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ABSTRACT

Graph neural networks (GNNs) have achieved state-of-the-art per-
formance in various graph-based tasks. However, as mainstream
GNNs are designed based on the neural message passing mecha-
nism, they do not scale well to data size and message passing steps.
Although there has been an emerging interest in the design of scal-
able GNNs, current researches focus on specific GNN design, rather
than the general design space, limiting the discovery of potential
scalable GNN models. This paper proposes PaSca, a new paradigm
and system that offers a principled approach to systemically con-
struct and explore the design space for scalable GNNs, rather than
studying individual designs. Through deconstructing the message
passing mechanism, PaSca presents a novel Scalable Graph Neural
Architecture Paradigm (SGAP), together with a general architecture
design space consisting of 150k different designs. Following the par-
adigm, we implement an auto-search engine that can automatically
search well-performing and scalable GNN architectures to balance
the trade-off between multiple criteria (e.g., accuracy and efficiency)
via multi-objective optimization. Empirical studies on ten bench-
mark datasets demonstrate that the representative instances (i.e.,
PaSca-V1, V2, and V3) discovered by our system achieve consistent
performance among competitive baselines. Concretely, PaSca-V3
outperforms the state-of-the-art GNN method JK-Net by 0.4% in
terms of predictive accuracy on our large industry dataset while
achieving up to 28.3× training speedups.
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1 INTRODUCTION

Graph neural networks (GNNs) [56] have become the state-of-the-
art methods in many graph representation learning scenarios such
as node classification [8, 31, 32, 61], link prediction [3, 14, 47, 54],
recommendation [17, 34, 53, 58], and knowledge graphs [1, 48, 49,
51]. Most GNN pipelines can be described in terms of the neural
message passing (NMP) framework [15], which is based on the
core idea of recursive neighborhood aggregation and transforma-
tion. Specifically, during each iteration, the representation of each
node is updated (with neural networks) based on messages received
from its neighbors. Since they typically need to perform a recur-
sive neighborhood expansion to gather neural messages repeatedly,
this process leads to an expensive neighborhood expansion, which
grows exponentially with layers. The exponential growth of neigh-
borhood size corresponds to an exponential IO overhead, which is
the major challenge of large-scale GNN computation.

To scale up GNNs to web-scale graphs, recent work focuses
on designing training frameworks with sampling approaches (e.g.,
DistDGL [66], NextDoor [19], SeaStar [55], FlexGraph [46], Do-
rylus [43], GNNAdvisor [50], etc.). Although distributed training
is applied in these frameworks, they still suffer from high com-
munication costs due to the recursive neighborhood aggregation
during the training process. To demonstrate this issue, we utilize
distributed training functions provided by DGL [2] to execute the
train pipeline of GraphSAGE [15]. We partition the Reddit dataset
across multiple machines and treat each GPU as a worker, and
then calculate the speedup relative to the runtime of two workers.
Figure 1 illustrates the training speedup along with the number
of workers and the bottleneck in distributed settings. In particu-
lar, Figure 1(a) shows that the scalability of GraphSAGE is limited
even when the mini-batch training and graph sampling method are
adopted. Figure 1(b) further shows that the scalability is mainly bot-
tlenecked by the aggregation procedure in which high data loading
cost is incorporated to gather neighborhood information.

Different from the recently developed GNN systems [43, 50], we
address the scalability challenges from an orthogonal perspective:
re-designing the GNN pipeline to make the computing naturally
scalable. To ensure scalability, we consider a different GNN training
pipeline frommost existingwork: treating data aggregation over the
graph as pre/post-processing stages that are separate from training.
While there has been an emerging interest in specific architectural
designs with decoupled pipeline [12, 52, 63, 68], current researches
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Figure 1: The speedup and bottleneck of a two-layer Graph-

SAGE along with the increased workers on Reddit dataset.

only focus on specific GNN instances, rather than the general design
space, which limits the discovery of potential scalable GNN variants.
In addition, new architecture search systems are required to perform
extensive exploration over the design space for scalable GNNs,
which is also a major motivation to our work.

To the best of our knowledge, we propose the first paradigm
and system – PaSca to explore the designs of scalable GNN, which
makes the following contributions:
Scalable Paradigm. We introduce the Scalable Graph Neural Ar-
chitecture Paradigm (SGAP) with three operation abstractions: (1)
graph_aggregator captures the structural information via graph
aggregation operations, (2) message_aggregator combines differ-
ent levels of structural information, and (3) message_updater gen-
erates the prediction based on the multi-scale features. Compared
with the recently published scalable GNN systems, the SGAP inter-
faces in PaSca are motivated and implemented differently: (1) The
APIs of GNN systems are used to express existing GNNs, whereas
we propose a novel GNN pipeline abstraction to define the general
design space for scalable GNN architectures. (2) The existing system
contains two stages — sampling and training, where sampling is
not a decoupled pre-processing stage and needs to be performed
for each training iteration. By contrast, the SGAP paradigm con-
siders propagation as pre/post-processing and does not require the
expensive neighborhood expansion during training.
Design Space. Based on the proposed SGAP paradigm, we further
propose a general design space consisting of 6 design dimensions,
resulting in 150k possible designs of scalable GNN. We find that re-
cently emerging scalable GNN models, such as SGC [52], SIGN [12],
S2GC [68] and GBP [6] are special instances in our design space.
Instead of simply generalizing existing specific GNN designs, we
propose a design space with adaptive aggregation and a comple-
mentary post-processing stage beyond what is typically considered
in the literature. The extension is motivated by the observation
that previous GNNs (e.g., GCN [20] and SGC) suffer from model
scalability issue, as shown in Figure 2. Here we usemodel scalability
to describe its capability to cope with the large-scale neighborhood
with increased aggregation step 𝑘 . We find the underlying reason
is that their aggregation processes are restricted to a fixed-hop
neighborhood and are insensitive to the actual demands of different
nodes, which may lead to two limitations preventing them from un-
leashing their full potential: (1) long-range dependencies cannot be
fully leveraged due to limited hops/layers, and (2) local information
are lost due to the introduction of irrelevant nodes and unnecessary
messages when the number of hops increases (i.e., over-smoothing
issue [23, 33, 62]). Through extending design space with adaptive
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Figure 2: Test accuracy of different models along with the

increased aggregation steps on PubMed dataset.

