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ABSTRACT

Topic models have been the prominent tools for automatic topic
discovery from text corpora. Despite their effectiveness, topic mod-
els suffer from several limitations including the inability of mod-
eling word ordering information in documents, the difficulty of
incorporating external linguistic knowledge, and the lack of both
accurate and efficient inference methods for approximating the
intractable posterior. Recently, pretrained language models (PLMs)
have brought astonishing performance improvements to a wide
variety of tasks due to their superior representations of text. Inter-
estingly, there have not been standard approaches to deploy PLMs
for topic discovery as better alternatives to topic models. In this
paper, we begin by analyzing the challenges of using PLM repre-
sentations for topic discovery, and then propose a joint latent space
learning and clustering framework built upon PLM embeddings. In
the latent space, topic-word and document-topic distributions are
jointly modeled so that the discovered topics can be interpreted by
coherent and distinctive terms and meanwhile serve as meaning-
ful summaries of the documents. Our model effectively leverages
the strong representation power and superb linguistic features
brought by PLMs for topic discovery, and is conceptually simpler
than topic models. On two benchmark datasets in different domains,
our model generates significantly more coherent and diverse topics
than strong topic models, and offers better topic-wise document
representations, based on both automatic and human evaluations.!
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1 INTRODUCTION

Automatically discovering coherent and meaningful topics from
text corpora is intuitively appealing for web-scale content anal-
yses, as it facilitates many web applications including document
analysis [9], text summarization [63] and ad-hoc information re-
trieval [65]. Decades of research efforts have been dedicated to the
development of such algorithms, among which topic models [11, 26]
are the most prominent methods. The success of topic models can
be largely credited to their proposed generative process: By max-
imizing the likelihood of a probabilistic process that models how
documents are generated conditioned on the hidden topics, topic
models are able to uncover the latent topic structures in the corpus.

Despite the success of topic models, the generative process in-
curs several notable limitations: (1) The “bag-of-words” generative
assumption completely ignores word ordering information in text,
which is essential for defining word meanings [18]. (2) The gener-
ative process cannot leverage external knowledge to learn word
semantics, which may miss important topic-indicating words if they
are not sufficiently reflected by the co-occurrence statistics of the
given corpus, as is likely the case for small-scale/short-text corpora.
(3) The generative process induces an intractable posterior that re-
quires approximation algorithms like Monte Carlo simulation [50]
or variational inference [1]. Unfortunately, there is always a trade-
off between accuracy and efficiency with these approximations
since they can only be asymptotically exact [57]. Later variants
of topic models attempt to overcome some of these limitations by
either replacing the analytic approximation of the posterior with
deep neural networks [47, 60, 64] to improve the effectiveness and
efficiency of the inference process, or incorporating word embed-
dings [15, 17, 52] to make up for the representation deficiency of
the “bag-of-words” generative assumption. Nevertheless, without
fundamental changes of the topic modeling framework, none of
these approaches address the limitations of topic models all at once.

Along another line of text representation learning research, text
embeddings have achieved enormous success in a wide spectrum of
downstream tasks. The effectiveness of text embeddings stems from
the learning of distributed representations of words and documents
from contexts. Early models like Word2Vec [48] learn context-free
word semantics based on a local context window of the center
word. Recently, pretrained language models (PLMs) like BERT [16],
RoBERTa [36] and XLNet [67] have revolutionized text process-
ing via learning contextualized word embeddings. They employ
Transformer [62] as the backbone architecture for capturing the
long-range, high-order semantic dependency in text sequences,
yielding superior representations to previous context-free embed-
dings. Since these PLMs are pretrained on large-scale text corpora
like Wikipedia, they carry superb linguistic features that can be
generalized to almost any text-related applications.

Motivated by the strong representation power of the contextu-
alized embeddings that accurately capture word semantics, a few
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recent studies have attempted to utilize PLMs for topic discovery.
Sia et al. [59] directly cluster averaged BERT word embeddings to
obtain word clusters as topics. The resulting topic quality relies
significantly on heuristic tricks like frequency-based weighting/re-
ranking and barely reaches the performance of LDA, the most basic
topic model. Instead of clustering word embeddings, BERTopic [23]
clusters document embeddings and then uses TF-IDF metrics to
extract representative terms from each notable document cluster
as topics. However, as the document embeddings in BERTopic are
obtained from Sentence-BERT [56], which is trained on natural
language inference datasets with manually annotated sentence la-
bels, the performance of BERTopic may suffer from domain shift
when the target corpus is semantically different from the Sentence-
BERT training set, and when manually annotated labels for re-
training the sentence embeddings are absent. Moreover, BERTopic
constructs topics via TF-IDF metrics and fails to take advantage of
the distributed representations of PLMs, which are known to better
capture word semantics than frequency-based statistics.

In this work, we study topic discovery with PLM embeddings as a
potential alternative to topic models. We first analyze the challenges
of directly operating on the PLM embedding space by investigating
its structure. Motivated by the challenges, we propose TopClus, a
joint latent space learning and clustering approach that derives
a lower-dimensional, spherical latent embedding space with topic
structures. Such latent space mitigates the “curse of dimensionality”
issue and uses angular similarity to model semantic correlations
among words, documents and topics, thus is better suited for cluster-
ing than the high-dimensional Euclidean embedding space of PLMs.
Unlike traditional clustering algorithms that work with fixed data
representations, TopClus jointly adjusts the latent space represen-
tations and performs clustering. Topic-word and document-topic
distributions are jointly modeled in the latent space to derive topics
that (1) are interpretable by coherent and distinctive words and (2)
serve as meaningful summaries of documents.

