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ABSTRACT
In online advertising, conventional post-click conversion rate (CVR)

estimation models are trained using clicked samples. However, dur-

ing online serving the models need to estimate for all impression

ads, leading to the sample selection bias (SSB) issue. Intuitively,

providing reliable supervision signals for unclicked ads is a feasible

way to alleviate the SSB issue. This paper proposes an uncertainty-

regularized knowledge distillation (UKD) framework to debias CVR

estimation via distilling knowledge from unclicked ads. A teacher

model learns click-adaptive representations and produces pseudo-

conversion labels on unclicked ads as supervision signals. Then a

student model is trained on both clicked and unclicked ads with

knowledge distillation, performing uncertainty modeling to allevi-

ate the inherent noise in pseudo-labels. Experiments on billion-scale

datasets show that UKD outperforms previous debiasing methods.

Online results verify that UKD achieves significant improvements.
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1 INTRODUCTION
In online advertising systems, post-click conversion rate (CVR) es-

timation is to predict the probability of conversion after an ad click

event, and predicted CVR score is a key factor in many applications

such as the ranking procedure and smart bidding. In many market-

ing scenarios, conversion is the ultimate goal of advertisers, and

thus CVR estimation plays an important role.
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Figure 1: User click and conversion behaviors in advertising.

Figure 1 shows user click and conversion behaviors in online

advertising. If users click on an impression ad, they will arrive at a

landing page that shows the detailed information of the ad, and then

users might take conversion actions or not. Obviously, only clicked

ads have post-click conversion labels, and for the ads that users

do not click on, we will never know whether post-click conver-

sion actions will happen. Due to the lack of ground-truth labels for

unclicked ads, conventional CVR estimation models are typically

trained using clicked ads only, but the models need to predict CVR

for entire impression ads (including both clicked and unclicked

ones) during online serving. The problem that there is a gap be-

tween training space (i.e., click space) and inference space (i.e., entire
impression space) is called sample selection bias (SSB) [30]. These

models may be biased for unclicked ads, because their training

procedures do not learn much knowledge from unclick ads.

The representative methods probing into the SSB issue can be

divided into two categories: 1) auxiliary task learning based [16, 27],

and 2) counterfactual learning based methods [9, 31]. Ma et al. [16]

propose to incorporate two auxiliary tasks that can be trained in

entire impression space to indirectly learn an entire space CVR

estimator. However, for unclicked ads, the model tends to optimize

the predicted CVR scores to zeros (see § 2.3.3 for proof) while

their actual conversion labels are “unknown”. Zhang et al. [31]

employ counterfactual learning to produce a theoretically unbiased

CVR estimator, but the training procedure of CVR task does not

explicitly take unclicked ads into account. In all, current methods

cannot essentially debias CVR models for unclicked ads, and the

SSB issue in CVR estimation is still an open problem.

To learn entire space CVR models that can accurately estimate

CVR for all impression ads, a feasible way is to provide reliable

pseudo-conversion labels for unclicked ads as supervision signals.

In this way, the training procedure of CVR models can explicitly uti-

lize both clicked ads (with labels from logs) and unclicked ads (with

pseudo-labels). Thus, these models can benefit from learning with

unclicked ads compared to the ones trained on clicked ads only. To

achieve this, the key is how to produce reliable pseudo-conversion

labels for unclicked ads when we can only access ground-truth

labels of clicked ads, as well as how to learn an accurate entire

space CVR estimator with both ground-truth labels and pseudo-

labels. For the former, consider that there is a discrepancy between
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the data distributions of clicked and unclicked ads (which causes

the SSB issue) [31], we propose to formulate pseudo-conversion

label generation as an unsupervised domain adaptation problem.

Click/unclick space is regarded as source/target domain, and our

goal is to obtain pseudo-labels for unlabeled unclicked ads (target

domain) based on labeled clicked ads (source domain). For the latter

one, consider that the confidence of unclicked ads’ pseudo-labels is

inferior to clicked ads’ ground-truth labels, we propose to reduce

the negative impact of inherent noise existed in pseudo-labels by

modeling their uncertainty during training.

Motivated by the above considerations, in this paper we propose

Uncertainty-regularizedKnowledgeDistillation (UKD), which aims

to debias CVR estimation via distilling knowledge from unclicked

ads. UKD’s overall workflow contains a click-adaptive teacher

model that produces pseudo-conversion labels for unclicked ads,

and an uncertainty-regularized student model that can effectively

distill the knowledge in unclicked ads learned by the teacher. Specif-

ically, to produce supervision signals for unclicked ads, the teacher

learns click-adaptive representations for impression ads using do-

main adaptation, and its predicted CVR scores on unclicked ads are

taken as their pseudo-conversion labels. Then the student can learn

from both clicked ads (with ground-truth labels) and unclicked ads

(with pseudo-labels from teacher), and also performs uncertainty es-

timation to pseudo-labels for alleviating the inherent noise in them.

For each unclicked ad, our student estimates its pseudo-label’s un-

certainty and dynamically adjust the weight of its CVR loss during

training to weaken its negative impact. Experimental results on

billion-scale datasets show that UKD outperforms previous state-

of-the-art methods. We have deployed UKD in Alibaba advertising

platform, and online results verify that UKD achieves significantly

improvements. The main contributions of this work are:

• We propose uncertainty-regularized knowledge distillation

(UKD) to debias CVR models via learning from unclicked

ads. It employs a click-adaptive teacher to generate pseudo-

conversion labels for unclicked ads, and then trains a student

model that takes both clicked and unclicked ads into account.

• Our studentmodel performs uncertainty estimation to pseudo-

labels generated by the teacher, alleviating the inherent noise

to reduce the negative impact during distillation.

• Experimental results on public and large-scale production

datasets show that UKD outperforms the state-of-the-art

methods. Online experiments further verify that it achieves

significantly improvements on core metrics.

2 PREREQUISITES
2.1 Problem Definition
In online advertising systems, we can log user feedbacks on im-

pression ads to train models for estimating CTR (click-through

rate), CVR and CTCVR (click-through conversion rate). Let D ={
(𝑥,𝑦𝑐𝑙𝑖𝑐𝑘 , 𝑦𝑐𝑜𝑛𝑣, 𝑦𝑝𝑣-𝑐𝑜𝑛𝑣)

}
denote the collected dataset of impres-

sion ads. For each impression sample, 𝑥 denotes the feature infor-

mation, which is usually a high-dimensional vector consisting of

one-hot encodings from user, ad and context fields.𝑦𝑐𝑙𝑖𝑐𝑘 ,𝑦𝑐𝑜𝑛𝑣 and

𝑦𝑝𝑣-𝑐𝑜𝑛𝑣 are the binary labels of click event, post-click conversion

event and post-view conversion event respectively.