aggregators, we could discover new GNNs to achieve both model
scalability and training scalability.
Auto-search Engines. We design and implement a search system
that automates the search procedure for well-performing scalable
GNN architectures to explore the proposed design space instead of
the manual design. Our search system contains the following two
engines: (1) Suggestion engine that implements a multi-objective
search algorithm, which aims to find Pareto-optimal GNN instances
given multiple criteria (e.g., predictive performance, inference time,
resource consumption), allowing for a designer to select the best
Pareto-optimal solution based on specific requirements; (2) Eval-
uation engine that evaluates the GNN instances from the search
engine in a distributed manner. Due to the repetitive expansion in
the training stage of GNNs, it is hard for existing GNN systems
to scale to increasing workers. Based on the SGAP paradigm, the
evaluation engine in PaSca involves the expensive neighborhood
expansion only once in the pre/post-processing stages, and thus
ensuring the scalability upon the number of training workers. To
support the new pipeline, we implement two components: (1) the
distributed graph data aggregator to pre/post-process data over
graph structure, and (2) the distributed trainer where workers only
need to exchange neural parameters.

Based on our auto-search system PaSca, we discover new scal-
able GNN instances from the proposed design space for different
accuracy-efficiency requirements. Extensive experiments on ten
graph datasets demonstrate the superior training scalability/effi-
ciency and performance of searched representatives given by PaSca
among competitive baselines. Concretely, the representatives (i.e.,
PaSca-V2 and PaSca-V3) outperform the state-of-the-art JK-Net by
0.2% and 0.4% in predictive accuracy on our industry dataset, while
achieving up to 56.6× and 28.3× training speedups, respectively.
Relevance to Web. GNNs have recently been applied to a broad
spectrum of web research such as social influence prediction [37,
38], network role discovery [10, 39], recommendation system [17,
54, 58], and fraud/spam detection [22, 30]. However, scalability is
a major challenge that precludes GNN-based methods in practical
web-scale graphs. Moreover, manually designing the well-behaved
GNNs for web tasks requires immense human expertise. To bridge
this gap, we highlight the relevance of the proposed PaSca platform
to GNN-based web research. First, PaSca provides easier support
for experts in solving their web problems via scalable GNN par-
adigm. Domain experts only need to provide properly formatted
datasets, and PaSca can automatically search suitable and scal-
able GNN designs to the web-scale graphs. So PaSca permits a
transition from particular GNN instances to GNN design space,
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which offers exciting opportunities for scalable GNN architecture
innovation. Second, PaSca provides the dis-aggregated execution
pipeline for efficiently training and evaluating searched GNN mod-
els, without resorting to any approximation technique (e.g., graph
sampling). Given these advancements in scalability and automatic-
ity, our PaSca system enables practical and scalable GNN-based
implementation for web-scale tasks, and thus significantly reducing
the barrier when applying GNN models in web research.

2 PRELIMINARY

GNN Pipelines. Considering a graph G = (V, E) with nodesV ,
edges E and features for all nodes x𝑣 ∈ R𝑑 ,∀𝑣 ∈ V , Most GNNs
can be formulated using the neural message passing framework,
like GCN [20], GraphSAGE [15], GAT [44], and GraphSAINT [60],
where each layer adopts one aggregation and an update function.
At time step 𝑡 , a message vector m𝑡𝑣 is computed with the represen-
tations of its neighbors N𝑣 using an aggregate function, and m𝑡𝑣 is
then updated by a neural-network based update function:

m𝑡𝑣 ← aggregate
({
h𝑡−1𝑢 |𝑢 ∈ N𝑣

})
, h𝑡𝑣 ← update(m𝑡𝑣) . (1)

In this way, messages are passed for 𝐾 time steps in a 𝐾-layer GNN
so that the steps of message passing correspond to the GNN depth.
Taking the vanilla GCN [20] as an example, we have:

GCN-aggregate
({
h𝑡−1𝑢 |𝑢 ∈ N𝑣

})
=

∑︁
𝑢∈N𝑣

h𝑡−1𝑢 /
√︃
𝑑𝑣𝑑𝑢 ,

GCN-update(m𝑡𝑣) = 𝜎 (𝑊m𝑡𝑣),

where𝑑𝑣 is the degree of node 𝑣 obtained from the adjacency matrix
with self-connections 𝐴̃ = 𝐼 +𝐴. Recently, some GNN variants adopt
the decoupled neural message passing (DNMP) for better graph
learning. More details can be found in Appendix A.2.
Scalable GNN Instances. Following SGC [52], a recent direc-
tion for scalable GNN is to remove the non-linearity between each
layer in the forward aggregation, and models in this direction have
achieved state-of-the-art performance in leaderboards of Open
Graph Benchmark [18]. Concretely, SIGN [12] proposes to con-
catenate different iterations of aggregated feature messages, while
S2GC [68] proposes a simple spectral graph convolution to average
them. In addition, GBP [6] applies constants to weight aggregated
feature messages of different layers. As current researches focus
on studying specific architectural designs, we systematically study
the architectural design space for scalable GNNs.
Graph Neural Architecture Search. As a popular direction of
AutoML [16, 24, 26], neural architecture search [11, 41, 65] has been
proposed to solve the labor-intensive problem of neural architecture
design. Auto-GNN [67] and GraphNAS [13] are early approaches
that apply reinforcement learning with RNN controllers on a fixed
search space. You et al. [59] define a similarity metric and search for
the best transferable architectures across tasks via random search.
Based on DARTS [29], GNAS [4] proposes the differentiable search-
ing strategy to search for GNNs with optimal message-passing step.
DSS [27] also adopts the differentiable strategy but optimizes over a
dynamically updated search space. PaSca differs from these works
in two aspects: (1) To pursue efficiency and scalability on large
graphs, PaSca searches for scalable architectures under the novel

Algorithm 1 Scalable graph neural architecture paradigm.
Input: Graph G = (V, E), maximum aggregation steps for pre-

processing and post-processing 𝐾𝑝𝑟𝑒 , 𝐾𝑝𝑜𝑠𝑡 , feature x𝑣 .
Output: Prediction message m𝐾𝑝𝑜𝑠𝑡