TopClus enjoys the following advantages over topic models: (1)
TopClus works with PLM contextualized embeddings obtained by
modeling the entire text sequences with positional information,
which are expected to provide better representations than the “bag-
of-words” assumption of topic models. (2) TopClus employs PLMs
to bring in general linguistic knowledge which helps generate more
accurate and stable word representations on the target corpus than
training topic models from scratch on it. (3) The training algorithm
of TopClus does not involve any probabilistic approximations, and
is computationally and conceptually simpler than variational infer-
ence in topic models. With these advantageous properties, TopClus
simultaneously addresses the major limitations of topic models.

Our contributions are summarized as follows:

(1) We explore using PLM embeddings for topic discovery. We first
identify the challenges with an in-depth analysis of the original
PLM embedding space’s structure.

(2) We propose a new framework TopClus which jointly learns a
lower-dimensional, spherical latent space with cluster struc-
tures based on word and document embeddings from PLMs.
High-quality topic clusters are derived by simultaneously mod-
eling topic-word and document-topic distributions. TopClus can
be integrated with any PLMs for unsupervised topic discovery.

(3) We propose three objectives for training TopClus to induce
distinctive and balanced cluster structures in the latent space
which result in diverse and coherent topics.
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(a) New York Times. (b) Yelp Review.

Figure 1: Visualization using t-SNE of 3,000 randomly sam-
pled contextualized word embeddings of BERT on (a) NYT
and (b) Yelp datasets, respectively. The embedding spaces do
not have clearly separated clusters.

(4) We evaluate TopClus on two benchmark datasets in different
domains. TopClus significantly outperforms strong topic dis-
covery methods by generating more coherent and diverse topics
and providing better document topic representations judged
from both automatic and human evaluations.

2 CHALLENGES OF TOPIC DISCOVERY
WITH PRETRAINED LANGUAGE MODELS

We first identify three major challenges of using PLM embeddings
for topic discovery, which motivate our proposed model in Section 3.
Unsuitability of PLM Embedding Space for Clustering. One
straightforward way of obtaining K topics with PLM embeddings
(e.g., from BERT [16]) is to simply apply clustering algorithms like
K-means [37] to group correlated terms that form topics. To pro-
vide empirical evidence that such direct clustering may not work
well, we visualize 3,000 randomly sampled contextualized word
embeddings obtained by running BERT on the New York Times and
Yelp Review datasets in Figure 1. The embedding spaces do not ex-
hibit clearly separated clusters, and applying clustering algorithms
like K-means with a typical K (e.g., K = 100) to these spaces leads
to low-quality and unstable clusters. We show theoretically that
such a phenomenon is due to too many clusters in the embedding
space. Below, we study the effect of the Masked Language Modeling
(MLM) pretraining objective of BERT on the embedding space.

THEOREM 2.1. The MLM pretraining objective of BERT assumes
that the learned contextualized embeddings are generated from a
Gaussian Mixture Model (GMM) with |V| mixture components where
|V| is the vocabulary size of BERT.

PRrROOF. See Appendix B. O

Theorem 2.1 applies to many PLMs (e.g., BERT [16], RoBERTa [35],
XLNet [67]) that use MLM-like pretraining objectives. It reveals that
the optimal number of cluster K to apply K-means like algorithm
is |[V| (|[V] = 30,000 in the BERT base model). In other words, the
PLM embedding space is partitioned into extremely fine-grained
clusters and lacks topic structures inherently. If a typical K for topic
discovery is used (K < |V|), the partition will not fit the original
data well, resulting in unstable and low-quality clusters. If a very
big K is used (K = |V|), most clusters will contain only one unique
term, which is meaningless for topic discovery.

Curse of Dimensionality. PLM embeddings are usually high-
dimensional (e.g., number of dimensions r = 768 in the BERT
base model), while distance functions can become meaningless and
unreliable in high-dimensional spaces [5], rendering Euclidean dis-
tance based clustering algorithms ineffective for high-dimensional



cases, known as the “curse of dimensionality”. From another per-
spective, the high-dimensional PLM embeddings encode linguistic
information of multiple aspects for the generic language modeling
purpose, but some features are not necessary for or may even in-
terfere with topic discovery. For example, some syntactic features
in the PLM embeddings should not be considered when grouping
semantically similar concepts (e.g., “play”, “plays” and “playing”
should not represent different topics).

