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ABSTRACT

A BERT-based Neural Ranking Model (NRM) can be either a cross-
encoder or a bi-encoder. Between the two, bi-encoder is highly
efficient because all the documents can be pre-processed before
the actual query time. In this work, we show two approaches for
improving the performance of BERT-based bi-encoders. The first
approach is to replace the full fine-tuning step with a lightweight
fine-tuning. We examine lightweight fine-tuning methods that are
adapter-based, prompt-based, and hybrid of the two. The second
approach is to develop semi-Siamese models where queries and doc-
uments are handled with a limited amount of difference. The limited
difference is realized by learning two lightweight fine-tuning mod-
ules, where the main language model of BERT is kept common for
both query and document. We provide extensive experiment results
for monoBERT, TwinBERT, and ColBERT where three performance
metrics are evaluated over Robust04, ClueWeb09b, and MS-MARCO
datasets. The results confirm that both lightweight fine-tuning and
semi-Siamese are considerably helpful for improving BERT-based
bi-encoders. In fact, lightweight fine-tuning is helpful for cross-
encoder, t0o.!
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Table 1: Query and document lengths - average and standard
deviation of word counts are shown for three IR datasets.

Dataset ‘ Query word count ‘ Document word count

Robust04 2.66 (0.69) 912 (£2114)
ClueWeb09b 2.40 (+0.98) 2346 (£2128)
MS-MARCO 6.00 (£2.58) 2454 (+£4761)

Table 2: Query examples - Robust04 and ClueWeb09b mainly
contain short and keyword-based queries, but MS-MARCO
mainly contains long and descriptive queries.

What happens when blood goes through the lungs?

Dataset ‘ Query examples
Robust04 new fuel sources .
most dangerous vehicles
ClueWeb09b ‘ dvlnosaurs
air travel
MS-MARCO ‘ Vitamin D deficiency and skin lesions

1 INTRODUCTION

Since the advent of large-scale language models, BERT-based Neural
Ranking Models (NRMs) [8, 16, 19] have been developed and shown
to achieve state-of-the-art performance. A BERT-based NRM can
be classified either as a cross-encoder or as a bi-encoder. Although
cross-encoders generally outperform bi-encoders, bi-encoders are
superior in terms of computational efficiency because they al-
low one-time pre-processing of the long documents. Therefore,
bi-encoders tend to receive more attention from industrial practi-
tioners. For processing both queries and documents, a bi-encoder
uses a common BERT model with a fixed set of weight values. This
has been considered to be a mandatory requirement, because the
underlying language model is desired to be the same for handling
both queries and documents and because heterogeneous models
indeed show very poor performance. Therefore, all of the existing
bi-encoder models are Siamese models.

Learning a ranking model is a special task because of the involve-
ment of query and document. In particular, query and document
can have distinct characteristics. Table 1 summarizes the length
information of query and document for three popular Informa-
tion Retrieval (IR) datasets. It can be immediately noticed that the
length difference between query and document is remarkably large.
Robust04 and ClueWeb09b contain very short queries while MS-
MARCO has relatively longer queries. Even though not shown in
the table, many of ClueWeb09b queries consist of only one word
per query. On the other hand, a document usually contains more
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than 1,000 words for all three datasets. Table 2 shows examples
of the queries. It can be seen that Robust04 and ClueWeb09b have
keyword-based queries while MS-MARCO has descriptive queries
in full or almost full sentence format. Because the documents of
the three datasets are usually in full sentence format, it can be
concluded that Robust04 and ClueWeb09b have different sentence
formats for query and document while MS-MARCO has the same
format. In this work, we hypothesize that a high-performance bi-
encoder should process query and document with two different
networks, because they tend to have distinct characteristics.

Because heterogeneous networks do not perform well?, we pro-
pose Semi-Siamese (SS) bi-encoder neural ranking models that can
properly reflect the different characteristics of query and document.
Our semi-Siamese networks are based on a common pre-trained
BERT model that is not fine-tuned at all. Instead, a mild differen-
tiation between the query network and the document network is
implemented through a lightweight fine-tuning method including
prompt-tuning [11], prefix-tuning [12], and LoRA [6]. The resulting
semi-Siamese networks have less than 1% difference in terms of the
number of parameters that are different. We also introduce LoRA+
that allows a small additional differentiation and also consider two
sequential hybrids of prefix-tuning and LoRA.

While semi-Siamese learning for bi-encoders is our main fo-
cus, we also investigate the benefits of lightweight fine-tuning for
Siamese cross-encoders and Siamese bi-encoders. With our best
knowledge, we are the first to apply lightweight fine-tuning for
improving NRMs. Originally, lightweight fine-tuning methods were
developed to reduce task-specific parameter memory/storage and
computational cost. But, we will show that they can also provide per-
formance enhancement through their regularizing effect of NRMs.
Compared to a full fine-tuning, a lightweight fine-tuning of NRM
allows only a limited amount of parameters to be modified and
we obtain performance improvements by choosing adequate light-
weight fine-tuning methods. Our method improves bi-encoders that
are practical in the real web search environment.

Our contributions can be summarized as below.

e For cross-encoder, we show that adapter-based lightweight
fine-tuning methods (LoRA and LoRA+) can improve the
performance by 0.85%-5.29%.

o For bi-encoder, we show that prefix-tuning performs well
for Robust04 and ClueWeb09b that have short queries. The
improvement can be very large for TwinBERT, and a modest
gain of 0.12%-3.90% is achieved for ColBERT.

e For bi-encoder, we show that semi-Siamese learning is effec-
tive where the overall gain of 1.46%-16.23% is achieved for
ColBERT.