𝑣 , ∀𝑣 ∈ V .
1: Initialize message setM𝑣 = {x𝑣}, ∀𝑣 ∈ V;
2: // Stage 1: Pre-processing
3: Initialize feature message m0

𝑣 = x𝑣 , ∀𝑣 ∈ V;
4: for 1 ≤ 𝑡 ≤ 𝐾𝑝𝑟𝑒 do
5: for 𝑣 ∈ V do

6: m𝑡𝑣 ← graph_aggregator(m𝑡−1N𝑣
);

7: M𝑣 =M𝑣 ∪ {m𝑡𝑣};
8: end for

9: end for

10: // Stage 2: Model-training

11: for 𝑣 ∈ V do

12: c𝑣 ←message_aggregator(M𝑣);
13: h𝑣 ←message_updater(c𝑣);
14: end for

15: // Stage 3: Post-processing
16: Initialize feature message m0

𝑣 = h𝑣 , ∀𝑣 ∈ V;
17: for 1 ≤ 𝑡 ≤ 𝐾𝑝𝑜𝑠𝑡 do
18: for 𝑣 ∈ V do

19: m𝑡𝑣 ← graph_aggregator(m𝑡−1N𝑣
);

20: end for

21: end for

22: return m
𝐾𝑝𝑜𝑠𝑡

𝑣 , ∀𝑣 ∈ V;

SGAP paradigm instead of classic architectures under the message
passing framework; (2) Rather than optimizing the predictive per-
formance alone, PaSca tackles the accuracy-efficiency trade-off
through multi-objective optimization, and provides architectures
to meet different needs of performance and inference time.

3 PASCA ABSTRACTION

To address data and model scalability issues mentioned in Section 1,
we propose a novel abstraction under which more scalable GNNs
can be derived. Then we define the general design space for scalable
GNNs based on the proposed abstraction.

3.1 SGAP Paradigm

Our PaSca system introduces a Scalable Graph Neural Architec-
ture Paradigm (SGAP) for designing scalable GNNs. As shown in
Algorithm 1, it consists of the following three decoupled stages:
Pre-processing. For each node 𝑣 , we range the step 𝑡 from 1 to
𝐾𝑝𝑟𝑒 , where𝐾𝑝𝑟𝑒 is the maximum feature aggregation step. At each
step 𝑡 , we use an operator, namely graph_aggregator, to aggregate
the message vector collected from the neighbors N𝑣 :

m𝑡𝑣 ← graph_aggregator
({
m𝑡−1𝑢 |𝑢 ∈ N𝑣

})
, (2)

wherem0
𝑣 = x𝑣 . The messages are passed for𝐾𝑝𝑟𝑒 steps in total dur-

ing pre-processing, and m𝑡𝑣 at step 𝑡 can gather the neighborhood
information from nodes that are 𝑡-hop away (lines 4-9).
Model-training. The multi-hop messagesM𝑣 = {m𝑡𝑣 | 0 ≤ 𝑡 ≤
𝐾𝑝𝑟𝑒 } are then aggregated into a single combined message vector
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c𝑣 for each node 𝑣 (line 12) as:

c𝑣 ← message_aggregator(M𝑣). (3)

Note that, if the message_aggregator is not applied, the com-
bined message vector c𝑣 is set to the message of the last stepm𝐾𝑝𝑟𝑒

𝑣 .
We then use the message_updater to learn the class distribution

of all nodes, i.e., the soft predictions (softmax outputs) predicted
by the updater (line 13). Specifically, PaSca applies the Multi-layer
Perceptron (MLP) as the updater, and we denote the depth of MLP
as the transformation step 𝐾𝑡𝑟𝑎𝑛𝑠 . It learns node embedding h𝑣
from the combined message vector c𝑣 :

h𝑣 ← message_updater(c𝑣). (4)

Post-processing. Motivated by Label Propagation [45] which ag-
gregates the node labels, we regard the soft predictions as new
features (line 16). Then, we use the graph_aggregator again at
each step to aggregate the adjacent node predictions and make the
final prediction (lines 17-21) as:

m𝑡𝑣 ← graph_aggregator
({
m𝑡−1𝑢 |𝑢 ∈ N𝑣

})
, (5)

where m0
𝑣 = h𝑣 is the original node prediction.

We introduce SGAP to address both training and model scal-
ability challenges. Specifically, it differs from the previous NMP
and DNMP framework in terms of message type, message scale,
and pipeline: (1) To perform the aggregate function for the next
step, existing GNNs in NMP and DNMP update the hidden state h𝑡𝑣
by applying the message vector m𝑡𝑣 with neural networks. By con-
trast, SGAP allows passing node feature messages without applying
graph_aggregator on the hidden states. As a result, this message
passing procedure is independent of learnable model parameters
and can be easily pre-computed, thus leading to high scalability
and speedups. (2) Most GNNs in NMP and DNMP only utilizes
the last message vector m𝐾𝑝𝑟𝑒

𝑣 to compute the final hidden state
h
𝐾𝑝𝑟𝑒

𝑣 . SGAP assumes that the optimal neighborhood expansion
size should be different for each node 𝑣 , and thus we retain all the
messages {m𝑡𝑣 |𝑡 ∈ [1, 𝐾𝑝𝑟𝑒 ]} that a node 𝑣 receives over different
steps (i.e., localities). The multi-scale messages are then aggregated
per node into a single vector via message_aggregator, such that
we could balance the preservation of information from both local
and extended (multi-hop) neighborhoods for each node. (3) Besides
feature aggregation, we propose a complementary post-processing
stage to aggregate predictions (soft labels), which is not typically
considered in the existing literature.

3.2 Design Space under SGAP

Following the SGAP paradigm, we propose a general design space
for scalable GNNs, as shown in Table 1. The design space contains
three integer and three categorical parameters, which are respon-
sible for the choice of aggregators and the steps of aggregation
and transformation. Each configuration sampled from the search
space represents a unique scalable architecture, resulting in 150k
possible designs in total. One can also include more aggregators in
the current space with future state-of-the-arts. In the following, we
first introduce the aggregators used in our design space, and then
explore interesting GNN instances in our defined space.

