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ABSTRACT
Logs provide first-hand information for engineers to diagnose fail-
ures in large-scale online service systems. Log parsing, which trans-
forms semi-structured raw log messages into structured data, is a
prerequisite of automated log analysis such as log-based anomaly
detection and diagnosis. Almost all existing log parsers follow the
general idea of extracting the common part as templates and the
dynamic part as parameters. However, these log parsing methods,
often neglect the semantic meaning of log messages. Furthermore,
high diversity among various log sources also poses an obstacle
in the generalization of log parsing across different systems. In
this paper, we propose UniParser to capture the common logging
behaviours from heterogeneous log data. UniParser utilizes a Token
Encoder module and a Context Encoder module to learn the pat-
terns from the log token and its neighbouring context. A Context
Similarity module is specially designed to model the commonalities
of learned patterns. We have performed extensive experiments on
16 public log datasets and our results show that UniParser outper-
forms state-of-the-art log parsers by a large margin. 1
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1  2021-09-28 04:31:30  DEBUG  SessionID=30546173, initialized by OSAgent, version (1.0.0). 
2  2021-09-28 04:31:11  DEBUG  SessionID=3054611, initialized by perfCounter, version (1.0.0). 
3  2021-09-28 04:33:43  INFO  Starting data reading process 592 from /etc/data/, status: success. 
4  2021-09-28 04:32:29  DEBUG  SessionID=30546001, initialized by NetAgent, version (1.0.0). 
5  2021-09-28 04:33:11  INFO  Starting data reading process 1612 from /etc/data/, status: success. 
6  2021-09-28 04:34:27  INFO  Starting data reading process 660 from /etc/data/, status: success.

// Two sample logging statements from a source code snippet in Python 
Logger.debug(f“SessionID={session_id}, initialized by {agent_name}, version ({v_id}).”) 
Logger.info(f“Starting data reading process {PID} from {source_dir}, status: {data_state}.”)

// Two sample logging statements from a source code snippet in Python 

Logger.debug(“SessionID={}, initialized by {}, version ({}).”.format(session_id, agent_name, v_id)) 
Logger.info(“Starting data reading process {} from {}, status: {}.”.format(PID, source_dir, data_state))

Timestamp Level Log Template Parameters
2021-09-28 04:31:30

DEBUG SessionID=<*>, initialized by 
<*>, version (<*>).

30546173, OSAgent, 1.0.0
2021-09-28 04:31:11 3054611, perfCounter, 1.0.0
2021-09-28 04:32:29 30546001, NetAgent, 1.0.0
2021-09-28 04:33:43

INFO Starting data reading process <*> 
from <*>, status: <*>.

592, /etc/data/, success
2021-09-28 04:33:11 1612, /etc/data/, success
2021-09-28 04:34:27 660, /etc/data/, success

Log Generation

Log Parsing

Figure 1: An example of log parsing after log generation.

1 INTRODUCTION
Online services have surged into popularity in recent years and
serve millions of customers on a 24/7 basis, such as Google Search,
Bing, Facebook and Twitter. Although enormous amounts of ef-
fort have been resorted to maintain the reliability and availability
of these services, in practice, various hardware or software fail-
ures are still inevitable, leading to unplanned interruptions of the
services. Once a failure bursts, operators and developers tend to
inspect console logs that record system events and runtime status,
to investigate, mitigate and resolve the failure timely.

However, facing the rapid growth volume of raw log messages, it
is becoming more and more challenging to identify the valuable in-
formation from the enormous log data, even for those experienced
engineers [29]. To tackle this problem, automated log analysis has
emerged in recent years, aiming to automatically analyze the log
data with machine learning (ML) or deep learning (DL) techniques.
Typical log analysis scenarios consist of log-based anomaly detec-
tion [5, 24, 28], diagnosis [12, 29], failure prediction [15, 26], and
performance modeling [2]. Among them, an important and widely-
adopted first step is log parsing, which parses the semi-structured
console logs into a structured format. After log parsing, the structur-
ized log data are fed into various ML or DL models (e.g., PCA [24],
LSTM [6]) for further analysis.

As shown in Fig.1, logs are generated from various logging state-
ments in the source code during the software execution and col-
lected in an interleaving manner. A typical log contains the log
header (e.g., time, level) and the log message, which further consists
of two elements: 1) static descriptive words fixed in source code to
represent the system events, namely log template. For example, “Ses-
sionID=<*>, initialized by <*>, version (<*>).”; 2) dynamic variables,
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which reflect system runtime status that varies with different exe-
cutions, called log parameters. For instance, “30546173”, “OSAgent”,
and “1.0.0” are parameters generated from three different variables.
The goal of log parsing is to extract the static log template and the
dynamic log parameters from a raw log message.