2 RELATED WORKS

2.1 BERT-based NRMs

With the advent of large-scale language models such as BERT and
GPT, fine-tuning of such a pre-trained language model has become
a standard approach for handling document ranking tasks. For

2We confirmed this by fine-tuning query and document models independently.
For example, heterogeneous full fine-tuning of ColBERT on Robust04 resulted in
0.3233 (P@20) while Siamese full fine-tuning resulted in 0.3355 (P@20) where the
p-value was 0.014.
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neural ranking models, a variety of BERT-based NRMs have been
developed. For instance, monoBERT [19] is often considered to be
a powerful baseline that takes a pair of query and document as the
input to the BERT model. Such cross-encoder models, however, are
computationally demanding because the BERT’s output represen-
tation needs to be calculated for every combination of query and
document. If we have Ny queries to evaluate for Ny documents,
this means BERT representations need to be evaluated Ny - Ny
times. In contrast, bi-encoder models are computationally efficient
because their BERT models do not jointly process each pair of query
and document. With a bi-encoder, all of the N; documents are pre-
processed only once, and their BERT representations are pre-stored.
For each query, the query’s BERT representation is calculated and
used together with each of the pre-stored N; document representa-
tions for the relevance score calculation. Because the documents are
much longer than the queries (see Table 1), the pre-processing of
documents makes bi-encoders extremely efficient when compared
to the cross-encoders. TwinBERT [16] and CoIBERT [8] are two of
the popular bi-encoder models. TwinBERT aggregates CLS vectors
of the query and the document for the relevance score estimation.
ColBERT utilizes the interaction between the BERT representations
instead.

2.2 Lightweight Fine-Tuning (LFT)

Traditionally, fine-tuning refers to updating all of the pre-trained
weights of a neural network. Because all the weights are updated,
we refer to it as full Fine-Tuning (FT) in this work. A full FT of
BERT is not always necessary for achieving a high performance.
Instead, partial fine-tuning methods can be adopted for reducing
task-specific parameter storage and computational cost. Lee et al.
[10] investigated a partial fine-tuning strategy where only the final
layers are fine-tuned and showed that only a fourth of the final lay-
ers need to be fine-tuned to achieve 90% of the original downstream
task quality. Radiya-Dixit and Wang [20] showed that it sufficed to
fine-tune only the most critical layers. Similar results can be found
in [15, 22]. While a partial FT can be advantageous over a full FT,
they both require the pre-trained BERT to be modified. This is not
desirable especially when multiple downstream tasks need to be
handled. Recently, another type of fine-tuning called Lightweight
Fine-Tuning (LFT) has emerged. With an LFT, all of the BERT pa-
rameters are kept frozen. To implement the effect of fine-tuning,
LFT instead augments the BERT model with small trainable ele-
ments. Two types of LFT have been shown to be extremely useful.
In our work, the first type is addressed as adapter-based LFT and it
augments a language model like BERT with small weight modules.
The second type is addressed as prompt-based LFT and it augments
a language model’s representation vectors with a small number
of input embedding vectors or mid-layer activation vectors. With
our best knowledge, LFT has never been applied to neural ranking
models before and we are the first to demonstrate its effectiveness
for NRMs.

2.2.1 Adapter-based LFT. Houlsby et al. [5] proposed an alterna-
tive of full FT where task-specific adapters were inserted between
the layers of the pre-trained language model. The adapter’s effec-
tiveness was demonstrated over 26 diverse text classification tasks,
where near full fine-tuning performance was achieved with only
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3.6% of additional parameters per task. Later, He et al. [4] showed
that the adapter FT could mitigate forgetting issues of full FT be-
cause of the smaller weight deviations. LoRA [6] is another example
of adapter-based LFT where augmentation is implemented with a
different design of small weight modules. Instead of inserting lay-
ers, LoRA expands the query and value projection weight matrices
with linear low-rank residual matrices. Because of its simplicity
and small size, we investigate only LoRA among the adapter-based
LFTs.

2.2.2  Prompt-based LFT. GPT-3 [1] is an enormously large model,
and it is known for its capability of performing few-shot or zero-
shot learning merely with text prompts. A survey of prompt-based
learning can be found in [14]. Following the idea of prompt-based
learning, Lester et al. [11] introduced prompt-tuning where soft
prompts were learned through back-propagation. Soft prompts are
fine-tuned embeddings, and they do not correspond to discrete text
embeddings. Li and Liang [12] extended the concept beyond the
input layer to introduce prefix-tuning, where it was different from
prompt-tuning in that it learned prefix activation vectors for all the
layers including the input layer. In our work, we investigate both
prompt-tuning and prefix-tuning for enhancing neural ranking
models.

Adapter-based LFTs are fundamentally different from prompt-
based LFTs. Adapter-based LFTs do not augment the representations
at all, and prompt-based LFTs do not augment weights at all. This
difference has a strong implication to NRMs as we will show in the
experiment section. Despite of the difference, both are fine-tuning
methods because their augmentations are task-specific, i.e. not
dependent on input examples, where the trainable augmentation
elements are fine-tuned for a specific downstream task.

2.3 Semi-Siamese (SS) Models

All of the existing bi-encoder NRMs are Siamese models where a
single version of fine-tuned BERT is used for processing both of the
queries and the documents. Learning a heterogeneous bi-encoder
model is also possible where two different versions of fine-tuned
BERT models can be learned, one for processing queries and the
other for processing documents. Such a heterogeneous bi-encoder,
however, is known to suffer from a large performance degradation
due to the deviation of the two language models for handling queries
and documents. But when queries are short or when queries have
significantly different characteristics compared to the documents,
it makes sense to allow a certain degree of deviation to handle the
queries better. A possible solution for learning is to introduce Semi-
Siamese (SS) models. Semi-Siamese models have never been used
for information retrieval tasks, but they have been already adopted
in image, video, and recommendation domains. Du et al. [3] used a
semi-Siamese model to prevent over-fitting in a face recognition
task with a small number of data examples. The model has two
structurally identical networks that are trained simultaneously us-
ing different inputs. Zhang and Duan [24] proposed a semi-Siamese
CNN network for vocal imitation search. To encode vocal imitation
and real sound, two CNN networks are needed and they share lower
layers. Li et al. [13] used a semi-Siamese model to make directional
recommendations. First, two identical networks are trained with
undirected data, and then the two networks are trained differently
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with directed data which makes them semi-Siamese. In the previous
works, a semi-Siamese network is utilized when there is a need
to train two slightly different networks. In our case of bi-encoder
NRMs, we focus on the different characteristics between query
and document and design semi-Siamese models to enhance the
performance.

