
ar
X

iv
:2

20
3.

01
21

3v
1 

 [
cs

.G
T

] 
 2

 M
ar

 2
02

2

Truthful Online Scheduling of

Cloud Workloads under Uncertainty

MOSHE BABAIOFF, Microsoft Research, Israel

RONNY LEMPEL∗, Google, USA

BRENDAN LUCIER,Microsoft Research, USA

ISHAI MENACHE,Microsoft Research, USA

ALEKSANDRS SLIVKINS, Microsoft Research, USA

SAM CHIU-WAI WONG∗, Microsoft Research, USA

Cloud computing customers often submit repeating jobs and computation pipelines on approximately regular
schedules, with arrival and running times that exhibit variance. This pattern, typical of training tasks in
machine learning, allows customers to partially predict future job requirements. We develop a model of cloud
computing platforms that receive statements of work (SoWs) in an online fashion. The SoWs describe future
jobs whose arrival times and durations are probabilistic, and whose utility to the submitting agents declines
with completion time. The arrival and duration distributions, as well as the utility functions, are considered
private customer information and are reported by strategic agents to a scheduler that is optimizing for social
welfare.

We design pricing, scheduling, and eviction mechanisms that incentivize truthful reporting of SoWs. An
important challenge is maintaining incentives despite the possibility of the platform becoming saturated.
We introduce a framework to reduce scheduling under uncertainty to a relaxed scheduling problem without
uncertainty. Using this framework, we tackle both adversarial and stochastic submissions of statements of
work, and obtain logarithmic and constant competitive mechanisms, respectively.

CCS Concepts: • Theory of computation → Algorithmic mechanism design; Online algorithms; •
Networks→ Cloud computing.

Additional Key Words and Phrases: scheduling, cloud computing, online algorithms, mechanism design

1 INTRODUCTION

Cloud computing platforms provide computational resources of unparalleled scale to their cus-
tomers. Making the most of this increasing scale involves scheduling the workloads of many cus-
tomers concurrently using a large supply of cloud resources. Recent years have seen dramatic
growth in demand for a particular type of workload: training pipelines for production-grade ma-
chine learning models. Such workloads have particular characteristics and challenges that must
be addressed by a cloud platform:

• Uncertain Stochastic Job Requirements.Machine-learned models deployed to production often
entail data processing and training pipelines that run on a regular schedule, e.g., weekly or hourly.
The training step might depend on the completion of several data preparation jobs (cleaning data,
feature engineering and encoding, etc.) that run in some prerequisite order. This structure makes
it possible to predict future jobs and schedule resources in advance. However, the exact timing of
any particular job instance will depend on factors such as the size of the training data that may
only be revealed at themoment the job is to be executed (andmaybe not even then). Thus the cloud
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computing system and the customers may learn the distribution of a submitted and upcoming job’s
duration and the time at which it will become available for execution.

• Latency-dependent Utility. The utility derived by a customer from each instance of a recurring
training pipeline will depend on completion time. In some applications, the earlier the refreshed
model becomes available for deployment, the better. In other cases, customers may have constant
utility up to a strict deadline, and lower or no utility past that. The exact sensitivity to completion
time varies greatly across customers as it stems from each customer’s business problem and model
deployment strategy.

• Information Asymmetry and Incentives. Customers are likely to have more information than
the cloud platform about their upcoming jobs, as well as the power to manipulate job require-
ments. For example, a strategic customer might artificially inflate the size of their training data or
introduce unnecessary amounts of concurrency if doing so could result in a better price or lower la-
tency. We therefore consider these attributes to be private information. The platform, which faces
strategic agents, must incentivize truthful reporting to ensure that a customer would not gain an
advantage by manipulating the predictions of job requirements.1

How should a cloud platform address these three challenges? Most legacy schedulers are reac-
tive: they have little to no foresight of the arriving workloads, deal with jobs as they arrive, and do
not support submission in advance. At the other extreme are schedulers that require workloads to
announce their requirements sufficiently in advance, so as to better plan their execution. Neither
approach fully addresses the scenario of machine learning training pipelines where jobs are only
partially predictable.

1.1 Our Contributions and Techniques

A Model for Stochastic Job Requirements. Our first contribution is a model of cloud sched-
uling that captures partially predictable job requirements. In our model, jobs are declared to the
scheduling system online. Each job comes with concurrency demand and a utility function that
determines the value for different completion times, and the scheduler’s goal is to maximize to-
tal utility (i.e., social welfare). We assume that the total supply of compute nodes is significantly
larger than the concurrency demand of any one job. Importantly, a job’s specification also includes
a distribution over possible arrival times (i.e., earliest possible execution time) and duration (i.e., ex-
ecution time needed to complete). We call this specification a statement of work (SoW).2

The platform can make scheduling decisions and declare prices given advance knowledge af-
forded by the SoWs. However, the arrival time of a job is only revealed online at the moment the
job arrives, and the true duration of a job may be only partially known until the moment the job is
completed. Jobs are non-preemptable but can be evicted. Payments can depend on realized usage.
The ability to specify a distribution over job requirements instead of reserving resources in ad-

vance can significantly impact customer utility. To give a toy example, suppose that a job submitted
at time 0 will arrive at some (integral) time : ≤ - , where the probability of arriving at time : is
2:−- for each : < - (and otherwise it arrives at time - ). The job always requires a single unit of
computation for a single unit of time, but needn’t be scheduled immediately upon arrival: it pro-
vides utility 2-−: if it completes in round : . If this job is scheduled as soon as it arrives, then it uses

1While cloud computing customers tend to submit many workloads, we take the common convention that the customers
are myopic, optimizing for each job separately.
2Our theoretical model suggests an interface where customers declare distributions directly to the platform. This is an
abstraction that highlights customer incentives, since any aspect of the probabilistic information could be manipulated.
More generally, a prediction engine implemented by the platform could supply some or all of the distributional information
on the customer’s behalf. We discuss this further in Section 6.
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only a single unit of computation and the customer’s expected utility is Θ(- ). But if the customer
were required to reserve blocks of computation time at the moment of submission, it would be
necessary to reserve at least : units to obtain expected utility Θ(:). With many such jobs, forcing
agents to submit deterministic requests would substantially reduce welfare (even though every job
is very short). So it would be significantly advantageous to allow agents to submit probabilistic
requests and let the platform allocate only the needed resources at the time they are needed (and
charge only for the resources used).

Posted-Price Mechanisms with Eviction. We develop a framework for designing truthful on-
line scheduling algorithms for SoWs. Our algorithms take the form of posted-price mechanisms
that expose a menu of prices, one for each potential allocation of resources. The scheduling al-
gorithm can increase these prices over time as new SoWs arrive to the system. When a SoW is
revealed for an upcoming job, the scheduler will immediately assign an execution plan that maps
possible arrival times to job start times, chosen to maximize expected customer utility at the cur-
rent prices (and subject to eviction probabilities, as described below). Such a scheme incentivizes
truthful reporting, since the system optimizes on behalf of the strategic agents. This approach has
the important benefit that the system can commit, at the moment a SoW is submitted, to a mapping
from realizations to outcome and price.
Posted-price mechanisms for online allocation are not new and have been used in various con-

texts. A challenge specific to our setting is that, because job requirements are stochastic, a competi-
tive assignment of execution plans will sometimes inadvertently over-allocate the available supply
ex post. A common solution is to leave slack when allocating resources to reduce the chance of
over-allocation. Unfortunately, this does not suffice to address our problem: since our scheduler is
intended to run for an arbitrarily long time horizon, even a low-probability over-allocation event
will eventually occur, in which case the platformmust evict running jobs and/or cancel future com-
mitments. It is tempting to simply evict all jobs and reset the system in the (very rare) event that an
over-allocation occurs. However, this extreme policy could have a significant impact on incentives.
A customer who suspects the platform is close to saturation might benefit by misrepresenting their
job to finish earlier and thereby avoid an impending eviction.
Instead, our mechanisms evicts jobs in a particular order. Namely, jobs whose SoWs arrived most

recently are evicted first. This could include jobs that have not yet started executing, which would
be cancelled. This LIFO policy has the important property that the probability a job is evicted
is determined at the moment its SoW is submitted, and is independent of future submissions. This
allows us to incorporate eviction probabilities into the choice of execution plan, which is crucial for
incentives. Indeed, we prove that any algorithm that falls within this framework will incentivize
truthful revelation of each SoW, even when the system is close to saturation.

A Reduction to Scheduling Without Uncertainty.We provide a reduction framework for de-
signingmechanisms of the form described above. We consider a relaxed scheduling problemwhere
supply constraints need only hold in expectation over the distribution of job requirements. Hence,
there is no danger of saturation, so the problem of designing a competitive online algorithm is sig-
nificantly simpler. Given an online polytime posted-price algorithm ALG for this relaxed problem,
we show how to design a polytime mechanism for the original problem that uses ALG as a guide
and (approximately) inherits its performance guarantees.