To enable the log parsing, a straightforward way is to match
logs with the source code. However, it is not applicable in practice
since the method is ad-hoc and label-intensive when dealing with
different logging formats. Besides, the source code is often unavail-
able, especially for those third-party libraries [30]. An alternative
approach is manually designing regular expressions based on the
generated log data, but it suffers from the low scalability and low
accuracy problems [30]. To overcome these problems, some data-
driven log parsers [3, 11, 21, 23] have been proposed in recent years.
These approaches follow the same basic paradigm: tokens (e.g.,
“SessionID=”, “Starting”) that do not vary with the log messages
are templates while the opposite ones (e.g., “592”, “1612”, “660”) are
log parameters. Specifically, a variety of statistical analysis (e.g.,
prefix tree [11]) and data mining techniques (e.g., frequent pattern
mining [3] and clustering [21]) are leveraged to extract the common
parts from raw log messages.

Although making progresses, existing log parsers are still crit-
icized for the unsatisfactory parsing accuracy, which may cause
significant adverse effect on follow-up tasks such as log-based
anomaly detection [10]. We summarize two major problems that
lead to erroneous parsing results: 1) Existing log parsers only rely
on extracting common parts as templates but ignore the semantic
meaning of logs. A typical case is illustrated in Fig.1. Considering
the semantic meaning of the log message, the directory address
"/etc/data" and the return status "success" should apparently be
identified as parameters. Here, "/etc/data" is the default configured
data reading directory and "success" represents the normal system
behaviour, both of which would not be changed often in log mes-
sages. Thus, without considering the semantics, existing log parsers
tend to mistakenly treat both parameters as the template. 2) Log
contents from different services and systems possess high diversity.
It can often be found that the system events as well as the words
used in logs produced by different data sources are very different.
As an example, we found that only about 0.5% of log tokens are
shared among log sources generated by three different OS plat-
forms (Linux, Windows and Mac). Thus, it hinders the generality
of log parsing across heterogeneous log data sources. Facing new
log sources, we have to re-accumulate sufficient raw log data as
the training materials, adjust hyper-parameters to fit the new log
sources, reconfigure the regular expressions for preprocessing, or
even build a brand new log parser.

To deal with the above-mentioned problems, in this paper, we
point out an important but particular characteristic of log data, i.e,
there exist common semantic patterns to indicate templates or pa-
rameters regardless of diverse log contents. It is because developers
tend to follow the common logging practice for readability. For
instance, developers habitually nest the parameters in a bracket
(e.g., "(1.0.0)") or conventionally set the return status (e.g., "success")
as a parameter. In order to capture this kind of patterns prevailing
throughout most log data sources, we propose a unified log parser
trained across multiple log sources, named UniParser. It consists
of three modules. Token Encoder module and Context Encoder

module are responsible for learning the semantic patterns from the
log token itself and its neighbouring context. Context Similarity
module forces our model to focus more on the commonalities of the
learned patterns. After training, UniParser can be directly applied
to new log data sources.

We have evaluated UniParser on 16 public log datasets [1]. Uni-
Parser outperforms the state-of-the-art parsers by 12% on Group
Accuracy [30] and about 40% on Message-Level Accuracy. More
than that, UniParser also can parse millions of logs in only 2 ∼ 3
minutes, which is only about half the running time of the most
efficient existing parser.

To summarize, our main contributions are as follows:
• We propose UniParser, a unified log parser that can cap-
ture the common patterns of templates or parameters across
heterogeneous log sources.

• We evaluated our proposed UniParser on 16 benchmark log
datasets and the results show that UniParser performs much
better than all existing approaches. Its efficiency and module
effectiveness are also verified through the experiments.

2 BACKGROUND AND MOTIVATION
2.1 Log Parsing
Log parsing has been extensively studied in literature [11, 17, 21,
30]. In general, the ultimate goal of log parsing is to extract the
static log template part and the dynamic log parameter part from
a raw log message. Developers write their free-text logs, which
are composed of some static descriptive words (log template), and
some dynamic variables that will be filled up in the log template
during the software running period (log parameters). "2021-09-
28 04:31:30 DEBUG" is the log header, which is generally easy to
extract because its format is fixed in a specific log source. The
"SessionID=<*>, initialized by <*>, version(<*>)" is the log template
and "30546173", "OSAgent" and "1.0.0" are the log parameters filled
up into the template placeholder for forming the complete log
message.

2.2 Existing Log Parsers
2.2.1 General Idea. Almost all existing log parsers follow the core
idea as below: extracting common part of raw log messages as log
templates and remaining parts are treated as log parameters. For
example as shown in Fig.1, we can first group a series of simliar logs
together (shown in brown color) and find that there are some log
tokens appear frequently and widely throughout these logs, such
as "SessionID", "initialized", "by" in line 1, 2, 4. These log tokens
thus should be identified as the log template part. On the contrary,
other tokens varying in different log messages are regarded as log
parameters, such as "OSAgent", "NetAgent" and "PerfCounter".

2.2.2 Related Work. In this section, we introduce how existing
log parsers implement the above core idea. These parsers can be
categorized by the techniques they adopt:

Frequent Pattern Mining. Intuitively, the common part of logs
should emerge frequently in the whole log dataset. Therefore, fre-
quent pattern mining technologies were applied widely in the log
parsing task. Typical approaches include SLCT [22], LFA [19], Log-
Cluster [23] and Logram [3]. These methods firstly traverse over
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the log data and build frequent itemsets based on tokens, token-
position pairs or token n-grams. Then, given the frequent itemset,
log messages can be grouped into several clusters and log templates
can be extracted from the clusters. SLCT is the first work that ap-
plies frequent pattern mining to log parsing [30]. LFA further took
the token frequency distribution into account. LogCluster consid-
ered the token position during the process of frequent items mining.
Logram aims to extract those frequent 2-gram and 3-gram of log
tokens, instead of based on single token.