3 METHODOLOGY

3.1 Document Re-ranking

Document re-ranking is to rank a set of pre-selected documents for
a given query according to the relevance score estimates, where a
relevance score is estimated for each pair of query and document.
Let Q be a query consisting of tokens q1, g2, .., q|g| and let D be
a document consisting of tokens dy, do, ..., d|D|. A positive pair of
a query and a document X, is comprised of relevant Q and D
whereas a negative pair Xpeq is comprised of irrelevant Q and
D. BERT-based NRMs are composed of two parts, BERT and the
ranker. BERT processes query and document pairs X to output
contextualized representation vectors Z. The ranker is a function
f :Z — s € R that estimates the relevance score s using the BERT
output. spos and speq indicate the relevance scores of positive pair
and negative pair, respectively. NRMs are trained by minimizing
the hinge loss of triplet data:
eSpos

J(W)=E(1- ) (1)

To use the knowledge learned from pre-training tasks, we initialize
BERT with the pre-trained weights and randomly initialize the
ranker. During the training, we perform gradient updates on the
trainable parameters for reducing the loss above. When performing
a full fine-tuning, we update the entire set of BERT and ranker
weights at the same time.

eSpos 4 gSneg

3.2 Lightweight Fine-Tuning (LFT)

Unlike the full fine-tuning that trains all of the BERT weights for a
down-stream task, a lightweight fine-tuning trains only the aug-
mented elements. While training only a small portion of parameters
(1% or less of BERT weights), some of the LFT methods have been
proven to perform well, especially for NLG (Natural Language Gen-
eration) tasks. In this section, we address prefix-tuning and LoRA
and explain how we apply these LFT methods to BERT-based NRMs.

3.2.1 Prefix-tuning. Prefix-tuning [12] trains the network to gen-
erate prefix activation vectors that are prepended to the normal ac-
tivation vectors of the transformers. Different from prompt-tuning
that prepends prompts in front of the input word embeddings,
prefix-tuning inserts prefixes to all layers including the input layer.
Where to prepend the prefix is a design choice that can affect the
performance. Li and Liang [12] prepended the prefix to the key and
value representations, but we chose to prepend the prefix to the
representations right before the self-attention projection because
we experimented with both options and found that our modified
approach provided a better performance. As shown in Figure 1(a),
prefix embedding vectors Py that are generated from the source
Pé, are prepended to the normal activations of the layers. The acti-

vation of an i*" token h; in each layer becomes Py i, ] if i € P;gy
where P;;, denotes the sequence of prefix indices and Py[i, :] is
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Figure 1: Prefix-tuning and LoRA. (a) Prefix-tuning adds prefix embeddings to each layer. Each embedding is generated from
the same source through layer-dependent MLPs. (b) LoRA affects W9 and W° among the three weights involved in the self-
attention module where W9 = {A9,B7} and W? = {A? B’} are LoRA weights for query and value, respectively. In addition to
the two weights, LoRA+ also affects w9 where W9 = {A9 B?} are LoRA weights for the dense layer.

computed as the MLP output of the source vectors Pé [i,:] in low
dimension (for simplicity, we omit layer indexes):

hi = Pgli,:] = MLPo(Py[i,:]) if i € Pigy )

We train both of the source Pé and the parameters of MLPy during
the prefix-tuning. We set the length of the prefix as 10 and the source
dimension as 768. MLPy consists of two linear layers between which
a ReLU layer exists. The first linear layer down-projects the source
vector corresponding to each index Pé [i,:] into the space of 256
dimensions and the second linear layer up-projects the vectors back
into the space of 768 dimensions. The inference overhead induced
by the prefix is less than 0.5%.

When applying prefix-tuning on Siamese NRMs, we prepend the
same prefixes to both models of query and document:

hqi = hq; = Poli,:] (3

For semi-Siamese NRMs, hg ; and hg ; are not constrained to be the
same.

3.22 LoRA. LoRA stands for Low-Rank Adaptation [6], and it is
an LFT method that freezes the pre-trained weights Wy and trains
only the rank decomposition matrix part of AW = BA. As shown in
Figure 1(b), the representation h is computed as h = (Wp + AW)x =

(Wo + BA)x where x is the previous layer’s representation vector.

Wy € Rk B ¢ R’ and A € R™¥ are the weight matrices,
and r < min(d, k). Because r is much smaller than d and k, the
number of learnable parameters is significantly reduced from d X k
to r(d+k) for each projection process. Because LoRA is applied only
to query and value matrices, the number of learnable parameters
is decreased even further. Besides, we can sum up the additional
LoRA weights to the original weights upon the completion of the
training, and therefore the inference overhead can be forced to be
Zero.

3.23 LoRA+. NRM is a complicated task, and it can be desirable
to increase the number of trainable parameters. After investigating
several options, we have designed LoRA+ that is the same as LoRA
except for additionally applying rank decomposition matrix to the
dense layer w4 Dense layer here refers to the layer following the
self-attention layer in transformers. LoRA+ allows the model an
additional room for fine-tuning.

3.24 Sequential hybrid. We additionally propose a new LFT method
that combines prefix-tuning and LoRA. We devised our method

based on the hypothesis that prefix-tuning and LoRA can comple-
ment each other. Note that they are involved in different parts of

BERT. Prefix-tuning inserts task-specific information to the model

by prepending activation vectors. On the other hand, LoRA fine-
tunes the model by modifying projection weights through residual

connections. There are many possibilities for combining the two,

but we have chosen to sequentially combine them such that their

learning dynamics are not mixed. After fine-tuning with one of

the two LFT modules for m epochs, we freeze the module. Then,

we train the other LFT module for n epochs. For robust04 and

ClueWeb09b, we used m = 30 and n = 10. For MS-MARCO, we used

m = 10 and n = 3. Depending on which of prefix-tuning and LoRA

is first fine-tuned, we end up with two different sequential hybrid

LFTs. We present the Prefix-tuning — LoRA in Algorithm 1, and

LoRA — Prefix-tuning is the same except for the order.