According to the values of click labels, we divide all samples in

D into two subsets: clicked samples D𝑐𝑙𝑖𝑐𝑘 = {D | 𝑦𝑐𝑙𝑖𝑐𝑘 = 1}
(their conversion labels 𝑦𝑐𝑜𝑛𝑣 are observed) and unclicked samples

D𝑢𝑛𝑐𝑙𝑖𝑐𝑘 = {D | 𝑦𝑐𝑙𝑖𝑐𝑘 = 0} (all conversion labels are “unknown”).

CTR estimation is to predict the probability of click event, i.e.,

𝑝𝐶𝑇𝑅 = 𝑝 (𝑦𝑐𝑙𝑖𝑐𝑘 = 1 | 𝑥). CVR estimation is to predict the prob-

ability of conversion if a user has clicked on an ad, i.e., 𝑝𝐶𝑉𝑅 =

𝑝 (𝑦𝑝𝑣-𝑐𝑜𝑛𝑣 = 1 | 𝑦𝑐𝑙𝑖𝑐𝑘 = 1, 𝑥) = 𝑝 (𝑦𝑐𝑜𝑛𝑣 = 1 | 𝑥). And for CTCVR

estimation, we have 𝑝𝐶𝑇𝐶𝑉𝑅 = 𝑝 (𝑦𝑝𝑣-𝑐𝑜𝑛𝑣 = 1 | 𝑥) = 𝑝𝐶𝑇𝑅 · 𝑝𝐶𝑉𝑅 .

Conventional CVR estimation models employ similar techniques

as in CTR estimation task, such as logistic regression [18], factoriza-

tion machines [12, 17] and deep neural networks (DNN) [4, 8]. Next

we introduce both conventional models and entire space models.

2.2 Base CVR Models Trained in Click Space
2.2.1 Single-Task CVR Model. Conventional CVR estimation

models are trained on the clicked data D𝑐𝑙𝑖𝑐𝑘 . Let 𝑝𝐶𝑉𝑅 = 𝐹𝑣 (𝑥)
denotes a single-task CVR model, where 𝑝𝐶𝑉𝑅 ∈ (0, 1) is the pre-
dicted CVR score for the impression ad 𝑥 . 𝐹𝑣 (·) represents a network
that consists of a feature embedding layer and several dense layers.

The objective is formulated based on cross-entropy loss ℓ (·, ·):

min
𝐹𝑣

1

|D𝑐𝑙𝑖𝑐𝑘 |
∑︁

D𝑐𝑙𝑖𝑐𝑘

ℓ (𝑦𝑐𝑜𝑛𝑣, 𝐹𝑣 (𝑥)) . (1)

2.2.2 Joint Estimation of CVR and CTR. To alleviate the data

sparsity issue in CVR task, jointly optimizing CVR and CTR estima-

tion tasks is a commonly-used way, because the CTR task is trained

on impression ads D and has much richer samples than the CVR

task [16, 25]. The joint model contains a shared feature embedding

layer, as well as two separate dense blocks to predict CVR and CTR

scores respectively. Let 𝑝𝐶𝑉𝑅 = 𝐹𝑣 (𝑥) and 𝑝𝐶𝑇𝑅 = 𝐹𝑐 (𝑥) denote
the predicted CVR and CTR scores of the joint model (note that

𝐹𝑣 (·) and 𝐹𝑐 (·) share the feature embedding layer), the objective of

the joint model is:

min
𝐹𝑣 ,𝐹𝑐

1

|D𝑐𝑙𝑖𝑐𝑘 |
∑︁

D𝑐𝑙𝑖𝑐𝑘

ℓ (𝑦𝑐𝑜𝑛𝑣, 𝐹𝑣 (𝑥)) + 𝛾
1

|D|
∑︁
D

ℓ (𝑦𝑐𝑙𝑖𝑐𝑘 , 𝐹𝑐 (𝑥))

(2)

where 𝛾 is a trade-off hyperparameter.

2.2.3 Limitations. The training process of the single-task CVR

model does not learn from unclicked ads, and the joint model only

incorporates such information by means of the shared embeddings

from CTR task. Thus their predicted CVR scores in unclicked space

may have a non-negligible deviation because there is a discrepancy

between the data distributions of click and unclick ads.

2.3 Entire Space CVR Estimation Models
2.3.1 Auxiliary Task Learning based Models. Ma et al. [16]

incorporate two auxiliary tasks, click-through rate (CTR) and click-

through conversion rate (CTCVR), that can be trained in entire

impression space to indirectly learn an entire space CVR estimator.

The model has the same architecture as the joint model (i.e., 𝑝𝐶𝑉𝑅 =

𝐹𝑣 (𝑥) and 𝑝𝐶𝑇𝑅 = 𝐹𝑐 (𝑥)), while the objective is to minimize the

cross-entropy loss on CTCVR and CTR estimation:

min
𝐹𝑣 ,𝐹𝑐

1

|D|
∑︁
D

(
ℓ
(
𝑦𝑝𝑣-𝑐𝑜𝑛𝑣, 𝐹𝑐 (𝑥) · 𝐹𝑣 (𝑥)

)
+ 𝛾ℓ (𝑦𝑐𝑙𝑖𝑐𝑘 , 𝐹𝑐 (𝑥))

)
(3)



where 𝐹𝑐 (𝑥) · 𝐹𝑣 (𝑥) = 𝑝𝐶𝑇𝑅 · 𝑝𝐶𝑉𝑅 is the predicted CTCVR score.

With the help of learning CTCVR estimation, the network 𝐹𝑣 (𝑥)
for CVR can learn from unclicked ads, alleviating the SSB issue.