Clustering. For capturing the common part of logs, another idea
is to cluster the similar logs together and identify the common
tokens shared within each cluster as its template. Compared with
frequent pattern mining methods, this kind of approaches enables
the common part extraction process on the local cluster of sim-
ilar logs instead of the global log dataset. LKE [7], LogSig [21],
LogMine [9], SHISO [18], and LenMa [20] adopt this technology
pathway. Specifically, LKE and LogMine utilize the hierarchical
clustering algorithm to group similar logs based on weighted edit
distances. Instead of conducting clustering on raw log messages
directly, LogSig extracts the signature of logs first, on which the
clustering is performed then. SHISO and LenMa are both online
log parsing methods, which means they are capable of processing
log messages one by one in a streaming manner, which is more
practical in real-world scenarios [30]. Both log parsers use the idea
of incremental clustering technology.

Heuristics. Different from general text data, log messages have
some unique characteristics. As such, some log parsers leveraged
them to extract common parts as templates. AEL [14] separates log
messages into multiple groups by comparing the occurrences be-
tween constant tokens and variable tokens. IPLoM [17] employs an
iterative partitioning strategy, which partitions log messages into
groups by message length, token position and mapping relation.
Drain [11] borrows the idea from prefix tree. It builds a fixed-depth
tree structure to represent log messages and extracts common tem-
plates efficiently. Spell [4] utilizes the longest common subsequence
algorithm to parse logs in a stream manner.

2.3 Limitations of Existing Work
Although the existing log parsers have achieved good performance
in some public datasets, these approaches are still hardly applied in
real-world scenarios. The reason behind lies in their unsatisfying
parsing accuracy on complicated real-world log data. We point out
three major problems causing inaccurate parsing results, which
could fundamentally challenge the current log parsing paradigm.

2.3.1 Ignoring semantic meaning of log tokens. Existing log parsers
only consider the static and dynamic properties but neglect the
semantic meaning of logs. As a consequence, it often gives rise to
unreasonable misidentification of log parameters and templates. At
first glance in the example shown in Fig.1, some log tokens (such as
"success" and "/etc/data/") seem to belong to a part of log template
because they do not vary in different log messages. However, if
we take their semantic meaning into consideration, these tokens
should be classified as parameters. For example, "from" is always
followed by parameters, such as directory address "/etc/data/" in
this illustrated case. Therefore, they are likely to be misidentified

as a part of log template. To deal with this problem, most offline log
parsers (only support batch processing and all log data are required
to be available before parsing) [30] have to accumulate sufficient
large volume of log messages to guarantee the parameters parts
exhibit significant dynamic characteristics.

2.3.2 Barrier among different log sources. Log contents from dif-
ferent systems or services are characterized by their high diversity.
As a real example, we performed statistical analysis on collected
syslogs from three commonly-used OS platforms2, i.e., Windows3,
Mac and Linux.4 We found that they shared only about 0.5% of
common log tokens. For example, "session opened for user news by
(uid=0)" (from Linux log) and "Session: 30546173_4261722401 ini-
tialized by client WindowsUpdateAgent." (from Windows log) are
totally different log events and only one word "session" are shared
between the two. High diversity among various log sources poses
an obstacle in log parsers generalization across different systems
or services. Every time when we apply the existing approaches to
a new log data source, we have to re-accumulate sufficient raw log
data as the training materials, adjust hyper-parameters to adapt
to the new log sources, and reconfigure the regular expressions
for preprocessing. Especially, for online log parsers (building up a
model in advance and process log messages one by one in a stream-
ing manner [30]), we even need to develop a new log parser from
scratch.

2.3.3 Improper evaluation metrics. Log templates and parameters
identification should be treated equally without discrimination. For
example, on the one hand, most log anomaly detection models, such
as LogRobust [28], group logs by the same predicted log templates
and denote them as log events. Then they identify abnormal behav-
iors based on these log events. On the other hand, some log-based
anomaly detection models, such as DeepLog [6], pay more attention
to the variation of parameters, such as running time or return status
code. Unfortunately, most existing work deviates from the original
intention of log parsing. Especially, during the evaluation process,
the evaluation metrics measure the accuracy of grouping logs but
do not explicitly check the extracted templates and parameters. It
thus cannot reflect the actual effectiveness of their proposed log
parsers. The details will be discussed in Section 4.2.