Algorithm 1 Sequential Hybrid: Prefix-tuning — LoRA

1. Train the prefix-tuning parameters for m epochs and save the
prefixes for the epoch with the best validation performance.

2. Freeze the prefixes with the saved prefixes.

3. Train the LoRA parameters for n epochs and save the LoRA
weights for the epoch with the best validation performance.

4. Freeze the LoRA weights with the saved LoRA weights.

3.3 Semi-Siamese Neural Ranking Model
We propose three types of semi-Siamese LFT for bi-encoder NRMs.
3.3.1 SS prefix-tuning. To allow bi-encoder models to effectively
process query-specific and document-specific information, we de-
vised semi-Siamese prefix-tuning. As shown in Figure 2(a), we
generate SS prefixes by summing up common prefixes with query-
specific or document-specific prefixes:
hqi =Poli,:] + Pg,[i,:] if i € Pigx (4)
ha; = Pgli,:] + Py, [i,:] if i € Pigy (5
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Figure 2: The architectures of semi-Siamese prefix-tuning and semi-Siamese LoRA. (a) SS prefix-tuning utilizes both common
prefixes and query/document specific prefixes. (b) SS LoRA utilizes a common query weight W7 and query/document specific

value weights W and W7.

where Py[i, :] means the common prefix, Py, [4,:] is the prefix for
query, and Py, [i,:] is the prefix for document. With this method,
prefixes of query and document share the information through
common prefixes while keeping their own characteristics in specific
prefixes. P/, the source input for MLP, is shared for 6, Gq, and 0.
We explored a few options for SS prefix-tuning. They are discussed
in Appendix A, and the best performing option is presented here.

3.3.2 S5 LoRA. We also devised semi-Siamese LoRA as illustrated
in Figure 2(b). Because there are two types of LoRA weights, one
for query and the other for value, we chose to use common LoRA
weights for query projection and to use heterogeneous LoRA weights
for value projection. In other words, we train W72, W;, and W9
where W7 and W7 are self attention’s value projection matrix for
query and document respectively, and W4 is the query projection
matrix for both query and document 3. We also explored a few
options for SS LoRA. They are discussed in Appendix B, and the
best performing option is presented here.

3.3.3  SS sequential hybrid. The sequential hybrid can be modified
for learning semi-Siamese networks. Because we have two individ-
ual LFTs in the sequential hybrid method, we have three options for
applying semi-Siamese: apply semi-Siamese to prefix-tuning only,
LoRA only, or both. We have lightly investigated all three options
without any tuning and have found that they achieved comparable
performances. In our experiment section, we show the results for
applying SS to LoRA only. Therefore, evaluation results for SS LoRA
— Prefix-tuning and Prefix-tuning — SS LoRA are provided.

4 EXPERIMENT

4.1 Experimental Setup

4.1.1 Datasets and metrics. We conduct our experiments on Ro-
bust04 [21], WebTrack 2009 (ClueWeb09b) [2], and MS-MARCO [18]
datasets as in [17]. Following Huston and Croft [7], we divide each
of Robust04 and ClueWeb09b into five folds and use three folds
for training, one for validation, and the remaining one for test. For

3¢ in the superscript represents the projection matrix type of self-attention. On the
other hand, g in the subscript represents the type of input to NRMs.

MS-MARCO, we used the pre-assigned datasets for training, valida-
tion, and test. We use document collections from TREC discs 4 and
5% of Robust04 and from ClueWeb09b® of WebTrack 2009. We also
use MS-MARCO document collections.® For evaluation metrics, we
used P@20, nDCG@5, and nDCG@20.

4.1.2  Baseline models. We implement three BERT-based NRMs,
monoBERT [19], ColBERT [8], and TwinBERT [16]. monoBERT is a
cross-encoder model, and the other two are bi-encoder models. We
consider the full fine-tuning performance of these models as the
baseline performance. We compare LFT and full FT by inspecting
the improvements of LFT over full FT.

4.1.3 Training and optimization. When fine-tuning BERT-based
models on down-stream tasks, the convention of training only three
epochs was shown to be insufficient [23]. We set the maximum
epoch as 30 for Robust04 and ClueWeb09b and as 10 for MS-MARCO.
We select the checkpoint whose validation score is highest among
the checkpoints of all epochs. For all experiments, we used an
Adam [9] optimizer. For each method, we used appropriately se-
lected hyper-parameters. For fine-tuning, we set the learning rate
(Ir) for the ranker as 1e-4 and Ir for BERT as 2e-5. For prefix-tuning,
we used Ir of 1e-4 for prefix parameters and ranker weights. For
LoRA, we used Ir of 1e-4 for both LoRA weights and ranker weights.
The detailed setting of hyper-parameters are showed in Table 8 in
Appendix C. We repeated each experiment three times with three
different random seeds. The results in the tables are calculated
by averaging the test scores of all folds of the three experiments.
For statistical analysis, we performed one-tailed t-test under the as-
sumption of homoscedasticity. We compared the three performance
values of each LFT method with the three performance values of
the corresponding full fine-tuning.

4.1.4 Implementation. Our experiments are implemented with
Python 3 and PyTorch 1. We use a popular transformer library” for

4520K documents, 7.5K triplet data samples, https://trec.nist.gov/data-disks.html
550M web pages, 4.5K triplet data samples, https://lemurproject.org/clueweb09/
022G documents, 372K triplet data samples, https://microsoft.github.io/msmarco/TREC-
Deep-Learning-2019

https://github.com/huggingface/transformers
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Table 3: Evaluation results of lightweight fine-tuning: Cross-encoder. Note: *p < 0.05, **p < 0.01 (1-tailed).