3.2.1 Graph Aggregators. To capture the information of nodes
that are several hops away, PaSca adopts a graph_aggregator to
combine the nodes with their neighbors during each time step. In-
tuitively, it is unsuitable to use a fixed graph_aggregator for each
task since the choice of graph aggregators depends on the graph
structure and features. Thus PaSca provides three different graph
aggregators to cope with different scenarios, and one could add
more aggregators following the semantic of graph_aggregator.
Augmented normalized adjacency (Aug. NA) [20]. It applies
the randomwalk normalization on the augmented adjacency matrix
𝐴̃ = 𝐼 +𝐴, which is simple yet effective on a range of GNNs. The
normalized graph_aggregator is:

m𝑡
𝑣 =

∑︁
𝑢∈N𝑣

1
𝑑𝑢

m𝑡−1
𝑢 . (6)

Personalized PageRank (PPR). It focuses on its local neighbor-
hood using a restart probability 𝛼 ∈ (0, 1] and performs well on
graphs with noisy connectivity. While the calculation of the fully
personalized PageRank matrix is computationally expensive, we
apply its approximate computation [21]:

m𝑡
𝑣 = 𝛼m0

𝑣 + (1 − 𝛼)
∑︁
𝑢∈N𝑣

1√︃
𝑑𝑣𝑑𝑢

m𝑡−1
𝑢 , (7)

where the restart probability 𝛼 allows to balance preserving locality
(i.e., staying close to the root node to avoid over-smoothing) and
leveraging the information from a large neighborhood.
Triangle-induced adjacency (Triangle. IA) [35]. It accounts for
the higher-order structures and helps distinguish strong and weak
ties on complex graphs like social graphs. We assign each edge a
weight representing the number of different triangles it belongs to,
which forms a weight matrix 𝐴𝑡𝑟𝑖 . We denote 𝑑𝑡𝑟𝑖𝑣 as the degree of
node 𝑣 from the weighted adjacency matrix 𝐴𝑡𝑟𝑖 . The aggregator is
then calculated by applying a row-wise normalization:

m𝑡
𝑣 =

∑︁
𝑢∈N𝑣

1
𝑑𝑡𝑟𝑖𝑣

m𝑡−1
𝑢 . (8)

3.2.2 Message Aggregators. Before updating the hidden state of
each node, PaSca proposes to apply a message_aggregator to
combine messages obtained by graph_aggregator per node into a
single vector, such that the subsequent model learns from the multi-
scale neighborhood of a given node. We summarize the different
message aggregators PaSca as follows,
Non-adpative aggregator. This type of aggregator does not con-
sider the correlation between messages and the center node. The
messages are directly concatenated or summed up with weights to
obtain the combined message vector as,

𝑐𝑚𝑠𝑔 ← ⊕m𝑖
𝑣∈𝑀𝑣

𝑤𝑖 𝑓 (m𝑖
𝑣), (9)

where 𝑓 is a function used to reduce the dimension of message
vectors, and ⊕ can be concatenating or pooling operators including
average pooling or max pooling. Note that, for aggregator type
“Mean”, “Max” and “Concatenate”, each weight 𝑤𝑖 is set to 1 for
each message. For aggregator type “Weighted”, we set the weight
to constants following GBP [6]. Compared with pooling operators,
though the concatenating operator keeps all the input message
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Table 1: The search space for scalable GNNs in our PaSca system.

Stages Name Range/Choices Type

Pre-processing Aggregation steps (𝐾𝑝𝑟𝑒 ) [0, 10] Integer
Graph aggregators (𝐺𝐴𝑝𝑟𝑒 ) {Aug.NA, PPR(𝛼 = 0.1), PPR(𝛼 = 0.2), PPR(𝛼 = 0.3), Triangle. IA} Categorical

Model training Message aggregators (𝑀𝐴) {None, Mean, Max, Concatenate, Weighted, Adaptive} Categorical
Transformation steps (𝐾𝑡𝑟𝑎𝑛𝑠 ) [1, 10] Integer

Post-processing Aggregation steps (𝐾𝑝𝑜𝑠𝑡 ) [0, 10] Integer
Graph aggregators (𝐺𝐴𝑝𝑜𝑠𝑡 ) {Aug.NA, PPR(𝛼 = 0.1), PPR(𝛼 = 0.2), PPR(𝛼 = 0.3), Triangle. IA} Categorical
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Figure 3: The influence of aggregation steps on 20 randomly

sampled nodes on Citeseer dataset.

information, the dimension of its outputs increases as 𝐾𝑝𝑟𝑒 grows,
leading to additional computational cost in the downstream updater.
Adpative aggregators. The messages of different hops make dif-
ferent contributions to the final performance. As shown in Figure
3, we apply GCN with different layers to conduct node classifica-
tion on Citeseer. Note that the X-axis is the node id and Y-axis is
the aggregation steps (number of layers in GCN). The color from
white to blue represents the ratio of being predicted correctly in 50
different runs. We observe that most nodes are well classified with
two steps, and as a result, most carefully designed GNN models are
set with two layers (i.e., steps). In addition, the predictive accuracy
on 13 of the 20 sampled nodes increases with a certain step larger
than two. This motivates the design of node-adaptive aggregation
functions, which determines the importance of a node’s message at
different ranges rather than fixing the same weights for all nodes.

To this end, we propose the gating aggregator, which gener-
ates retainment scores that indicate how much the corresponding
messages should be retained in the final combined message.

cmsg ←
∑︁

m𝑖
𝑣∈𝑀𝑣

𝑤𝑖m𝑖
𝑣, 𝑤𝑖 = 𝜎 (sm𝑖

𝑣), (10)

where s is a trainable vector to generate gating scores, and 𝜎 is
the sigmoid function. With the adaptive message_aggregator, the
model can balance the messages from the multi-scale neighbor-
hoods for each node at the expense of training extra parameters.

3.3 SGAP Instances

Recent scalable GNNmodels, such as SGC [52], SIGN [12], S2GC [68]
and GBP [6], can be considered as specific instances in our defined
design space, as shown in Table 2. We see that most current scalable
GNNs ignore the post-processing stages, which can boost the model
performance demonstrated by our experiments.