Theorem1.1 (Informal). Suppose ALG is a robust posted-price online algorithm that isU-competitive

for the relaxed scheduling problem. Then for any n > 0, assuming sufficient supply of compute re-

sources, there is a mechanism in our framework that is n-truthful and U (1 + n)-competitive for the

original scheduling problem.
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As SoWs arrive, our mechanism simulates the progression of ALG (with a relaxed supply con-
straint) and use ALG’s prices when choosing a utility-maximizing execution plan. Our mechanism
also tracks the probability of eviction due to saturation and account for eviction when schedul-
ing. When the probability of saturation is sufficiently low, the utility-maximizing choice of alloca-
tion approximately coincides between the real and simulated problems. However, when saturation
probabilities become too high, the true allocation may diverge from the simulation. To handle this
eventuality, we require that algorithm ALG is robust in the sense that its welfare degrades gracefully
if some job allocations are corrupted by an adversary. In the face of desynchronization, our mech-
anism will play the role of a corrupting adversary and force ALG to allocate in a manner consistent
with the chosen execution plans.

An important technical challenge is that saturation events are correlated across time. Indeed, if
the system is currently saturated, it is likely to stay near-saturated in the near future, distorting
future allocation decisions. In principle this could lead to a thrashing state where over-allocation
begets more over-allocation and the system never recovers. We rule this out, proving that the
total realized usage quickly returns to concentrating around its expectation. The proof involves
establishing a novel concentration bound for martingales that may be of independent interest.

Online Mechanisms in our Framework. Finally, we provide two example polytime mecha-
nisms that illustrate how to instantiate our framework. First, we consider an adversarial variant,
where SoWs arrive online in an adversarial but non-adaptive manner.3 In this setting, we design an
$ (log(�m� ))-competitive n-truthful online scheduler, where �m is the maximum duration of any
job and the positive job values are normalized to lie in [1, � ]. This mirrors known logarithmic-
competitive online algorithms for resource allocation, based on exponentially-increasing price
thresholds. Indeed we use such an algorithm as an “input" to our reduction.
Second, we consider a stochastic variant where the jobs’ arrival times are arbitrary but their

SoWs are drawn independently from known (but not necessarily identical) distributions. (Since
each SoW includes a distribution, the prior information is a distribution over distributions.) We
apply our reduction to a variation on a recent $ (1)-competitive posted-price mechanism for in-
terval scheduling [15], obtaining an$ (1)-competitive n-truthful online scheduler. Unlike the first
example, this mechanism will require that a job’s duration is revealed at arrival time (i.e., when
ready for execution).

Theorem 1.2 (Informal). For any n > 0, assuming a sufficient supply of compute resources, there

is an n-truthful, U-competitive online mechanism for scheduling with stochastic job requirements,

with U = $ (log(�m� )) for the adversarial variant, and U = $ (1) for the stochastic variant. The
mechanism for the stochastic variant assumes that job durations are revealed upon job arrival.

1.2 Related Work

Cloud resource management. Cloud resource management has been a very active research
topic over more than a decade. Especially relevant is the idea of providing jobs with some form of
performance guarantees, often termed Service Level Agreements (SLAs) [17, 27, 36]. To enable the
SLAs, the system profiles jobs to estimate their resource requirements, duration, and sometimes
even infer their deadlines based on data; see, e.g., [16, 22, 27] and references therein.
Much recent work is dedicated to scheduling machine learning workloads. Particularly relevant

are scheduling systems that rely on predicting certain job properties. To highlight a few such
systems, Tiresias [23] is a practical system for scheduling ML jobs on GPUs. It uses estimated

3Each SoW still describes a distribution over job requirements and performance is evaluated in expectation over them; it is
the SoW specifications that arrive adversarially.
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probabilities of resource consumption and job completion times to prioritize resource allocation.
Optimus [33] is a job scheduler for deep learning clusters, which builds performance models for
estimating the training time as the function of allocated resources. The models are then used
to allocate resources dynamically via a centralized optimization problem, to minimize the total
completion time. Unlike our model, these schedulers do not account for future jobs and do not
address incentives.

Cloud Pricing. The emergence of the cloud business has naturally drawn attention to a variety
of economic considerations. Some of the main studied topics include designing proper pricing
mechanism (e.g., price structure that leads to efficiency or profit maximization, but still is simple
and comprehensible to the end user), how to maximize return on investment (e.g., through spot
pricing [1, 32]), how to exploit data for refining the pricing mechanism parameters, etc; see [2, 37]
for surveys on cloud pricing.
Let us focus on pricing SLAs between job owners and the cloud provider. [5, 24, 25, 30] posit

that jobs have a certain demand for compute resources and a deadline (or more generally, a value
function for completion, as in our model), and design incentive-compatible pricing schemes which
maximize the social welfare. [8, 26] take a market approach, without zooming in on specific cus-
tomer. Our paper differs from all these works by explicitly considering the stochastic setting, where
both job arrivals and durations are random, a model that is more relevant for ML jobs.
Pricing for machine learning workloads is a relatively new research area. [9] proposes a primal-

dual framework for scheduling training jobs, where the resource prices are the dual variables of the
framework. Other recent works [12, 31] consider auction-based mechanism for scheduling GPUs,
with the general goal of balancing efficiency and fairness. None of these papers models explicitly
the stochasticity in job arrival and duration.

Online Scheduling.A rich literature on online scheduling algorithms studies adversarially-chosen
jobs that arrive concurrentlywith execution, and a scheduling algorithmmust choose online which
jobs to admit. When job values are related to job length, such as when value densities (value over
length) are fixed or have bounded ratio, constant-competitive approximations are possible and can
be made truthful [28, 35]. When values are arbitrary, there is a lower bound on the power of any
randomized scheduler that is polylogarithmic in either (a) the ratio between longest and shortest
job lengths, or (b) the ratio between minimum and maximum job values [11], and such bounds
have been matched for certain special classes of job values [4]. We likewise obtain a logarithmic
approximation, using resource prices that grow exponentially with usage; similar methods were
used in incentive compatible online resource allocation going back to [10], and prior to that as an
algorithmic method for online routing [29, 34] and load balancing [3, 6].
A technical challenge in the present paper is to limit the impact of cascading failures that arise

because overallocation in one round causes an increase of demand for another round. A similar
challenge is faced by Chawla et al. [14], who consider a setting where an online scheduler sets a
schedule of time-dependent resource prices, and each job is scheduled into the cheapest available
timeslot before its deadline. A primary difficulty in this setting is maintaining truthfulness, and
further work also explores ways to maintain truthfulness in stateful online resource allocation [13,
18, 20]. Another closely related scheduling mechanism appears in Chawla et al. [15], who consider
a Bayesian setting where job requirements are drawn from known distributions and construct a
posted-price$ (1)-competitive mechanism. Relative to these papers, our model introduces an extra
degree of stochasticity where the submitted job requirements are themselves probabilistic.
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2 OURMODEL

We consider an idealized model of a cloud computing platform which captures the challenges
discussed above. The platform has� homogeneous computation units called nodes. Time proceeds
in discrete time-steps (or rounds), with C denoting a time-step. At each round, each node can be
allocated to some job, for the entire round. There is a finite, known time horizon) .4 The platform
interacts with self-interested job owners, called agents. Each agent owns exactly one job; we use
index 9 to denote both.
Each job 9 requires a fixed number 2 9 of nodes during its execution, called concurrency demand.

A job cannot run with fewer nodes nor benefit from additional nodes. The job arrives (becomes
ready to execute), at arrival time 0 9 . Job 9 that starts running at time C ≥ 0 9 will be in execution and
use 2 9 nodes at each of the 3 9 consecutive time-steps starting at time C (where 3 9 is called duration).
If not interrupted, the job completes successfully at time 59 = C + 3 9 . Jobs are non-preemptable:
they must run continuously in order to finish. The scheduler can evict a running job at any time,
terminating its execution and reclaiming its nodes.5

Each job 9 brings some value to its owner, depending on whether and when it is completed. This
value is +9 (59 ) ≥ 0 if the job successfully completes (finishes) at time 59 , for some non-increasing
function+9 (·) called the value function. Otherwise (i.e., if the job is evicted or never starts running)
the value is 0. By convention, the completion time is 59 = ∞ if the job never completes, and
+ (∞) = 0.