Model Fine-tuning # of trainable Robust04 ClueWeb09b MS-MARCO

method parameters P@20 NDCG@5 NDCG@20 | P@20 NDCG@5 NDCG@20 | P@20 NDCG@5 NDCG@20

Full FT 110M 0.3966 0.5310 0.4646 0.3059 0.3101 0.2938 0.5725 0.6536 0.5785

Prompt-tuning 8K 0.3548 0.4733 0.4161 0.2917 0.2715 0.2715 0.5155 0.5075 0.4937

Prefix-tuning 0.1M 0.3936 0.5195 0.4602 0.3074 0.3040 0.2914 0.5531 0.5979 0.5435

monoBERT LoRA 0.6M 0.3938 0.5296 0.4616 0.3150* 0.3256" 0.3054"* 0.5756 0.6656 0.5835

(cross) LoRA+ 0.9M 0.4012 0.5355 0.4691 0.3175* 0.3154 0.3029* 0.5826" 0.6662 0.5887*

Prefix-tuning — LoRA 0.7M 0.3980 0.5241 0.4636 0.3046 0.3043 0.2911 0.5570 0.6055 0.5478

LoRA — Prefix-tuning 0.7M 0.3960 0.5286 0.4628 0.3163* 0.3265* 0.3070** 0.5748 0.6545 0.5809

Improvement (%) - 1.16% 0.85% 0.97% 3.79% 5.29% 4.49% 1.76% 1.93% 1.76%

the pre-trained BERT model. We used 10 RTX3090 GPUs each of
which has 25.6G memory.

4.2 LFT Results for Cross-encoder

Table 3 shows the evaluation results for monoBERT. Here, we com-
pare the performances of full fine-tuning and lightweight fine-
tuning. We also show the number of fine-tuning parameters of
each fine-tuning method. Prompt-tuning trains the least amount of
parameters of 8K, and LoRA+ trains the largest amount of 0.9M. All
LFT methods train less than 1M of parameters and thus less than
1% of the BERT’s 110M weight parameters.

4.2.1  Prompt-tuning and Prefix-tuning. Prompt-tuning simply ap-
pends the prefix to the input by training only 8K parameters, and the
performance is inferior to the baseline of full fine-tuning by about
10%. Lester et al. [11] showed that prompt-tuning could achieve a
comparable performance to full fine-tuning on SuperGLUE tasks,
but we can observe that training only prompts is not sufficient for
NRMs. As for the prefix-tuning, it degrades the performance of full
fine-tuning by about 3% for MS-MARCO but it achieves comparable
performance for the other two datasets. From the results, we can
observe that prefix-tuning achieves comparable performance to full
fine-tuning for Robust04 and ClueWeb09b that have short queries,
but not for MS-MARCO.

4.2.2 LoRA and LoRA+. For cross-encoder, LoORA and LoRA+ per-
form significantly better than full fine-tuning for all three datasets
with up to a 5% of improvement. In particular, LoRA+ achieves the
best performance for 7 out of 9 evaluation cases. We can explain this
result with two reasons. First, because LoORA methods freeze the
pre-trained BERT and train only a small amount of the augmented
weights, they act as a regularizer with a better generalization. Sec-
ond, we can infer that the number of trainable parameters is not
large enough for LoRA. As we can see in the Table 3, the perfor-
mance tends to increase as the number of parameters increases.
LoRA has more trainable parameters than prefix-tuning and LoRA+
has 1.5 times more trainable parameters than LoRA.

4.2.3 Hybrid LFT. Prefix-tuning and LoRA can be used together
because they train parameters in representation dimension and
weight dimension, respectively. We combined the two LFT methods
by adopting a sequential augmentation of BERT. Overall, hybrid
LFT methods show better performance than prefix-tuning, but do
not outperform LoRA+.

4.3 LFT Results for Bi-encoders

Table 4 shows the evaluation results of LFT for bi-encoders, Twin-
BERT and ColBERT. The effectiveness of LFT methods exhibits a
quite different pattern compared to the case of cross-encoder, and
the results and their explanations are provided below.

4.3.1 Prompt-tuning and Prefix-tuning. As in the cross-encoder,
prompt-tuning shows degenerate results compared to the full fine-
tuning baseline. The only exception is the case of TwinBERT on
ClueWeb09b, but perhaps it is due to the poor baseline performance.
Therefore, we confirm that prompt-tuning is not adequate for the
document ranking tasks and we exclude it from the Semi-Siamese
experiments in the next section.

In contrast to the cross-encoder results, prefix-tuning achieves
significant improvements over the full fine-tuning for the datasets of
Robust04 and ClueWeb09b that have short queries. It also achieves
a comparable performance to full fine-tuning for MS-MARCO. We
first focus on the results of Robust04 and ClueWeb09b that consist
of short and keyword-based queries. Prefix-tuning shows the best
performance for most of the cases with improvements over full
fine-tuning by large margins of up to 76.65%. Prefix-tuning also
outperforms LoRA and LoRA+. We attribute this behavior to the
way of bi-encoder’s encoding and the characteristics of the datasets.
As shown in Table 1, queries in Robust04 and ClueWeb09b are rela-
tively short and keyword-based. Since bi-encoder models encode
query and document separately, the model needs to extract the con-
textual information from either a query or a document. For query,
however, it can be very short and thus BERT can fail to extract any
meaningful contextual information. In this case, prefix-tuning has
the advantage of adding task-specific and meaningful contextual
information into the representation embeddings. For the dataset of
MS-MARCO, however, queries are relatively long and the benefit
of prefix-tuning becomes smaller. We discuss this result further in
Section 5.

4.3.2 LoRA and LoRA+. Unlike in the case of cross-encoder, LoORA
and LoRA+ do not dominantly outperform the other methods. LoRA
and LoRA+ show a varying performance according to the charac-
teristics of dataset. In the result of the cross-encoder, LoORA+ shows
the best performance for Robust04 and ClueWeb09b. For bi-encoder,
however, the performance of LoRA and LoRA+ is relatively inferior
when compared to prefix-tuning. For MS-MARCO that has long
queries, LoRA or LoRA+ can perform better than full fine-tuning
and prefix-tuning. Interestingly, LoORA+ performs better than LoRA
for cross-encoder, but LoRA performs better than LoRA+ for bi-
encoders. LORA+ uses 50% more weight than LoRA for learning,
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Table 4: Evaluation results of lightweight fine-tuning: Bi-encoders. Note: *p < 0.05, **p < 0.01 (1-tailed).