Besides, various scalable GNNs can be obtained by using different
design choices under SGAP. For example, the current state-of-the-
art scalable model GBP sets the graph_aggregator as Aug.NA
and uses the weighted strategy in the message_aggregator. We
decouple MLP training and information propagation in APPNP [21]
into two individual processes and get a new scalable model PaSca-
APPNP. To effectively explore the large design space, we implement

Table 2: Current scalable GNNs in our design space.

Models

Pre-processing Model training Post-processing

𝐺𝐴𝑝𝑟𝑒 𝑀𝐴 𝐾𝑡𝑟𝑎𝑛𝑠 𝐺𝐴𝑝𝑜𝑠𝑡

SGC Aug.NA None 1 /
SIGN Optional Concatenate 1 /
S2GC PPR Mean 1 /
GBP Aug.NA Weighted ≥ 2 /

PaSca-APPNP / / ≥ 2 PPR

an auto-search system engine below to automate the search procedure
of scalable GNN architecture instead of manual design.

4 PASCA ENGINES

Figure 4 shows the overview of our proposed auto-search system
to explore GNN designs under PaSca abstraction. It consists of two
engines: the search engine and the evaluation engine. The search
engine includes the proposed designed search space for scalable
GNNs and implements a suggestion server that is responsible for
suggesting architectures to evaluate. The evaluation engine re-
ceives an instance and trains the corresponding architecture in
a distributed fashion. An iteration of the searching process is as
follows: 1) The suggestion server samples an architecture instance
based on its built-in optimization algorithm and sends it to the eval-
uation engine; 2) The evaluation engine evaluates the architecture
and updates the suggestion server with its observed performance.

4.1 Search Engine

While prior researches on scalable GNNs [6, 12] focus on optimizing
the classification error, recent applications not only require high pre-
dictive performance but also low resource-consumption, e.g. model
size or inference time. In addition, there is typically an implicit
trade-off between predictive performance and resource consump-
tion. To this end, the suggestion server implements amulti-objective
search algorithm to tackle this trade-off.

Concretely, we use the Bayesian optimization based on EHVI [9],
a widely-used algorithm that maximizes the predicted improve-
ment of hypervolume indicator of Pareto-optimal points relative
to a given reference point. The suggestion server then optimizes
over the search space following a typical Bayesian optimization
as 1) Based on the observation history, the server trains multiple
surrogates, namely the Gaussian Process, to model the relationships
between each architecture instance and its objective values; 2) The
server randomly samples a number of new instances, and suggests
the best one which maximizes the EHVI based on the predicted
outputs of trained surrogates; 3) The server receives the results of
the suggested instance and updates its observation history.
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Figure 4: The workflow of PaSca, which consists of the searching and evaluation engine.

4.2 Evaluation Engine

Different from the sampling-training process of existing GNN sys-
tems (e.g., DistDGL [66], NextDoor [19], and FlexGraph [46]), the
process of PaSca evaluation engine is decoupled into pre-processing,
training and post-processing as illustrated in Figure 4: PaSca first
pre-computes the feature messages for each node over the graph,
and then it combines the messages and trains the model parameters
with parameter sever. Finally, PaSca post-computes the prediction
messages for each node over the graph. All the messages are parti-
tioned and stored in a distributed storage system, and the stages
can be implemented in a distributed fashion. Specifically, the engine
consists of the following two components:
GraphDataAggregator. This component handles pre-processing
and post-processing stages on data aggregation over graph struc-
ture. The two stages share the same pipeline but take different
messages as inputs (features for pre-processing and predictions
for post-processing). We implement an efficient batch processing
pipeline over distributed graph storage: The nodes are partitioned
into batches, and the computation of each batch is implemented by
workers in parallel with matrix multiplication. As shown in Figure 4,
for each node in a batch, we firstly pull all the 𝑖-th step messages
of its 1-hop neighbors from the message distributed storage and
then compute the (𝑖 + 1)-th step messages of the batch in parallel.
Next, We push these aggregated messages back for reuse in the
calculation of the (𝑖 + 2)-th step messages. In our implementation,
we treat GPUs as workers for fast processing, and the graph data
are partitioned and stored on host memory across machines. Given
the parallel message computation, our implementation could scale
to large graphs and significantly reduce the runtime.
Neural Architecture Trainer. This component handles the train-
ing of neural networks. We optimize the parameters of each archi-
tecture with distributed SGD. The model parameters are stored on
a parameter server, and multiple workers (GPUs) process the data
in parallel. We adopt asynchronous training to avoid the communi-
cation overhead between workers. Each worker fetches the most
up-to-date parameters and computes the gradients for a mini-batch
of data, independent of the other workers.

5 EXPERIMENTS

5.1 Experimental Settings

Datasets. We conduct the experiments on three citation networks
(Citeseer, Cora, and PubMed) in [20], two social networks (Flickr

Table 3: Scalable GNNs found by PaSca.

Models

Pre-processing Model training Post-processing

𝐺𝐴𝑝𝑟𝑒 𝑀𝐴 𝐾𝑝𝑟𝑒 𝐾𝑡𝑟𝑎𝑛𝑠 𝐺𝐴𝑝𝑜𝑠𝑡 𝐾𝑝𝑜𝑠𝑡

PaSca-V1 PPR(𝛼 = 0.1) Weighted 3 2 / /
PaSca-V2 Aug.NA Adaptive 6 2 / /
PaSca-V3 Aug.NA Adaptive 6 3 PPR (𝛼 = 0.3) 4

and Reddit) in [60], four co-authorship graphs (Amazon and Coau-
thor) in [36], the co-purchasing network (ogbn-products) in [18] and
one short-form video recommendation graph (Industry) from our
industrial cooperative enterprise. Table 6 in Appendix A.1 provides
the overview of the used graph datasets.
Parameters and Environment. To eliminate random factors, we
run each method 20 times and report the mean and variance of the
performance. More details for experimental setups and reproduc-
tion are provided in Appendix A.4 and A.5.
Baselines. In the transductive settings, we compare the searched
scalable GNNs with GCN [20], GAT [44], JK-Net [57], Res-GCN [20],
APPNP [21], AP-GCN [42], SGC [52], SIGN [12], S2GC [68] and
GBP [6], which are SOTA models of different message passing
types. In the inductive settings, the compared baselines are Graph-
SAGE [15], FastGCN [5], ClusterGCN [7] and GraphSAINT [60].
More descriptions about the baselines are provided in Appendix A.3.