2.3.2 Counterfactual Learning basedModels. Counterfactual
learning offers a way to tackle the missing-not-at-random prob-

lem [1, 2, 5, 15, 21, 23, 26, 29]. Several recent studies [9, 31] employ

counterfactual learning, such as inverse propensity score (IPS) and

doubly robust (DR) estimators, to debias CVR estimation. An IPS-

based method utilizes the predicted CTR score as propensity of the

CVR loss on clicked ads to achieve an theoretically unbiased CVR

estimator. The optimization objective is:

min
𝐹𝑣 ,𝐹𝑐

1

|D𝑐𝑙𝑖𝑐𝑘 |
∑︁

D𝑐𝑙𝑖𝑐𝑘

1

𝐹𝑐 (𝑥)
ℓ (𝑦𝑐𝑜𝑛𝑣, 𝐹𝑣 (𝑥))+𝛾

1

|D|
∑︁
D

ℓ (𝑦𝑐𝑙𝑖𝑐𝑘 , 𝐹𝑐 (𝑥))

(4)

A DR-based method further learns an imputation model 𝐹𝑖 (·)
that estimates the CVR loss of each unclicked ad. The CVR task and

imputation task are alternately trained, where the 𝐹𝑖 (·) is trained
on clicked data D𝑐𝑙𝑖𝑐𝑘 . Refer to [9, 31] for details.

2.3.3 Limitations. Although the auxiliary task learning based

models can learn from unclicked ads with the learning of CTCVR

estimation task, they have two main limitations:

• For a clicked ad (i.e., 𝑦𝑐𝑙𝑖𝑐𝑘 = 1), if its post-view conversion

label 𝑦𝑝𝑣-𝑐𝑜𝑛𝑣 = 0, this ad is a positive sample of CTR task

as well as an negative sample of CTCVR task, which may

result in gradient conflict to the two learning tasks.

• For an unclicked ad (i.e., 𝑦𝑐𝑙𝑖𝑐𝑘 = 0 and 𝑦𝑐𝑜𝑛𝑣 is “unknown”),

the models tend to optimize the predicted CVR scores to ze-

ros. The proof is given here: The loss of CTCVR estimation is

ℓ = −𝑦𝑝𝑣-𝑐𝑜𝑛𝑣 log(𝑝𝐶𝑇𝑅 ·𝑝𝐶𝑉𝑅)−(1−𝑦𝑝𝑣-𝑐𝑜𝑛𝑣) log(1−𝑝𝐶𝑇𝑅 ·
𝑝𝐶𝑉𝑅). For an unclicked ad whose (𝑦𝑐𝑙𝑖𝑐𝑘 , 𝑦𝑐𝑜𝑛𝑣, 𝑦𝑝𝑣-𝑐𝑜𝑛𝑣) =
(0, unknown, 0), the gradient to 𝑝𝐶𝑉𝑅 is

𝜕ℓ
𝜕𝑝𝐶𝑉𝑅

=
𝑝𝐶𝑇𝑅

1−𝑝𝐶𝑇𝑅 ·𝑝𝐶𝑉𝑅
.

Note that 𝑝𝐶𝑇𝑅 ∈ (0, 1) and 𝑝𝐶𝑉𝑅 ∈ (0, 1), thus the gradi-
ent is always positive, which means that it tends to optimize

𝑝𝐶𝑉𝑅 of unclicked ads to 0, but the actual label is “unknown”.

The counterfactual learning based models have achieved state-

of-the-art performance. However, the limitations of them contain:

• For IPS-based models, the training procedure of the CVR

task is on clicked data and does not explicitly take unclicked

ads into account.

• For DR-based models, although the imputation task is used

to estimate CVR loss of each unclicked ad, its learning proce-

dure still utilizes clicked data only, and thus the imputation

task is lack of accurate supervision.

3 PROPOSED METHOD
We propose an Uncertainty-regularized Knowledge Distillation
(UKD) framework, which aims to debias CVR estimation via dis-

tilling knowledge from unclicked ads. The basic idea is that we

build an entire space CVR estimation model by producing reliable

pseudo-conversion labels for unclicked ads as supervision signals.

Fig. 2 illustrates the overall workflow of UKD, which consists of

a click-adaptive teacher model that produces pseudo-conversion

labels for unclicked ads, and an uncertainty-regularized student

model that distills the valuable knowledge learned by the teacher

to perform entire space CVR estimation. Next, we elaborate our

UKD from the details of teacher and student respectively.

3.1 Click-Adaptive Teacher Model
The goal of the teacher in UKD is to produce pseudo-conversion

labels for unclicked ads D𝑢𝑛𝑐𝑙𝑖𝑐𝑘 under the condition that we can

only access ground-truth conversion labels of clicked ads D𝑐𝑙𝑖𝑐𝑘 ,

facilitating the entire space training of CVR estimation task.

There is a discrepancy between the feature distributions of

clicked and unclicked samples. To possess the ability of accurate

inference on unclicked ads, the teacher model may not learn feature

representations specific to clicked samples, but learn click-adaptive

representations. We propose to tackle pseudo-conversion label gen-

eration from the perspective of unsupervised domain adaptation,

where the source/target domain is clicked/unclicked space, inspired

by [3]. In this way, the problem is formulated as producing reliable

pseudo-conversion labels for unlabeled unclicked ads (D𝑢𝑛𝑐𝑙𝑖𝑐𝑘 , as

target domain) given labeled clicked ads (D𝑐𝑙𝑖𝑐𝑘 , as source domain).

3.1.1 Click-Adaptive Representation Learning. Specifically,
our click-adaptive teacher model adopts adversarial learning [7, 24]

that introduces a click discriminator to mitigate inconsistent feature

distributions of clicked/unclicked samples during training.

Model Architecture As illustrated in the left part of Fig. 2,

the click-adaptive teacher model consists of a feature representation

learner𝑇𝑓 (·), a CVR predictor𝑇𝑝 (·) and a click discriminator𝑇𝑑 (·).
Formally, 𝑇𝑓 (·) takes each sample’s feature 𝑥 as input to learn its

dense representation 𝒉(𝑇 ) , where 𝑇𝑓 (·) contains a feature embed-

ding layer and several dense layers. 𝑇𝑝 (·) intends to estimate the

sample’s CVR score 𝑝
(𝑇 )
𝐶𝑉𝑅

. It consists of several dense layers and a

softmax function on top to produce probability distribution.