Lack of Good Document Representations from PLMs. Topic
discovery usually requires jointly modeling documents with words
to derive latent topics. Although PLMs are famous for their supe-
rior contextualized word representations, obtaining quality docu-
ment embeddings from PLMs has been a big challenge. Sentence-
BERT [56] reports that the inherent BERT sequence embeddings (i.e.,
obtained from the [CLS] token) are of rather bad quality without
fine-tuning, even worse than averaged GloVe context-free embed-
dings. To obtain meaningful sentence embeddings, Sentence-BERT
fine-tunes pretrained BERT model on natural language inference
(NLI) tasks with manually annotated sentences. However, using
Sentence-BERT for topic discovery raises two concerns: (1) When
the given corpus has a big domain shift from the Sentence-BERT
training set (e.g., the documents are much longer than the sentences
in NLI, or are very different semantically from the NLI dataset), the
document embeddings need to be re-trained from target corpus doc-
ument labels, which contradicts the unsupervised nature of topic
discovery. (2) The sentence embeddings are in a different space
from word embeddings as they are not jointly trained, and cannot
be simultaneously used to model both words and documents. This
is why BERTopic [23] relies on TF-IDF for topic word selection.

3 METHOD

We first introduce the two major components in our TopClus model:
(1) attention-based document embedding learning module and (2)
latent space generative module, and then we introduce three train-
ing objectives for model learning. Figure 2 provides an overview of
TopClus. We assume BERT is used as the PLM, but TopClus can be
seamlessly integrated with any other PLMs.

3.1 Attention-Based Document Embeddings

As the prerequisite of topic discovery is the joint modeling of words
and documents, we first propose a simple attention mechanism to
learn document embeddings. Previous studies [33] show that a sim-
ple average of word embeddings from PLMs can serve as decent
generic sequence representations. In this work, we assume that
not all words in a document are equally topic-indicative, so we
learn attention weights of each token to derive document embed-
dings as a weighted average of contextualized word embeddings
which are expected to be better tailored for topic discovery than
an unweighted average of word embeddings. This also allows the
learned document embeddings to share the same space with word
embeddings which enables joint modeling of words and documents.

For each text document d = [wy, ws,...,wp], we obtain the

BERT contextualized word representations [hiw), héw), . ,hﬁlw)]
where hl{w) € R" (r = 768 in the BERT base model). The attention
weights @ = [a1, @y, . .., ay] are learned for each token as follows:
exp(l ;rv)

(w)
I; = tanh (Wh'™) +b), = — 1 _
i =fan ( i ) % S exp(l o)

where W and b are learnable parameters of a linear layer with the

tanh(-) activation. Each word embedding h;w) is transformed to a
new representation I; whose dot product with another learnable
vector v reflects how topic-indicative the token is. Finally, the doc-
ument embedding h(?) is obtained as the combination of all word
embeddings in the document weighted by the attention values:

n
pd - Z aihgw).

i=1
We note that the contextualized word embeddings from BERT
{hgw) }2, are not updated during topic discovery since they al-
ready capture word semantics reliably and accurately through pre-
training. The learnable parameters associated with the attention
mechanism A = {W, b, v} are randomly initialized and trained via
the unsupervised objectives to be introduced in Section 3.3.

3.2 The Latent Space Generative Model

Motivation and Assumptions. As we have shown in Section 2,
the original embedding space H of PLMs is unsuitable for direct clus-
tering to generate topic clusters. To address the challenges, we pro-
pose to project the original embedding space H into a latent space Z
with K soft clusters of words corresponding to K latent topics. We as-
sume that Z is spherical (i.e., Z C STLS" = (z e R 12| = 1}
is the unit r’ — 1 sphere) and lower-dimensional (i.e., r’ < r). Such a
latent space has the following preferable properties: (1) In the spher-
ical latent space, angular similarity (i.e., without considering vector
norms) between vectors is employed to capture word semantic cor-
relations, which works better than Euclidean metrics (e.g., cosine
similarity between embeddings is more effective for measuring
word similarity [40, 46]). (2) The lower-dimensional space mitigates
the “curse of dimensionality” of the original high-dimensional space
and better suits the clustering task. (3) Projecting high-dimensional
embeddings to the lower-dimensional space forces the model to
discard the information that does not help form topic clusters (e.g.,
syntactic features).

Why Not Naive Approach? A straightforward way is to first
apply a dimensionality reduction technique to the original embed-
ding space H to obtain the aforementioned latent space Z, and
subsequently apply clustering algorithms to Z for obtaining the
latent space clusters representing topics. However, such a naive ap-
proach cannot guarantee that the reduced-dimension embeddings
will be naturally suited for clustering, given that no clustering-
promoting objective is incorporated in the dimensionality reduc-
tion step. Therefore, we propose to jointly learn the latent space
projection and cluster in the latent space instead of conducting
them one after another, so that the latent representation learning is
guided by the clustering objective, and the cluster quality benefits
from the well-separated structure of the latent space, achieving a
mutually-enhanced effect. Such joint learning is realized by training
a generative model that connects the latent topic structure with
the original space representations.

Our Generative Model. We introduce our latent space generative
model as follows. With the number of topics K as the input to the
model, we assume that there exists a latent space Z C S7'1 with
K topics reflecting the latent structure of the original embedding
space H. Each topic is associated with a spherical distribution called
the von Mises-Fisher (vMF) distribution [2, 21] that characterizes
the topic-word and document-topic distributions in the latent space.
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Figure 2: Overview of TopClus. We assume that the K-topic structure exists in a latent spherical space Z. We jointly learn the at-
tention weights for document embeddings and the latent space generation model via three objectives: (1) a clustering loss that
encourages distinctive topic learning in the latent space, (2) a topical reconstruction loss of documents that promotes mean-
ingful topic representations for summarizing document semantics and (3) an embedding space preserving loss that maintains
the semantics of the original embedding space. The PLM is not fine-tuned.

