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ABSTRACT
For the scalability of industrial online advertising systems, a two-

stage auction architecture is widely used to enable efficient ad

allocation on a large set of corpus within a limited response time.

The current deployed two-stage ad auction usually retrieves an ad

subset by a coarse ad quality metric in a pre-auction stage, and

then determines the auction outcome by a refined metric in the

subsequent stage. However, this simple and greedy solution suffers

from serious performance degradation, as it regards the decision in

each stage separately, leading to an improper ad selection metric

for the pre-auction stage. In this work, we explicitly investigate

the relation between the coarse and refined ad quality metrics, and

design a two-stage ad auction by taking the decision interaction

between the two stages into account. We decouple the design of the

two-stage auction by solving a stochastic subset selection problem

in the pre-auction stage and conducting a general second price (GSP)

auction in the second stage. We demonstrate that this decouple still

preserves the incentive compatibility of the auction mechanism.

As the proposed formulation of the pre-auction stage is an NP-

hard problem, we propose a scalable approximation solution by

defining a new subset selection metric, namely Pre-Auction Score
(PAS). Experiment results on both public and industrial dataset

demonstrate the significant improvement on social welfare and

revenue of the proposed two-stage ad auction, than the intuitive

greedy two-stage auction and other baselines.

CCS CONCEPTS
• Information systems→ Computational advertising.
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1 INTRODUCTION
Online advertising is the major sources of revenue for Internet

industry [12]. Modern online advertising platforms conduct ad allo-

cation by running ad auction mechanisms in real-time. To achieve

effectiveness and efficiency in ad allocation, the ad auction mech-

anisms jointly consider the bids from advertisers as well as the

quality of displaying ads to users. For example, in the celebrated

GSP auction [12, 30], the ad allocation decisions are made based

on the metric of bid multiplying the ad quality. The ad quality is

measured by the potential actions (e.g. , click and purchase) of users
on the displayed ads, such as click through rate (CTR) [6, 17, 38]

and conversion rate (CVR) [22], which can be estimated by learning

models over the rich features of users and ads and the abundant

data of user-ad interaction
1
. Thus, the performance of ad allocation

1
Without loss of generality, we regard CTR as the ad quality in this work.

depends not only on the rule of auction mechanism, but also on

the accuracy of learning models.

In practice, direct implementation of such a one-stage ad auction

mechanism faces scalability issues, and a two-stage auction architec-

ture is used to make a trade-off between the system scalability and

ad allocation performance. The one-stage ad auction mechanism

must decide the auction outcome on a set of thousands of ads within

tens of milliseconds [17, 39]. However, the sophisticated learning

models, such as Wide&Deep [6] and DIN [38], can not complete the

CTR estimations for all the candidate ads within a limited response

time. To relieve this dilemma between performance and scalabil-

ity, we turn to the two-stage architecture for online ad auction,

which is also adopted for large-scale online recommenders [7, 13].

An intuitive and greedy design of such a two-stage ad auction is

illustrated in Figure 1a: in the first stage, called pre-auction stage,

we rank the full set of 𝑁 ads A𝑁 , and select a subset of𝑀 ads A𝑀

by 𝑏𝑖𝑑 multiplying 𝑐𝑡𝑟 from a fast and coarse ctr estimator M𝑐 ; then
in the second stage, called auction stage, we determine the final ad

allocation results by evaluating only on the selected ad subset via

𝑏𝑖𝑑 multiplying 𝑐𝑡𝑟 from a sophisticated and refined ctr estimator

M𝑟 . Although this greedy two-stage auction mechanism has been

widely deployed in industry [17, 32], it suffers serious loss on ad

allocation performance. Due to the ability gap between the two 𝑐𝑡𝑟

estimators, the coarse and the refined 𝑐𝑡𝑟s sometimes differ greatly

for the same ⟨ad,user⟩ pair. Some ads with high refined 𝑐𝑡𝑟 but low

coarse 𝑐𝑡𝑟 could be filtered out by the first stage, losing the chance

of entering the second stage and winning an ad slot.

This greedy design reflects a common misunderstanding in ap-

plying the two-stage architecture for online advertising. While

optimizing ad allocation performance for the two-stage auction,

just regarding each stage as a separate optimization problem, e.g. ,
conducting the individual GSP auction with the same metric of

𝑏𝑖𝑑 × 𝑐𝑡𝑟 for ad selection in each stage, would suffer performance

degradation. The auction designer should consider the interaction

between the two stages (i.e. , the second stage will refine the esti-

mation and selection over the subset delivered by the first stage),

and figure out proper selection metrics for each stage.

In this work, we focus on the problem of designing a two-stage

auction for online advertising, jointly considering the scalability

of large-scale online systems and the ad allocation performance

guarantee. There are two major challenges of this work. The first

challenge is to characterize the conditions of the two-stage ad auc-

tion to satisfy the economic properties of incentive compatible (IC),
i.e. , the advertisers are encouraged to report their truthful value to

a user click as bid, and individual rational (IR), i.e. , the utility for

an advertiser is always non-negative. The second challenge is the

large decision space and then the high computational complexity

of designing the two-stage auctions, i.e. , how can we decouple the

auction design of the two stages and propose specific auctions for
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Figure 1: (a) The widely adopted greedy design of two-stage auction. (b) Our design with Pre-Auction Score (PAS).

each stage, so that the whole two-stage auction has performance

guarantee within limited response time. Although there exist many

works for designing ad auction mechanisms to optimize variance

of performance metrics such as social welfare and revenue [21, 30],

none of them considered the two-stage auction architecture. At the

same time, although the two-stage recommender system gradually

attracts attention recently [7, 13, 18], the two-stage problem of on-

line advertising differs from that of recommender systems because

there are payment transfer as well as the requirement of economic

properties of IC and IR in ad auctions, while neither of these two

issues appears in recommender systems.

The intuition behind our proposed solution for the two-stage ad

auction is as follows. First, we specify the utility model for adver-

tisers as value maximizers, a proper model to capture the objectives

of advertisers in online advertising [23, 33], and then obtain the

characteristics of the two-stage auction to be IC and IR under this

model. Then, to reduce the design space, we fix the second stage

auction as the celebrated general second price (GSP) auction, and

demonstrate that this decoupling preserves the optimality of per-

formance and the properties of IC and IR for the two-stage auction.

Next, we focus on the design in the first stage, i.e. , the pre-auction
stage, and formulate it as a stochastic subset selection problem,

which is to select𝑀 stochastic elements to maximize the expected

sum of the realized top 𝐾 elements when we regard the unrealized

𝑐𝑡𝑟s of ads in the pre-auction stage as random variables. However,

this subset selection problem is a submodular maximization with

cardinality constraints, which can be proved to be NP-hard. To

derive a scalable pre-auction, we turn to a closely related problem

of selecting𝑀 stochastic elements which maximizes the expected

recall on the realized top 𝐾 elements, based on which we can define

a new ad-wise selection metric, namely Pre-Auction Score (PAS).
We further design a learning-based implementation of this PAS

metric, which can be trained with the supervision by the refined ctr

estimator M𝑟 . As PAS is a more proper metric for the pre-auction

stage, our solution outperforms the widely adopted greedy design.

We illustrate the detailed procedure of our two-stage auction in

Figure 1b.

We summarize the main contributions of this work as follows.

• We define a new mechanism design problem of two-stage

ad auction design for online advertising, which jointly con-

siders system scalability and performance guarantee. We

also demonstrate the performance degradation of a widely

adopted two-stage ad auction, which ignores the interaction

between the optimization problems in the two stages.

• We propose a solution for designing a two-stage ad auction

for social welfare maximization. We decouple the two-stage

auction as a stochastic subset selection problem in the pre-

aucton stage and the GSP auction in the second stage. We

propose a new ad-wise selection metric Pre-Auction Score

(PAS) to solve the subset selection. The proposed two-stage

ad auction still satisfies the properties of IC and IR.

• Extensive experiments on both public and industrial data

demonstrate the effectiveness of our solution. On the indus-

trial data, our solution outperforms the greedy two-stage

auction by +4.35% on social welfare and +4.59% on revenue.