With the aim of making the feature representation 𝒉(𝑇 ) more

click-adaptive to facilitate pseudo-conversion label generation on

unclicked ads, the teacher model introduces a click discriminator

𝑇𝑑 (·) to classify each sample’s domain (i.e., clicked or unclicked)

based on the sample’s representation 𝒉(𝑇 ) . The intuition is that if a

strong click discriminator cannot predict a sample’s domain label

correctly, its representation 𝒉(𝑇 ) is click-adaptive.
Overall, the forward process of the teacher model is:

𝒉(𝑇 ) = 𝑇𝑓 (𝑥)

𝒑 (𝑇 )
𝑐𝑜𝑛𝑣 = softmax

(
𝑇𝑝

(
𝒉(𝑇 )

))
=

(
𝑝
(𝑇 )
𝐶𝑉𝑅

, 1 − 𝑝
(𝑇 )
𝐶𝑉𝑅

)
𝒑𝑑 = softmax

(
𝑇𝑑

(
𝒉(𝑇 )

)) (5)

where 𝒑 (𝑇 )
𝑐𝑜𝑛𝑣 is the predicted CVR distribution (𝑝

(𝑇 )
𝐶𝑉𝑅

is the pre-

dicted CVR score). 𝒑𝑑 is the predicted domain distribution.

Adversarial Learning To learn click-adaptive representations,

given an impression ad 𝑥 , its representation 𝒉(𝑇 ) learned by 𝑇𝑓 (·)
aims to confuse the click discriminator and maximize the domain

classification loss, while the click discriminator 𝑇𝑑 (·) itself aims

to minimize the domain classification loss to be a strong classifier.

The teacher is optimized via an adversarial learning procedure:

min
𝑇𝑓 ,𝑇𝑝

L (𝑇 )
𝐶𝑉𝑅

=
1

|D𝑐𝑙𝑖𝑐𝑘 |
∑︁

D𝑐𝑙𝑖𝑐𝑘

ℓ (𝑦𝑐𝑜𝑛𝑣,𝒑 (𝑇 )
𝑐𝑜𝑛𝑣) (6)



Tf (·)

<latexit sha1_base64="cNFgZrhc+SCSO3uTwqIZHamn5vw=">AAAB8XicbVBNSwMxEM36WetX1aOXYBHqpexKRY9FLx4r9AvbpWSz2TY0myzJrFCW/gsvHhTx6r/x5r8xbfegrQ8GHu/NMDMvSAQ34Lrfztr6xubWdmGnuLu3f3BYOjpuG5VqylpUCaW7ATFMcMlawEGwbqIZiQPBOsH4buZ3npg2XMkmTBLmx2QoecQpASs9NgdRpU9DBReDUtmtunPgVeLlpIxyNAalr36oaBozCVQQY3qem4CfEQ2cCjYt9lPDEkLHZMh6lkoSM+Nn84un+NwqIY6UtiUBz9XfExmJjZnEge2MCYzMsjcT//N6KUQ3fsZlkgKTdLEoSgUGhWfv45BrRkFMLCFUc3srpiOiCQUbUtGG4C2/vEral1WvVr16qJXrt3kcBXSKzlAFeega1dE9aqAWokiiZ/SK3hzjvDjvzseidc3JZ07QHzifP8TTkFY=</latexit>

Tp(·)

<latexit sha1_base64="Z9JCSVfLmj8qDXE19G1t3OnGK8A=">AAAB8XicbVBNSwMxEM36WetX1aOXYBHqpexKRY9FLx4r9AvbpWSz2TY0myzJrFCW/gsvHhTx6r/x5r8xbfegrQ8GHu/NMDMvSAQ34Lrfztr6xubWdmGnuLu3f3BYOjpuG5VqylpUCaW7ATFMcMlawEGwbqIZiQPBOsH4buZ3npg2XMkmTBLmx2QoecQpASs9NgdJpU9DBReDUtmtunPgVeLlpIxyNAalr36oaBozCVQQY3qem4CfEQ2cCjYt9lPDEkLHZMh6lkoSM+Nn84un+NwqIY6UtiUBz9XfExmJjZnEge2MCYzMsjcT//N6KUQ3fsZlkgKTdLEoSgUGhWfv45BrRkFMLCFUc3srpiOiCQUbUtGG4C2/vEral1WvVr16qJXrt3kcBXSKzlAFeega1dE9aqAWokiiZ/SK3hzjvDjvzseidc3JZ07QHzifP9RBkGA=</latexit>

Td(·)

<latexit sha1_base64="bXmDEworeV7Q4MDs9jfJynB+Gs8=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSLUS9mVih6LXjxW6Be2S8lms21oNlmSrFCW/gsvHhTx6r/x5r8xbfegrQ8GHu/NMDMvSDjTxnW/nbX1jc2t7cJOcXdv/+CwdHTc1jJVhLaI5FJ1A6wpZ4K2DDOcdhNFcRxw2gnGdzO/80SVZlI0zSShfoyHgkWMYGOlx+YgrPRJKM3FoFR2q+4caJV4OSlDjsag9NUPJUljKgzhWOue5ybGz7AyjHA6LfZTTRNMxnhIe5YKHFPtZ/OLp+jcKiGKpLIlDJqrvycyHGs9iQPbGWMz0sveTPzP66UmuvEzJpLUUEEWi6KUIyPR7H0UMkWJ4RNLMFHM3orICCtMjA2paEPwll9eJe3LqlerXj3UyvXbPI4CnMIZVMCDa6jDPTSgBQQEPMMrvDnaeXHenY9F65qTz5zAHzifP8G9kFQ=</latexit>

Embeddings
ŏ

h(T )

<latexit sha1_base64="7HBFVRx4FPlNLdpVmxApnAZmAjE=">AAAB/HicbVDNS8MwHE39nPOruqOX4BDmZbQy0ePQi8cJ+4KtjjRNt7A0KUkqlDL/FS8eFPHqH+LN/8Z060E3H4Q83vv9yMvzY0aVdpxva219Y3Nru7RT3t3bPzi0j467SiQSkw4WTMi+jxRhlJOOppqRfiwJinxGev70Nvd7j0QqKnhbpzHxIjTmNKQYaSON7MrQFyxQaWQuOHnIau3z2ciuOnVnDrhK3IJUQYHWyP4aBgInEeEaM6TUwHVi7WVIaooZmZWHiSIxwlM0JgNDOYqI8rJ5+Bk8M0oAQyHN4RrO1d8bGYpUns9MRkhP1LKXi/95g0SH115GeZxowvHioTBhUAuYNwEDKgnWLDUEYUlNVognSCKsTV9lU4K7/OVV0r2ou4365X2j2rwp6iiBE3AKasAFV6AJ7kALdAAGKXgGr+DNerJerHfrYzG6ZhU7FfAH1ucPReSUhw==</latexit>