Each job 9 is submitted at some time 1 9 called the birth or submission time. At this time, the
agent knows the concurrency demand 2 9 and the value function +9 , but not the arrival time 0 9
nor the duration 3 9 . However, the agent knows the joint distribution of (0 9 , 3 9 ), denoted by % 9 . No
other information is revealed until the job actually arrives, at which time the platform learns 0 9 . It
may also learn some information about 3 9 when the job arrives, in the form of an observed signal
f 9 = f (0 9 , 3 9 ).6 No further information about 3 9 is revealed until the job completes.

Thus, at the job birth time 1 9 the agent knows the tuple SoW∗9 = (+9 , 2 9 , % 9 ), called the true
Statement of Work (SoW), and reports a tuple SoW9 = (+ ′9 , 2

′
9 , %
′
9 ), with the same semantics as the

true SoW, called the reported SoW. Since our mechanisms incentivize agents to report their true
SoWs, it will be the case that SoW9 = SoW∗9 .
The number of jobs, their birth times, and their true SoWs constitute the birth sequence. The birth

sequence is initially unknown to the agents and the platform. We will design schedulers for two
settings: adversarial and stochastic. In the adversarial variant, the birth sequence is chosen fully
adversarially. In the stochastic variant, each SoW∗9 is drawn independently from a publicly known
(and not necessarily identical) distribution and birth times are chosen adversarially. For a unified
presentation, we formally define a problem instance as a distribution over birth sequences.7

Once a job 9 has completed (at time 59 ) or been evicted, the agent is charged a payment of c 9 ≥ 0.
The agent’s utility is D 9 = +9 (59 ) − c 9 . A job that is never allocated resources has payment (and
utility) zero. Agents are risk-neutral and wish to maximize their expected utility. Our mechanisms
are n-truthful for some (small) n ≥ 0, meaning that for each agent 9 , given any reported SoWs of
the other agents and any realization of the other agents’ job requirements (durations and arrival

4The finiteness of) is for convenience when defining problem instances. Our guarantees and analysis will not depend on
the size of ) .
5It is possible to reschedule an evicted job, but our mechanisms and benchmarks will not. We therefore treat evictions as
permanent for convenience.
6For example, if f9 = 3 9 then the platform learns the duration when the job arrives, and iff9 is a constant then the platform
gains no information about duration. Most of our results hold for arbitrary signals, with the exception of Theorem 5.2.
7An adversarial choice of the birth sequence corresponds to an unknown point distribution. In the stochastic variant, the
distribution is partially known to the platform.
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ALGORITHM 1: Algorithm SchedulerFramework

1 Initialize: (c1, E
1
) ← InitInfo();

2 for each round t do

3 If a job 9 is submitted, choose launch plan !9 as per (2) ;
4 for each active job 9 that arrives at round t do

5 schedule 9 to start at time !9 (C, f 9 );
6 while the current committed load exceeds � do

7 Evict/cancel the most-recently-submitted active job;
8 Start executing each active job 9 scheduled to start at C ;
9 for each job 9 successfully completed at round t do

10 Charge agent 9 a payment of c1 9 (!(0 9 ), 2, 3 9 );

11 Update: (cC+1, E
C+1
) ← UpdateInfo();

times), agent 9 maximizes her expected utility by submitting her true SoW, up to an additive utility
loss of at most n . The expectation is over the realization of (0 9 , 3 9 ).
Our mechanism’s performance objective is to maximize the total value (orwelfare)

∑
jobs 9 +9 (59 ).

We are interested in expected welfare, where the expectation is taken over all applicable random-
ness.
For comparison, we consider the welfare-maximizing schedule in hindsight, given the value

functions, arrival times, and durations of all jobs. The offline benchmark is the expected welfare of
this schedule on a given problem instance. We are interested in the competitive ratio against this
benchmark. Our mechanism is called U-competitive, U ≥ 1, if its expected welfare is at least 1/U of
the offline benchmark for each problem instance.

Technical assumptions. We posit some known upper bounds on the jobs’ properties: all con-
currency demands 2 9 are at most �m, all job durations 3 9 are at most �m, and all values +9 (·) are
at most � . Moreover, +9 (1 9 + (m) = 0 for some known (m; in words, each agent’s value goes
down to zero in at most (m rounds after the job’s birth. We assume that +9 (·) ≥ 1 when positive,8

i.e., +9 (·) ∈ {0} ∪ [1, � ].
To simplify notation, we assume that at most one job is submitted at each round. Our algorithm

and analysis easily extend to multiple submissions per round, modulo the notation; see Remark 1.
The main notations are summarized in Appendix A.

3 THE GENERAL FRAMEWORK

This section presents a general framework for our scheduling mechanism (Algorithm 1), and es-
tablishes incentive properties common to all mechanisms in this framework.

Announced info. At each round C , the scheduler updates and announces two pieces of informa-
tion for jobs that are submitted (and born) in this round: a price menu cC and estimated failure

probabilities E
C
. Functions cC and E

C
are computed without observing the SoWs for these jobs.

The meaning of cC and E
C
is as follows. Suppose job 9 submitted at time C has reported concur-

rency demand 2 9 , realized duration 3 , and starts executing in some round C ′ ≥ C . The scheduler
announces the price cC (C ′, 2, 3) that would be paid if such job successfully completes, and an es-

timated probability that it would not complete, denoted E
C
(C ′, 2, 3). These are announced for all

8We use this assumption to achieve a multiplicative competitive ratio. Otherwise, our welfare results would be subject to
an extra additive loss. This welfare loss would correspond to that of excluding all jobs with sufficiently small values.
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relevant (C ′, 2, 3) triples, i.e., for all rounds C ′ ∈ [C, C+(m], demands 2 ∈ [�m], and durations3 ∈ [�m].
By convention, we set cC (∞, 2, 3) = 0. Prices may vary with C , within two invariants:
• cC (C ′, 2, 3) does not decrease with announce time C .
• Costs are non-decreasing in both duration and concurrency: cC (C ′, 2, 3) ≤ cC (C ′, 2 ′, 3 ′) for
any 2 ≤ 2 ′, 3 ≤ 3 ′.

Likewise, estimated failure probabilities may vary over time, but are non-increasing in both dura-

tion and concurrency: E
C
(C ′, 2, 3) ≤ E

C
(C ′, 2 ′, 3 ′) for all 2 ≤ 2 ′, 3 ≤ 3 ′.

An instantiation of Algorithm 1 should implement InitInfo() and UpdateInfo(). The rest of
the algorithm is then fixed.

Launch plans. At each round C , upon receiving the SoW for a given job 9 , the scheduler computes
the launch plan !9 for this job, which maps every possible arrival time 0 9 and signal f 9 (if any) to
the start time of the execution. The launch plan may decide to not execute the job for some arrival
times 0 9 ; we denote this !9 (0 9 , f 9 ) = ∞. The launch plan is binding: job 9 must start executing at
time !9 (0 9 , f 9 ), unless it is cancelled beforehand (as explained below).
The choice of a launch plan, described below, is crucial to ensure incentives. For a given launch

plan ! and a job whose true SoW is (+ ,2, %), we define the estimated utility * C (! | + ,2, %) as
the agent’s expected utility under the announced prices cC , assuming that the estimated failure
probabilities are correct. In a formula,

* C (! | + ,2, %) (1)

= E
(0,3)∼%

[ (
1 − E

C
(C0,f , 2, 3)

)
·
(
+ (C0,f + 3) − c

C (C0,f , 2, 3)
) ]

,

where C0,f = !(0, f (0,3)). We choose a launch plan

!9 ← argmax
launch plans !

* C (! | +9 , 2 9 , % 9 ). (2)

so as to maximize the estimated utility given the reported SoW.

Remark 1. For convenience we described Algorithm 1 under the assumption that at most one job

is submitted each round. This can be relaxed: if A SoWs are simultaneously submitted at time C , we

would choose a launch plan for each job sequentially (in any order), update the announced info after

each job, and then move to schedule arriving jobs (line 4) after all A jobs have been handled.

Cancellations and evictions. The scheduler can cancel a job that has not yet started executing,
or evict a job that has. We never restart an evicted or canceled job. A job is called active at a given
point in time if it has been submitted, but has not yet been completed, cancelled, or evicted.9 We
say that an active job 9 is scheduled to start at round C if it has arrived and C = !9 (0 9 , f 9 ). The current
committed load is the total concurrency demand,

∑
9 2 9 , of all active jobs 9 that are executing or

scheduled to start in the current round.
If the current committed load is above the total supply � , the scheduler evicts or cancels active

jobs in LIFO order of birth time (most recently born first) until the current load is at most� . A job
is charged zero payment if it is evicted or cancelled.