2 PRELIMINARIES
In this section, we describe the ad auction model, the utility model

of advertisers, and the desired economic properties of ad auctions.

For an online ad platform, a page view request from a user trig-

gers an ad auction, where a set of 𝑁 advertisers A𝑁 = {1, . . . , 𝑁 }
compete for𝐾 ad slots on the page. In an ad auction, each advertiser

𝑖 ∈ A𝑁 submits a bid 𝑏𝑖 based on her private value 𝑣𝑖 , which mea-

sures the potential benefits extracted from the user click on the ad.

Besides the bids of advertisers 𝒃 = (𝑏1, . . . , 𝑏𝑁 ), the auction mecha-

nism also depends on the advertiser/ad features 𝒂 = (𝑎1, . . . , 𝑎𝑁 )
and the user features𝑢. Here, the the advertiser/ad features 𝑎𝑖 could

be ad id, category id, and etc. The user features 𝑢 could be user id,

click histories, and etc. The features of ads and users are applied to

evaluate the quality of displaying a certain ad to a specific user. The

auction mechanism ⟨𝒙,𝒑⟩ determines the ad allocation outcomes

by the allocation scheme 𝒙 and the prices of the 𝐾 ad slots by the

payment rule 𝒑. The allocation scheme 𝑥𝑖 (𝒃, 𝒂, 𝑢) = 𝑘 represents

that the ad 𝑖 wins the 𝑘-th highest ad slot, or loses the auction for

𝑘 = 0; and the payment rule 𝑝𝑖 (𝒃, 𝒂, 𝑢) is the price that the ad 𝑖
needs to pay if it is displayed and clicked.

We next describe the utility model of advertisers. The advertis-

ers would like to maximize the advertising performance of their

products, only requiring the costs to satisfy certain constraints,

such as budget constraint, cost-per-click constraint and return-

of-investment constraint [34, 35]. Following the industrial obser-

vations from [1, 23], value maximizer model [33] captures such

an optimization objective of the advertisers, while the traditional



quasi-linear utility maximizer model [27] (i.e. , each advertiser 𝑖

maximizes 𝑣𝑖 − 𝑝𝑖 ) is no longer suitable in this scenario.

Definition 2.1. (Value Maximizer [33]) An advertiser 𝑖 is a value

maximizer if she prefers the auction outcomes with a higher ad slot

while keeping the payment satisfy the constraint 𝑝𝑖 ≤ 𝑣𝑖 ; for the

same ad slot, she prefers a lower payment 𝑝𝑖 .

In an ad auction, the advertisers might strategically misreport

their values, i.e. , bidding 𝑏𝑖 ≠ 𝑣𝑖 , to manipulate the auction out-

comes for their own interests. To avoid this kind of behavior, the

ad auction mechanism needs to satisfy the following economic

properties:

• Incentive Compatibility (IC): truthfully reporting the private

value, i.e. , 𝑏𝑖 = 𝑣𝑖 , is the best strategy for each advertiser 𝑖 .

• Individual Rationality (IR): the payment of advertiser 𝑖 would

not exceed the reported value, i.e. , advertiser 𝑖 pays 𝑝𝑖 ≤ 𝑏𝑖
if ad 𝑖 is displayed and clicked; or pays nothing, otherwise.

With these two properties, advertisers do not need to spend efforts

in computing bidding strategy, and are encouraged to participate

in the auctions with no risk of deficit. The online platform also

obtains the truthful and reliable advertisers’ values.

For the advertisers with the utility model as a value maximizer,

it has been proven in [33] that an auction mechanism satisfies IC

and IR if the following two conditions are satisfied:

• Monotonicity: An advertiserwouldwin the same or a higher

ad slot if she reports a higher bid;

• Critical price: The payment for a winning advertiser is the

minimum bid that she needs to maintain the same ad slot.

The goal of the ad auction mechanism considered in this work

is to maximize the expected social welfare, which is the sum of the

expected click values of displayed ads with respective to user’s sto-

chastic click behaviors. Social welfare is a crucial metric for online

advertising, as it measures the efficiency on matching advertisers

and users, and is also the upper bound of the revenue which is the

sum of the total payments of the ad platform.

3 PROBLEM FORMULATION
3.1 One-stage Ad Auction
One of the most widely used ad auction mechanisms is GSP auc-

tion [12, 30]. Given each advertiser 𝑖’s bid 𝑏𝑖 for a user click along

with the user’s 𝑐𝑡𝑟𝑖 to the ad 𝑖 , the GSP auction ranks all the ads

with their expected click values of display, i.e. , 𝑏𝑖 × 𝑐𝑡𝑟𝑖 , and al-

locates the 𝐾 ad slots from the highest to the lowest following

this rank. The payment for the winning ad at the slot 𝑘 ≤ 𝐾 is

𝑏 (𝑘+1) × 𝑐𝑡𝑟 (𝑘+1)/𝑏 (𝑘) , where the subscript (𝑘) denotes the ad with
the 𝑘-th highest expected click value. GSP auction is IC and IR

for value-maximizing advertisers as it satisfies the conditions of

monotonicity and critical price mentioned above [33]. Thus, in GSP

auction we have 𝑏𝑖 = 𝑣𝑖 for each ad 𝑖 . When there is an unbiased

𝑐𝑡𝑟 estimator
2
, the GSP auction can maximize the expected social

welfare [30], i.e. , the total expected click value of the 𝐾 winning

ads: SumTopK({𝑣𝑖 × 𝑐𝑡𝑟𝑖 }𝑖∈A ) = SumTopK({𝑏𝑖 × 𝑐𝑡𝑟𝑖 }𝑖∈A ). Here,

2
Various calibration algorithms can be applied to augment the basic 𝑐𝑡𝑟 estimator to

further reduce the bias [8].

SumTopK(S) is a set function which outputs the sum of the largest

𝐾 elements in the set S.

3.2 CTR Estimator in Ad Auction
The performance of ad auctions largely depends on the accuracy of

ctr estimators. There are various kinds of machine learning models

developed in the literature to estimate the ctr in different scenarios.

We classify these models into two categories: the coarse but fast

𝑐𝑡𝑟 estimator denoted by M𝑐 and the refined but heavy 𝑐𝑡𝑟 estima-

tor denoted by M𝑟 . The coarse 𝑐𝑡𝑟 estimator M𝑐 = 𝑐𝑡𝑟 (𝑎𝑖 , 𝑢̃) uses
light-weight learning models [17, 32], and only leverages partial

ad features 𝑎𝑖 and partial user features 𝑢̃. The refined 𝑐𝑡𝑟s estima-

tor M𝑟 = 𝑐𝑡𝑟 (𝑎𝑖 , 𝑢) can be sophisticated learning models [37, 38],

and effectively leverages full ad features 𝑎𝑖 and user features 𝑢.

For example, the full user features 𝑢 can be the user profiles along

with a long histories of user’s behaviors [37], while the partial

user features 𝑢̃ are just some basic user profiles. The refined esti-

mator M𝑟 could have a complex neural network architecture, such

as sequence modeling components, to produce rich user-ad cross

features [37, 38]. In contrast, the coarse estimator M𝑐 might simply

follow a two-tower architecture [17] or an embedding layer fol-

lowed by fully connected layers [32]. With these differences, the

M𝑟 estimator consumes longer inference time but produces more

accurate 𝑐𝑡𝑟 than the M𝑐 estimator does.