In the following, we first analyze the superiority of representative
instances searched by PaSca. Then we evaluate the transferability,
training efficiency, and model scalability of PaSca representatives
compared with competitive state-of-the-art baselines.

5.2 Searched Representatives

We apply the multi-objective optimization targeting at classification
error and inference time on Cora. Figure 6 demonstrates the Pareto
Front found by PaSca with a budget of 2000 evaluations, together
with the results of several manually designed scalable GNNs. The
inference time has been normalized based on instances with the
minimum and maximum inference time in our design space. Inter-
estingly, we observe that GBP and PaSca-APPNP, our extended vari-
ant of APPNP (see Table 2), falls on the Pareto Front, which indicates
the superior design of the “Weighted” message_aggregator and
“PPR” graph_aggregator. We also choose other three instances
from the Pareto Front as PaSca-V1 to V3 with different accuracy-
efficiency requirements as searched representatives of SGAP for
the following evaluations. The corresponding parameters of each
architecture are shown in Table 3. Among the three architectures,
PaSca-V1 Pareto-dominates the other baselines except GBP, and
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Figure 6: Pareto Front found on Cora.

PaSca-V3 is the architecture with the best predictive performance
found by the search engine.

5.3 Training Scalability

The main characteristic of our proposed design space is that the
architectures sampled from the space, namely PaSca-SGAP, share
high scalability upon workers. To examine the scalability of PaSca-
SGAP, we choose PaSca-APPNP as a representative and compare it
with GraphSAGE, a widely-used method in industry on two large-
scale datasets. We train GraphSAGE with DGL and PaSca-APPNP
with the evaluation engine of PaSca, respectively. We train both
methods in stand-alone and distributed scenarios and then measure
their corresponding speedups. The batch size is 8192 for Reddit and
16384 for ogbn-product, and the speedup is calculated by runtime
per epoch relative to that of one worker in the stand-alone scenario
and two workers in the distributed scenario. Without considering
extra cost, the speedup will increase linearly in an ideal condition.

The corresponding results are shown in Figure 5. Since Graph-
SAGE requires aggregating the neighborhood nodes during train-
ing, GraphSAGE trained with DGL meets the I/O bottleneck when
transmitting a large number of required neural messages. Thus, the
speedup of GraphSAGE training increases slowly as the number of
workers grows, which is less than 2× even with four workers in the
stand-alone scenario and eight workers in the distributed scenario.
Recall that the only communication cost of PaSca-SGAP is to syn-
chronize parameters among different workers, which is essential to
all distributed training methods. As a result, PaSca-SGAP trained
with the evaluation engine scales up close to the ideal circumstance
in both scenarios, indicating the superiority of PaSca.
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Figure 7: Test accuracy over training time on Industry.

5.4 Performance-Efficiency Analysis

To test the transferability and training efficiency of PaSca mod-
els, we further evaluate them on more datasets compared with
competitive baselines. The results are summarized in Table 4 and 5.

We observe that PaSca models obtain quite competitive perfor-
mance in both transductive and inductive settings. In transductive
settings, our simplified variant PaSca-V1 also achieves the best
performance among Non-SGAP baselines on most datasets, which
shows the superiority of SGAP design. In addition, PaSca-V2 and
V3 outperform the best baseline GBP by a margin of 0.1%∼0.6%
and 0.2%∼1.3% on each dataset. We attribute this improvement to
the application of the adaptive message_aggregator. In inductive
settings, Table 5 shows that PaSca-V3 outperforms the best baseline
GraphSAINT by a margin of 1.1% on Flickr and 0.1% on Reddit.

We also evaluate the training efficiency of each method in the
real production environment. Figure 7 illustrates the performance
over training time on Industry. In particular, we pre-compute the
feature messages of each scalable method, and the training time
takes into account the pre-computation time. We observe that NMP
architectures require at least a magnitude of training time than
PaSca-SGAP. Among considered baselines, PaSca-V3 achieves the
best performance with 4× training time compared with GBP and
PaSca-V1. Note that, though PaSca-V1 requires the same training
time as GBP, its inference time is less than GBP. Therefore, we
recommend choosing PaSca-V1 to V3, along with GBP, accord-
ing to different requirements of predictive performance, training
efficiency, and inference time.

5.5 Model Scalability

We observe that both PaSca-V2 and V3 found by the search engine
contain the “Adaptive” message_aggregator. In this subsection,
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Table 4: Test accuracy (%) in transductive settings. “NMP” and “DNMP” refer to architectures following NMP and DNMP para-

digm. “SGAP” refers to architectures following the scalable graph archtecture paradigm proposed in Section 3.1.

Type Models Cora Citeseer PubMed

Amazon

Computer

Amazon

Photo

Coauthor

CS

Coauthor

Physics

Industry

NMP

GCN 81.8±0.5 70.8±0.5 79.3±0.7 82.4±0.4 91.2±0.6 90.7±0.2 92.7±1.1 45.9±0.4
GAT 83.0±0.7 72.5±0.7 79.0±0.3 80.1±0.6 90.8±1.0 87.4±0.2 90.2±1.4 46.8±0.7
JK-Net 81.8±0.5 70.7±0.7 78.8±0.7 82.0±0.6 91.9±0.7 89.5±0.6 92.5±0.4 47.2±0.3
ResGCN 82.2±0.6 70.8±0.7 78.3±0.6 81.1±0.7 91.3±0.9 87.9±0.6 92.2±1.5 46.8±0.5

DNMP APPNP 83.3±0.5 71.8±0.5 80.1±0.2 81.7±0.3 91.4±0.3 92.1±0.4 92.8±0.9 46.7±0.6
AP-GCN 83.4±0.3 71.3±0.5 79.7±0.3 83.7±0.6 92.1±0.3 91.6±0.7 93.1±0.9 46.9±0.7