Model Fine-tuning # of trainable Robust04 ClueWeb09b MS-MARCO
method parameters P@20 NDCG@5 NDCG@20 P@20 NDCG@5 NDCG@20 | P@20 NDCG@5 NDCG@20

Full FT 110M 0.3059 0.3711 0.3468 0.1846 0.1169 0.1471 0.5217 0.5807 0.5141

Prompt-tuning 8K 0.2562 0.2666 0.2756 0.1900 0.1248 0.1558 0.4419 0.3659 0.3797

Prefix-tuning 0.1IM 0.3117 0.3647 0.3496 0.2437** 0.2065** 0.2168** 0.5132 0.5630 0.5014

TwinBERT LoRA 0.6M 0.3090 0.3639 0.3484 0.1851 0.1224 0.1530 0.5326 0.5458 0.5154
(bi) LoRA+ 0.9M 0.3056 0.3656 0.3451 0.2028* 0.1740™* 0.1814** 0.5318 0.5730 0.5207
Prefix-tuning — LoRA 0.7M 0.3107 0.3667 0.3484 0.2447%  0.2155* 0.2192** 0.5221 0.5485 0.5048

LoRA — Prefix-tuning 0.7M 0.3102 0.3685 0.3508 0.1964 0.1402** 0.1647* 0.5334 0.5515 0.5184
Improvement (%) - 1.90% - 1.15% 32.56% 84.35% 49.01% 2.24% - 1.28%

Full FT 110M 0.3335 0.3990 0.3760 0.2659 0.2507 0.2541 0.5566 0.6121 0.5484

Prompt-tuning 8K 0.3077 0.3446 0.3404 0.2440 0.1965 0.2177 0.5275 0.4942 0.4965

Prefix-tuning 0.1IM 0.3429* 0.4084 0.3865** 0.2695 0.2571 0.2544 0.5577 0.6221 0.5556

ColBERT LoRA 0.6M 0.3386 0.4021 0.3818 0.2644 0.2373 0.2498 0.5601 0.6360* 0.5566
(bi) LoRA+ 0.9M 0.3385 0.3997 0.3804 0.2606 0.2453 0.2481 0.5574 0.6292* 0.5543
Prefix-tuning — LoRA 0.7M 0.3411 0.4103 0.3855* 0.2675 0.2511 0.2512 0.5605 0.6200 0.5580
LoRA — Prefix-tuning 0.7M 0.3360 0.4025 0.3803 0.2639 0.2436 0.2525 0.5620 0.6331 0.5595*
Improvement (%) - 2.82% 2.83% 2.79% 1.35% 2.55% 0.12% 0.97% 3.90% 2.02%

Table 5: Evaluation results of semi-Siamese (SS) lightweight fine-tuning (LFT) for Bi-encoders - semi-Siamese provides positive
improvements for most of the evaluation cases of Robust04 and ClueWeb09b datasets whose queries are short. The gain is very

large for ClueWeb09b whose queries are the shortest among the three datasets. Note: *p < 0.05, **p < 0.01 (1-tailed).

Model Fine-tuning # of trainable Robust04 ClueWeb09b MS-MARCO

method parameters P@20 NDCG@5 NDCG@20 P@20 NDCG@5 NDCG@20 | P@20 NDCG@5 NDCG@20

Full FT 110M 0.3059 0.3711 0.3468 0.1846 0.1169 0.1471 0.5217 0.5807 0.5141

LFT (best) < 0.9M 0.3117 0.3685 0.3508 0.2447%* 0.2155** 0.2192** 0.5334 0.5730 0.5207

TwinBERT SS Prefix-tuning 0.1IM 0.3109 0.3678 0.3492 0.2223*" 0.1721%* 0.1942%* 0.5155 0.5229 0.4918

(bi) SS LoRA 0.9M 0.3117 0.3713 0.3511 0.1926 0.1341* 0.1603 0.5240 0.5778 0.5129

Prefix-tuning — SS LoRA 1M 0.3104 0.3637 0.3473 0.2464™  0.2170™ 0.2197** 0.5140 0.5419 0.4983

SS LoRA — Prefix-tuning 1M 0.3146 0.3809 0.3575" 0.2012* 0.1465™* 0.1689* 0.5252 0.5685 0.5142

Improvement (%) 2.84% 2.64% 3.09% 33.48% 85.63% 49.35% 2.24% - 1.28%

Full FT 110M 0.3335 0.3990 0.3760 0.2659 0.2507 0.2541 0.5566 0.6121 0.5484

LFT (best) < 0.9M 0.3429* 0.4103 0.3865"" 0.2695 0.2571 0.2544 0.5620 0.6360" 0.5595*

ColBERT SS Prefix-tuning 0.1M 0.3442" 0.4113 0.3883"" 0.2950% 0.2914* 0.2835™ 0.5554 0.6125 0.5526

(bi) SS LoRA 0.9M 0.3406* 0.4042 0.3823 0.2615 0.2470 0.2500 0.5647 0.6289 0.5587

Prefix-tuning — SS LoRA 1M 0.3417 0.4083 0.3850" 0.2679 0.2512 0.2514 0.5593 0.6251 0.5596

SS LoRA — Prefix-tuning 1M 0.3420 0.4094 0.3845 0.2642 0.2474 0.2520 0.5577 0.6173 0.5545

Improvement (%) 3.21% 3.08% 3.27% 10.94% 16.23% 11.57% 1.46% 3.90% 2.04%

indicating that this difference worked positively for cross-encoder
and negatively for bi-encoders. Since cross-encoder models do self-
attention between query and document, learning is likely to be more
complex than in the bi-encoder models that do not use self-attention
between query and document. Therefore, it can be assumed that
it is advantageous to use more parameters for the cross-encoder
models.