We next investigate the relation between the coarse estimator M𝑐

and the refined estimator M𝑟 . Suppose the models of both M𝑐 and M𝑟

are sufficiently trained with the same data set D, which is indepen-

dently and identically sampled from true distribution of ⟨user,ad⟩
pairs. For the input of the full feature (𝑎𝑖 , 𝑢) with the corresponding
partial feature (𝑎𝑖 , 𝑢̃), the outputs of M𝑐 and M𝑟 converge as below:

𝑐𝑡𝑟 (𝑎𝑖 , 𝑢) = |D+ (𝑎𝑖 , 𝑢) |/|D(𝑎𝑖 , 𝑢) |,

𝑐𝑡𝑟 (𝑎𝑖 , 𝑢̃) =
|D+ (𝑎𝑖 , 𝑢̃) |
|D(𝑎𝑖 , 𝑢̃) |

=
∑︁

𝑎𝑖 |𝑎̃𝑖 ,𝑢 |𝑢̃
𝑐𝑡𝑟 (𝑎𝑖 , 𝑢)

|D(𝑎𝑖 , 𝑢) |
|D(𝑎𝑖 , 𝑢̃) |

,
(1)

where D(𝑎,𝑢) ⊆ D is the subset of samples whose partial or full

features are restricted to (𝑎,𝑢), and D+
is the subset of positive

samples, i.e. , the clicked samples. Since
|D (𝑎𝑖 ,𝑢) |
|D (𝑎̃𝑖 ,𝑢̃) | ≈ Pr[𝑎𝑖 , 𝑢 |𝑎𝑖 , 𝑢̃],

the relation between M𝑟 and M𝑐 on input (𝑎𝑖 , 𝑢) can be approximately

expressed as

𝑐𝑡𝑟 (𝑎𝑖 , 𝑢̃) =
∑
𝑎𝑖 |𝑎̃𝑖 ,𝑢 |𝑢̃ 𝑐𝑡𝑟 (𝑎𝑖 , 𝑢) × Pr[𝑎𝑖 , 𝑢 |𝑎𝑖 , 𝑢̃]

= E[𝑐𝑡𝑟 (𝑎𝑖 , 𝑢) |𝑎𝑖 , 𝑢̃] .
(2)

According to this relation, serving the one-stage GSP auction with

M𝑐 and M𝑟 estimators results in expected social welfare in (3a) and

(3b), respectively:

E[SumTopK({𝑏𝑖 × 𝑐𝑡𝑟 (𝑎𝑖 , 𝑢̃)}𝑖∈A𝑁
)] (3a)

=E[SumTopK({E[𝑏𝑖 × 𝑐𝑡𝑟 (𝑎𝑖 , 𝑢) |𝑎𝑖 , 𝑢̃]}𝑖∈A𝑁
)]

≤E[SumTopK({𝑏𝑖 × 𝑐𝑡𝑟 (𝑎𝑖 , 𝑢)}𝑖∈A𝑁
)] . (3b)

The inequality in (3b) is due to Jensen’s inequality for convex func-

tion and the fact that SumTopK here can be regarded as a convex

function over R𝑁 . We see that the one-stage GSP auction with the

refined M𝑟 estimator achieves strictly higher expected social welfare

than that with the coarse estimator M𝑐 .



3.3 Two-stage Ad Auction
Due to the scalability requirement of determining auction alloca-

tion and payment over thousands of ads within tens of milliseconds,

we are unable to implement the one-stage GSP auction mentioned

above, because applying the refined 𝑐𝑡𝑟 estimator M𝑟 to the total set
of adsA𝑁 exceeds the decision latency with limited computational

resources. To make a trade-off between the optimality of social wel-

fare and the timely response time, the architecture of two-stage ad

auction is widely used in practice [17, 32]. Specifically, the first stage,

called the pre-auction stage associated with an allocation scheme

𝒙𝑝 , selects a subset of 𝑀 < 𝑁 ads, i.e. , 𝒙𝑝 (A𝑁 ) = A𝑀 ⊊ A𝑁 .

With the input of the selected ads A𝑀 from the first stage, the

second stage, called the auction stage, determines the final alloca-

tion 𝒙𝑎 and payment 𝒑𝑎 . The pre-auction stage uses coarse but fast

machine learning models with partial ad 𝒂̃ and user features 𝒖̃ on

the large set A𝑁 ; while the second auction stage can apply more

advanced and accurate 𝑐𝑡𝑟 estimators with full ad and user features

on a relatively small set A𝑀 . In the next section, we demonstrate

that without a careful design of the two-stage auction, we may

suffer from a performance degradation.

Compared with the one-stage auction design, two challenges

immediately emerge for the two-stage auction design. First, how

to guarantee the economic properties of IC and IR in a two-stage

auction. Second, considering that the searching space for jointly

designing auctions in the two stages is huge, how to decouple the

design of the two-stage auction and still guarantee the ultimate

auction performance. We recall that (i) GSP auction is IC and IR

for value maximizer advertisers, and (ii) GSP auction can maximize

the expected social welfare when there is a refined ctr estimator.

Due to these two advantages of GSP auction, we can fix the second

stage as GSP auction, which introduces neither the violence of IC

and IR nor the loss of optimality for expected social welfare.

We focus on the auction design in the first stage, i.e. , the pre-
auction stage, in this work. Firstly, we coordinate the pre-auction

and the GSP auction to satisfy the two conditions (monotonicity and

critical price) for IC and IR properties. Since there is no payment in

the pre-auction stage, we only need to guarantee that the alloca-

tion scheme 𝒙𝑝 satisfies monotonicity, i.e. , 𝑥𝑝
𝑖
(𝒃, 𝒂̃, 𝑢̃) is monotone

increasing with respective to 𝑏𝑖 . By doing this, we can guarantee

the monotonicity property of the two-stage auction, that is when

the advertiser 𝑖 increases her bid, she has a high probability to

win in the pre-auction and enter the second stage, in which she

obtains a not worse ad slot. Secondly, we formulate the optimiza-

tion problem in the pre-auction stage. The goal of the pre-auction

is to nominate a good candidate set of ads A𝑀 for the second

stage GSP auction such that the expected social welfare is maxi-

mized. With the candidate ads set A𝑀 , the GSP auction displays

the top 𝐾 ads, denoted as the set A𝐾
𝑀
, with the highest expected

click value, 𝑏𝑖 × 𝑐𝑡𝑟 (𝑎𝑖 , 𝑢), resulting in the expected social welfare

SumTopK({𝑏𝑖 × 𝑐𝑡𝑟𝑖 }𝑖∈A𝑀
) =

∑
𝑖∈A𝐾

𝑀
𝑏𝑖 × 𝑐𝑡𝑟𝑖 . In the first stage,

we have no access to the refined 𝑐𝑡𝑟 (𝑎𝑖 , 𝑢) but only the (𝑎𝑖 , 𝑢̃), and
thus the optimization problem for the pre-auction is a stochastic

optimization problem:

(PA) max

𝒙𝑝
E𝒂 |𝒂̃,𝑢 |𝑢̃ [SumTopK({𝑏𝑖 × 𝑐𝑡𝑟𝑖 (𝑎𝑖 , 𝑢)}𝑖∈A𝑀

)]
𝑠 .𝑡 . A𝑀 = 𝒙𝑝 (𝒃, 𝒂̃, 𝑢̃),

𝑥
𝑝

𝑖
(𝒃, 𝒂̃, 𝑢̃) is monotone on 𝑏𝑖 ,∀𝒃−𝑖 , 𝒂̃, 𝑢̃,

(4)

where 𝒃−𝑖 is the vector of bids after removing 𝑏𝑖 from 𝒃 = (𝑏𝑖 , 𝒃−𝑖 ).

4 SUBOPTIMALITY OF GREEDY SOLUTION
In this section, we show the performance degradation of a native

greedy two-stage ad auction (GDY), which is widely used in industry.

The GDY auction has a simple and intuitive definition based on the

refined and coarse ctr estimators M𝑟 = 𝑐𝑡𝑟 (𝑎𝑖 , 𝑢) and M𝑐 = 𝑐𝑡𝑟 (𝑎𝑖 , 𝑢̃).

Definition 4.1. In GDY, the pre-auction stage ranks all the ads

A𝑁 by 𝑏𝑖 × 𝑐𝑡𝑟 (𝑎𝑖 , 𝑢̃), and delivers the highest 𝑀 ads A𝑔

𝑀
to the

second stage, which runs a GSP auction on set A𝑔

𝑀
.