2.4 Insights and Opportunities
The above three problems motivate us to change our mindset for log
parsing. Through the investigation of multiple sources of logs from
public log datasets as well as industrial logs, we uncovered an im-
portant characteristic of log data, i.e., even though log contents are
very diverse in different systems or services, they generally follow
certain common logging practice. Developers may print different
log contents, but they have some common logging preferences,
which can help others read the log messages easily. For the example
in Fig.1, developers like to nest a parameter in a bracket ("version
(1.0.0)") or place it after a equal sign ("SessionID=30546173"). More
than that, developers would also conventionally set the status code
("success") or directory path ("/etc/data/") as parameters, rather than

2https://github.com/logpai/loghub
3collected from Component Based Servicing (CBS) logs
4both are collected from /var/log/system.log

https://github.com/logpai/loghub
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fixing them as a part of the template. Actually, there are also many
unified and common logging specifications and practices [8, 25],
which make logs more informative.

The common logging practice sheds light on the opportunity to
capture the common logging behaviours across heterogeneous log
sources. It inspires us that we are able to distinguish the parameters
or templates through acquiring conventional logging "syntax". In
order to capture the sharing common logging behaviors across het-
erogeneous log sources, we need to develop a new log parser, which
can learn the common logging practices through understanding
the semantic meaning of logs. After that, the learned model can be
applied to parse new sources of log messages.

3 APPROACH
In this section, we first present the problem formulation in Sec. 3.1.
We propose a unified log parser based on deep learning technology,
named UniParser, to capture the common patterns across heteroge-
neous log sources indicating parameters or templates. It contains
two major phases, including the offline cross-sources training pro-
cess and online parsing process, which will be presented in Sec. 3.2.
After the overview of UniParser, we will detail the core model archi-
tecture design in Sec. 3.3. UniParser is composed of three modules,
where Token Encoder module and Context Encoder module are
utilized for acquiring the semantic patterns from the log token it-
self and its neighbouring context. Context Similarity module focus
more on the commonalities of the learned patterns through con-
trastive learning. Finally, we will describe the loss function adopted
by UniParser in Sec. 3.4.

3.1 Problem Definition
In our proposed model, we transform the log parsing task into the
log token classification problem. Specifically, suppose a raw log
message 𝐿 consists of 𝑛 tokens after word splitting, denoted as
[𝑡1, 𝑡2, ...𝑡𝑛]. Our proposed log parser is required to predict whether
each log token 𝑡𝑖 belongs to template part (𝑦𝑖 = 0) or parameter
part (𝑦𝑖 = 1) based on the learned common logging patterns. All
tokens with 𝑦𝑖 = 0 are included in log template and other tokens
with 𝑦𝑖 = 1 are put into the parameters list.

3.2 Overview
In this section, we briefly introduce the overall workflow of Uni-
Parser. As illustrated in Fig.2, there are two phases for the proposed
UniParser model, i.e., offline cross-sources training phase and on-
line parsing phase on the target log source. During the training
phase, we take labeled log data from multiple sources as a training
dataset, which is fed into the UniParser model for training. We ex-
pect our model to learn the underlying common patterns indicating
templates or parameters instead of the individual and specific log
contents. To achieve this target, we take multiple log sources as
the training set and propose a tailored deep learning model, whose
architecture and training details will be depicted in Sec. 3.3 and
Sec. 3.4.

After training across heterogeneous log sources, we can apply
our trained model directly to the target log source for parsing. It
will parallelly predict the class (template or parameter) of each log
token and then integrate them as log template or parameter list,

respectively. It is worth noting that the training log sources and the
testing log sources can be completely mutually exclusive. Owing to
the specially designed deep learning model architecture for captur-
ing the common semantic patterns, UniParser makes generalizing
the knowledge learned from other log sources to unknown new
log sources possible. It implies our proposed UniParser does not
require any labels in the target log sources to be parsed.

SessionID=30546173, initialized by OSAgent, version(1.0.0)

Mac Linux

Win Android

Event Template Parameter

SessionID=<*>, 
initialized by <*>, 

version(<*>).

30546173,  OSAgent, 1.0.0

3054611,  perfCounter, 1.0.0

30546001, NetAgent, 1.0.0

New
Source

UniParser

UniParser

Figure 2: An overview of UniParser (red text denotes the pa-
rameter part while black text denotes the template part)

3.3 Model Architecture
In this section, we will elaborate on the model architecture of Uni-
Parser. As shown in Fig. 3, UniParser consists of three components:
Token Encoder module, Context Encoder module and Context Simi-
larity module. We will delve into the technical details of all modules
in the following subsections.

3.3.1 Token Encoder module. Given a raw log message, we first
conduct word splitting with spaces, tabs, special characters (like
equal sign or comma), and so on. After that, Token Encoder module
encodes each split log token into a high-dimensional embedding
vector as the model input. However, diverse and dynamic log words
pose a barrier in embedding matrix construction at the token-level.
The endless unseen log tokens would incur the out-of-vocabulary
(OOV) problem. Developers are permitted to create an infinite va-
riety of variable names, abbreviations or special technical terms,
which are far beyond the scale of common English words and will
explode the vocabulary. In addition, some parameters composed of
digits (e.g.,"30546173") or some special symbols (e.g.," /etc/data/")
are hard to embed as well because they are constantly changing.