Remark 2. The LIFO order is over all active jobs, including jobs that are not scheduled to run in

the current round. While this feature is not necessary to address an overbooking failure, it is crucial

to our analysis, as explained below.10

9As a convention, after the last round (C = ) ) all active jobs are cancelled or evicted.
10In practice, one might decide not to cancel jobs that have not yet started executing. While such a modification would
perturb customer incentives, in a real system it might be acceptable as finding beneficial misreporting might be challenging.
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Weobserve that the eviction/cancellation probabilities for a given job are determined at birth/submission
time. Formally, let FAIL9 denote the event that job 9 does not successfully complete, and let H C

denote the full history of events observed by the algorithm up to (and not including) round C

(including all SoWs submitted, launch plans chosen, realized arrivals, job completions, and evic-
tions/cancelations). Also, let SoW[C,C′ ] denote the collection of SoWs for all jobs submitted in the
time interval [C, C ′].

Lemma 3.1. Consider some round C and fix tuple (C, C ′, 2, 3). Suppose a job 9 is submitted in round C

with 2 9 = 2 , and suppose there is a launch plan ! such that Pr
[
!(0 9 , f 9 ) = C ′ and 3 9 = 3

]
> 0. Then

if launch plan ! were chosen for 9 (i.e., ignoring (2)), then

Pr
[
FAIL9 | H

C , !(0 9 , f 9 ) = C ′, 3 9 = 3, SoW[1,) ]
]

(3)

is determined byH C and (C, C ′, 2, 3) (and independent of SoW[C,) ] ).

Lemma 3.1 follows immediately from the LIFO ordering: a job 9 will be evicted/canceled only
if the committed load exceeds � even after removing all subsequently-submitted jobs, and this
depends only on the launch plans and realizations of previously-submitted jobs. Given Lemma 3.1,

we can denote (3) by EC (C ′, 2, 3), and call it the (true) failure probability. Wewill interpret E
C
(C ′, 2, 3)

as an approximation of EC (C ′, 2, 3).
While (3) can, in principle, be computed exactly, such computation may be infeasible in practice.

We only require the estimates to be approximately correct: we bound the error by some ` > 0, and
bound the possible gains from untruthful reporting in terms of `. Specifically, we assume that,

taking the expectation over E
C
,

E

[
|E

C
(C ′, 2, 3) − EC (C ′, 2, 3) |

]
< ` (∀2, 3, C ′ ≥ C). (4)

Incentives.Without detailing how the prices are selected and how the estimated success probabil-
ities are computed, we can already guarantee approximate truthfulness. Essentially, this is because
launch plans optimize agents’ expected utility with respect to the approximate failure probabilities.

Theorem 3.2. Algorithm 1 is (2`� )-truthful, where ` bounds the success probability estimation

error (as in (4)) and positive job values are normalized to lie in [1, � ].

Computation. To compute the optimal !9 in (2) one can separately optimize !9 (0 9 , f 9 ) for each
potential arrival time 0 9 and signal f 9 . This optimization can be done by enumerating over each
(0, 3) in the support of % 9 and each potential start time. One can therefore compute the optimal
launch plan in time $ ((m · |support(% 9 ) |).

4 REDUCTION APPROACH

We reduce the original problem (henceforth called MainProblem), to its relaxation, RelaxedProblem.
The latter is a different but related scheduling problem, where job requirements are fractional
rather than uncertain, and the load corresponds to the expected load in MainProblem. Our reduc-
tion takes an algorithm for RelaxedProblem, in which over-commitment is never an issue, and
use it to solve MainProblem where the system might get saturated in some realizations. In Sec-
tion 5 we complete this approach by adapting known online resource allocation techniques to
solve RelaxedProblem.

4.1 The Relaxed Problem

RelaxedProblem is similar to MainProblem, with these changes:
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• Each job 9 is characterized by a fractional SoW, which contains value function +9 (·) ≥ 0 and
concurrency demand 2 9 as before, but distribution % 9 is replaced with : 9 tasks g1 , . . . , g: 9

and
weights _1 , . . . , _: 9

> 0 with
∑

8 _8 = 1. Each task g8 is specified by an arrival time and duration
(08 9 , 38 9 ).

• An allocation to job 9 assigns to each of its tasks g8 either no resources, or _82 9 resource units
for 38 9 consecutive timesteps starting no earlier than 08 9 . Note that _82 9 might be fractional. Write
G8 9C ≥ 0 for the amount of resources allocated to task g8 at time C , and write 58 9 for the completion
time of this task, or 58 9 = ∞ if it is not completed. The allocation for a single task is called an
interval allocation and denoted G8 9 =

(
G8 9C : C ∈ [) ]

)
. The aggregate allocation for job 9 denoted

G 9 =
(
G8 9C : tasks 8 , rounds C

)
.

• The value of interval allocation G8 9 is _8+9 (58 9 ). The value of the aggregate allocation G 9 is
+̃9 (G 9 ) =

∑
8 _8+9 (58 9 ).

• When a fractional SoW for a given job is submitted, its allocation must be irrevocably decided
right away. Tasks cannot be evicted, preempted or cancelled afterwards.

• The total allocation to all jobs 9 and tasks 8 at any time C cannot exceed� , i.e.,
∑

8, 9 G8 9C ≤ � .

As before, job’s birth times and fractional SoWs comprise a birth sequence, which is chosen ahead
of time from some distribution over birth sequences. This distribution constitutes a problem in-
stance.
Given an instance I of MainProblem, we construct an instance of RelaxedProblem, denoted

Relax(I), in a fairly natural way. For each SoW9 = (+9 , 2 9 , % 9 ) in MainProblem, the corresponding
fractional SoW has the same +9 and 2 9 , and tasks g8 = (08 9 , 38 9) for each (08 9 , 38 9 ) in the support of
% 9 , with weights _8 = % 9

[
(08 9 , 38 9 )

]
. We denote this fractional SoW as Relax(SoW9 ).

Any launch plan !9 for job 9 in MainProblem assigns to each (08 9 , 38 9 ) an interval allocation of 2 9
resources for 38 9 rounds starting at !9 (08 9 , f (08 9 , 38 9 )). This corresponds to an interval allocation
G8 9 to each task g8 in the fractional scheduling problem, in which the resources allocated each
round are scaled by _8 . We will write G 9 (!9 ) for the aggregate allocation (for all tasks). Note then
that

∑
8 G8 9C (!9 ) is the expected usage of resources at time C under launch plan !9 , with respect to

probability distribution % 9 .

Aclass of algorithms.Our reduction requires algorithms for RelaxedProblemwith the following
special structure.
First, an algorithmmaintains a price function c̃ , a.k.a. amenu, that assigns a non-negative price

to any interval allocation G . The menu can change over time as the algorithm progresses, so we
write c̃C (G) for the price at time C . When a given job 9 is submitted at time C , the algorithm optimizes
the allocation G 9 according cC :

G 9 ∈ argmax
aggregate allocations G 9

+̃9 (G 9 ) − c̃
C (G 9 ), (5)

where the total job price is c̃C (G 9 ) =
∑

tasks 8 c̃
C (G8 9 ). Such algorithms are called menu-based.11 We

write c̃C (C ′, 2, 3) for the price of allocating 2 resources for 3 steps starting at time C ′.
Second, the algorithm is measured with respect to the following strong benchmark: for any

subset# of jobs,OPT# is the offline optimal welfare attainable over jobs# in a randomized version
of RelaxedProblem, where the choice of allocation to each task can be randomized and the supply
constraints need only bind in expectation over this randomization. We write OPT = OPT{all jobs} .

11Note that the argmax in (5) is over all aggregate allocations G 9 that correspond to launch plans, some of whichmay violate
capacity constraints. To be feasible, the menu must ensure that the output of the argmax stays within the constraints.
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ALGORITHM 2: Algorithm 1 via RelaxedProblem

Parameters :n > 0, menu-based, receptive algorithm ALG

// ALG uses supply constraint � ′ = � · (1 − n/10)
Require :Oracle for failure probabilities EC

// InitInfo() for Line 1 of Algorithm 1

1 Initialize prices c1 same way as ALG; set E
1
← 0;

// UpdateInfo() for Line 11 of Algorithm 1

2 if job 9 is submitted in round C then

3 Report job Relax(SoW9 ) to ALG;
4 tell ALG: for job 9 , use allocation G 9 (!9 );

// Claim 4.2: G 9 (!9 ) "typically" maximizes (5)

5 Update menu cC+1 to the updated price menu from ALG;

6 Update EC+1 via the oracle and E
C+1
← 5 (EC+1), where

∀@ ≥ 0 5 (@) = @ if @ > n/10, and 0 otherwise.