We investigate whether GDY is a proper solution for the two-

stage ad auction. Only when 𝑀 = 𝐾 , the pre-auction in GDY is

exactly the optimal solution for the problem in (4):

E[SumTopK({𝑏𝑖 × 𝑐𝑡𝑟𝑖 }𝑖∈A𝑀
)] = E[∑𝑖∈A𝑀

𝑏𝑖 × 𝑐𝑡𝑟𝑖 ]
=

∑
𝑖∈A𝑀

E[𝑏𝑖 × 𝑐𝑡𝑟𝑖 ] =
∑
𝑖∈A𝑀

𝑏𝑖 × 𝑐𝑡𝑟 𝑖 ,
where the first equality is due to𝑀 = 𝐾 , the second equality is due

to linearity of expectation, and the third equality comes from the

relation between 𝑐𝑡𝑟 from M𝑟 and 𝑐𝑡𝑟 from M𝑐 shown in (2). Thus,

selecting the ads with the largest𝑀 values of 𝑏𝑖 × 𝑐𝑡𝑟 𝑖 to form A𝑀

in GDY is optimal in this case. For the case of 𝑀 > 𝐾 , we use a

simple example to explain the suboptimality of GDY.

Example 4.2. There are 𝑁 ads with 𝑏1 × 𝑐𝑡𝑟1 > . . . > 𝑏𝑁 × 𝑐𝑡𝑟𝑁 .

∀𝑖 ≤ 𝑀 , 𝑐𝑡𝑟𝑖 = 𝑐𝑡𝑟 𝑖 . An ad 𝑗 > 𝑀 has two possible CTR realizations,

𝑐𝑡𝑟 𝑗 = 𝑡 × 𝑐𝑡𝑟 𝑗 with probability 1/𝑡 , and 𝑐𝑡𝑟 𝑗 = 𝜖 with probability

1 − 1/𝑡 , where 𝑡 > 0 is a large number such that 𝑏 𝑗 × 𝑡 × 𝑐𝑡𝑟 𝑗 >
𝑏𝐾 × 𝑐𝑡𝑟𝐾 = 𝑏𝐾 × 𝑐𝑡𝑟𝐾 . GDY first selects the top 𝑀 ads (without

the ad 𝑗 ) in the pre-auction stage, and then displays the top 𝐾

ads to the user in the second stage. The resulted expected social

welfare is

∑𝐾
𝑖=1 𝑏𝑖 × 𝑐𝑡𝑟𝑖 . However, if the pre-auction stage selects

A𝑀 = {1, . . . , 𝑀 − 1, 𝑗}, then after the second stage GSP auction,

the expected social welfare outperforms that of GDY:

E[SumTopK({𝑏𝑖 × 𝑐𝑡𝑟𝑖 }𝑖∈A𝑀
)]

= 1

𝑡 (
∑𝐾−1
𝑖=1 𝑏𝑖 × 𝑐𝑡𝑟𝑖 + 𝑏 𝑗 × 𝑡 × 𝑐𝑡𝑟 𝑗 ) + (1 − 1

𝑡 )
∑𝐾
𝑖=1 𝑏𝑖 × 𝑐𝑡𝑟𝑖

>
∑𝐾
𝑖=1 𝑏𝑖 × 𝑐𝑡𝑟𝑖 .

The greedy two-stage auction would encounter the scenarios

similar to Example 4.2, resulting in performance degradation in

practice. Some ad (like ad 𝑗 in the example) get a low coarse 𝑐𝑡𝑟

from M𝑐 but its refined 𝑐𝑡𝑟 from M𝑟 is high. If the pre-auction stage

is aware that the second stage GSP auction will further refine the

𝑐𝑡𝑟 estimation, the pre-auction stage can make a better decision,

selecting some ads with potential high refined ctr to achieve a

higher social welfare. This example uses the relation between the

coarse estimator M𝑐 and refined estimator M𝑟 shown in (2), i.e. , the
pre-auction stage can regard the unrealized refined 𝑐𝑡𝑟 (𝑎𝑖 , 𝑢) as a
random variable from a distribution with the mean value 𝑐𝑡𝑟 (𝑎𝑖 , 𝑢̃).
This problem is a subset selection over a set of random variables in

the literature, and the theoretical analysis have been considered in

team selection problem [20] and other general background [26].



The main insight we want to deliver here is that the widely

deployed greedy solution, regarding the design in each of the two

stages as social welfare maximization separately and using the

same selection metric (𝑏 × 𝑐𝑡𝑟 or 𝑏 × 𝑐𝑡𝑟 ) in both stages, would

instead suffer a suboptimal social welfare. When design a two-stage

auction, we should consider the interaction between the two stages,

i.e. , the second stage will refine the estimation and conduct the ad

allocation over the subset delivered by the first stage, and design

proper selection metrics for each stage, to guarantee the overall ad

performance of the two-stage ad auction.

5 PRE-AUCTION DESIGN
We first show the computational complexity of solving the pre-

auction problem defined in (4). To reduce the complexity, we then

propose an ad-wise metric called pre-auction score (PAS) for scal-

able ad selection in the pre-auction stage. We also design a learning

based implementation for PAS in practice. The detailed proofs in

this section can be found in Appendix A.

5.1 Complexity of Pre-auction Problem
We first prove that, even we relax the constraint of monotonicity on

the allocation 𝑥
𝑝

𝑖
of the problem PA in (4), the resulting simplified

version of PA is still intractable.

(SimPA) max

A𝑀 ⊆A𝑁

E𝒄𝒕𝒓 [SumTopK({𝑏𝑖 × 𝑐𝑡𝑟𝑖 }𝑖∈A𝑀
)]

𝑠 .𝑡 . |A𝑀 | ≤ 𝑀,

where 𝑐𝑡𝑟𝑖 is a random variable.

Proposition 5.1. The SimPA problem is NP-hard.

In fact, SimPA is a submodular maximization with a cardinality

constraint. For a ground set A, a set function 𝑔 : 2
A → R is

submodular if ∀S ⊆ T ⊂ A and ∀𝑗 ∈ A\T , 𝑔(S ∪ { 𝑗}) − 𝑔(S) ≥
𝑔(T ∪ { 𝑗}) − 𝑔(T ).

Proposition 5.2. In SimPA, the objective E𝒄𝒕𝒓 [SumTopK({𝑏𝑖 ×
𝑐𝑡𝑟𝑖 }𝑖∈S)] is a submodular set function with respective to the set S.

There is no apparent tractable and scalable solution for this

submodular optimization in the setting of pre-auction stage: (i) The

brute force algorithm, which evaluates the selectionA𝑀 at set-wise

scale, causes an intractable 𝑂 (
(𝑁
𝑀

)
) computation. (ii) The classical

approximation algorithms [2, 28] select ads sequentially based on

their marginal contributions, failing to run in an ad-wise parallel

way, and thus are still not scalable in practice. (iii) We emphasize

that from the perspective of the pre-auction stage, 𝒄𝒕𝒓 as well as its
explicit distribution are unknown, which introduces difficulty on

even evaluating the objective submodular function. Thus, even the

parallel approximation algorithms [4], which rely on submodular

function evaluation, are not suitable here.

Considering the scalability in online service of pre-auction stage,

we propose an ad-wise metric for subset selection in Section 5.2.

With this ad-wise metric, we can evaluate each ad in a parallel

way, and avoid evaluation of the submodular set function. To tackle

the lack of explicit distribution of 𝒄𝒕𝒓 , we propose learning based
implementation for the ad-wise metric in Section 5.3.

5.2 Pre-auction Score
We design a tractable and scalable ad-wise metric for subset selec-

tion in the pre-auction stage, which supports parallel evaluation

on each ad. Since that social welfare maximization of pre-auction

is an NP-hard problem, it is hopeless to directly obtain an ad-wise

metric as the exact solution for social welfare maximization. The

key insight here is that we can turn to an objective closely related

to social welfare maximization, and then derive a corresponding

ad-wise metric. The closely related objective, called recall maxi-
mization (PA-R), is to select the set of ads A𝑀 in the pre-auction

stage to cover as much final top K ads of A𝑁 in the auction stage,

(PA-R) max

A𝑀 ⊆A𝑁

E𝒄𝒕𝒓 [SumTopK({1[𝑖 ∈ A𝐾
𝑁 ]}𝑖∈A𝑀

)],
(5)

where the final top 𝐾 ads of A𝑁 , denoted as A𝐾
𝑁
, are the ads with

the highest 𝐾 𝑏𝑖 × 𝑐𝑡𝑟 (𝑎𝑖 , 𝑢) from A𝑁 in the auction stage. If A𝑀

covers all the top𝐾 adsA𝐾
𝑁
, it achieves the maximum social welfare

of the one-stage auction, i.e. , the upper bound social welfare of

two-stage ad auction.