4.3.3 Hybrid LFT. Since prefix-tuning shows outstanding perfor-
mance, and LoRA also performs better than full fine-tuning, the
combination of two LFT methods might lead to an additional per-
formance improvement. In Table 4, we included the performance
of hybrid LFT methods. The results show the possibility of hybrid
methods to improve the performance of single LFT methods.

4.4 Semi-Siamese LFT Results for Bi-encoders

LFT methods easily outperform full fine-tuning on document rank-
ing. We further improve LFT methods by applying semi-Siamese
networks. SS LFT can handle query and document slightly differ-
ently to reflect their distinct characteristics while maintaining the

original BERT without any modification to enable consistent encod-
ing over query and document. Table 5 shows that SS LFT methods
can improve the best performing LFT or full fine-tuning in most
cases.

4.4.1 SS Prefix-tuning. SS prefix-tuning performs significantly bet-
ter than the other methods when adopted for ColBERT on Robust04
and ClueWeb09b, improving LFT’s best performance from 3.08% to
16.23%. Also in other cases, SS prefix-tuning shows the possibility of
improving prefix-tuning. We can say that semi-Siamese networks
help bi-encoder models effectively process information in query
and document.

4.4.2 SS LoRA. As shown in the table 5, SS LoRA outperforms
LoRA in most cases, indicating that semi-Siamese networks allow
LoRA for bi-encoder models to better estimate relevance scores. We
infer that using different LoRA weights for the query and document
representations induces a performance improvement by giving
query and document more capacity to focus on query-specific or
document-specific information.
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Figure 3: For ClueWeb09b, the P@20 performance ratio
between ambiguous queries and non-ambiguous queries
is shown. Semi-Siamese was not applied. For bi-encoders,
prefix-tuning clearly shows relatively better performance
for ambiguous queries.

4.4.3 SS Hybrid LFT. We have shown that SS LoRA and SS Prefix-
tuning can improve the document ranking performance. We have
also shown that prefix-tuning and LoRA can complement each
other, increasing the performance when used together. Therefore,
we combined prefix-tuning and SS LoRA by sequentially training
parameters of each method. From the Table 5, we can see that our
hybrid methods perform best in many cases bringing up to 85.63%
of improvement over full fine-tuning. SS could have been applied to
prefix-tuning as well, but we have found that SS LoRA is sufficient
for hybrid LFT.

5 DISCUSSION

5.1 Cross-encoder vs. Bi-encoder

For the cross-encoder results shown in Table 3, clearly LoRA based
models outperform prefix-tuning based models. In fact, LoRA+ is
the dominant LFT method that achieves the best performance for 7
out of 9 evaluations. For the bi-encoder results shown in Table 4 and
Table 5, however, we can observe that prefix-tuning based models
clearly outperform LoRA based models at least for Robust04 and
ClueWeb09b. In fact, SS prefix-tuning is the best performing model
for 6 out of 6 cases for ColBERT in Table 5.

We provide a possible explanation for the phenomenon. First, we
can consider the cross-encoder case. For cross-encoder, query and
document are used together as a single input to the BERT. Because
the pair is used together, the direct relationship or contextual infor-
mation between the query and the document can be evaluated by
the language model. In this case, the value of prepending with task-
specific prefixes can become insignificant, and probably it suffices
to fine-tune the weight-related parameters such as LoRA weights.
Second, we can consider the bi-encoder case. For Robust04 and
ClueWeb09b, queries are short. Therefore, bi-encoder might not be
able to create effective contextual representations for the query part.
Note that no document is visible to BERT when processing a query.
Then, it can be more important to provide task-specific information
by processing the entire training dataset, such that at least task in-
formation can be used for creating contextual query representation
that is effective. This can be achieved with the prefixes.

As a further analysis, we have analyzed ClueWeb09b dataset.
We divided one-word queries of ClueWeb09b, that has the shortest
queries, into ambiguous queries and non-ambiguous queries using
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Figure 4: Comparison of prefix-tuning, LoRA, pefix-tuning
& LoRA (concurrent learning), and prefix-tuning — LoRA
(sequential learning). It can be seen that concurrent learning
can cause a performance degradation when there is a large
performance gap between the two individual methods.

pywsd library®. We only included one-word queries because a high-
confidence ambiguity classification is possible for one-word queries.
The results are shown in Figure 3. We can see that prefix-tuning
is effective for improving the performance of ambiguous queries
while full FT and LoRA are not effective.

5.2 Hybrid: Concurrent Learning vs. Sequential
Learning

When combining two LFT methods to create a hybrid method, we
have chosen to sequentially train the two LFT modules. The other
option is to concurrently train the two LFT modules. The reason
for choosing the sequential training can be explained with Figure 4.
In the example, prefix-tuning performs well and LoRA does not
perform well. If we choose concurrent learning, we end up with a
performance that is worse that prefix-tuning only. This indicates
that concurrent learning can hinder a proper learning of individ-
ual LFTs, especially when the performance gap between the two
individual methods is large. To avoid this problem, we have chosen
to train them in a sequential way. By considering the two possible
orders of sequential training, we are likely to preserve the larger
gain of the two individual gains. We didn’t necessarily obtain im-
proved performance for all the cases by adopting sequential hybrid
learning, but quite often we were able to obtain improvements over
the individual approaches in the case of bi-encoders.