Third, an algorithm should support the following partially adversarial scenario. When a job
is born, an adversary can arbitrarily break ties in the choice rule (5). Moreover, the adversary
can bypass (5), and instead choose any allocation G 9 such that +̃9 (G 9 ) ≥ c̃C (G 9 ). When/if this
happens, the algorithm should observe the new G 9 and continue. Call such algorithms receptive.
The algorithm does not need to compete with OPT. Instead, it only needs to compete with OPT# ,
where # is the set of jobs whose allocation satisfies (5) (i.e., is not switched by the adversary). The
algorithm is robustly U-competitive, U ≥ 1 on a given problem instance if for any adversary, the
total value generated by the algorithm,

∑
9 Ẽ 9 (G 9 ) (including jobs scheduled by the adversary) is at

least 1
U
OPT# .

In summary, an algorithm for RelaxedProblem that is menu-based and receptive uses the fol-
lowing protocol in each round C :

1. if a new job 9 arrives, choose an allocation as per (5),
2. replace with the adversarial allocation if applicable,
3. update price menu c̃C .

4.2 Reduction to the Relaxed Problem

We instantiate Algorithm 1 using a menu-based, receptive algorithm ALG for RelaxedProblem.
This instantiation (Algorithm 2) is competitive for any instance I of MainProblem as long as ALG
is robustly-competitive on the relaxed instance Relax(I).

Theorem 4.1. Fix n > 0 such that system’s capacity � exceeds Ω(�m n
−2 log(n−1 + (m)). Consider

an instance I of MainProblem and a menu-based, receptive algorithm ALG for RelaxedProblem.

Suppose ALG is robustly U-competitive for the relaxed problem instance Relax(I) and some U ≥ 1.
Then Algorithm 2 with parameter n is $ (n� )-truthful and U (1 +$ (n))-competitive for the original

problem instance I. The per-round running time is$ (n−2 log(n−1�m(m))) plus the per-round running

time of ALG.

Our reduction proceeds as follows. Formally, in Algorithm 2we fill out the two unspecified steps
in Algorithm 1, InitInfo() and UpdateInfo(). Substantively, we simulate a run of ALG on the
relaxed problem instance Relax(I). Whenever a new job 9 is submitted, we report its fractional
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version Relax(SoW9 ) to ALG, and use the price menu previously computed by ALG to optimize
the launch plan !9 . Then we force ALG to follow the same launch plan for this job: namely, use

aggregate allocation G 9 (!9 ) for job 9 . If all relevant estimates E
C
are zero, this choice just breaks

ties in (5):

Claim 4.2. In Line 4 of Algorithm 2, suppose E
C
(C ′, 2, 3) = 0 for all pairs (0, 3) ∈ support(% 9 )

and all times C ′ ∈ [C, C + (m]. Then aggregate allocation G 9 (!9 ) maximizes (5).

Weposit oracle access to the (true) failure probabilities EC . The simplest version is that the oracle
returns exact probabilities. By a slight abuse of notation, we allow the oracle to be n0-approximate
with probability at least 1 − X0, for some n0 = X0 = Θ(n). In Appendix F, we provide an efficient
procedure to compute such estimates.

Once we get EC from the oracle, we compute the estimates E
C
in a somewhat non-intuitive way:

we zero out all estimates smaller than a given threshold. Put differently, we ignore failure proba-
bilities if they are sufficiently small. This choice is crucial to “inherit" the performance guarantee
of ALG, as we show in the next section.

4.3 Proof of Theorem 4.1

We argue that each job 9 will face low failure probabilities, in the sense of Claim 4.2, with high
probability. Then (i) the total value obtained byAlgorithm 2 is close to the simulated value obtained
in our simulation of ALG, and (ii) the simulated value of ALG is large compared to OPT. We now
formalize this intuition.
Fix some birth sequence, and for convenience write + ALG for the total simulated value obtained

by ALG in Algorithm 2. Let # be the set of jobs 9 for which G 9 (!9 ), from Line 4 of Algorithm 2,
maximizes (5). That is, # is the set of jobs whose allocations were not adversarially switched in
our simulation of ALG. Then since ALG is robustly U-competitive, we know that + ALG ≥ 1

U
OPT# .

Since we actually want to compare+ ALG with OPT, we need to show that OPT# is close to OPT.
By Claim 4.2, we will have 9 ∈ # whenever all eviction probabilities are sufficiently small for job
9 . So our goal is to establish that each job is very likely to face very low failure probabilities in Al-
gorithm 2. This is the most technical step in the proof. Intuitively, since ALG constructs allocations
subject to a reduced supply constraint � ′, concentration bounds suggest that it’s exponentially
unlikely that total realized usage will exceed � in any given round. However, there is correlation
between failure probabilities in different rounds. One might therefore worry that even if it takes
exponential time for a first eviction to occur, evictions would becomemore common thereafter. We
must therefore bound the impact of correlation across time. This is accomplished by the following
lemma (proved in the Appendix).

Lemma 4.3. Fix any sequence of job birth times and SoWs, and choose any _ > 0 and X > 0. If
� ′ < (1 − X) (� −�m), then

Pr
[
EC (C ′, 2, 3) > _

]
< ((m)

2 · _−1 · 4−Ω( (�/�m−1) ·X
2/(1+X) ) (6)

for all C , C ′ > C , 2 ≤ �m, 3 ≤ �m, where Pr[] the arrival times and durations for all jobs.

Let W denote the right-hand side in (6). Assume for now that W = $ (n). If we set _ = n/10
(the threshold for E in Algorithm 2), Lemma 4.3 implies that if the oracle for failure probabilities
is perfectly accurate, each job will lie in # with probability at least (1 − W). If instead our failure
probability oracle is only n0-approximate with probability at least 1−X0, where n0 = X0 = $ (n), then
we would instead set _ = n/10 + n0 to conclude that each job will lie in # with probability at least
(1−W −X0). This lets us conclude thatOPT# ≥ (1−W −X0)OPT, and hence+ ALG ≥ (1−$ (n)) 1

U
OPT.



Truthful Online Scheduling of Cloud Workloads under Uncertainty 13

ALGORITHM 3: Adversarial RelaxedProblem
require :Capacity constraint � ≥ 1

1 For all rounds C , initialize ?C ← 1/(2�m), ~C ← 0;
2 if some job 9 arrives at time C then

3 Price menu: c̃C (G8 9 ) =
∑

C′ ?C′ · G8 9C′ ;

4 Choose some allocation G 9 ∈ argmaxG 9
+̃9 (G) − c̃

C (G 9 ) ;

5 Input adversarially chosen allocation G 9 (if applicable);
6 for each C ′ ≥ C do

7 ~C′ ← ~C′ + G 9C′ ;

8 ?C′ ← (4��m)
~C′ /� · (1/(2�m));

The next step is to compare the total value obtained by Algorithm 2 to the simulated value+ ALG.
The difference between these quantities is that jobs may be evicted in MainProblem, in which case
they contribute to the simulated value but not the true realized value. But jobs in # are evicted
with probability at most n/10 + n0 + X0, by definition of # and the estimation guarantees of our
oracle, and by Lemma 4.3 each job lies outside # with probability at most W . So each job is evicted
with probability at most (W + n/10 + n0 + X0) = $ (n). The total value obtained by Algorithm 2 is
therefore at least (1 −$ (n))+ ALG ≥ (1 −$ (n)) 1UOPT.
Finally, we bound the effect of reducing the supply to� ′ = � · (1−n/10) in our simulation. Since

OPT is a relaxed benchmark where supply constraints only bind in expectation, this reduction in
supply can reduce the value of OPT by a factor of at most (1 − n/10).
Thus, the total welfare obtained by Algorithm 2 is at least (1−$ (n)) 1

U
OPT, as long as W = $ (n).

The latter will be true as long as� > Ω(�m n
−2 log(n−1+(m)), from the definition of W . We conclude

that Algorithm 2 is U (1 +$ (n))-competitive as required.

5 ROBUST MENU-BASED SCHEDULERS

Tocomplete our solution for MainProblem, we designmenu-based, receptive, robustly-U-competitive
algorithms for RelaxedProblem, to be used in conjunction with Theorem 4.1. We achieve U =

$ (log(�m� )) for the adversarial problem variant (when the entire birth sequence is fixed by an ad-
versary), and absolute-constant U for the stochastic problem variant.12 For both results, per-round
running time is Poly(n−1, (m, |support(% 9 ) |). We defer full proofs to the appendix.

Adversarial Variant. We present Algorithm 3. At each round C , it maintains a price per unit of
resource at each future round C ′ ≥ C . The price function c̃C (G 9 ) is a combination of these per-unit
prices: c̃C (G 9 ) =

∑
C′ ?C′G 9C′ . We then choose a fractional allocation to maximize the expected utility

from job 9 . Subsequently, each price ?C′ is then updated as a function of ~C′ , the total (fractional)
allocation of resources at time C ′ (including the job just scheduled). Write ?C′ = ? (~C′), where

? (~C′) = (4��m)
~C′/� · 1/(2�m). (7)

Note that ? (0) = 1/(2�m), ? (�) = 2� , and the prices increase exponentially in usage. These values
are tuned so that resources are affordable for any job when usage is 0, but always greater than any
customer’s willingness to pay when the supply is exhausted.