We now derive the exact ad-wise metric, such that the pre-

auction can rank and retrieve the top 𝑀 ads A𝑀 according to

this metric to optimize PA-R. Consider any fixed subset A𝑀 , the

expected recall on A𝐾
𝑁

is

E𝒄𝒕𝒓 [SumTopK({1[𝑖 ∈ A𝐾
𝑁
]}𝑖∈A𝑀

)]
=

∑
𝑖∈A𝑀

E𝒄𝒕𝒓 [1[𝑖 ∈ A𝐾
𝑁
]]

=
∑
𝑖∈A𝑀

Pr𝒄𝒕𝒓 [𝑖 ∈ A𝐾
𝑁
],

(6)

where the first equality is due to the linearity of expectation and

the second equality is due to the definition of indicator function.

The above equation shows that selecting the ads with the largest𝑀

Pr𝒄𝒕𝒓 [𝑖 ∈ A𝐾
𝑁
], i.e. , the probabilities of being in A𝐾

𝑁
, maximizes

the expected recall on A𝐾
𝑁
. Hence, we obtain an ad-wise metric for

subset selection in the pre-auction, denoted as 𝑓𝑖 for each ad 𝑖:

(PAS) 𝑓𝑖 (𝒃, 𝒂̃, 𝑢̃) = Pr𝒄𝒕𝒓 [𝑖 ∈ A𝐾
𝑁
] . (7)

We call this metric as Pre-Auction Score (PAS). Note that although
PAS is an ad-wise metric, it is still allowed to use the information

of the whole ad set A𝑁 in the pre-auction stage, i.e. , 𝒃, 𝒂̃, 𝑢̃, to
facilitate the calculation of the probability. According to definition

of set A𝐾
𝑁

and PAS in (7), for any advertiser 𝑖 , partial ads features

𝒂̃, user features 𝑢̃ and other advertiser’s bid 𝑏−𝑖 , the advertiser 𝑖’s
PAS is monotonely increasing with respective to 𝑏𝑖 . Thus, if the

pre-auction ranks all the ads A𝑁 with the metric PAS and selects

the top 𝑀 ads, it satisfies the monotonicity of allocation in the

pre-auction, and hence satisfies the IC of the two-stage auction.

5.3 Learning Based Pre-auction Score
Computing the metric PAS requires an explicit form of distribution

Pr[𝒄𝒕𝒓 |𝒃, 𝒂̃, 𝑢̃], which might be complicated within the unknown

and interdependent online environment. To overcome this difficulty,

we use parametrized neural networks to implement a learning

based PAS 𝑓 𝜃
𝑖
, such that the permutation of ranking by 𝑓 𝜃

𝑖
can

approximate the permutation of ranking by the original PAS 𝑓𝑖 in

(7). We use supervised learning to determine the parameters 𝜃 of

the neural networks 𝑓 𝜃
𝑖
. For each training sample, the features are

(𝒃, 𝒂̃, 𝑢̃), i.e. , the 𝑁 bids, the partial ad features and the partial user

features; and the label is the 𝑁 -dim vector 𝒚, where the element is



𝑦𝑖 = 𝑏𝑖 × 𝑐𝑡𝑟 (𝑎𝑖 , 𝑢) for each ad 𝑖 . During the training process, we

need 𝑐𝑡𝑟 (𝑎𝑖 , 𝑢) from the refined estimator M𝑟 for all the ads in A𝑁

to compute the label of a sample. But we only obtain 𝑐𝑡𝑟 (𝑎𝑖 , 𝑢) for
ad 𝑖 ∈ A𝑀 during the online service, because only the ads A𝑀

enter the second auction stage and are evaluated by the refined

estimator. Thus, we need an offline refined estimator M𝑟 to produce

𝑐𝑡𝑟 (𝑎𝑖 , 𝑢) for the ads in A𝑁 \A𝑀 .

Follow the Plackett-Luce probability model, which is widely used

in learning the distribution of permutations [3, 15], we assume that

the permutation 𝜋 of ranking by 𝑦𝑖 = 𝑏𝑖 × 𝑐𝑡𝑟 (𝑎𝑖 , 𝑢) is a sample

from the distribution of permutations which is defined with 𝑁

parameters {𝑦𝑖 }𝑖∈A as follows

Pr[𝜋 |𝒚] =
𝑁∏
𝑖=1

𝑦𝜋 (𝑖)∑𝑁
𝑘=𝑖

𝑦𝜋 (𝑘)
, (8)

where 𝜋 (𝑘) is the ad with rank 𝑘 . We can easily verified that this

definition of probability satisfies two desired properties: (i) It is

normalized, i.e. ,
∑
𝜋 Pr[𝜋 |𝒚] = 1; (ii) The top 1 probability is:

Pr[𝑖 is the top 1 |𝒚] = 𝑦𝑖∑𝑁
𝑘=1

𝑦𝑘
. (9)

Lemma 5.3. For 𝑦𝑖 > 𝑦 𝑗 and 𝐾 > 1, Pr[𝑖 ∈ A𝐾
𝑁
] > Pr[ 𝑗 ∈ A𝐾

𝑁
].

With Lemma.5.3, we can use the rank by 𝑦𝑖 to represent the

rank by PAS Pr[𝑖 ∈ A𝐾
𝑁
]. Let the neural networks directly output

𝑓 𝜃
𝑖

as logits for approximate 𝑦𝑖 . The top-1 probability of the ad 𝑖

determined by logits {𝑓 𝜃
𝑖
}𝑖∈A𝑁

is calculated as

Pr[𝑖 is the top 1 |𝒇𝜃 (𝒃, 𝒂̃, 𝑢̃)] =
exp(𝑓 𝜃

𝑖
)∑

𝑘∈A𝑁
exp(𝑓 𝜃

𝑘
)
.

Given the sample set D𝑓 , we minimize the cross entropy between

the sample distribution and the parametric distribution by 𝒇𝜃 , so
the loss function is

𝐿 = − 1

|D𝑓 |
∑︁
𝑗 ∈D𝑓

𝑁∑︁
𝑖=1

Pr[𝑖 is the top 1|𝒚 𝑗 ]

× log Pr[𝑖 is the top 1|𝒇𝜃 (𝒃 𝑗 , 𝒂̃ 𝑗 , 𝑢̃ 𝑗 )]

, (10)

where the superscript 𝑗 means the 𝑗-th sample in D𝑓 .

6 EXPERIMENTS
We provide empirical evidence for the effectiveness of our proposed

two-stage auction solution on both public and industrial datasets.

6.1 Settings for Public Dataset
The public dataset Amazon Dataset

3
contains product reviews

and metadata from Amazon [16, 25]. We conduct experiments on

the subset called Books, which contains 603K user reviews, 367K

items and 1600 categories. We regard reviews as user clicks and

regard items as ads. The full features of a user 𝑢 include a user_id,

and a list of user’s reviewed items along with categories in his-

tory, i.e. , 𝑢 = ⟨user_id, hist_items_id, hist_cate_id⟩. The length

of each user’s item list is at least 5. The full ad features 𝑎𝑖 is

𝑎𝑖 = ⟨item_id, cate_id⟩. We define the partial user feature 𝑢̃ as

𝑢̃ = ⟨user_id, hist_items_id[:3], hist_cate_id[:3]⟩, i.e. , only the first
3
http://jmcauley.ucsd.edu/data/amazon/

three items in user’s history are used in 𝑢̃. The partial ad features

𝑎𝑖 is defined as the same as the full ad features 𝑎𝑖 . Based on this

dataset, we simulate the process of two-stage auction and generate

40,000 auctions. In each auction, there are 1000 randomly selected

ads. The bid of each ad is independently sampled from uniform

distribution.