Specifically, the vMF distribution (can be seen as the spherical coun-
terpart of the Gaussian distribution) of a topic ¢ is parameterized by
a mean vector ¢ and a concentration parameter x. The probability
density closer to t is greater and the spread is controlled by k. Intu-
itively, words and documents are more likely to be correlated with
a topic t if their latent space representations are closer to the topic
vector t. Formally, a unit random vector z € S” "~1 has the r’-variate
vMEF distribution vMF, (¢, k) if its probability density function is
p(z:£,%) = np () exp (x - cos(z, 1)),

where ||t]| = 1 is the center direction, k > 0 is the concentration
parameter, cos(z, t) is the cosine similarity between z and ¢, and
the normalization constant n, (k) is given by

Kr’/ 2-1
(2m)" 2L jp_1 (k)
where I,+/5_1 () represents the modified Bessel function of the first
kind at order r’ /2 — 1. We assume all topics’ vMF distributions share
the same concentration parameter k (i.e., the topic terms are equally

concentrated around the topic center for all topics) which can be
set as a hyperparameter.

np (k) =

Every word embedding hl(w) € H from the original space is
assumed to be generated through the following process : (1) A topic
t is sampled from a uniform distribution over the K topics. (2)
A latent embedding ZE v is generated from the vMF distribution
associated with topic t. (3) A function g : Z — H maps the latent
embedding zl( ¥ to the original embedding hg w) corresponding to
word w;. The generative process is summarized as follows:

tr ~ Uniform(K), ZI(W) ~ vMF, (g, k), hgw) = g(zgw)). (1)

The generative process of document embedding h@ e His
similar since it resides in the same word embedding space:

tr ~ Uniform(K), 2@ ~ vMF, (t.x), h'¥ = g(z'¥9). (2

We assume that the mapping function g can be nonlinear to
model arbitrary transformations, and we parameterize g as a deep

neural network (DNN) since DNNs can approximate any nonlinear
function [27]. Each layer [ in the DNN is a linear layer with ReLU
activation function, taking x; as input and outputting y;:
Yy = ReLU(Wlxl + bl),

where W and b; are the learnable parameters in the layer. We also
jointly learn the mapping f : H — Z from the original space to the
latent space (i.e., the inverse function of g, also parameterized by
a DNN) to map unseen word/document embeddings to the latent
space. Such joint learning of two nonlinear functions follows an au-
toencoder [25] setup where an encoding network maps data points
from the original space to the latent space, and a decoding network
converts latent space data back to an approximate reconstruction
of the original data.

3.3 Model Training

To jointly train the attention module for document embeddings in
Section 3.1 and the latent generative model in Section 3.2, we intro-
duce three objectives: (1) a clustering loss that enforces separable
cluster structures in the latent space for distinctive topic learning,
(2) a topical reconstruction loss of documents to ensure the discov-
ered topics are meaningful summaries of document semantics, and
(3) an embedding space preserving loss to maintain the semantic
information in the original space.

Distinctive Topic Clustering. The first clustering objective in-
duces a latent space with K well-separated clusters by gradually
sharpening the posterior topic-word distributions via an expecta-
tion—maximization (EM) algorithm. In the E-step, we estimate a
new (soft) cluster assignment of each word based on the current
parameters; in the M-step, we update the model parameters given
the cluster assignments. The process is illustrated in Figure 3.
E-Step. To estimate the cluster assignment of each word, we compute
the posterior topic distribution obtained via the Bayes rule:

p (2 tk) (i)
TR P (ZEW)Itk/) plte)

P (tklzi(W)) =
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Figure 3: One iteration of EM algorithm. During the E-Step, we compute new posterior topic-word distribution q(t|z(w) ) that
sharpens the original posterior p(t|z(*)) (resulting in lower entropy of p(t|z(*")) denoted by the smaller colored area around
z(")) and meanwhile encourage balanced cluster distribution (resulting in some cluster assignment change). During the M-
Step, we update topic embeddings ¢ and word embeddings zW) = f (h™)) according to the new posteriors.

where p (z;w) |tk) = vMFp (g, k) = np (k) exp (K . cos(zgw), tk))
and p(t;) = 1/K according to Eq. (1). The posterior is simplified as

(w) exp(K cos( (W) ¢ ))
( |Z ) Zf,zlexp(ic cos(( )tkz))

Then we compute a new estimate of the cluster assignments q(x |z
to be used for updating the model in the M-Step following [66]:

(w))?

p fk|z~ /sk N

‘I(tk|zl§W)) ( i () = s = ZP (tk|zgw)), 3)
Zk' 1P (tk’lziw ) [skr i=1

where N is the total number of tokens in the corpus. Using Eq. (3) to

obtain the target cluster assignment has the following two favorable
effects: (1) Distinctive topic learning. Squaring-then-normalizing the