Theorem5.1 (adversarial variant). If� > Ω(�m log(��m)), Algorithm 3 is robustlyU-competitive

for RelaxedProblem,U = $ (log(�m� )). Plugging it into Algorithm 2with parameter n such that� >

Ω(�m n
−2 log(n−1+(m)), we obtain an$ (n� )-truthful,$ (U)-competitive algorithm for MainProblem.

12The two problem variants carry over to RelaxedProblem in an obvious way.
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Proof Sketch. We show that, under our prescribed schedule of price increases, the total value
obtained by the algorithm is not much less than the total price of all resources (due to the exponen-
tial pricing function), which itself cannot be much less than the total difference in value between
the optimum solution and the algorithm’s solution (since the optimal-in-hindsight allocation is
one of the options considered by Algorithm 3 on Line 3). �

Stochastic Variant.We recall the definition of this variant. The number of jobs is fixed, but each
job 9 ’s SoW is drawn independently from a known distribution � 9 of finite support. Once all the
SoWs have been drawn, an adversary can choose the submission time for each job, subject to being
before the earliest arrival time.

Theorem 5.2 (stochastic variant). Suppose� > Ω(�m log(�m)) and f (0,3) = 3 (i.e., durations

are revealed upon job arrival). Then there is a robustly U-competitive algorithm for RelaxedProblem,

where U is an absolute constant. Plugging this into Algorithm 2 with parameter n such that � >

Ω(�m n
−2 log(n−1+(m)), we obtain an$ (n� )-truthful,$ (U)-competitive algorithm for MainProblem.

Proof Sketch. We first solve an LP relaxation that encodes the stochastic version of OPT,
where supply constraints need only hold in expectation over the distributions � 9 . We then need to
round this LP solution, online, into a feasible schedule. For this we use a technique from Chawla
et al.[15] to partition the LP solution (which is a weighted collection of potential allocations) into
disjoint sub-solutions, each of which is associated with a small quantity of resources and can be
rounded independently. We then associate each sub-solution with a per-unit price, calculated us-
ing the LP solution value, that will be assigned to its corresponding allocations. Using techniques
from Prophet Inequalities [15, 19, 21], we show that the posted-price algorithm that allocates in a
utility-maximizing way using these prices gives an $ (1)-approximation to the LP value. �

6 CONCLUSIONS AND FUTUREWORK

This work presented truthful scheduling mechanisms for cloud workloads submitted with uncer-
tainty in jobs’ future arrival time and execution duration. These dimensions of uncertainty model
the characteristics of repeated jobs and computation pipelines that are prevalent in production
workloads. We show how to approach both adversarial and stochastic variants of this model in a
unified framework. We reduce to a relaxed problem without uncertainty by employing a particu-
lar LIFO eviction policy that minimizes the disruption (to both welfare and incentives) when the
available resources are over-allocated in hindsight.
Taken literally, our model suggests an interface where customers provide probabilistic infor-

mation directly to the platform. This is an abstraction; a more practical implementation would
involve a prediction engine implemented internally to the platform that predicts the arrival time
and duration distributions of regularly submitted jobs. We could then view a SoW as a combina-
tion of user-specified input and the predictions, and we would like to ensure that customers are
not incentivized to mislead or otherwise confuse the prediction engine. Making this perspective
rigorous runs into a subtle three-way distinction between agents’ beliefs, the engine’s predictions,
and the true distributions; we leave this to future work.
Another natural direction for future work is to extend the analysis to richer workload models.

For example, elastic distributed workloads that may be executed at various concurrency settings,
executing faster when utilizing more nodes and slower when running on fewer. Another extension
is to preemptable jobs, whose execution may be paused and later resumed without causing the job
to fail. Finally, while we focused on obtaining worst-case competitive ratios in this paper, we note
that the welfare guarantees in our reduction (Theorem 4.1) actually apply per-instance. It would
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be interesting to explore whether this translates into improved performance in well-motivated
classes of problem instances.
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A TABLE OF NOTATION

� system’s computational capacity
2 9 concurrency demand of job 9

1 9 birth time of job 9

0 9 arrival time of job 9

3 9 duration of job 9

f 9 signal about job 9 duration revealed at arrival time
% 9 joint probability distribution over (0 9 , 3 9 )

59 completion/finish time of job 9

+9 (C) value derived by job 9 if it completes at time C
�m max concurrency demand of any job.
�m max duration of any job
(m max time difference between birth and completion
� max value of any job

B PROOF OF THEOREM 3.2

Suppose job 9 is submitted at time C , with SoW report SoW9 = (+ ′, 2 ′, % ′). For now, assume E
C
= EC

for all C .
If 2 ′ < 2 9 then the job will receive no value from executing, so we can assume that 2 ′ ≥ 2 9 . Since

the job only pays for resources that it uses (and then only if the job successfully completes), and
since prices are set at time C , its expected utility is* C (!9 | +9 , 2

′, % 9 ), as per (1). Note that this utility
is weakly decreasing as 2 ′ increases, since higher 2 ′ only increases the price cC (!9 (0, f (0, 3)), 2

′, 3)

and (true) failure probability EC (!9 (0, f (0, 3)), 2 ′, 3), for all arrival times 0 and durations 3 . Since
2 ′ ≥ 2 9 , it must be utility-maximizing to declare 2 ′ = 2 9 . So from this point onward assume that
2 ′ = 2 9 .

The job’s expected utility for any given launch plan ! is therefore * C (! | +9 , 2 9 , % 9 ). Note that
it depends only on the true SoW, but not on the reported distribution % ′ nor the value function + ′.
The job’s utility is therefore maximized when the agent reports truthfully.

Now suppose that the estimated failure probabilities are potentially incorrect by up to ` in
expectation. Then the expected calculation of utility for any launch plan with non-negative utility
can differ by up to `� from the true utility. Thus the chosen plan can have expected utility up to
2`� less than the optimal plan, where here the expectation also includes any randomness in the
eviction probability estimator.

C PROOF OF LEMMA 4.3

We use the following concentration bound, which strengthens the standard Azuma-Hoeffding in-
equality. It considers weighted sums of randomvariables, where the variables and their weights can
depend on earlier realizations. Importantly, the probability bound depends on the expected sum of
the random variables, but not the number of random variables. This is important for Lemma 4.3,
where we need to establish an error bound that is uniform with respect to time and the number
of jobs processed by the algorithm. Lemma C.1 is a variation of a bound that appears as Theorem
4.10 in [7]. We omit the proof due to space constraints.

Lemma C.1. Suppose G1, . . . , G= are Bernoulli random variables and that 21, . . . , 2= are real numbers

satisfying 0 ≤ 28 ≤ �m for each 8 , where 28 and the distribution of G8 can depend on G1, . . . , G8−1. Write

- =

∑
8 28G8 and suppose � [- ] ≤ " . Then for any X ≤ 1,

Pr[- > (1 + X)"] < 4−Ω (
X2

1+X ·
"
�m
) .
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With Lemma C.1 in hand, we are now ready to prove Lemma 4.3.

Proof of Lemma 4.3. Recall that G 9C is the total expected allocation assigned to tasks of job 9

in the simulated fractional scheduling problem. Fix some arbitrary C̃ ≥ C ′. Choose an arbitrary
assignment of execution plans that satisfy the condition

∑
9 G 9C̃ ≤ � ′, where the execution plan

assigned to each job 9 can depend on the realization of arrival times and durations of previously-
submitted jobs.
Write I 9C̃ for the realized usage of resources at time C̃ by job 9 . Then we know that G 9C̃ = � [I 9C̃ ],

where the expectation is over the arrival and duration of job 9 , and I 9C̃ is either 0 or 2 ( 9 ). The
distribution of I 9C̃ is determined by the launch plan assigned to job 9 , which can depend on the
realization of I:C̃ for jobs : that were submitted prior to job 9 . Therefore Lemma C.1 applies to
the random variables {I 9C̃ } 9 (considered in the order in which jobs are submitted), and by taking
" = � ′ < (1 − X) (� −�m) we conclude

Pr
[∑

9I 9C̃ > � −�m

]
< 4−Ω (

X2

1+X ·
�−�m
�m
) .