To deal with this problem, we alternatively utilize the char-
level embedding [27] to encode log tokens. The granularity of
the character-level is finer than that of the token-level. The most
commonly-used characters, such as lowercase letters, uppercase
letters, digits, punctuation and so on (96 characters we used in
total), are sufficient to cover the most of tokens formed by their
combinations. Instead of maintaining a vocabulary of enormous
size at the token-level, we build up an embedding layer to encode
each character. Then we sum up all char-level embedding vectors
together within in a log token as its encoding vector. In this way, we
can avoid OOV problem and also control the size of the embedding
matrix at the appropriate scale.

3.3.2 Context Encoder module. The category (template or param-
eter) of a target log token is not only related to itself but also its
neighboring tokens, i.e, context. On the one hand, parameters tend
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3 0 5 4 6 1 7 3 , i n i t i a l i z e dO S A g e n t

……

Classification Layer

Context Encoder Module

Target log

SessionID=30546112, initialized by NetAgent
Animating brightness: target=38, rate=200

4582 bytes received …

Similar logDissimilar logs

Bi-LSTM h1
h2 hn

SessionID =      30546173 ,  initialized by OSAgent

Figure 3: The model architecture of UniParser, where the Context Similarity module (left gray part) is used in the offline
training phase only. P denotes log parameter token and T denotes log template token.

to emerge conjointly with some special characters or symbols. For
the example shown in Fig.1, "30546173" is on the heels of an equal
sign "=" or "1.0.0" is embraced by a bracket ("(1.0.0)"). On the other
hand, the semantics of context is also conducive to indicating the
parameters or templates. A more complicated case is illustrated in
line 3 of Fig.1. If we are not so confident in determining the class of
log token "/etc/data/" only depending on itself, its context "from" is
conducive to classifying it as a parameter because "from" is likely to
be followed by a parameter (such as directory address) considering
its semantic meaning.

Motivated by the above idea, we utilize Context Encoder module
to encode context information. Intuitively, not every log token
within a log message should be treated as the context of the target
log token. It is because that those log tokens far from the target
one tend to be useless for classification. For example, in line 1
of Fig.1, the top token "SessionID" has little relevance to the tail
token "(1.0.0)". Taking that into account, we regard the range from
left 𝑘 to right 𝑘 tokens around the target token as its context. In
general, 𝑘 = 3. We reuse Token Encoder module to transform each
context token into an embedding vector and obtain a sequence of
context vectors. It is noted that the target token is masked during
this process. The purpose of this operation is that Context Encoder
module is expected to independently capture the patterns reflected
by context tokens without the aid of the target log token itself.
Otherwise, ourmodel might be biased to the target log token heavily
and could not learn the patterns from the context. The sequence of
context vectors is fed into a bidirectional LSTM network to capture
the order information. The hidden states ℎ𝑖 at all time steps of
LSTM are aggregated as the final encoding vector of the context.

3.3.3 Context Similarity module. Ideally, the embedding vectors
produced by Context Encoder module should be close if their cor-
responding log contexts contain similar patterns. Nevertheless, the
common patterns tend to be manifested with diverse log contents.
Char-level embedding is content-aware and would lead to disper-
sive encoding vectors since the characters in context might be
various. For the instance in Fig.1, when we target to predict the
class of token "initialized", its context "by OSAgent" in line 1 and
"by perfCounter" in line 2 are very different. Their encoding vectors

may also vary a lot, which is not conducive to making our model
capture common patterns in logs.

To overcome this problem, we are required tomap the log context
under the similar patterns to a tighter vector space, mitigating the
effect of the content diversity. We assume that similar log messages
are supposed to possess the similar patterns. Thus, we can guide
Context Encoder module through the contrast learning between
the similar or dissimilar log messages.

To obtain similar log messages, we first cluster the training log
data from heterogeneous log sources into several groups. The log
messages in each group are identical in token length, as well as on
the first token. Log messages in the same group are considered to
be similar to each other, while those in different groups are not.
After clustering we utilize contrastive learning [13] to assist the
training of Context Encoder module. For each log message, we
randomly select one similar log messages and |𝑉𝑑 | dissimilar ones.
The distance between two encoding vectors from similar contexts
should be closer. While for the dissimilar ones, their distances
should be far apart. This module is optimized towards the above
target by constrastive loss [13], which will be introduced in Sec.
3.4. One interesting point to notice is that the Context Similarity
module only serves as an auxiliarymodule during the training phase
and will be disabled when parsing logs online. Therefore, Context
Similarity module only brings extra time cost during training, while
does not slow down the speed of inference.

3.4 Loss Function
The loss function of our model consists of two parts: token-level
classification loss and context-level contrastive loss.

Token-level classification loss. Collecting the encoding vectors
generated from Token Encoder module and Context Encoder mod-
ule, we concatenate both of them and add the classification layer
on top of it to make predictions. The token-level classification loss
can be formulated as:

𝐿𝑜𝑠𝑠𝑐𝑙𝑠 = − 1
𝑁
(
𝑁∑︁
𝑖=1

[𝑦𝑖 · log(𝑦𝑖 ) + (1 − 𝑦𝑖 ) · (1 − 𝑙𝑜𝑔(𝑦𝑖 ))]) (1)
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As mentioned in Sec. 3.1, 𝑦𝑖 refers to the label of the target token,
and 𝑦𝑖 is the predicted probability of the token being a parameter.
𝑁 denotes the total number of tokens.