())

posterior distribution p(ty |z§ w) ) has a sharpening effect that skews
the distribution towards its most confident cluster assignment, and
the so learned latent space will have gradually well-separated clus-
ters for distinctive topic interpretation. This is similar in spirit to the
Dirichlet prior used in LDA that promotes sparse topic distributions.
(2) Topic prior regularization. The soft cluster frequency s should
encode the uniform topic prior assumed in Eq. (1), and dividing the
sharpened p(tk|z( ))2 by sg encourages balanced clusters.
M-Step. We update the model parameters to maximize the expected
log-probability of the current cluster assignment under the new
cluster assignment estimate Eq [log p], which is equivalent to mini-
mizing the following cross entropy loss:

Clus= lz;kzl (tk|z( ))IOgP(tkiz( ))’ (4)

where p is updated to approximate g which is a fixed target. Using
Eq. (4) to update the model parameters has a notable difference

from standard clustering algorithms: Since p(tk|zgw)) is jointly
determined by the topic center vector ¢} and latent representation

zl( ) , both of them will be updated to fit the new estimate q(tx |zl( W))
which encourages distinctive cluster distribution. Therefore, the
mapping function f will be adjusted accordingly to induce a latent
space with a K-cluster structure and the topic center vectors will
become K anchoring points surrounded by topic-representative
words. In contrast, standard clustering algorithms only update the
cluster parameters without changing the data representations.

Topical Reconstruction of Documents. The second objective
aims to reconstruct document semantics with topic representa-
tions so that the learned latent topics are meaningful summaries
of the documents. Specifically, the reconstructed document embed-

ding h( ) § is obtained by combining all projected topic vectors £
weighted by the document-topic distribution p(t;|z(@)):

K
AL Zp (tk|z(d)) te, b= g(te),
k=1

where p(tklz(d)) is obtained according to Eq. (2):

(o ol ()
oK

L exp (k - cos (2@, 1))
We require the reconstructed document embedding to be a good
approximation of the original content by minimizing the following
reconstruction loss:

Lrec = Z ”il(d) —I_l(d)”Z, 5)
deD

where h'? is the average of word embeddings in the document
serving as the generic document embedding.

Preservation of Original PLM Embeddings. We need to ensure
the latent space preserves the important semantic information of
the original embedding space, and the third objective encourages
the output of the autoencoder to faithfully recover the structure of
the original embedding space by minimizing the the following loss:

N
L= 2 = (1 () ©

Overall Algorithm. We summarize the training of TopClus in Al-
gorithm 1. We first pretrain the mapping functions f and g only
using the preservation loss in Eq. (6) as it provides a stable ini-
tialization of the latent space [66]. During training, we apply the
EM algorithm to iteratively update all model parameters with the
summed objectives (the clustering loss is weighed by 7).
Complexity. In the E-Step of the algorithm, q(tk|z1(w)) is com-
puted for every latent representation over each topic, resulting in
an O(NKr’) complexity per iteration. The M-Step updates DNN pa-
rameters whose complexity is related to the number of parameters
in the model and the optimization method.



Algorithm 1: TopClus Training,.
Input: D: Text corpus; M: PLM; K: Number of topics.
Parameter: A: Attention mechanism parameters; f, g:
Encoding/decoding functions; T: Topic
embeddings.
Hyperparameter: E: Training epochs; A: Clustering loss
weight.

Output: Topic-word distributions p (zl( ) |tk);
document-topic distributions p (tk|z(d)).
f.g < argming g Lpre; // Pretrain f, g via Eq. (6);
T= tkile « Initialize with K-means on §" 1
for je[1,2,...,E] do
/] E-Step: Update cluster assignment estimation;
¢ (1) —Ea.
/! M-Step: Update model parameters;
A f,9. T « arg minA,f,g,T (A-gclus + Lrec + -Epre);

return p (sz) \tk) P (tkiz(d));

4 EXPERIMENTS
4.1 Experiment Setup

Settings. We use two benchmark datasets in different domains
with long/short texts for evaluation: (1) The New York Times an-
notated corpus (NYT) [58]; and (2) The Yelp Review Challenge
dataset (Yelp). The dataset statistics can be found in Table 4. The
implementation details and parameters of TopClus are shown in
Appendix C. For both datasets, we set the number of topics K = 100
for all compared methods.

Compared Methods. We compare TopClus with the following
strong baselines:

e LDA [11]: LDA is the standard topic model that learns topic-
word and document-topic distributions by modeling the generative
process of the corpus.

e CorEx [19]: CorEx does not rely on generative assumptions and
learns maximally informative topics measured by total correlation.
e ETM [17]: ETM models word topic correlations via distributed
representations to improve the expressiveness of topic models.

e BERTopic [23]: BERTopic first clusters document embeddings
from BERT and then uses TF-IDF to extract topic representative
words, which does not leverage word embeddings from PLMs.

4.2 Topic Discovery Evaluation

Evaluation Metrics. We evaluate the quality of the topics from
two aspects: topic coherence and topic diversity. Good topic results
should be both coherent for humans to interpret and diverse to cover
more information about the corpus. We evaluate the effectiveness
of document-level topic modeling by document clustering.