p(T )
conv

<latexit sha1_base64="c1olHSPZvibN9c+5gWpB0zZBBIE=">AAACA3icbVDLSgMxFM34rPVVdaebYBHqpsxIRZdFNy4r9AXtOGQymTY0kwxJplCGATf+ihsXirj1J9z5N6btLLT1QMjhnHu59x4/ZlRp2/62VlbX1jc2C1vF7Z3dvf3SwWFbiURi0sKCCdn1kSKMctLSVDPSjSVBkc9Ixx/dTv3OmEhFBW/qSUzcCA04DSlG2khe6bjvCxaoSWQ+GD+kleZ55qVY8HHmlcp21Z4BLhMnJ2WQo+GVvvqBwElEuMYMKdVz7Fi7KZKaYkayYj9RJEZ4hAakZyhHEVFuOrshg2dGCWAopHlcw5n6uyNFkZquaSojpIdq0ZuK/3m9RIfXbkp5nGjC8XxQmDCoBZwGAgMqCdZsYgjCkppdIR4iibA2sRVNCM7iycukfVF1atXL+1q5fpPHUQAn4BRUgAOuQB3cgQZoAQwewTN4BW/Wk/VivVsf89IVK+85An9gff4AMRuX4g==</latexit>

pd

<latexit sha1_base64="3OdpCUFdnoIgAcTxmxM1M/E8zJw=">AAACFnicbVC7TsMwFHXKq5RXgLGLRVWJqUpQEYwVLIxFog+piSLHuWmtOg/ZDqiqOvAX/AEr/AAbYmVl50Nw2gzQciXLR+fcq3vu8VPOpLKsL6O0tr6xuVXeruzs7u0fmIdHXZlkgkKHJjwRfZ9I4CyGjmKKQz8VQCKfQ88fX+d67x6EZEl8pyYpuBEZxixklChNeWbV8RMeyEmkP5x6QaXuPLAAFOMBeGbNaljzwqvALkANFdX2zG8nSGgWQawoJ1IObCtV7pQIxSiHWcXJJKSEjskQBhrGJALpTudHzHBdMwEOE6FfrPCc/T0xJZHMferOiKiRXNZy8j9tkKnw0p2yOM0UxHSxKMw4VgnOE8EBE0AVn2hAqGDaK6YjIghVOrc/WxZOdSz2cgiroHvWsJuN89tmrXVVBFRGVXSCTpGNLlAL3aA26iCKHtEzekGvxpPxZrwbH4vWklHMHKM/ZXz+AOubn+U=</latexit>

ŏ

Sv
p (·)

<latexit sha1_base64="EyM5nWv1AJY2k/ci6OZf4+0yU1M=">AAACBXicbVDLTgIxFO3gC/GFunTTSExwQ2YMRpdENy4xyiNhRtLpFGjotE3bISET1v6BW/0Bd8at3+HeD7HALAQ8yU1Ozrk39+SEklFtXPfbya2tb2xu5bcLO7t7+wfFw6OmFonCpIEFE6odIk0Y5aRhqGGkLRVBcchIKxzeTv3WiChNBX80Y0mCGPU57VGMjJX8h6dRV5Z9HAlz3i2W3Io7A1wlXkZKIEO9W/zxI4GTmHCDGdK647nSBClShmJGJgU/0UQiPER90rGUo5joIJ1lnsAzq0SwJ5QdbuBM/XuRoljrcRzazRiZgV72puJ/XicxvesgpVwmhnA8f9RLGDQCTguAEVUEGza2BGFFbVaIB0ghbGxNC1/mSW0t3nIJq6R5UfGqlcv7aql2kxWUByfgFJSBB65ADdyBOmgADCR4Aa/gzXl23p0P53O+mnOym2OwAOfrF4YomT8=</latexit>

Sv
p0(·)

<latexit sha1_base64="ZG1ms2e6ankFJDV3QSVYdLGv4K4=">AAACCnicbVDLTgIxFO3gC/HBqEs3jcSIGzJjMLokunGJUR4JjJNOp0BDp520HRIy4Q/8A7f6A+6MW3/CvR9igVkIeJKbnJxzb+7JCWJGlXacbyu3tr6xuZXfLuzs7u0X7YPDphKJxKSBBROyHSBFGOWkoalmpB1LgqKAkVYwvJ36rRGRigr+qMcx8SLU57RHMdJG8u3iw9PIT+OzSbmLQ6HPfbvkVJwZ4CpxM1ICGeq+/dMNBU4iwjVmSKmO68TaS5HUFDMyKXQTRWKEh6hPOoZyFBHlpbPgE3hqlBD2hDTDNZypfy9SFCk1jgKzGSE9UMveVPzP6yS6d+2llMeJJhzPH/USBrWA0xZgSCXBmo0NQVhSkxXiAZIIa9PVwpd5UlOLu1zCKmleVNxq5fK+WqrdZAXlwTE4AWXggitQA3egDhoAgwS8gFfwZj1b79aH9TlfzVnZzRFYgPX1C0Vvmq0=</latexit>

Click-Adaptive Teacher Model Uncertainty-Regularized Student Model

Sc
p(·)

<latexit sha1_base64="I+LozwWyUBImoYu3i97KqK4fL+E=">AAACB3icbVDLTsJAFL3FF+ILdelmIjHBDWkNRpdENy4xyiOBQqbTKUyYdpqZqQlp+AD/wK3+gDvj1s9w74c4QBcCnuQmJ+fcm3tyvJgzpW3728qtrW9sbuW3Czu7e/sHxcOjphKJJLRBBBey7WFFOYtoQzPNaTuWFIcepy1vdDv1W09UKiaiRz2OqRviQcQCRrA2Uu+hR/ppPCl3iS/0eb9Ysiv2DGiVOBkpQYZ6v/jT9QVJQhppwrFSHceOtZtiqRnhdFLoJorGmIzwgHYMjXBIlZvOUk/QmVF8FAhpJtJopv69SHGo1Dj0zGaI9VAte1PxP6+T6ODaTVkUJ5pGZP4oSDjSAk0rQD6TlGg+NgQTyUxWRIZYYqJNUQtf5klNLc5yCaukeVFxqpXL+2qpdpMVlIcTOIUyOHAFNbiDOjSAgIQXeIU369l6tz6sz/lqzspujmEB1tcvRfeaOA==</latexit>