SGAP

SGC 81.0±0.2 71.3±0.5 78.9±0.5 82.2±0.9 91.6±0.7 90.3±0.5 91.7±1.1 45.2±0.3
SIGN 82.1±0.3 72.4±0.8 79.5±0.5 83.1±0.8 91.7±0.7 91.9±0.3 92.8±0.8 46.3±0.5
S2GC 82.7±0.3 73.0±0.2 79.9±0.3 83.1±0.7 91.6±0.6 91.6±0.6 93.1±0.8 45.9±0.4
GBP 83.9±0.7 72.9±0.5 80.6±0.4 83.5±0.8 92.1±0.8 92.3±0.4 93.3±0.7 47.1±0.6

PaSca-V1 83.4±0.5 72.2±0.5 80.5±0.4 83.7±0.7 92.1±0.7 91.9±0.3 93.2±0.6 46.3±0.4
PaSca-V2 84.4±0.3 73.1±0.3 80.7±0.7 84.1±0.7 92.4±0.7 92.6±0.4 93.6±0.8 47.4±0.6
PaSca-V3 84.6±0.6 73.4±0.5 80.8±0.6 84.8±0.7 92.7±0.8 92.8±0.5 93.8±0.9 47.6±0.3

Table 5: Test accuracy (%) in inductive settings.

Models Flickr Reddit

GraphSAGE 50.1±1.3 95.4±0.0
FastGCN 50.4±0.1 93.7±0.0

ClusterGCN 48.1±0.5 95.7±0.0
GraphSAINT 51.1±0.1 96.6±0.1
PaSca-V1 51.2±0.3 95.8±0.1
PaSca-V2 51.8±0.3 96.3±0.0
PaSca-V3 52.1±0.2 96.7±0.1

we aim to explain the advantage of adaptive message_aggregator
in the perspective of model scalability on message passing steps.
We plot the changes of model performance along with the message
passing steps in the left subfigure of Figure 8. For a fair compari-
son, we use PaSca-V2 which does not include post-processing. The
vanilla GCN gets the best results with two aggregation steps, but
its performance drops rapidly along with the increased steps due to
the over-smoothing issue. Both Res-GCN and SGC show better per-
formance than GCN with larger aggregation steps. Take Res-GCN
as an example, it carries information from the previous step by in-
troducing the residual connections and thus alleviates this problem.
However, these two methods cannot benefit from deep GNN archi-
tecture since they are unable to balance the needs of preserving
locality (i.e., staying close to the root node to avoid over-smoothing)
and leveraging the information from a large neighborhood. In con-
trast, PaSca-V2 achieves consistent improvement and remains non-
decreasing across steps, which indicates that PaSca can scales to
large depth. The reason is that the adaptive message_aggregator
in PaSca-V2 is able to adaptively and effectively combine multi-
scale neighborhood messages for each node.

To demonstrate this, the right subfigure of Figure 8 shows PaSca-
V2’s average gating weights of feature messages according to the
number of steps and degrees of input nodes, where the maximum
step is 6. In this experiment, we randomly select 20 nodes for each
degree range (1-4, 5-8, 9-12) and plot the relative weight based
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Figure 8: Left: Test accuracy of different models along with

the increased aggregation steps on PubMed. Right: PaSca-

V2’s average gating weights of graph messages of different

steps on 60 randomly selected nodes from PubMed.

on the maximum value. We get two observations from the heat
map: 1) The 1-step and 2-step graph messages are always of great
importance, which shows that the adaptive message_aggregator
captures the local information as those widely used 2-layer GNNs
do; 2) The weights of graph messages with larger steps drop faster
as the degree grows, which indicates that the attention-based ag-
gregator could prevent high-degree nodes from including excessive
irrelevant nodes which lead to over-smoothing. From the two ob-
servations, we conclude that the adaptive message_aggregator
can identify the different message-passing demands of nodes and
explicitly weight each graph message.

6 CONCLUSION

In this paper, we proposed PaSca, a new auto-search system that
offers a principled approach to systemically construct and explore
the design space for scalable GNNs, rather than studying individual
designs. Experiments on ten real-world benchmarks demonstrate
that the representative instances searched by PaSca outperform
SOTA GNNs in terms of performance, efficiency, and scalability.
PaSca can help researchers understand design choices when devel-
oping new scalable GNN models, and serve as a system to support
extensive exploration over the design space for scalable GNNs.
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A APPENDIX

A.1 Dataset description

Cora, Citeseer, and Pubmed
1 are three well-known citation net-

work datasets, and we follow the same training/validation/test split
as GCN [20].
Reddit is a social network modeling the community structure of
Reddit posts. This dataset is often used for inductive training, and
the training/validation/test split is coherent with that of Graph-
SAGE [15].
Flickr originates from NUS-wide 2 and contains different types of
images based on the descriptions and common properties of online
images. We use a public version of Reddit and Flickr provided by
GraphSAINT3.
Amazon Computers and Amazon Photo are segments of the
Amazon co-purchase graph [40], where nodes represent goods,
edges indicate that two goods are frequently bought together, node
features are bag-of-words encoded product reviews, and class labels
are given by the product category.
Coauthor CS and Coauthor Physics are co-authorship graph
based on the Microsoft Academic Graph from the KDD Cup 2016
challenge4. Here, nodes are authors, that are connected by an edge if
they co-authored a paper; node features represent paper keywords
for each author’s papers, and class labels indicate the most active
fields of study for each author. We use a pre-divided version of
these datasets through the Deep Graph Library (DGL)5.
ogbn-products is an unweighted graph representing an Amazon
product co-purchase network. Each node represents a product sold
on Amazon, and edges between two products indicate that the
products are purchased together. We use the public data split for
this dataset as in Open Graph Benchmark6.
Industry is a user-video graph collected from a real-world mobile
application from our industry partner. We sampled 1,000,000 users
and videos from the app, and treat these items as nodes. The edges
in the generated bipartite graph represent that the user clicks the
short videos. Each user has 64 features, and the target is to category
these short videos into 253 different classes.

