0.828 0.640
coalesced4 121 0.372 0.697 0.625 0.375 0.723 0.628 0.471 0.809 0.622 0.479 0.823 0.629

BERT-CLS5 185 + 14 0.365 0.697 0.585 0.357 0.708 0.562 0.460 0.809 0.602 0.459 0.839 0.601

Table 3: Document retrieval performance. Latency is reported for 𝑘𝑆 = 5000 on CPU and GPU. The coalesced Fast-Forward

indexes are compressed to approximately 25% of their original size. Hybrid retrievers use a dense retrieval depth of 𝑘𝐷 = 1000.
Superscripts indicate statistically significant improvements using two-paired tests with a sig. level of 95% [9].

in the most extreme case, where only a single vector per document
remains. At the same time, the performance is correlated with the
granularity of the representations. However, the drops are relatively
small. For example, for 𝛿 = 0.025, the index size is reduced by more
than half, while the nDCG decreases by roughly 0.015 (3%).

Additionally, Table 3 shows the detailed performance of co-
alesced Fast-Forward indexes on the document datasets. We
chose the indexes corresponding to 𝛿 = 0.035 (TCT-ColBERT)
and 𝛿 = 0.003 (ANCE), both of which are compressed to approx-
imately 25% of their original size. This is reflected in the query
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millisec.
per query

𝑘𝑆 = 1000 𝑘𝑆 = 5000

AP1k RR10 AP1k RR10
Hybrid Retrieval

BM25, TCT-ColBERT 307 0.434 0.894 0.454 0.902
BM25, ANCE 307 0.410 0.856 0.422 0.864

Re-Ranking

TCT-ColBERT 186 + 2 0.426 0.827 0.439 0.842
ANCE 186 + 2 0.389 0.836 0.392 0.857
BERT-CLS 185 + 2 0.353 0.715 0.275 0.576

Interpolation

TCT-ColBERT 186 + 14 0.438 0.894 0.460 0.902
Fast-Forward 114 0.438 0.894 0.460 0.902
early stopping 72 - 0.894 - 0.902

ANCE 186 + 14 0.417 0.856 0.435 0.864
Fast-Forward 114 0.417 0.856 0.435 0.864
early stopping 52 - 0.856 - 0.864

BERT-CLS 185 + 14 0.378 0.809 0.392 0.832

Table 4: Retrieval performance on Passage’19. Latency is re-

ported for 𝑘𝑆 = 5000 on CPU and GPU. Hybrid retrievers use

a dense retrieval depth of 𝑘𝐷 = 1000.

Figure 2: Sequential coalescing applied to Doc’19. The plot

shows the index size reduction in terms of the number

of passages and the corresponding metric values for Fast-

Forward interpolation with TCT-ColBERT.

processing latency, which is reduced by more than half. The overall
performance drops to some extent, as expected, however, these
drops are not statistically significant in all but one case. The trade-
off between latency (index size) and performance can be controlled
by varying the threshold 𝛿 .

RQ4. Can the re-ranking efficiency be improved by limiting the

number of Fast-Forward look-ups? We start by evaluating the util-
ity of the early stopping approach described in Section 4.4 on the
Passage’19 dataset. Figure 3 shows the average number of look-ups
performed in the Fast-Forward index during interpolation w.r.t.
the cut-off depth 𝑘 . We observe that, for 𝑘 = 100, early stopping al-
ready leads to a reduction of almost 20% in the number of look-ups.
Decreasing 𝑘 further leads to a significant reduction of look-ups,
resulting in improved query processing latency. As lower cut-off
depths (i.e. 𝑘 < 100) are typically used in downstream tasks, such
as question answering, the early stopping approach for low values
of 𝑘 turns out to be particularly helpful.

Figure 3: The average number of Fast-Forward index look-

ups per query for interpolation with early stopping at vary-

ing cut-off depths 𝑘 on Passage’19 with 𝑘𝑆 = 5000 using

ANCE.

Table 4 shows early stopping applied to the passage dataset
to retrieve the top-10 passages and compute reciprocal rank. It is
evident that, even though the algorithm approximates themaximum
dense score (cf. Section 4.4), the resulting performance is identical,
which means that the approximation was accurate in both cases and
did not incur any performance hit. Further, the query processing
time is decreased by up to a half compared to standard interpolation.
Note that early stopping depends on the value of 𝛼 , hence the
latency varies between TCT-ColBERT and ANCE.

7 CONCLUSION

In this paper we propose Fast-Forward indexes, a simple yet ef-
fective and efficient look-up-based interpolation method that com-
bines document retrieval and re-ranking. Fast-Forward indexes
are based on dense dual-encoder models, exploiting the fact that
document representations can be pre-processed and stored, provid-
ing efficient access in constant time. Using interpolation, we observe
increased performance compared to hybrid retrieval. Further, we
achieve improvements of up to 75% in memory footprint and query
processing latency due to our optimization techniques, sequential
coalescing and early stopping. At the same time, our method solely
requires CPU computations, completely eliminating the need for
expensive GPU-accelerated re-ranking.
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ANCE

Doc’19, castorini/ance-msmarco-doc-maxp
Doc’20 msmarco-doc-ance-maxp-bf

Passage’19 castorini/ance-msmarco-passage
msmarco-passage-ance-bf

TCT-ColBERT

Doc’19, castorini/tct_colbert-msmarco
Doc’20 msmarco-doc-tct_colbert-bf

Passage’19 castorini/tct_colbert-msmarco
msmarco-passage-tct_colbert-bf

Table 5: The pre-trained dense encoders and corresponding

indexes we used in our experiments. In each cell, the first

line corresponds to a pre-trained encoder (to be obtained

from theHuggingFace Hub) and the second line is a pre-built
index provided by Pyserini.

A EXPERIMENTAL DETAILS

In this section we provide details regarding our experiments to
ensure reproducibility. This includes hardware, software, model
hyperparameters as well as techniques employed.

A.1 Hardware Configuration and Latency

Measurements

Our experiments are performed on a single machine using an Intel
Xeon Silver 4210 CPU with 40 cores, 256GB of RAM and an NVIDIA
Tesla V100 GPU. In order to measure the per-query latency num-
bers, we perform each experiment four times and report the average
latency, excluding the first measurement (in order to account for
any potential caching). In general, latency is reported as the sum
of scoring (this includes operations like encoding queries and doc-
uments, obtaining representations from a Fast-Forward index,
computing the scores as dot-products and so on), interpolation (cf.
Equation (2)) and sorting cost. Any pre-processing or tokenization
cost is ignored. Further, the first-stage (sparse) retrieval step is not
included, as it is constant for all methods. The Fast-Forward in-
dexes are loaded into the main memory entirely before they are
accessed.

A.2 Software and Hyperparameters

We use the Pyserini toolkit for all of our retrieval experiments,
which uses the HuggingFace transformers library internally. Py-
serini provides a number of pre-trained encoders and correspond-
ing indexes. Table 5 gives an overview over the ones we used for
our experiments. Our dense encoders (ANCE and TCT-ColBERT)
output 768-dimensional representations. Our sparse BM25 retriever
is provided by Pyserini as well. We use the pre-built indexes
msmarco-passage (𝑘1 = 0.82, 𝑏 = 0.68) and msmarco-doc (𝑘1 =

4.46, 𝑏 = 0.82).
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