Context-level contrastive loss. The contrastive loss can be formu-
lated as:

𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = −𝑙𝑜𝑔 𝑒𝑥𝑝 (𝑣 · 𝑣𝑠 )∑
𝑣𝑑 ∈𝑉𝑑 𝑒𝑥𝑝 (𝑣 · 𝑣𝑑 )

(2)

where 𝑣 represents encoding vector for target log context produced
by the Context Encoder module, 𝑣𝑠 denotes the similar log vector
and 𝑣𝑑 denotes log vector from the dissimilar set 𝑉𝑑 , respectively.
For each 𝑣 , we randomly select one similar log messages and |𝑉𝑑 |
dissimilar log messages (|𝑉𝑑 | = 3 by default). Thanks to the context-
level contrastive loss function, UniParser is forced to compress the
context encoding vectors from simliar logs much closer than those
of dissimilar log messages.

The total loss is the weighted sum of the two losses, which can
be formulated as:

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑐𝑙𝑠 + _ · 𝐿𝑜𝑠𝑠𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (3)

where _ is set to 0.01 as default for balancing the magnitude of both
loss functions.

4 EXPERIMENT
In order to evaluate the effectiveness and efficiency of UniParser, we
conduct extensive experiments. In this section, we first describe the
experiment settings. Then, we introduce two evaluation metrics,
including group accuracy proposed in [30], and another metric
proposed in this paper that is better aligned with the real goal of log
parsing. The experiment results of parsing accuracy are presented
in Sec.4.3, followed by performance comparison and the component
evaluation results.

4.1 Experimental Settings
4.1.1 Datasets. We conduct experiments based on datasets col-
lected from LogPai benchmark [1], which consists of various logs
from 16 different systems spanning distributed systems, supercom-
puters, operating systems, mobile systems, server applications, and
standalone software. Each log message is labeled with a log tem-
plate as ground truth. In our method, we need to split log messages
into tokens and separately predict classes of them. Therefore, we
transformed the message-level labels into token-level labels. Due
to some labeling errors in the original version, we also calibrated
some labels during the transformation process.

4.1.2 Implementation Details. We conduct experiments on a GPU
Server equipped with NVIDIA Tesla P100 GPU and CUDA 10.2.
The code is implemented based on PyTorch 1.4. During the training
process, we utilize Adam optimizer and set the initial learning rate
as 0.002. We set the batch size as 256 and train the model for 4
epochs. During the online parsing phase, we set batch size to 512.
In Context Encoder module, we set 𝑘 = 3. In Context Similarity
module, we set |𝑉𝑑 | = 3.

4.2 Evaluation Metrics
Group Accuracy: Group Accuracy is proposed in [30] and has
been widely used for evaluating log parsers. Group Accuracy mea-
sures the alignment degree between a set of log messages grouped
by identified templates (generated by log parsers) and the corre-
sponding set of log messages belonging to the same true log tem-
plate. However, Group Accuracy prefers properly grouping logs
under the same templates together, while the log templates and
parameters may not be correctly identified. For example, the log
messages in Fig.1 are grouped completely correctly by existing
log parsers, which indicates the group accuracy is 100%. However,
"/etc/data/" and "success" are misidentified as a part of the template
due to their invariance in logs. Therefore, Group Accuracy can
not directly reflect whether messages are correctly parsed by log
parsers .

Generated Log Templates

SessionID=<*>, initialized by <*>, version (<*>).

Ground Truth Log Template

SessionID=30546173, initialized by OSAgent, version (1.0.0).

SessionID=3054611, initialized by perfCounter, version (1.0.0).

Starting data reading process 592 from /etc/data/, status: success.

SessionID=30546001, initialized by NetAgent, version (2.0.0).

Starting data reading process 1612 from /etc/data/, status: success.

Starting data reading process 660 from /etc/data/, status: success.

Existing Parsers

SessionID=30546173, initialized by OSAgent, version (1.0.0).

SessionID=3054611, initialized by perfCounter, version (1.0.0).

SessionID=30546001, initialized by NetAgent, version (2.0.0).

Starting data reading process 592 from /etc/data/, status: success.

Starting data reading process 1612 from /etc/data/, status: success.

Starting data reading process 660 from /etc/data/, status: success.

Starting data reading process <*> from <*>, status: <*>.

SessionID=<*>, initialized by <*>, version (<*>). Starting data reading process <*> from /etc/data/, status: success.

Figure 4: Existing log parsers misidentify parameters
("etc/data/" and "success") but group logs under the same
template correctly

Message-Level Accuracy (MLA): we propose Message-Level
Accuracy to overcome the shortcomings of Group Accuracy, where
a log message is considered correctly parsed if and only if every
token of themessage is correctly identified as template or parameter.
Obviously, this metric is much stricter than Group Accuracy since
any incorrect log token identification will lead to the wrong parsing
result for the whole log message. For example, MLA in Fig.4 is 3

6
since only logs in left group (3 log messages) are parsed completely
correctly.