For topic coherence, we use three metrics including both human
and automatic evaluations:

e UMass [49]: UMass computes the log-conditional probability
of every top word in each topic given every other top word that
has a higher order in the ranking of that topic. The probability is
computed based on document-level word co-occurrence.

e UCI [51]: UCI computes the average pointwise mutual informa-
tion of all pairs of top words in each topic. The word co-occurrence
counts are derived using a sliding window of size 10.

o Intrusion: Given the top terms of a topic, we inject an intrusion
term that is randomly chosen from another topic. Then a human
evaluator is asked to identify the intruded term. The more coher-
ent the top terms are, the more likely an evaluator can correctly
identify the fake term, and thus we compute the ratio of correctly
identified intrusion instances as the topic coherence score given
by the intrusion test. The topics from all compared methods are
randomly shuffled during evaluation to avoid the bias of human
evaluators.

For topic diversity, we report the percentage of unique words in
the top words of all topics following the definition in [17].
Qualitative Evaluation. We randomly select several ground truth
topics from both datasets, and manually match the most relevant
topic generated by all methods. Table 1 shows the top-5 words
per topic. All methods are able to generate relevant topics to the
ground truth ones. LDA and CorEx results contain noises that
are semantically irrelevant to the topic; ETM improves LDA by
incorporating word embeddings, but still generates slightly off-
topic terms; BERTopic also has noisy terms in the results, as it uses
TF-IDF metrics without exploiting word representations from BERT
for obtaining top words. TopClus consistently outputs coherent and
meaningful topics.

Quantitative Evaluation. We report the performance of all meth-
ods under the four metrics in Table 2. Overall, the quantitative
evaluation coincides with the previous qualitative results. TopClus
generates not only the most coherent but also diverse topics, under
both automatic and human evaluations.

4.3 Document Clustering Evaluation

Evaluation Metrics. We use the learned latent document embed-
ding 2@ as the feature to K-Means for obtaining document clusters,
then we report the Normalized Mutual Information (NMI) score be-
tween the clustering results and the ground truth document labels.

We use the topic label set (e.g., politics, sports) and location label
set (e.g., United States, China) on the NYT dataset. The detailed
label statistics can be found in [39]. On the two label sets, the
document-topic distribution learned by TopClus consistently yields
the best clustering results among all methods as shown in Table 3.

4.4 Study of TopClus Training

Joint Learning Latent Space and Clustering Improves Topic
Quality. Figure 5 shows the improvement in topic quality (mea-
sured by both intrusion test score and topic diversity) and document
clustering performance during TopClus training. At epoch 0, the
result is equivalent to first applying dimensionality reduction (i.e.,
pretraining autoencoder with Lpre) and then clustering with K-
means, the “naive approach” mentioned in the second paragraph of
Section 3.2. Its inferior performance confirms that conducting the
two steps separately does not generate satisfactory topics. Topic
quality and document clustering performance improve when the
model is trained longer, showing that joint latent space learning and
clustering indeed helps generate coherent and distinctive topics.
Visualization. To intuitively understand how TopClus jointly learns
the latent space structure and performs clustering, we visualize the
learned latent embeddings at different training epochs in Figure 4.



Table 1: Qualitative evaluation of topic discovery. We select several ground truth topics and manually find the most relevant
topic generated by all methods. Words not strictly belonging to the corresponding topic are italicized and underlined.

NYT Yelp
Methods Topic 1 Topic 2 Topic 3 Topic4  Topic 5 Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
(sports) (politics) (research)  (france)  (japan) (positive) (negative)  (vegetables)  (fruits) (seafood)
olympic mr said french  japanese amazing loud spinach mango fish
year bush report union tokyo really awful carrots  strawberry roll
LDA @ president evidence  germany year W sunday greens wvanilla salmon
games white findings workers  matsui phenomenal like salad banana fresh
team house defense paris said pleasant slow dressing peanut good
baseball house possibility french  japanese great even garlic strawberry  shrimp
championship white challenge italy tokyo friendly bad tomato caramel beef
CorEx playing support reasons pa_ris index atmosphere mean onions sugar crab
fans groups give francs osaka love cold toppings fruit dishes
lea?le member plﬁed jacques electronics | favorite literally slices mango salt
olympic government  approach french  japanese nice disappointed  avocado  strawberry fish
league national problems students agreement worth cold greek mango shrimp
ETM national plan experts paris tokyo lunch review salads sweet lobster
basketball pﬁc ‘move german  market | recommend  experience spinach soft crab
athletes support give american  european friendly bad tomatoes ﬂmrs chips
swimming bush researchers  french  japanese awesome horrible tomatoes strawberry lobster
freestyle democrats scientists paris tokyo atmosphere quality avocado mango crab
BERTopic popov white cases lyon ufj friendly disgusting soups cup shrimp
gold bushs genetic minister  company night disappointing kale lemon oysters
olympic house study billion yen goﬁ place cauliflower ~ banana  amazing
athletes government hypothesis  french  japanese good tough potatoes  strawberry fish
medalist ministry  methodology  seine tokyo best bad onions lemon octopus
TopClus olympics bureaucracy  possibility  toulouse osaka friendly painful tomatoes apples shrimp
tournaments  politicians criteria marseille hokkaido cozy frustrating cabbage grape lobster
quarterfinal electoral  assumptions  paris  yokohama casual brutal mushrooms  peach crab
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(a) Epoch 0. (b) Epoch 2. (c) Epoch 4. (d) Epoch 8.