Write �(C̃ ) for the event that
∑

9 I 9C̃ > � −�m. We then have that

Pr[�(C̃ )] < 4−Ω (
X2

1+X ·
�−�m
�m
) for any fixed C̃ ≥ C ′. (8)

We note that the probability bound (8) is with respect to all randomness in realizations as evalu-
ated at time 0. To bound EC (C ′, 2, 3), we instead need to bound the probability of �(C̃ ) as evaluated
at time C , conditioned upon the history of all observations (i.e., job arrival and completion events)
up to time C . We therefore need to consider the evolution of Pr[�(C̃)] from time 0 to time C , then
take a union bound over the timesteps C̃ that can impact EC (C ′, 2, 3). To this end, consider the his-
tory of all realizations that occur up to time C . Call this historyH , which is a random variable with
a finite support. We can therefore write Pr[�(C̃ )] =

∑
H Pr[H] Pr[�(C̃ ) |H]. Now, in preparation

for taking a union bound, write �(C̃) for the event that Pr[�(C̃ ) |H] > _/((m). We then have that

Pr[�(C̃ )] =
∑
H Pr[H] Pr[�(C̃ ) |H] > Pr[�(C̃ )] · (_/(m),

and hence Pr[�(C̃)] < Pr[�(C̃ )]/(_/(m). In other words,

Pr[�(C̃ )] <
(m

_
· 4−Ω (

X2

1+X ·
�−�m
�m
) . (9)

Now consider a job that is submitted at time C , requires 2 units of resources each round, and has
(realized) duration 3 . Regardless of what schedule this job is assigned, it can be evicted only if the
total realized usage exceeds � − 2 (and hence exceeds � − �m) in some round between C and the
time at which the job was scheduled to complete, which is at most C +(m. So by a union bound over
the events {�(C), �(C + 1), . . . , �(C + (m)} givenH , we have that

EC (C ′, 2, 3) ≤
∑(m

:=0
Pr[�(C + :) |H] .

Thus, in order for EC (C ′, 2, 3) to be larger than _, we must have Pr[�(C + :) |H] > _/((m) for at
least one choice of : ∈ {0, . . . , (m}, which is to say that at least one of the events in {�(C), �(C +
1), . . . , �(C+(m)} occurs. Taking a union bound over these events and applying (9) yields the desired
bound:

Pr[EC (C ′, 2, 3) > _] ≤
∑(m

:=0
Pr[�(C + :)] <

((m)
2

_
· 4−Ω (

X2

1+X ·
�−�m
�m
) . �
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D PROOF OF THEOREM 5.1

We first note that the allocation G 9 chosen by Algorithm 3 for job 9 is always feasible. To see why,
note that if ~C > � −�m then ? (~C ) > � . But the maximum value attainable by any allocation of
any job that consumes I > 0 units of computation on round C is� ·I, which would be less than the
price paid for round C only. We conclude that if ~C > � −�m then no further allocation of resources
at time C will be made, and hence we will always have ~C ≤ � .
To bound the competitive ratio of Algorithm 3, we will use an argument inspired by dual fitting.

To this end, we will compare the value from the obtained solution (G8 9 ) to an appropriate function
of the prices. Note that when job 9 arrives and is allocated G 9 , then since the job obtains non-
negative utility we have

+̃9 (G 9 ) ≥
∑

C

G 9C? (~C ) ≥
1

2

∫ ~C +G 9C

~C

? (I)3I

where the second inequality follows since ? (I + �m) ≤ 2? (I) for all I < � , as long as � >

�m log(4��m). Write ?∗C and ~∗C for the prices and total usage, respectively, at the conclusion of
the algorithm. Then, summing over all 9 and integrating the formula in (7),

∑

9

+̃9 (G 9 ) ≥
1

2

∑

C

∫ ~∗C

0

? (I)3I =

�

2 log 4��m

∑

C

?∗C − ? (0). (10)

Now recall the definition of a robustly competitive algorithm, and let # denote the subset of jobs 9
that are not adversarially allocated. Let {I 9 } 9 denote any (possibly randomized) feasible allocation
of the jobs in # . For convenience we will write I 9C for the expected allocation at round C under I 9 .
Let ( ⊆ # denote the subset of jobs for which E[+̃9 (I 9 )] > 3

∑
C I 9C (?

∗
C − ? (0)), and let ) = # \ ( .

For any 9 ∈ ( , since job 9 could have been allocated any allocation in the support of I 9 , and since
prices at the birth of job 9 can only be lower than (?∗C ), we conclude from the choice of G 9 (on
Line 4 of Algorithm 3) and linearity of expectation that

+̃9 (G 9 ) ≥ +̃9 (G 9 ) − c̃
1 9 (G 9 )

≥ E[+̃9 (I 9 )] −
∑

C

I 9C?
∗
C

≥ E[+̃9 (I 9 )] −
∑

C

I 9C? (0) −
∑

C

I 9C (?
∗
C − ? (0))

≥ E[+̃9 (I 9 )] −
1

2
E[+̃9 (I 9 )] −

1

3
E[+̃9 (I 9 )]

=

1

6
E[+̃9 (I 9 )] (11)

where the second-to-last inequality line from the definition of ( and the fact that E[+̃9 (I 9 )] ≥

2
∑

C I 9C? (0) since ? (0) = 1/2�m is half the minimum value density of any job.
Next consider jobs in) , and note that we must have

∑
9 ∈) I 9C ≤ � for each round C , by feasibility.

Thus
∑

9 ∈)

E[+̃9 (I 9 )] ≤ 3
∑

9 ∈�

∑

C

I 9C (?
∗
C − ? (0))

≤ 3�
∑

C ?
∗
C − ? (0)

≤ 6 log{4��m}
∑

9 +̃9 (G 9 ) (12)
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where the last inequality is (10). Combining (11) and (12) yields
∑

9

E[+̃9 (I 9 )] =
∑

9 ∈�

E[+̃9 (I 9 )] +
∑

9 ∈�

E[+̃9 (I 9 )]

≤ (6 log(4��m) + 6)
∑

9+̃9 (G 9 ).

Thus Algorithm 3 is robustly $ (log(��m))-competitive.

E PROOF OF THEOREM 5.2

We first recall the statement of Theorem 5.2. We suppose � > Ω(�m log(�m)) and f (0,3) = 3 (i.e.,
durations are revealed upon job arrival). Then we claim that there is a robustly U-competitive algo-
rithm for RelaxedProblem, where U is an absolute constant. Plugging this into Algorithm 2 with
parameter n such that� > Ω(�m n

−2 log(n−1+(m)), we obtain an$ (n� )-truthful,$ (U)-competitive
algorithm for MainProblem.
We begin the proof by expressing the optimal relaxed fractional assignment as an LP. We will

say that an outcome for job 9 , indexed by l , is a tuple ( 9 , SoW9 , 8, G8 9 ). The interpretation is that 9 ’s
realized statement of work (from the support of � 9 ) is SoW9 , and that task 8 of SoW9 was provided
interval allocation G8 9 . We will write SoW(l), G (l), g (l), etc., for the SoW, allocation, and task
associated with l , respectively. We will also write @SoW 9 for the probability of statement of work
SoW9 under � 9 . Our relaxed LP is then as follows, where the variables (Il ) are interpreted as the
fractional assignment of each outcome l .

max
∑

l

+̃ (l)Il

s.t.
∑

l

GC (l)Il ≤ � ∀C

∑

l :
SoW(l)=SoW 9 ,

g (l)=g8

Il ≤ @SoW 9 ∀g8 ∈ SoW9 ,∀SoW9 ∈ (D?? (� 9 ),∀9

Il ∈ [0, 1] ∀l

Here the first constraint imposes the supply restriction, that the total expected resources allocated
over all possible outcomes is at most� . The second constraint is that the total probability assigned
to outcomes for a given subtask of a given SoW does not exceed the probability that the SoW is
realized from � 9 . For a given solution I to this LP, we will write +0; (I) for its total value.
We are now ready to describe our approach to computing prices for the menu-based algorithm

promised by Theorem 5.2. For this we will use the notion of a “fractional unit allocation” from
Chawla et al.[15]. We restate it here in our notation. This involves a slight extension of their
definition, since we allow interval allocations to have width up to �m.

Definition 1. An LP solution (I) is a fractional unit allocation if there exists a partition of the

multiset of resources (where each resource in round C has multiplicity�) into bundles {�1, �2, . . . } and

a corresponding partition of job outcomes l with Il > 0 into sets {�1, �2, . . . } such that:

• For each : and l ∈ �: , G (l) ⊆ �:
• For each : ,

∑
l ∈�:

F (l)Il ≤ �m

• For each : and C , if �: contains any units of resource from round C , then �: contains at least �m

units from round C .