4.3 Parsing Accuracy Evaluation
We compare our proposed model with four state-of-the-art methods
(including Drain [11], AEL [14], LenMa [20], and LFA [19]) on all
16 log datasets. These log parsers cover most types of parsing tech-
niques (see Sec.2.2.2) and achieve good results on public datasets.
For each dataset to be tested, we conduct cross-source training
based on the other 15 datasets and applied the trained model to
the target dataset. Since Group Accuracy measures the overlap be-
tween logs sets under the ground truth templates and the predicted
templates given by parsers, we thus needed to group logs under the
similar predicted log templates together for evaluation. The results
in terms of two metrics (Group Accuracy, Message-Level Accuracy)
are shown in Table 1 and Table 2, respectively.

From the results, we can see that our model outperforms these
existing methods on almost all datasets with respect to the two
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metrics. Specifically, comparedwith the powerful existing log parser
Drain [11], UniParser exceeds it by 11.9% on group accuracy and
40.8% on MLA on average. In addition, we also note that traditional
log parsers such as Drain achieves high group accuracy (0.867)
but a very low MLA (0.377). It confirms that existing methods
focus more on grouping logs under the same template, but ignore
the identification of templates and parameters. Different from the
related work, UniParser is capable of learning semantic patterns
and predicting the categories token by token. Therefore, it achieves
a higher score on MLA (0.785), demonstrating the effectiveness of
our method.

One notable issue is that UniParser does not outperform existing
methods on Proxifier dataset. After investigation, we found that
there exists a large gap between Proxifier and other datasets, which
decreases the performance of UniParser. We will discuss this prob-
lem in Sec.5 and show how to improve the accuracy of UniParser
via a small amount labeled data for fine-tuning.

Table 1: Comparison with the state-of-the-art log parsers on
Group Accuracy

Method Drain AEL LenMa LFA UniParser

HDFS 0.998 0.998 0.998 0.885 1.000
Hadoop 0.948 0.538 0.885 0.900 1.000
Spark 0.920 0.905 0.884 0.994 1.000

ZooKeeper 0.967 0.921 0.841 0.839 0.995
OpenStack 0.733 0.758 0.743 0.200 1.000

BGL 0.963 0.758 0.690 0.854 0.997
HPC 0.887 0.903 0.830 0.817 0.966

Thunderbird 0.955 0.941 0.943 0.649 0.990
Windows 0.997 0.690 0.566 0.588 1.000
Linux 0.690 0.673 0.701 0.279 0.878
Mac 0.787 0.764 0.698 0.599 0.997

Android 0.911 0.712 0.880 0.616 0.973
HealthApp 0.780 0.822 0.174 0.549 1.000
Apache 1.000 1.000 1.000 1.000 1.000
OpenSSH 0.788 0.538 0.925 0.501 1.000
Proxifier 0.527 0.518 0.508 0.0026 0.976

Average 0.867 0.777 0.767 0.642 0.986

4.4 Runtime Performance Evaluation
Besides parsing accuracy, performance is another critical metric for
log parsers. Therefore, we also need to compare the running time
of UniParser with other log parsers under different volumes of log
data. It is worth noting that we also include the time cost of loading
data for our proposed UniParser. The results are shown in Fig.5
(X and Y axis both are in log-scale). From the results, we can see
the running time of UniParser increases slowly with the log scale
expansion. Moreover, with the parallel prediction of log tokens
based on GPU acceleration, our model performs faster than other
traditional parsers. Even at the scale of one million log messages,
UniParser took about 140 seconds, which is only about half of the
time spent by AEL (214s) and around a quarter of the time spent
by Drain (482s).

Table 2: Comparison with the state-of-the-art log parsers on
MLA

Method Drain AEL LenMa LFA UniParser

HDFS 0.567 0.568 0.123 0.156 1.000
Hadoop 0.530 0.526 0.079 0.499 0.866
Spark 0.384 0.373 0.006 0.382 0.972

ZooKeeper 0.792 0.748 0.677 0.340 0.992
OpenStack 0.019 0.021 0.018 0.008 0.459

BGL 0.341 0.341 0.082 0.230 0.811
HPC 0.701 0.725 0.632 0.674 0.974

Thunderbird 0.059 0.048 0.038 0.026 0.542
Windows 0.158 0.153 0.152 0.142 0.691
Linux 0.169 0.164 0.107 0.023 0.854
Mac 0.176 0.148 0.094 0.082 0.584

Android 0.431 0.350 0.430 0.299 0.838
HealthApp 0.295 0.295 0.174 0.285 0.985
Apache 0.694 0.690 0.634 0.688 0.994
OpenSSH 0.507 0.247 0.133 0.164 0.626
Proxifier 0.203 0.195 0.017 0.478 0.369

Average 0.377 0.350 0.212 0.280 0.785

4.5 Component Evaluation
In this section, we evaluate the effectiveness of the major compo-
nents and parameters. The experiments are performed based on
Android log dataset as it is enriched with hundreds of log templates
and complicated patterns, which is representative among 16 log
datasets. As mentioned in Sec.4.2, Group Accuracy can not properly
measure the performance of log parsers, we only focus on MLA
metric in this section.