A.2 Decoupled Neural Message Passing

Note that the aggregate and update operations are inherently in-
tertwined in Equation (1), i.e., each aggregate operation requires
a neural layer to update the node’s hidden state in order to gen-
erate a new message for the next step. Recently, some researches
show that such entanglement could compromise performance on a
range of benchmark tasks [12, 52, 64], and suggest separating GCN
from the aggregation scheme. We reformulate these models into
a single Decoupled Neural Message Passing (DNMP) framework:
Neural prediction messages are first generated (with update func-
tion) for each node utilizing only that node’s own features, and
then aggregated using aggregate function.

h0𝑣 ← update(x𝑣), h𝑡𝑣 ← aggregate
({
h𝑡−1𝑢 |𝑢 ∈ N𝑣

})
. (11)

1https://github.com/tkipf/gcn/tree/master/gcn/data
2http://lms.comp.nus.edu.sg/research/NUS-WIDE.html
3https://github.com/GraphSAINT/GraphSAINT
4https://kddcup2016.azurewebsites.net/
5https://docs.dgl.ai/en/0.4.x/api/python/data.html#coauthor-dataset
6https://github.com/snap-stanford/ogb

where 𝑥𝑣 is the input feature of node 𝑣 . Existing methods, such
as PPNP [21], APPNP [21], AP-GCN [42] and etc., follows this
decoupled MP. Taking APPNP as an example:
APPNP-update(xv) = 𝜎 (𝑊 x𝑣),

APPNP-aggregate
({
h𝑡−1𝑢 |𝑢 ∈ N𝑣

})
= 𝛼h0𝑣 + (1 − 𝛼)

∑︁
𝑢∈N𝑣

h𝑡−1𝑢√︃
𝑑𝑣𝑑𝑢

,

where aggregate function adopts personalized PageRank with the
restart probability 𝛼 ∈ (0, 1] controlling the locality.

A.3 More details about the compared baselines

The main characteristic of all baselines are listed as follows:
• GCN [20] produces node embedding vectors by truncating
the Chebyshev polynomial to the first-order neighborhoods.
• ResGCN [20] adopts the residual connections between hid-
den layers to facilitate the training of deeper models by en-
abling the model to carry over information from the previous
layer’s input.
• JK-Net [57] proposes a new aggregation scheme for node
representation learning that can adapt neighborhood ranges
to nodes individually.
• APPNP [21] uses the relationship between GCN and PageR-
ank to derive an improved propagation scheme based on
personalized PageRank.
• AP-GCN [42] is a variation of GCN wherein each node
selects automatically the number of propagation steps per-
formed across the graph.
• SGC [52] reduces the excess complexity of GCN through
successively removing non-linearities and collapsing weight
matrices between consecutive layers.
• SIGN [12] is a sampling-free Graph Neural Network model
that is able to easily scale to gigantic graphs while retaining
enough expressive power.
• GraphSAGE [15] is an inductive framework that leverages
node attribute information to efficiently generate represen-
tations on previously unseen data.
• GAT [28] leverages masked self-attentional layers to address
the shortcomings of prior GNNs based on graph convolutions
or their approximations, and enables specifying different
weights to different nodes in a neighborhood.
• S

2
GC [68]: S2GC uses a modified Markov Diffusion Kernel

to derive a variant of GCN, and it can be used as a trade-off
of low-pass and high-pass filter which captures the global
and local contexts of each node.
• FastGCN [5] interprets graph convolutions as integral trans-
forms of embedding functions under probability measures,
and enhances GCN with importance sampling.
• ClusterGCN [7] designs the batches based on efficient graph
clustering algorithms, and it proposes a stochastic multi-
clustering framework to improve the convergence.
• GBP [6]: GBP utilizes a localized bidirectional propagation
process to further improve SGC.
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Table 6: Overview of the Graph Datasets

Dataset #Nodes #Features #Edges #Classes #Train/Val/Test Task type Description

Cora 2,708 1,433 5,429 7 140/500/1000 Transductive citation network
Citeseer 3,327 3,703 4,732 6 120/500/1000 Transductive citation network
Pubmed 19,717 500 44,338 3 60/500/1000 Transductive citation network

Amazon Computer 13,381 767 245,778 10 200/300/12881 Transductive co-purchase graph
Amazon Photo 7,487 745 119,043 8 160/240/7,087 Transductive co-purchase graph
ogbn-products 2,449,029 100 61,859,140 47 195922/489811/204126 Transductive co-purchase network
Coauthor CS 18,333 6,805 81,894 15 300/450/17,583 Transductive co-authorship graph

Coauthor Physics 34,493 8,415 247,962 5 100/150/34,243 Transductive co-authorship graph

Flickr 89,250 500 899,756 7 44,625/22,312/22,312 Inductive image network
Reddit 232,965 602 11,606,919 41 155,310/23,297/54,358 Inductive social network

Industry 1,000,000 64 1,434,382 253 5,000/10,000/30,000 Transductive user-video graph

A.4 Experiments setup

We use PyTorch 7 and DGL to implement the models, and we train
them using Adam optimizer. To evaluate the scalability of Graph-
SAGE, we implement GraphSAGE via DistDGL. Besides, we train
each model 400 epochs and terminate the training process if the
validation accuracy does not improve for 20 consecutive steps. Note
that both GraphSAGE and JKNet have three aggregators, and we
choose the concatenation and mean as their aggregator, respec-
tively, since these two aggregators perform best in most datasets.

For GAT, the number of attention heads is fixed to 8. For Graph-
SAGE, we use the results on Flickr and Reddit as reported in [15]
and [60]. For ClusterGCN, we use the results on Reddit as reported
in [7] and run our own implementation on Flickr. The hyperpa-
rameters are selected from random search. The random search was
performed over the following search space: hidden size ∈ {8, 16, 32,

64, 128, 256, 512}, learning rate ∈ {1e-3, 5e-3, 1e-2, 5e-2, 1e-1, 2e-1},
dropout rate ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9]}, regularization
strength ∈ {1e-4, 5e-4,1e-3, 5e-3, 1e-2, 5e-2, 1e-1}. Note that both
Res-GCN and JK-Net will degrade into GCN if they have only two
layers, so we set their aggregation steps ∈ [3,20] in all datasets.

A.5 Experiment Environment and

Reproduction Instructions

The experiments are implemented on 4 machines with 14 Intel(R)
Xeon(R) CPUs (Gold 5120@ 2.20GHz) and four NVIDIATITANRTX
GPUs. The code is written in Python 3.6, and the multi-objective
algorithm is implemented based on OpenBox [25]. We use Pytorch
1.7.1 on CUDA 10.1 to train the model on GPU.
7https://github.com/pytorch
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