Figure 4: Visualization using t-SNE of 3,000 randomly sampled latent word embeddings during training. Embeddings assigned
to the same cluster are in the same color. The latent space gradually exhibits distinctive and balanced cluster structure.

Before the training starts (epoch 0), the latent embedding space does
not have clear cluster structures, just like the original space. During
training, the latent embeddings are becoming well-separated and
the cluster structure is gradually more distinctive and balanced,
resulting in coherent and diverse topics.

5 RELATED WORK
5.1 Topic Models

Topic models aim to discover underlying topics and semantic struc-
tures from text corpora. Despite extensive studies of topic models
following LDA, most approaches suffer from one or more of the

following limitations: (1) The “bag-of-words” assumption that pre-
sumes words in the document are generated independently from
each other. (2) The reliance on local corpus statistics, which could
be improved by leveraging general knowledge such as pretrained
language models [16]. (3) The intractable posterior that requires
approximation techniques during model inference.

Topic modeling approaches can be divided into three major cat-
egories: (1) LDA-based approaches use pLSA [26] or LDA [11] as
the backbone. The idea is to characterize documents as mixtures of
latent topics and represent each topic as a distribution over words.
Popular models in this category include Hierarchical LDA [22],
Dynamic Topic Models [8], Correlated Topic Models [7], Pachinko



Table 2: Quantitative evaluation of topic discovery. We eval-
uate all methods with three topic coherence metrics UCI,
UMAss and Intrusion (Int.) and a topic diversity (Div.) met-
ric. Higher score means better for all metrics. We do not re-
port Div. for CorEx because it requires topics to have non-
overlapping words by design.

NYT Yelp

Methods UMass UCI Int. Div. |UMass UCI Int. Div.

LDA -3.75 -1.76 053 0.78 | -4.71 -2.47 0.47 0.65

CorEx -3.83 -09 077 - -475 -191 043 -

ETM -298 -0.98 0.67 0.30| -3.04 -0.33 0.47 0.16
BERTopic | -3.78 -0.51 0.70 0.61 | -6.37 -2.05 0.73 0.36
TopClus | -2.67 -0.45 0.93 0.99| -1.35 -0.27 0.87 0.96

Table 3: Document clustering NMI scores on NYT
(Topic/Location label set).

LDA CorEx ETM BERTopic  TopClus
0.39/0.20 0.29/0.20 0.41/0.21 0.26/0.22 0.46/0.28
1.0 - 0.5
o f‘_’/_d‘ L {//._/ﬁ——’—"
= =) —&— Topic
S 0.6 = ocation
@ “ 0.3 - -
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Diversity
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(a) Topic Quality. (b) Document Clustering.

Figure 5: Study of TopClus training on NYT. We show (a) topic
coherence measured by intrusion test and topic diversity
and (b) document clustering NMI scores over training,.

Allocation [34], Supervised Topic Models [10] and Labeled LDA [55].
Most of these models suffer from all three limitations mentioned
above. (2) Topic models with word embeddings have been broadly
studied after word2vec [48] came out. The common strategy is to
convert the discrete text into continuous representations of em-
beddings, and then adapt LDA to generate real-valued data. Such
kind of models include Gaussian LDA [15], Spherical Hierarchical
Dirichlet Process [3] and WELDA [12]. There are some other strate-
gies combining topic modeling and word embedding. For example,
LFTM [52] models a mixture of the multinomial distribution and a
link function between word and topic embeddings. TWE [35] uses
pretrained topic structures to learn topic embeddings and improve
word embeddings. Although these models consider word embed-
dings to make up for the “bag-of-words” assumption, they are not
equipped with general knowledge from pretrained language mod-
els. (3) Neural topic models are inspired by deep generative models
such as VAE [32]. NVDM [47] encodes documents with variational
posteriors in the latent topic space. Instead, ProdLDA [60] proposes
a Laplace approximation of Dirichlet distributions to enable repa-
rameterization. Although these neural topic models improve the
posterior approximation with neural networks, they still do not
utilize general knowledge such as pretrained language models.

5.2 Pretrained Language Models

Bengio et al. [4] propose the Neural Network Language Model
which pioneers the study of modern word embedding. Mikolov
et al. [48] introduce two architectures, CBOW and Skip-Gram, to
capture local context semantics of each word.

Although word embeddings have been shown effective in NLP
tasks, they are context-independent. Meanwhile, most NLP tasks
are beyond word-level, thus it is beneficial to derive word seman-
tics based on specific contexts. Therefore, contextualized PLMs are
widely studied recently. For example, BERT [16] and RoBERTa [36]
adopt masked token prediction as the pretraining task to leverage
bidirectional contexts. XLNet [67] proposes a new pretraining objec-
tive on a random permutation of input sequences. ELECTRA [14],
COCO-LM [43] and AMOS [44] use a generator to replace some
tokens of a sequence and predict whether a token is replaced given
its surrounding context. For more related studies, one can refer
to a recent survey [54]. There have been a few recent studies that
attempt to incorporate PLM representations into the topic modeling
framework for different purposes [6, 13, 24, 28, 61]. By contrast,
our approach features a latent space clustering framework that
leverages the inherent representations of PLMs for topic discovery
without following the topic modeling setup.