4.5.1 Ablation Study. Firstly, we explore the effectiveness of each
component on our model, and the results are shown in Fig.6. Uni-
Parser exhibits worse accuracy with only Token Encoder module
(0.352 MLA), while achieves a rapid boosting with Context En-
coder module (0.587 MLA) added. This comparison indicates that
Context Encoder module learns common patterns from context,
which facilities the target token classification. In addition, Context
Similarity module significantly improves the accuracy of UniParser
(0.838 MLA), which demonstrates its usefulness for making Context
Encoder module encodes feature vector more precisely.

4.5.2 Parameter Analysis. As shown in Fig.7, we explored the effect
of 𝑘 in Context Encoder module, which denotes the number of
tokens around the target token (as mentioned in Sec.3.3.2). We
adjusted the value of 𝑘 from 1 to 5 and observe the changes in
MLA. From the results, we found that MLA is relatively stable in
the whole range (from 0.78 ∼ 0.84). It increases gradually when 𝑘 in
[1, 3] but drops if 𝑘 continues increasing. This implies that context
tokens indeed help to capture semantic patterns. On the contrary,
tokens far away from target tokenmay not provide effective context
information, and could bring noise to the model and decrease the
accuracy of UniParser.

4.5.3 Comparison with sequence labeling model. In addition, we
compared our model with Bidirectional LSTM-CNNs-CRF [16], a
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commonly-used sequence labeling model which can be utilized to
classify log tokens as well. Bi-LSTM-CNNs-CRF first utilizes CNN
to encode each word into a vector representation, then word-level
representations are fed into Bi-LSTM to obtain context informa-
tion. Lastly, on top of Bi-LSTM, a sequential CRF jointly decode
labels for the whole sentence. On the one hand, the results in Ta-
ble 3 indicate that deep learning based log parsers benefit from the
supervised labels on token-level and indeed perform better than
previous unsupervised methods (both models outperform other ex-
isting log parsers such as Drain on Android dataset); On the other
hand, our UniParser outperforms Bidirectional LSTM-CNNs-CRF,
which demonstrates the effectiveness of our proposed model.

Table 3: Comparison with Bi-LSTM-CRF

Method Drain Bi-LSTM-CNNs-CRF UniParser

MLA 0.431 0.555 0.838

5 DISCUSSION
Model Fine-tuning: Patterns may differ between the training and

the target log sources. To tackle this problem, we devise an online
feedback mechanism to fine-tune the UniParser model under the
target log data. Engineers only need to inspect a few lines of parsed
structured logs and calibrate the results (templates or parameters)
according to their domain knowledge. Then these labeled logs are
fed into UniParser to make the model fast adapt to the new log
sources. We applied fine-tuning to our model on Proxifier dataset,
where UniParser performs worst. The result is listed in Table 4.
It can be seen that after fine-tuning with tens of labeled logs, the
UniParser model can achieve a rapid boosting of parsing accuracy.

Table 4: Model fine tuningwith different numbers of labeled
logs

#Samples 0 20 40

MLA 0.369 0.507 0.893

Labeling Effort. Our proposed method relies on the labeled log
data, which means some labeling effort is required for training. The
labeled log datasets are used in the offline supervised learning and
can be labeled once for all. From the experiment results shown

in Sec.4.3, our model is capable of learning the common logging
patterns from heterogeneous log sources, and can be applied to
most of the new log sources directly without extra labeling effort.
Even for the logs with distinctive patterns such as those in the
Proxifier dataset, a small amount of fine-tuning is sufficient.

Token Splitting. As introduced in Sec.3.1, UniParser transforms
the log parsing task into the log token classification problem. We
split tokens in raw log messages according to some special symbols
such as spaces, tabs and comma (see Sec.3.3.1). Nevertheless, some
log tokens are difficult to be split up due to the complexity of the
log messages. For example, in log message "Process A done this
1 time(s)", "(s)" in the bracket should not be separated from the
preceding token "time" and is not a parameter. In our future work,
we will design effective mechanisms to handle rare cases like this.

6 APPLICATION IN PRACTICE
So far, our proposed UniParser has already successfully applied to
multiple log analysis scenarios in Microsoft 365 and Azure Cloud,
including safe deployment guarding, performance issue diagnosis,
log-based anomaly detection and so on. Compared with the existing
log parsers, UniParser achieves much higher parsing accuracy and
exhibits more robustness on complicated industrial log data, which
greatly improves the performance of various log-based downstream
tasks.

7 CONCLUSION
Log parsing is the foundation of automated log analysis, which is
responsible for transforming the semi-structured raw logs into a
structured format. In this paper, we propose a novel deep learning
based model named UniParser to capture the common logging
behaviours from heterogeneous log data. UniParser utilizes a Token
Encoder module and a Context Encoder module to capture the
patterns of templates and parameters. A Context Similarity module
is specially designed to focus on the commonalities of learned
patterns. We have evaluated UniParser on public log datasets and
the results show that UniParser outperforms the state-of-the-art
parsers by 12% on Group Accuracy and about 40% onMessage-Level
Accuracy.
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