To simulate the second stage GSP auction, we use ad and user’s

full features ⟨𝑎𝑖 , 𝑢⟩ to train Deep Interested Networks (DIN), a

baseline 𝑐𝑡𝑟 estimator [38], as the refined estimator M𝑟 to generate

𝑐𝑡𝑟 (𝑎𝑖 , 𝑢), and the label 𝑏𝑖 × 𝑐𝑡𝑟 (𝑎𝑖 , 𝑢) for each ad. To simulate GDY

for comparison, we use ad and user’s partial features ⟨𝑎𝑖 , 𝑢̃⟩ to train
a model with embedding followed by fully connected layers (FCN)

[32], as the coarse and fast estimator M𝑐 to generate 𝑐𝑡𝑟 (𝑎𝑖 , 𝑢̃) for
each ad. The training samples for M𝑟 DIN and M𝑐 FCN are the same,

i.e. , the same ⟨ad, user⟩ pairs from the dataset as positive samples,

along with the same 1:1 negative sampling. Let the negative down

sampling rate be 𝜂. When a estimator trained with 1:1 negative

samples outputs 𝑝 , then the resulting 𝑐𝑡𝑟 =
𝑝

𝑝+(1−𝑝)/𝜂 [17]. The dif-

ference between 𝑐𝑡𝑟 and 𝑐𝑡𝑟 gets larger as 𝜂 decreases, because the

difference between raw output 𝑝 from M𝑟 and M𝑐 is approximately

amplified by the factor 1/𝜂. We consider two settings, Public-1 and

Public-5, where the negative down sampling rates are 0.01 and

0.05, respectively. Public-1 simulates the 𝑐𝑡𝑟 in real-world online

advertising. We would like to verify whether our solution can still

outperform GDY in the scenario simulated by Public-5, where the

difference between 𝑐𝑡𝑟 and 𝑐𝑡𝑟 is small and GDY are able to achieve

a relatively better performance.

6.2 Settings for Industrial Dataset
The industrial dataset comes from the log of a two-stage ad auc-

tion in a leading e-commerce platform, running GDY defined as

Definition 4.1. We randomly sample 30K auction records from the

logged data on January 8th 2021. There are 700 ads in each auction

instance. For each ad, the features are: (i) 𝑐𝑡𝑟 (𝑎𝑖 , 𝑢̃) from M𝑐 , some

historical statistics such as historical averaged refined 𝑐𝑡𝑟 and 𝑐𝑣𝑟

of this ad. We regard these estimated values as cross features of the

ad and user’s partial features ⟨𝑎𝑖 , 𝑢̃⟩; (ii) Ad information like bid 𝑏𝑖 ,

category and selling price of the product in the ad. The estimated

𝑐𝑡𝑟 (𝑎𝑖 , 𝑢) from M𝑟 are used to generate the label 𝑏𝑖 ×𝑐𝑡𝑟 (𝑎𝑖 , 𝑢). Note
that under our assumption of value maximizing advertisers, GDY

satisfies IC and IR. Therefore, we can regard the logged bids as ad-

vertiser’s truthful values for user clicks. Then, we can use the logged

bids to compute social welfare and revenue during simulating other

IC and IR auction mechanisms.

6.3 Evaluation Metrics
We consider the following common used metrics for ad auction

evaluation. We recall that A𝐾
𝑁
is the true top 𝐾 ads in the whole

set A𝑁 while A𝐾
𝑀

is the top 𝐾 ads in the selected subset A𝑀 .

• Social welfare rate: 𝑆𝑊𝑟@𝐾 =

∑
𝑖∈A𝐾

𝑀
𝑏𝑖×𝑐𝑡𝑟𝑖∑

𝑗∈A𝐾
𝑁
𝑏 𝑗×𝑐𝑡𝑟 𝑗 .

• Top K Recall: 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 =
∑
𝑖∈A𝐾

𝑀
1[𝑖 ∈ A𝐾

𝑁
]/𝐾 .

• Revenue rate: 𝑅𝐸𝑉𝑟@𝐾 = 𝑅𝐸𝑉 (A𝐾
𝑀
)/𝑅𝐸𝑉 (A𝐾

𝑁
), where

revenue 𝑅𝐸𝑉 is under GSP auction and the subscript (𝑘)



Table 1: Results of different methods on data setting Public-1. 𝑁 = 1000, 𝑀 = 50. Notations in a table cell: average ± standard
deviation (Improvement over GDY) in 20 runs.

𝑅𝑒𝑐𝑎𝑙𝑙@1 𝑅𝑒𝑐𝑎𝑙𝑙@5 𝑅𝑒𝑐𝑎𝑙𝑙@10 𝑆𝑊𝑟@5 𝑅𝐸𝑉𝑟@5

GDY 0.8383 ± 0.0022, (0%) 0.7378 ± 0.0024, (0%) 0.6597 ± 0.0029, (0%) 0.9252 ± 0.0007, (0%) 0.9028 ± 0.0010, (0%)

REGCTR 0.8440 ± 0.0058, (+0.57%) 0.7469 ± 0.0079, (+0.91%) 0.6698 ± 0.0079, (+1.01%) 0.9234 ± 0.0048, (-0.18%) 0.9026 ± 0.0050, (-0.02%)

REG 0.8506 ± 0.0068, (+1.23%) 0.7483 ± 0.0109, (+1.05%) 0.6709 ± 0.0112, (+1.12%) 0.9274 ± 0.0041, (+0.22%) 0.9058 ± 0.0050, (+0.30%)

PAS 0.9093 ± 0.0021, (+7.10%) 0.8639 ± 0.0045, (+12.61%) 0.8246 ± 0.0057, (+16.49%) 0.9613 ± 0.0011, (+3.61%) 0.9519 ± 0.0015, (+4.91%)

Table 2: Results of different methods on data setting Public-5. 𝑁 = 1000, 𝑀 = 50. Notations are the same as Table.1.

𝑅𝑒𝑐𝑎𝑙𝑙@1 𝑅𝑒𝑐𝑎𝑙𝑙@5 𝑅𝑒𝑐𝑎𝑙𝑙@10 𝑆𝑊𝑟@5 𝑅𝐸𝑉𝑟@5

GDY 0.8359 ± 0.0023, (0%) 0.7390 ± 0.0026, (0%) 0.6623 ± 0.0025, (0%) 0.9389 ± 0.0006, (0%) 0.9213 ± 0.0008, (0%)

REGCTR 0.9073 ± 0.0029, (+7.14%) 0.8502 ± 0.0028, (+11.12%) 0.7972 ± 0.0032, (+13.49%) 0.9669 ± 0.0008, (+2.80%) 0.9578 ± 0.0010, (+3.65%)

REG 0.9094 ± 0.0037, (+7.35%) 0.8521 ± 0.0051, (+11.31%) 0.7982 ± 0.0057, (+13.59%) 0.9673 ± 0.0016, (+2.84%) 0.9583 ± 0.0018, (+3.70%)

PAS 0.9155 ± 0.0071, (+7.96%) 0.8745 ± 0.0075, (+13.55%) 0.8363 ± 0.0080, (+17.40%) 0.9720 ± 0.0022, (+3.31%) 0.9651 ± 0.0027, (+4.38%)

Table 3: Results of different methods on data setting Industrial. 𝑁 = 700, 𝑀 = 30. Notations are the same as Table.1.

𝑅𝑒𝑐𝑎𝑙𝑙@1 𝑅𝑒𝑐𝑎𝑙𝑙@5 𝑅𝑒𝑐𝑎𝑙𝑙@10 𝑆𝑊𝑟@5 𝑅𝐸𝑉𝑟@5

GDY 0.4745 ± 0.0046, (0%) 0.3740 ± 0.0019, (0%) 0.3175 ± 0.0013, (0%) 0.7808 ± 0.0013, (0%) 0.7483 ± 0.0010, (0%)

REGCTR 0.5156 ± 0.0047, (+4.11%) 0.4043 ± 0.0028, (+3.03%) 0.3451 ± 0.0024, (+2.76%) 0.8081 ± 0.0017, (+2.73%) 0.7764 ± 0.0022, (+2.81%)

REG 0.5118 ± 0.0059, (+3.73%) 0.4048 ± 0.0033, (+3.08%) 0.3474 ± 0.0027, (+2.99%) 0.8089 ± 0.0022, (+2.81%) 0.7783 ± 0.0025, (+3.00%)

PAS 0.5351 ± 0.0035, (+6.06%) 0.4226 ± 0.0024, (+4.86%) 0.3635 ± 0.0017, (+4.60%) 0.8243 ± 0.0013, (+4.35%) 0.7942 ± 0.0007, (+4.59%)

means the advertiser with the 𝑘-th highest 𝑏 × 𝑐𝑡𝑟 in the

corresponding set, and 𝑅𝐸𝑉 (A) = ∑𝐾
𝑘=1

𝑏 (𝑘+1) × 𝑐𝑡𝑟 (𝑘+1) .