CVR Features (user, ad, etc.) CVR Features (user, ad, etc.) CTR Features (user, ad, etc.)

pconv

<latexit sha1_base64="cLzzfAVNP6qgQHQ6AqDROK7DAp4=">AAACEHicbVDNSsNAGNzUv1r/ouLJy2IRPJVEKnosevFYwdZCG8Jms2mXbnbD7qZQQl7CN/CqL+BNvPoG3n0QN20OtnVg2WHm+/iGCRJGlXacb6uytr6xuVXdru3s7u0f2IdHXSVSiUkHCyZkL0CKMMpJR1PNSC+RBMUBI0/B+K7wnyZEKir4o54mxIvRkNOIYqSN5Nsng0CwUE1j82VJ7mdY8Enu23Wn4cwAV4lbkjoo0fbtn0EocBoTrjFDSvVdJ9FehqSmmJG8NkgVSRAeoyHpG8pRTJSXzeLn8NwoIYyENI9rOFP/bmQoVkVCMxkjPVLLXiH+5/VTHd14GeVJqgnH80NRyqAWsOgChlQSrNnUEIQlNVkhHiGJsDaNLVyZJzW1uMslrJLuZcNtNq4emvXWbVlQFZyCM3ABXHANWuAetEEHYJCBF/AK3qxn6936sD7noxWr3DkGC7C+fgEPo56F</latexit>

p0
conv

<latexit sha1_base64="/0tNs4soZC4zcGlzwHghfiWUt90=">AAACEXicbVDLSgMxFM34rPU1KrhxEyyiqzIjFV0W3bisYB/QDkMmk2lDM8mQZApl7Ff4B271B9yJW7/AvR9ipp2FbT0QcjjnXu7hBAmjSjvOt7Wyura+sVnaKm/v7O7t2weHLSVSiUkTCyZkJ0CKMMpJU1PNSCeRBMUBI+1geJf77RGRigr+qMcJ8WLU5zSiGGkj+fZxLxAsVOPYfFkyOfczLPho4tsVp+pMAZeJW5AKKNDw7Z9eKHAaE64xQ0p1XSfRXoakppiRSbmXKpIgPER90jWUo5goL5vmn8Azo4QwEtI8ruFU/buRoVjlEc1kjPRALXq5+J/XTXV042WUJ6kmHM8ORSmDWsC8DBhSSbBmY0MQltRkhXiAJMLaVDZ3ZZbU1OIulrBMWpdVt1a9eqhV6rdFQSVwAk7BBXDBNaiDe9AATYDBE3gBr+DNerberQ/rcza6YhU7R2AO1tcvecaetg==</latexit>

yclick

<latexit sha1_base64="SdfULpfEbViS2Bwt++6ETsM7xgg=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsxIRZdFNy4r2Ie0Q8mkmTY0yQxJRhiG7vwDt/oD7sStP+LeDzFtZ2FbDwQO59zLPTlBzJk2rvvtFNbWNza3itulnd29/YPy4VFLR4kitEkiHqlOgDXlTNKmYYbTTqwoFgGn7WB8O/XbT1RpFskHk8bUF3goWcgINlZ6TPsZ4YyMJ/1yxa26M6BV4uWkAjka/fJPbxCRRFBpCMdadz03Nn6GlWGE00mpl2gaYzLGQ9q1VGJBtZ/NAk/QmVUGKIyUfdKgmfp3I8NC61QEdlJgM9LL3lT8z+smJrz2MybjxFBJ5ofChCMToenv0YApSgxPLcFEMZsVkRFWmBjb0cKVeVJbi7dcwippXVS9WvXyvlap3+QFFeEETuEcPLiCOtxBA5pAQMALvMKb8+y8Ox/O53y04OQ7x7AA5+sXUWSYqg==</latexit>

yconv

<latexit sha1_base64="HytZ3G4C5bcKHo7BrZHqQ4hktQ8=">AAACAXicbVDLSgMxFL1TX7W+qi7dBIvgqsxIRZdFNy4r2Ae0Q8mkmTY0kwxJpjAMXfkHbvUH3Ilbv8S9H2LazsK2HggczrmXe3KCmDNtXPfbKWxsbm3vFHdLe/sHh0fl45OWlokitEkkl6oTYE05E7RpmOG0EyuKo4DTdjC+n/ntCVWaSfFk0pj6ER4KFjKCjZU6aT8jUkym/XLFrbpzoHXi5aQCORr98k9vIEkSUWEIx1p3PTc2foaVYYTTaamXaBpjMsZD2rVU4IhqP5vnnaILqwxQKJV9wqC5+ncjw5HWaRTYyQibkV71ZuJ/Xjcx4a2fMREnhgqyOBQmHBmJZp9HA6YoMTy1BBPFbFZERlhhYmxFS1cWSW0t3moJ66R1VfVq1evHWqV+lxdUhDM4h0vw4Abq8AANaAIBDi/wCm/Os/PufDifi9GCk++cwhKcr1+qPphQ</latexit>

Gradient
Reversal

yclick

<latexit sha1_base64="SdfULpfEbViS2Bwt++6ETsM7xgg=">AAACAnicbVDLSgMxFL1TX7W+qi7dBIvgqsxIRZdFNy4r2Ie0Q8mkmTY0yQxJRhiG7vwDt/oD7sStP+LeDzFtZ2FbDwQO59zLPTlBzJk2rvvtFNbWNza3itulnd29/YPy4VFLR4kitEkiHqlOgDXlTNKmYYbTTqwoFgGn7WB8O/XbT1RpFskHk8bUF3goWcgINlZ6TPsZ4YyMJ/1yxa26M6BV4uWkAjka/fJPbxCRRFBpCMdadz03Nn6GlWGE00mpl2gaYzLGQ9q1VGJBtZ/NAk/QmVUGKIyUfdKgmfp3I8NC61QEdlJgM9LL3lT8z+smJrz2MybjxFBJ5ofChCMToenv0YApSgxPLcFEMZsVkRFWmBjb0cKVeVJbi7dcwippXVS9WvXyvlap3+QFFeEETuEcPLiCOtxBA5pAQMALvMKb8+y8Ox/O53y04OQ7x7AA5+sXUWSYqg==</latexit>

Sv
f (·)