6 CONCLUSION

We have shown the effectiveness of adopting lightweight fine-
tuning methods such as prefix-tuning and LoRA to replace the full
fine-tuning of the existing bi-encoder NRMs. We have also shown
how semi-Siamese networks can be used to achieve a significant
performance improvement when the queries are very short. Our
semi-Siamese architecture is also efficient in terms of storage and
memory requirements thanks to the use of lightweight fine-tuning
for creating two slightly different networks.
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A VARIANTS OF SS PREFIX-TUNING

We experimented with three SS Prefix-tuning methods and com-
pared them with Siamese Prefix-tuning. As the first method, we
generated prefixes by summing up common prefixes with query-
specific or document-specific prefixes as in the Equations 4 and 5.
This method is SS Prefix-tuning in Table 5. As the second method,
we generated k common prefixes for query and document and con-
catenate them with query-specific or document-specific prefixes
as below equations where 64 and 0, indicate parameters for query
and document respectively, 0 is the parameter common to both
query and document, and k stands for the number of query-specific
and document-specific prefixes.

qu [i,:] if i <k and i € Pig,

g . (6)
Poli,:] if i > k and i € P;gy

qi =

Py li,:]ifi<kandie€P;
hd,i _ GdF ] f . idx @)
Pgli,:] if i > k and i € P;y,
As the third method, we generated prefixes that did not share in-
formation between query and document as in Equations 8 and 9.
In this case, prefixes for query and document are generated using

different weight parameters while sharing the source vectors.
hq,i = qu [i,:] if i € Pigy (8)
hai = Po,[i.:] if i € Pigx ©)
In Table 6, we compare the performance of prefix-tuning variants.
From this result, we confirm that the semi-Siamese methods per-

form generally well when the information is appropriately shared
between query and document.

B VARIANTS OF SS LORA

Because LoRA trains the LoRA weights for query and value, W9
and W2, we devised three SS LoRA methods. As the first method,
we used heterogeneous LoRA query weights for both query and
document while using the same LoRA value weights for query
and document. In other words, we trained qu , W;, and WY. This
method is written as SS LoRA (hetero query) in Table 7. As the sec-
ond method, we tried a different method where trained common
LoRA query weights for query and document while training het-
erogeneous LoRA value weights for query and document. Here, we
trained W9, W; ,and W; This method is written as SS LoRA (hetero
value) in Table 7. As the third method, we trained different LoRA
weights for query and document, letting wi W;, W(;’ ,and Waz.’ be
trained. From the results in Table 7, we can observe that SS LoRA
variants generally perform well. We infer that sharing information
between query and document through LoRA weights is important
for a better performance. When comparing SS LoRA variants, the
method that shares LoRA query weights performs slightly better.
We can infer that learning query-specific or document-specific
value weights are more important in estimating relevance rather
than using different query weights.

C HYPER-PARAMETER SETTING

We have lightly tuned the hyper-parameters of each method, and
the values are shown in Table 8. Additional explanations on LoRA
alpha and LoRA dropout can be found in [6].
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Table 6: Variants of SS prefix-tuning. We compare performances of prefix-tuning and three SS prefix-tuning methods. Among
SS prefix-tuning methods, the method that shares information between query and document by averaging common prefixes
is our suggested method and it is used for obtaining the results in Table 5.

Model Prefix sharing Robust04 Clueweb09b MS-MARCO
(query-document) | P@20 NDCG@5 NDCG@20 | P@20 NDCG@5 NDCG@20 | P@20 NDCG@5 NDCG@20

All 0.3117 0.3647 0.3496 0.2437 0.2065 0.2168 0.5132 0.5630 0.5014

TwinBERT Average” 0.3109 0.3678 0.3492 0.2223 0.1721 0.1942 0.5155 0.5229 0.4918
(bi) Concatenation 0.3101 0.3685 0.3505 0.2105 0.1638 0.1836 0.5174 0.5347 0.4970
None 0.3085 0.3597 0.3453 0.2036 0.1554 0.1746 0.5015 0.4955 0.4716

All 0.3429 0.4084 0.3865 0.2695 0.2571 0.2544 0.5577 0.6221 0.5556

ColBERT Average” 0.3442 0.3472 0.3459 0.2950 0.2914 0.2835 0.5554 0.6125 0.5526
(bi) Concatenation 0.3373 0.4071 0.3813 0.2807 0.2755 0.2694 0.5605 0.6221 0.5588
None 0.3384 0.4057 0.3823 0.2774 0.2682 0.2663 0.5546 0.5920 0.5392

Table 7: Variants of SS LoORA. We compare performances of LoRA and three SS LoRA methods. Among the SS LoRA methods,
the method that shares LoRA weights for the value projection with the asteroid mark is our suggested method and used for
obtaining the results in Table 5.

Model LoRA weight sharing Robust04 Clueweb09b MS-MARCO

(query-document) P@20 NDCG@5 NDCG@20 | P@20 NDCG@5 NDCG@20 | P@20 NDCG@5 NDCG@20

All 0.3090 0.3639 0.3484 0.1851 0.1224 0.1530 0.5326 0.5458 0.5154

TwinBERT  Value (hetero query) | 0.3099 0.3666 0.3496 0.1882 0.1286 0.1543 0.5294 0.5816 0.5241

(bi) Query (hetero value)* | 0.3117 0.3713 0.3511 0.1926 0.1341 0.1603 0.5240 0.5778 0.5129

None 0.3116 0.3790 0.3535 0.1870 0.1309 0.1553 0.5310 0.5630 0.5127

All 0.3386 0.4021 0.3818 0.2644 0.2373 0.2498 0.5601 0.6360 0.5566

ColBERT Value (hetero query) | 0.3398 0.4071 0.3840 0.2611 0.2319 0.2455 0.5655 0.6263 0.5602

(bi) Query (hetero value)* | 0.3406 0.4042 0.3823 0.2615 0.2470 0.2500 0.5647 0.6289 0.5587

None 0.3404 0.3947 0.3791 0.2595 0.2347 0.2435 0.5566 0.5998 0.5461

Table 8: Hyper-parameter settings of each dataset and fine-tuning methods.

Method Hyper-parameter MS-MARCO Robust04 Clueweb09b
Optimizer Adam
Common Ranker Ir 0.0001
HP Max epoch 10 30 30
Batch size 16
Weight decay 0
Full Fine-tuning BERT Ir 0.00001
Prefix length 10
Prefix- Source dimension 256
tuning Prefix Ir 0.0001
Common prefix length 5
(SS Prefix-tuning (concat))
LoRA rank 16
LoRA LoRA alpha 32
LoRA dropout 0.1

LoRA Ir 0.0001
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