6.4 Methods for Comparison
To prove the effectiveness of our proposed solution with PAS metric

and its learning based implementation, we introduce the follow-

ing baselines of pre-auction for comparison. Due to the practical

deployment requirement, we only focus on the methods work as

ranking by an ad-wise metric to select a subset of𝑀 ads from the

A𝑁 , and we only describe their selection metrics here. Implemen-

tation of these ad-wise metrics are restricted to use the same partial

features ⟨𝑎,𝑢⟩ as PAS uses.

• Greedy (GDY): As described in Definition 4.1, the rank score

of GDY for ad 𝑖 is simply 𝑏𝑖 × 𝑐𝑡𝑟 𝑖 , where 𝑐𝑡𝑟 𝑖 is the output
by the coarse estimator M𝑐 .

• Regression to 𝑐𝑡𝑟𝑖 (REGCTR): We use 𝑐𝑡𝑟𝑖 as label, and use

ad and user’s partial features ⟨𝑎𝑖 , 𝑢̃⟩ to train a regression

model with mean square loss. The rank score is bid times

output of the regression model.

• Regression to 𝑏𝑖 × 𝑐𝑡𝑟𝑖 (REG): We use 𝑏𝑖 × 𝑐𝑡𝑟𝑖 as label, and
use the partial ad, user features and the bid, i.e. , 𝑏𝑖 , 𝑎𝑖 , 𝑢̃, to
train a regression model with mean square loss.

The neural network structure and input for REGCTR, REG, and PAS

are almost the same, except that REGCTR network lacks the input

of bid. The reason we introduce REGCTR and REG for comparison

is to demonstrate that PAS is a more proper selection metric for pre-

auction. In each repeated experiment, we split data into training,

validation, and test set with 3:1:1, and apply early stopping with

metric 𝑆𝑊𝑟@5 on validation set for all three methods.

6.5 Performance Comparison
Results of different methods on data setting Public-1, Public-5 and

Industrial are given in Table 1-3. The tables show average metrics,

standard deviation and the improvement over GDY in 20 runs with

20 distinctive random seeds for each data setting and methods.

We can obtain the following observations from Table 1-3. (i) We

can see that our proposed PAS outperforms all baseline methods in

each data setting and on each metric. For instance, PAS improves

𝑆𝑊𝑟@5 by +3.61%, +3.31% and +4.35% comparing with the widely

used GDY in Public-1, Public-5 and Industrial, respectively. (ii) As

REGCTR, REG and PAS have better performance than GDY on most

data settings and metrics, we conclude that pre-auction stage can

benefit from the supervision by the second stage’s information. (iii)

REGCTR and REG fall behind our proposed PAS. The reason can

be that while REGCTR and REG are forced to learn regression on

𝑐𝑡𝑟𝑖 or 𝑏𝑖 × 𝑐𝑡𝑟𝑖 , PAS who models the probability of being top 𝐾 , is

a more proper selection metric for the pre-auction stage.

Next, we compare the performance results in Table 1-2 for Public-

1 and Public-5, who only differ on their down negative sampling

rates 𝜂. The smaller the 𝜂 is, the larger the gap between coarse 𝑐𝑡𝑟

and refined 𝑐𝑡𝑟 is. This indicates that GDY on Public-1 has a worse

performance than on Public-5, which can also be observed from

the the evaluation results. We can also see that REGCTR and REG

achieve much worse performance on Public-1 than on Public-5. For

example, 𝑆𝑊𝑟@5 of REG on Public-5 is 0.967 which outperforms

𝑆𝑊𝑟@5 of GDY by +2.84%, but the corresponding values turn out

to be only 0.927 and +0.22% on Public-1. However, PAS are more

stable than REG and REGCTR, and achieves similar good results

on both Public-1 and Public-5.

In Figure 2, we plot an auction instance for each of the three data

settings to show the results of the four methods work in a two-stage



Public-1 Public-5 Industrial

Figure 2: Illustration of two-stage auctionwithmethods GDY, PAS, REGCTR andREG on data Public-1, Public-5 and Industrial.
Layout of the four small figures: top-left, GDY; top-right, PAS; bottom-left, REGCTR; bottom-right, REG.

auction. The figures for Public-1 and Public-5 are from the same

auction instance, while only the down negative sampling rates for

calculating 𝑐𝑡𝑟 are different. We first explain the three large figures

in the above of Figure 2 which illustrate the results of method GDY.

The x-axis is the rank by𝑏𝑖𝑑×𝑐𝑡𝑟 with the refined 𝑐𝑡𝑟 estimator, and

here we show the top 200 ads. A blue and red point with the same

x coordinate are associated with the same ad. The y-axis for blue

points is the normalized value of 𝑏𝑖𝑑 × 𝑐𝑡𝑟 , while the y-axis for red
points is the normalized value of 𝑏𝑖𝑑×𝑐𝑡𝑟 . The black horizontal line
shows the threshold of the normalized value 𝑏𝑖𝑑 × 𝑐𝑡𝑟 for entering
the second auction stage in GDY. Red points above the black line

enter the second auction stage, and the most left 5 red points among

them obtain the top 5 ranks in the second auction stage and win ad

slots. Next, we explain the small figures which show the top 20 ads

in four different methods. Similarly, y-axis for the red points is the

normalized score of pre-auction in the method, while the black hor-

izontal line is the corresponding threshold for entering the second

stage. We can see that variant methods result in different rankings

in the pre-auction and different black horizontal lines. For example

in the third column for Industrial data, the ad slots are allocated

to the ads with the rank of 𝑏𝑖𝑑 × 𝑐𝑡𝑟 as {2, 11, 15, 17, 20} (GDY),

{1, 2, 4, 11, 13} (PAS), {1, 2, 8, 11, 13} (REGCTR), and {1, 2, 8, 11, 13}
(REG), and thus PAS have a better 𝑅𝑒𝑐𝑎𝑙𝑙@5 and 𝑆𝑊𝑟@5 than GDY,

REGCTR, and REG in this example.

6.6 IC Testing
As we have mentioned before that in order to guarantee the eco-

nomic properties of IC and IR for the auction, we require that the

allocation for each advertiser is monotonely increasing with respec-

tive to her bid. That is to say, the pre-auction stage need to satisfy:

for any advertiser 𝑖 , given partial features for all ads 𝒂̃ and for the

Table 4: Failure rates of perturbation tests, with unit ×10−5.
Average ± standard deviation in 20 runs.

GDY REGCTR REG PAS

Public-1 0 0 10.4 ± 5.27 0 ± 0

Public-5 0 0 0 ± 0 0 ± 0

Industrial 0 0 4.63 ± 5.69 1.40 ± 2.34

user 𝑢̃, as well as bids from other advertisers 𝑏−𝑖 , there exists a

threshold 𝑏𝑡
𝑖
that the ad 𝑖 enters the second stage auction if and

only if 𝑏𝑖 ≥ 𝑏𝑡𝑖 . To show that learning based PAS can achieve the

monotonicity approximately, we conduct counter factual perturba-

tion on each advertiser’s bid in the logged data and evaluate the

violation of monotonicity condition. This is a common method for

IC testing of ad auction mechanisms [9, 10].