<latexit sha1_base64="sW/P2/baNfYLGCEWcNjiBswO06o=">AAACBXicbVDLSsNAFJ3UV62vqks3g0Wom5JIRZdFNy4r2gc0sUymk3boZBJmbgoldO0fuNUfcCdu/Q73fojTNgvbeuDC4Zx7uYfjx4JrsO1vK7e2vrG5ld8u7Ozu7R8UD4+aOkoUZQ0aiUi1faKZ4JI1gINg7VgxEvqCtfzh7dRvjZjSPJKPMI6ZF5K+5AGnBIzkPnSDp1HZpb0IzrvFkl2xZ8CrxMlICWWod4s/bi+iScgkUEG07jh2DF5KFHAq2KTgJprFhA5Jn3UMlSRk2ktnmSf4zCg9HETKjAQ8U/9epCTUehz6ZjMkMNDL3lT8z+skEFx7KZdxAkzS+aMgERgiPC0A97hiFMTYEEIVN1kxHRBFKJiaFr7Mk5panOUSVknzouJUK5f31VLtJisoj07QKSojB12hGrpDddRAFMXoBb2iN+vZerc+rM/5as7Kbo7RAqyvX3XomTU=</latexit>

Sc
f (·)

<latexit sha1_base64="HgHC4bNveGvjTEA4gZoLo3wvCn8=">AAACBXicbVDLSsNAFL3xWeur6tLNYBHqpiRS0WXRjcuK9gFNLJPJpB06mYSZiVBC1/6BW/0Bd+LW73Dvhzhts7CtBy4czrmXezh+wpnStv1trayurW9sFraK2zu7e/ulg8OWilNJaJPEPJYdHyvKmaBNzTSnnURSHPmctv3hzcRvP1GpWCwe9CihXoT7goWMYG0k974XPpKKS4JYn/VKZbtqT4GWiZOTMuRo9Eo/bhCTNKJCE46V6jp2or0MS80Ip+OimyqaYDLEfdo1VOCIKi+bZh6jU6MEKIylGaHRVP17keFIqVHkm80I64Fa9Cbif1431eGVlzGRpJoKMnsUphzpGE0KQAGTlGg+MgQTyUxWRAZYYqJNTXNfZklNLc5iCcukdV51atWLu1q5fp0XVIBjOIEKOHAJdbiFBjSBQAIv8Apv1rP1bn1Yn7PVFSu/OYI5WF+/V0GZIg==</latexit>

hconv

<latexit sha1_base64="6Io8qA8ZoGsba6UpvWufytyuegI=">AAACD3icbVBLTsMwFHTKr5Rf+OzYWFRIrKoEFcGygg3LItGP1EaR4zitVceObKdSiXoIbsAWLsAOseUI7DkITpsFbRnJ8mjmPb3RBAmjSjvOt1VaW9/Y3CpvV3Z29/YP7MOjthKpxKSFBROyGyBFGOWkpalmpJtIguKAkU4wusv9zphIRQV/1JOEeDEacBpRjLSRfPukHwgWqklsPjj0Myz4eOrbVafmzABXiVuQKijQ9O2ffihwGhOuMUNK9Vwn0V6GpKaYkWmlnyqSIDxCA9IzlKOYKC+bpZ/Cc6OEMBLSPK7hTP27kaFY5QHNZIz0UC17ufif10t1dONllCepJhzPD0Upg1rAvAoYUkmwZhNDEJbUZIV4iCTC2hS2cGWe1NTiLpewStqXNbdeu3qoVxu3RUFlcArOwAVwwTVogHvQBC2AwRN4Aa/gzXq23q0P63M+WrKKnWOwAOvrF3sRnZs=</latexit>

Dropout Dropout

hclick

<latexit sha1_base64="zuEvPFB7Eur6GvMgKGtv9gjVRMc=">AAACEHicbVDLSsNAFL2pr1pfUXHlZrAIrkoiFV0W3bisYB/QhjCZTNuhk0mYmQgl9Cf8A7f6A+7ErX/g3g9x0mZhWw8MczjnXu7hBAlnSjvOt1VaW9/Y3CpvV3Z29/YP7MOjtopTSWiLxDyW3QArypmgLc00p91EUhwFnHaC8V3ud56oVCwWj3qSUC/CQ8EGjGBtJN8+6QcxD9UkMh8a+RnhjIynvl11as4MaJW4BalCgaZv//TDmKQRFZpwrFTPdRLtZVhqRjidVvqpogkmYzykPUMFjqjysln8KTo3SogGsTRPaDRT/25kOFJ5QjMZYT1Sy14u/uf1Uj248TImklRTQeaHBilHOkZ5FyhkkhLNJ4ZgIpnJisgIS0y0aWzhyjypqcVdLmGVtC9rbr129VCvNm6LgspwCmdwAS5cQwPuoQktIJDBC7zCm/VsvVsf1ud8tGQVO8ewAOvrFycQnfU=</latexit>

yconv

<latexit sha1_base64="HytZ3G4C5bcKHo7BrZHqQ4hktQ8=">AAACAXicbVDLSgMxFL1TX7W+qi7dBIvgqsxIRZdFNy4r2Ae0Q8mkmTY0kwxJpjAMXfkHbvUH3Ilbv8S9H2LazsK2HggczrmXe3KCmDNtXPfbKWxsbm3vFHdLe/sHh0fl45OWlokitEkkl6oTYE05E7RpmOG0EyuKo4DTdjC+n/ntCVWaSfFk0pj6ER4KFjKCjZU6aT8jUkym/XLFrbpzoHXi5aQCORr98k9vIEkSUWEIx1p3PTc2foaVYYTTaamXaBpjMsZD2rVU4IhqP5vnnaILqwxQKJV9wqC5+ncjw5HWaRTYyQibkV71ZuJ/Xjcx4a2fMREnhgqyOBQmHBmJZp9HA6YoMTy1BBPFbFZERlhhYmxFS1cWSW0t3moJ66R1VfVq1evHWqV+lxdUhDM4h0vw4Abq8AANaAIBDi/wCm/Os/PufDifi9GCk++cwhKcr1+qPphQ</latexit>

L(T )
CV R (on Dclick)

<latexit sha1_base64="RKjOx0+GXJLHDpbFOA11x66Ee4k="></latexit>

Label Distillation
pclick
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Figure 2: Overview of uncertainty-regularized knowledge distillation (UKD) for debiasing post-click conversion rate estima-
tion (better viewed in color). It contains a click-adaptive teacher model that provides pseudo-conversion labels for unclicked
ads, and an uncertainty-regularized student model that is trained on entire impression space.

max
𝑇𝑓

min
𝑇𝑑

L (𝑇 )
𝑑

=
1

|D|
∑︁
D

ℓ (𝑦𝑐𝑙𝑖𝑐𝑘 ,𝒑𝑑 ) (7)

The first equation minimizes the loss of CVR estimation to optimize

the learner 𝑇𝑓 (·) and the predictor 𝑇𝑝 (·). The second one means

that the learner 𝑇𝑓 (·) makes the representations of clicked and

unclicked ads indistinguishable, while the click discriminator 𝑇𝑑 (·)
is optimized to better distinguish clicked ads from the unclicked

ones. In practice we implement it via gradient reversal [7].