Roughly speaking, a fractional unit allocation can be decomposed into disjoint “sub-allocations”
that are independent of each other, such that the total fractional weight of each sub-allocation is
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at most �m (the maximum demand of a single job). The third condition ensures that it is always
feasible to schedule any single outcome from each set of the partition.
We will make use of the following result from [15], which is implicit in the proof of their Theo-

rem 1.2. We again restate in our notation.13

Theorem E.1 ([15]). Suppose � > �m log�m. Then for any instance of the stochastic fractional

allocation problem, there is a fractional unit allocation I that is an$ (1) approximation to the optimal

allocation value.

In [15] it is shown how to use the fractional unit allocation from Theorem E.1 to design a static,
anonymous bundle pricing menu with high welfare guarantee, for the setting of interval jobs
with unit width. That proof makes use of the assumption that all jobs require exactly one unit of
resource per unit time. This does not hold in our setting, since (a) we allow jobs to have width up
to�m, and (more crucially) (b) in our setting, each task g8 has its requirements scaled by _8 , which
can be arbitrarily small. However, as we now show, it is still possible to define a pricing function
that guarantees high total value in expectation, at the cost of inflating the resource requirements
by a constant factor.

Lemma E.2. For any fractional unit allocation I that is feasible under supply constraint � , there

exists a robust menu-based algorithm with supply constraint 2� whose expected welfare is at least
1
2
+0; (I).

Proof. Let �: and �: be the bundles from the fractional unit allocation I. For each �: define
+ (�: ) =

∑
l ∈�:

+̃ (l)Il , and write, (�: ) =
∑

l F (l)Il . That is, + (�: ) and, (�: ) are the total
fractional value and weight, respectively, of allocations in �: . Then for each bundle �: , we will
define the price per unit of �: to be ?: =

1
2, (�: )

+ (�: ).

We will now define our price function c̃C (G 9 ) for interval allocations (which defines our menu-
based algorithm). For each bundle �: , write 'C: for the fractional weight of allocations to �: up
to time C . Initially all of these fractional weights are zero; that is, '0

:
= 0 for all : . For each : , we

say that an interval allocation G 9 is feasible for �: at time C , written G 9 ∈ F
C (:), if G 9 ⊆ �: and

F (G 9 ) + '
C
:
≤ 2�m. We then define c̃C (G 9 ) = min: :G 9 ∈FC (:) {F (G) · ?: }. If G 9 is not feasible for any

�: then c (G 9 ) = +∞. Note that these menu prices are weakly increasing in job duration and width,
and that these prices only ever increase asmore jobs are scheduled. They are alsowell-defined even
if some jobs are scheduled arbitrarily (subject to feasibility and non-negative utility), as required
by robustness.
Now that our algorithm is defined, we first claim that it generates feasible allocations. Since

allocations can only be made to feasible buckets (even adversarially-selected allocations, since
non-feasible buckets have infinite price), the schedule will always maintain the property that
'C
:
is at most twice �m for all C . That is, the total width of all allocations to �: is at most 2�m,

which means that for all C we have
∑
(8, 9) allocated to �: G8 9C ≤ 2�m which (from the definition of a

fractional unit allocation) is at most twice the number of units of time-C resource contained in
multiset �: . Since the sets �: formed a partition of at most � items per round, we conclude that∑

:

∑
(8, 9) allocated to �: G8 9C ≤ 2� , and hence the resulting allocation will be feasible for supply con-

straint 2� .
We next show that the expected welfare generated by this menu-based allocation is at least

1
2
+0; (I). Recall that the total expected welfare is the sum of the total revenue (payments made)

13In [15] it was assumed that�m = 1, but the result extends directly to the case of�m > 1. Indeed, in the relaxed LP, a task
of width greater than 1 can be treated equivalently as a collection of tasks each with width at most 1. And since our bound
on total supply is also scaled by�m, the requirement that �: contains at least�m units or none, in each round, corresponds
to the fact in [15] that �: contains at least 1 unit or none.
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and the total utility of all buyers. For any realization of the jobs’ valuations and arrival order, let
/: denote the event that the total quantity of bundle �: purchased at the end of the algorithm is
at least �m. The total payment made by all jobs is then

'4E =

∑

:

Pr[/: = 1]?: ·�m ≥
1

2

∑

:

Pr[/: = 1]+ (�: ).

Now consider the total utility (value minus payments) obtained by all jobs that are not scheduled
adversarially. Each task of each such job will be allocated to a utility-maximizing choice of bundle
: for which it is still feasible.14 Note that if /: does not occur, then bucket : will certainly be
feasible for any allocation in �: . For any outcome l , write :l for the index : such that l ∈ �: .
Then for a job 9 with realized statement of work SoW9 and task g8 , the user will obtain expected
utility (denoted D 9 (SoW9 , g8 )) at least

D 9 (SoW9 , g8 )

≥ �



max
l :SoW(l)=SoW 9 ,

g (l)=g8

1[/:l = 0]
(
+̃9 (G (l)) −F (G (l))?:l

)+


≥
1

@SoW 9

∑

l :SoW(l)=SoW 9 ,

g (l)=g8

Pr[/:l = 0]Il
(
+̃9 (G (l)) −F (G (l))?:I

)+

where the second inequality follows from the feasibility of solution I. Summing over all jobs, SoWs,
and tasks, the total utility obtained by all buyers is at least

*C8; ≥
∑

9,SoW 9 ,g8

@SoW 9D 9 (SoW9 , g8 )

≥
∑

9,SoW 9 ,g8

∑

l :SoW (l)=SoW 9 ,

g (l)=g8

Pr[/:l = 0]Il (+̃ (l) −F (l)?:l )
+

≥
∑

:

Pr[/: = 0]
∑

l ∈�:

Il (+̃ (l) −F (l)?:)

≥
∑

:

Pr[/: = 0] (+ (�: ) −, (�: )?: )

=

∑

:

Pr[/: = 0] (+ (�: ) −
1

2
+ (�: ))

=

1

2

∑

:

Pr[/: = 0]+ (�: ).

The result now follows by summing the utility and revenue terms. �

To complete the proof of Theorem 5.2, we construct a fractional unit allocation I as in Theo-
rem E.1 under constrained supply � ′ = �/2. We then use this I to construct a robust menu-based
pricing method as in Lemma E.2 for total supply 2� ′ = � . Combining the approximation factors
from Theorem E.1 and Lemma E.2, we conclude that the resulting scheduler is $ (1)-competitive
for the stochastic fractional scheduling problem.

14It is herewherewe use the assumption thatf (0, 3) = 3 .We are allowing the algorithm to allocate each task independently
of the other tasks from the same job, which in particular means that tasks with the same arrival time but different runtimes
can be scheduled to different start times (and hence runtime is known to the algorithm at submission time).
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F ESTIMATING FAILURE PROBABILITIES

In Section 4.2 we described Algorithm 2 assuming access to a relaxed failure probability oracle
that is n0-approximate with probability at least 1 − X0, where n0 = X0 = Θ(n). We now specify the
details of this oracle, which we will implement via sampling. When a job 9 is born at time C , we
consider each potential start time C ′ ≥ C and duration 3 for that job. Recall that the number of such
possible pairs (C ′, 3) is bounded. Note that the launch plans of all other jobs are fixed; we only
consider variation in the start time of job 9 . For each possible (C ′, 3), we simulate execution of the
resulting schedule ) times. In each simulation we realize any residual randomness in the arrival
and duration of all jobs that have been born so far, excluding job 9 , and observe whether job 9 is
evicted given that it starts execution at time C ′ and runs for 3 timesteps. Importantly, the failure
probability for job 9 is independent of any jobs that arrive after time C , due to the LIFO eviction
order. So, in each simulation, job 9 fails with probability exactly EC (C ′, 2 9 , 3), independently across
simulations. Our estimate, ẼC (C ′, 2 9 , 3), will be the empirical average over all) simulations. Taking
) sufficiently large, the Hoeffding inequality a union bound over all choices of C ′ and 3 will imply
that our failure probability estimates are sufficiently accurate. The following lemma makes this
precise.

Lemma F.1. Fix n0 > 0 and X0 > 0 and let ) = log(�m(m/X0))
2
n20
. Suppose we take ) samples to

estimate failure probabilities in the procedure described above, then for each job 9 the following event

occurs with probability at least 1 − X0: |EC (C ′, 2 9 , 3) − ẼC (C ′, 2 9 , 3) | ≤ n0 for all possible start times C ′

and durations 3 for job 9 .

Proof. We then have that ẼC (C ′, 2 9 , 3) is the empirical average of) Bernoulli random variables,
each with expectation EC (C ′, 2 9 , 3). Then by the Hoeffding inequality,

Pr[|ẼC (C ′, 2 9 , 3) − E
C (C ′, 2 9 , 3) | > n0] < 4−2)n

2
0 =

X0

�m(m
.

Taking a union bound over all possible choices of (C ′, 3) (of which there are at most (m�m) concludes
the proof. �
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