Specifically, we sample 1000 auctions from the test set. One IC

test is defined on an auction and an ad. For an ad 𝑖 , all its features

to PAS model remain the same except that we replace 𝑏𝑖 with

𝛼 × 𝑏𝑖𝑑𝑖 , where 𝛼 ∈ S𝑝 = {0.2 × 𝑗 | 𝑗 = 1, . . . , 10} is a multiplicative

perturbation factor from interval [0, 2]. All the features of other
ads in this auction remains the same. We simulate the two-stage

auction on all 10 perturbation factors to check whether the PAS

model pass the perturbation tests, i.e. , (i) ∃𝛼 ∈ S𝑝 such that ad 𝑖

can enter the auction stage with 𝛼 × 𝑏𝑖 ∀𝛼 ≥ 𝛼 ; or (ii) ad 𝑖 can not

enter auction stage with 𝛼 × 𝑏𝑖 for any 𝛼 ∈ S𝑝 .
We conduct 1000 × 1000 tests, for 1000 auctions and 1000 adver-

tisers per auction, in each of Public-1 and Public-5, and 1000 × 700

in Industrial data. Table 4 shows the average failure rates and the

standard deviations of 20 runs. The low failure rates show that even

we apply no deliberate design on PAS model for a guarantee of

strict monotonicity, the learning based PAS learns an approximate



monotonicity automatically. An intuitive reason might be that there

is a signal in the supervised data that bid has a positive effect on the

objective of model. We also test REG and obtain similarly low fail-

ure rates. For GDY and REGCTR, their metrics are monotone with

respective to bid, so their allocations of pre-auction are naturally

monotone.

7 RELATEDWORK
Online advertising auction. In the market of online ad auction,

traditional auction mechanisms like general second price auction

(GSP) [12, 30] and Vickrey-Clark-Groove auction (VCG) [31] are

widely used. Recently, many parametric mechanisms learning from

data are proposed to optimize performance metrics of the auction

market, e.g. squashed GSP [21], boosted second price auction [14],

and dynamic reserve price via reinforcement learning [29] for the

task of revenue maximization. The paradigm of differentiable mech-

anism design via deep learning proposed by Dütting et al. [11]
is also applied to multi-objective optimization in online ad auc-

tions [23].

Two-stage recommender. Two-stage architectures with can-

didate generation followed by ranking have been widely adopted

in large scale industrial recommenders. Despite their popularity,

the literature on two-stage recommenders is relatively scarce. To

improve computation efficiency [19, 36] and recommendation qual-

ity [5] are still the two most important problems of recommenders

even in two-stage setting. Interaction between the two stages and

its influence on system performance are studied in [5, 18, 24]. Our

problem of two-stage auction system differs from the two-stage

recommenders. Since the payment transfer and requirement of eco-

nomic properties, an auction system need quantifiable and explain-

able evaluation of user’s interests like 𝑐𝑡𝑟 , while a recommender

only determines the order of items.

8 CONCLUSION
We have studied a novel problem of designing a large-scale two-

stage ad auction, which consists of a pre-auction stage and an

auction stage, to maximize social welfare for online advertising. We

illustrated social welfare loss of a widely adopted design due to its

improper selection metric in the pre-auction stage, which ignores

the relation between the two auction stages. We have designed an

IC and IR two-stage ad auction solution for valuemaximizers, where

the second stage is GSP auction and the pre-auction stage selects

the ad subset with an ad-wise metric called Pre-Auction Score

(PAS). We have further proposed a learning based implementation

of PAS. Experiment results on both public and industrial dataset

have shown that our proposed solution outperforms the greedy

design significantly on social welfare and revenue of the two-stage

ad auction.
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A PROOFS
Proof for Proposition 5.1. We prove that SimPA is NP-hard

even when 𝐾 = 1 by reducing a well-known NP-hard problem

set cover to SimPA. We first define the general set cover problem.

The universal set is U = {𝑢1, . . . , 𝑢𝐿}. There is a collection T =

{S1, . . . ,S𝑁 } where ∀𝑖 ≤ 𝑁 , S𝑖 ⊂ U is a subset of universal set

U. The set cover problem is to decide whether there is a T ′ ⊂
T , |T ′ | ≤ 𝑀 such that

⋃
S𝑖 ∈T′ S𝑖 = U. Next, for any instance of

the set cover problem, we define the corresponding SimPA instance.

Randomly sample a non-empty subset U ′
from universal set U,

then we define a set of random variables 𝒄𝒕𝒓 = {𝑐𝑡𝑟1, . . . , 𝑐𝑡𝑟𝑁 }
where each 𝑐𝑡𝑟𝑖 ∈ {0, 1

𝑏𝑖
} is corresponding to the above set S𝑖 : if

any element in S𝑖 are sampled in U ′
, 𝑐𝑡𝑟𝑖 =

1

𝑏𝑖
and 𝑏𝑖 × 𝑐𝑡𝑟𝑖 = 1;

otherwise, 𝑐𝑡𝑟𝑖 = 0 and 𝑏𝑖 × 𝑐𝑡𝑟𝑖 = 0. Therefore, there exists a T ′ ⊂
T , |T ′ | ≤ 𝑀 if and only if there exists anA𝑀 that 𝑖 ∈ A𝑀 ,∀𝑖 ∈ T ′

and 𝑖 ∉ A𝑀 otherwise, such that E𝒄𝒕𝒓 [SumTopK({𝑏𝑖 ×𝑐𝑡𝑟𝑖 }A𝑀
)] =

1 for 𝐾 = 1. □

Proof for Proposition 5.2. We can easily verify that SumTopK
is a submodular set function. For any fixed value of 𝒄𝒕𝒓 , and ∀S ⊆
T ⊂ A𝑁 and 𝑗 ∈ A𝑁 \T ,

SumTopK({𝑏𝑖 × 𝑐𝑡𝑟𝑖 }𝑖∈S∪{ 𝑗 }) − SumTopK({𝑏𝑖 × 𝑐𝑡𝑟𝑖 }𝑖∈S)
≥ SumTopK({𝑏𝑖 × 𝑐𝑡𝑟𝑖 }𝑖∈T∪{ 𝑗 }) − SumTopK({𝑏𝑖 × 𝑐𝑡𝑟𝑖 }𝑖∈T ) .

Then, we take expectation over the distribution of 𝒄𝒕𝒓 on both sides

of the above inequality and finish the proof,

E𝒄𝒕𝒓 [SumTopK({𝑏𝑖 × 𝑐𝑡𝑟𝑖 }𝑖∈S∪{ 𝑗 })]
−E𝒄𝒕𝒓 [SumTopK({𝑏𝑖 × 𝑐𝑡𝑟𝑖 }𝑖∈S)]

≥ E𝒄𝒕𝒓 [SumTopK({𝑏𝑖 × 𝑐𝑡𝑟𝑖 }𝑖∈T∪{ 𝑗 })]
−E𝒄𝒕𝒓 [SumTopK({𝑏𝑖 × 𝑐𝑡𝑟𝑖 }𝑖∈T )] .

□

Proof for Lemma 5.3. For any pair of permutations (𝜋, 𝜋 ′) that
satisfy (1) 𝜋 (𝑖) = 𝜋 ′( 𝑗) ≤ 𝐾 ; (2) 𝜋 ( 𝑗) = 𝜋 ′(𝑖) > 𝐾 ; and (3) 𝜋 (𝑘) =
𝜋 ′(𝑘) for all 𝑘 ≠ 𝑖 ∧ 𝑘 ≠ 𝑗 , we can easily verify that Pr[𝜋 |𝒚] >

Pr[𝜋 ′ |𝒚]. Then, summing up on all these pairs of (𝜋, 𝜋 ′), we have
Pr[𝑖 ∈ A𝐾

𝑁 ∧ 𝑗 ∉ A𝐾
𝑁 ] > Pr[ 𝑗 ∈ A𝐾

𝑁 ∧ 𝑖 ∉ A𝐾
𝑁 ],

and then

Pr[𝑖 ∈ A𝐾
𝑁 ] = Pr[𝑖, 𝑗 ∈ A𝐾

𝑁 ] + Pr[𝑖 ∈ A𝐾
𝑁 ∧ 𝑗 ∉ A𝐾

𝑁 ]

≥ Pr[𝑖, 𝑗 ∈ A𝐾
𝑁 ] + Pr[ 𝑗 ∈ A𝐾

𝑁 ∧ 𝑖 ∉ A𝐾
𝑁 ] = Pr[ 𝑗 ∈ A𝐾

𝑁 ] .
□
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