6 CONCLUSION

We explore a new alternative to topic models via latent space cluster-
ing of PLM representations. We first analyze the challenges of using
PLM embeddings to generate topic structures, and then propose
a joint latent space learning and clustering approach TopClus to
address the identified challenges. TopClus generates coherent and
distinctive topics and outperforms strong topic modeling baselines
in both topic quality and topical document representations. We also
conduct studies to provide insights on how the joint learning setup
in TopClus gradually improves the generated topic quality.

TopClus is conceptually simple which facilitates future exten-
sions such as integrating with new PLMs and advanced clustering
techniques. TopClus may also be extended to perform hierarchical
topic discovery, perhaps via top-down clustering in the latent space.
Other related tasks like taxonomy construction [30] and weakly-
supervised text classification [29, 41, 42, 45, 68] may benefit from
the coherent and distinctive topics generated by TopClus.
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A ETHICAL CONSIDERATIONS

PLMs have been shown to contain potential biases [53] which
may be carried to the downstream applications. Our work focuses
on using representations from PLMs for discovery of topics in a
target corpus, and the results will be related to both the PLMs and
the corpus statistics. We suggest applying our method together
with bias reduction and correction techniques for PLMs [20, 38]
and filtering out biased contents in the target corpus to mitigate
potential risks and harms.

B PROOF OF THEOREM 2.1

Proor. The MLM objective of BERT trains contextualized word
embeddings to predict the masked tokens in a sequence. Formally,
given an input sequence d = [w1, Wy, ..., W], a random subset of
tokens (e.g., usually 15% from the original sequence) M is selected
and replaced with [MASK] symbols. Then the BERT encoder maps
the masked sequence dtoa sequence of contextualized represen-
tations [hy, ha, ..., h,] where h; € R" (r = 768 in the BERT base
model). BERT is trained by maximizing the log-probability of cor-
rectly predicting every masked word with a Softmax layer over the
vocabulary V:

exp (erihi + bw,-)

, (7)
weM Zl‘ill exp (e;ihi + bwj)

where e,,; € R" is the token embedding; and b,,, € R is a bias value
for token w;.

Next, we construct a multivariate GMM parameterized by the
learned token embeddings e and bias vector b of BERT, and we
show that the MLM objective (Eq. (7)) optimizes the posterior prob-
ability of contextualized embeddings h generated from this GMM.
We consider the following GMM with |V| mixture components,
where each component i is a multivariate Gaussian distribution
N (p;, Z;) with mean vector p; € R”, covariance matrix X; € R™T
and mixture weight 7; (i.e., the prior probability) defined as follows:

exp(%e-&,i)?ewi +bwi)
H;i=Xey, X =3, 1= )
X1<j<|V| €Xp (%e"rvjz €w; + bwj)

where all components share the same covariance matrix X.

The contextualized embeddings h; are generated by first sam-
pling a token w; according to the prior distribution, and then sam-
pling from the Gaussian distribution corresponding to w;, as fol-
lows:

w; ~ Categorical(r), h; ~ N (Zew,, Z).

Based on the above generative process, the prior probability of

token w; is

exp (%eIﬂiZ ey, + bw,-)

p(wi) =m =

s

\4 1
Zl.:l exp (Ee;jz ey, + bwj)

and the likelihood of generating h; given w; is
exp (—%(hi -Te,,) 2! (hi - Zewi))

p (hilw;) = sl
The posterior probability can be obtained using the Bayes rule:
h;|w; .
p(wilhy) = |5\( ilw) pw)
2P (hilw;) p(w))

where the numerator p (h;|w;) p(w;) is

17 Ty-1 T 1,7 1,T
exp (_Ehi X""h; +hj ey, —jg,wi/Ee/wi+jg,Wi/Ee/m+ bw,-)

(2m)r/2|x| /2 ZLQ exp (%e-";,jz ey, + bwj)

The terms in the denominator are in a similar form and many com-
mon factors between the numerator and the denominator cancel
out. Finally, the above posterior probability is simplified as:

exp (e;ihi + bwi)

Zyﬂ exp (e-'v—vjhi + bwj)

>

p(wilh;) =

which is precisely the probability maximized by the MLM objective
(Eq. (7)). Therefore, the MLM pretraining objective of BERT assumes
that the contextualized representations are generated from a |V|-
component GMM. ]

C IMPLEMENTATION DETAILS AND
PARAMETERS

We preprocess the corpora by discarding infrequent words that
appear less than 5 times. We use the default hyperparameters of
baseline methods. The hyperparameters of TopClus are set as fol-
lows: Latent space dimension r’ = 100; training epochs E = 20;
clustering loss weight A = 0.1; DNN hidden dimensions are 500-
500-1000 for learning f and 1000-500-500 for learning g; the shared
concentration parameter of topic vMF distributions k = 10. We
use the BERT [16] base model to obtain pretrained embeddings,
and use Adam [31] with 5e — 4 learning rate to optimize the DNNs
with batch size 32. When computing the generic document as an
average of word embeddings in Eq. (5), we only use the words
that are nouns, verbs, or adjectives because they are usually the
topic-indicative ones.

Table 4: Dataset statistics.

Corpus #documents # words/doc. Vocabulary

NYT 31,997 690 25,903
Yelp 29,280 114 11,419
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