The learned representations from two domains are effectively

aligned when a well-trained discriminator cannot distinguish them.

Therefore, based on the click-adaptive representations, the teacher

is able to make reliable CVR estimation on unclicked ads.

3.1.2 ProducePseudo-ConversionLabels forUnclickedAds.
The trained teacher model performs inference on each unclicked ad

in D𝑢𝑛𝑐𝑙𝑖𝑐𝑘 to produce the predicted CVR distribution 𝒑 (𝑇 )
𝑐𝑜𝑛𝑣 as the

pseudo-conversion label, where the forward process of inference

only includes 𝑇𝑓 (·) and 𝑇𝑝 (·), without the need of 𝑇𝑑 (·).
We use D̃𝑢𝑛𝑐𝑙𝑖𝑐𝑘 = {(𝑥,𝒑 (𝑇 )

𝑐𝑜𝑛𝑣)} to denote the unclicked samples

coupled with pseudo-conversion labels, which will be utilized to

train an entire space CVR model.

3.2 Uncertainty-Regularized Student Model
Based on unclicked ads’ pseudo-conversion labels learned by the

click-adaptive teacher model, our UKD framework further builds a

student model based on knowledge distillation [11], which learns

from both clicked ads (with ground-truth labels) and unclicked

ads (with pseudo-labels) to perform entire space CVR estimation.

Compared to the models that are trained using clicked samples only,

our model alleviates the SSB issue via explicitly taking unclicked

samples into account during training.

We elaborate distillation strategy that can guide the student

model to mine the valuable knowledge learned by the teacher. Due

to the inherent noise existed in teacher predictions, the confidence

of unclicked ads’ pseudo-labels is inferior to clicked ads’ ground-

truth conversion labels. To address this, we propose an uncertainty-

regularized student that reduces the negative impact of noise by

modeling pseudo-labels’ uncertainty during distillation. Next we

detail the distillation strategy of our student model with its two

key modules: label distillation and uncertainty regularization.

3.2.1 Base Student Model: Label Distillation. We start from

introducing a base student model, which is jointly learned with

both CVR and CTR estimation tasks as the joint model in § 2.2.2.

Model Architecture The base student consists of two feature

representation learners (i.e., 𝑆𝑣
𝑓
(·) for CVR task and 𝑆𝑐

𝑓
(·) for CTR

task), a CVR predictor 𝑆𝑣𝑝 (·) that outputs the predicted CVR score,

and a CTR predictor 𝑆𝑐𝑝 (·) that outputs the predicted CTR score.

Formally, the two representation learners 𝑆𝑣
𝑓
(·) and 𝑆𝑐

𝑓
(·) share

the feature embedding layer, and each learner has several dense

layers to learn representation 𝒉𝑐𝑜𝑛𝑣 / 𝒉𝑐𝑙𝑖𝑐𝑘 w.r.t. the CVR / CTR

task. Further, each of the two predictors 𝑆𝑣𝑝 (·) and 𝑆𝑐𝑝 (·) consists of
several dense layers with a softmax function to produce probability

distribution for estimating CVR / CTR score. The forward process

of the base student model is:

𝒉𝑐𝑜𝑛𝑣 = 𝑆𝑣
𝑓
(𝑥), 𝒉𝑐𝑙𝑖𝑐𝑘 = 𝑆𝑐

𝑓
(𝑥)

𝒑𝑐𝑜𝑛𝑣 = softmax
(
𝑆𝑣𝑝 (𝒉𝑐𝑜𝑛𝑣)

)
= (𝑝𝐶𝑉𝑅, 1 − 𝑝𝐶𝑉𝑅)

𝒑𝑐𝑙𝑖𝑐𝑘 = softmax
(
𝑆𝑐𝑝 (𝒉𝑐𝑙𝑖𝑐𝑘 )

)
= (𝑝𝐶𝑇𝑅, 1 − 𝑝𝐶𝑇𝑅)

(8)

where 𝒑𝑐𝑜𝑛𝑣 denotes the predicted CVR distribution (𝑝𝐶𝑉𝑅 is

the predicted CVR score). 𝒑𝑐𝑙𝑖𝑐𝑘 and 𝑝𝐶𝑇𝑅 can be similarly defined.



Distilling Knowledge from Unclicked Ads With the help

of unclicked ads’ pseudo-conversion labels learned by the teacher,

our student is optimized in entire impression space to alleviate the

SSB issue. The objective of CVR estimation task is:

L𝐶𝑉𝑅 =
∑︁

D𝑐𝑙𝑖𝑐𝑘

ℓ (𝑦𝑐𝑜𝑛𝑣,𝒑𝑐𝑜𝑛𝑣)︸                     ︷︷                     ︸
L𝐶𝑉𝑅_𝑐𝑙𝑖𝑐𝑘

+𝛼
∑︁

D̃𝑢𝑛𝑐𝑙𝑖𝑐𝑘

ℓ

(
𝒑 (𝑇 )
𝑐𝑜𝑛𝑣,𝒑𝑐𝑜𝑛𝑣

)
︸                          ︷︷                          ︸

L𝐶𝑉𝑅_𝑢𝑛𝑐𝑙𝑖𝑐𝑘

(9)

where L𝐶𝑉𝑅_𝑐𝑙𝑖𝑐𝑘 and L𝐶𝑉𝑅_𝑢𝑛𝑐𝑙𝑖𝑐𝑘 are the CVR task losses on

clicked and unclicked ads, and the hyperparameter 𝛼 balances the

weight of two terms.
1
The base student model’s optimization ob-

jective is the sum of two losses about CVR task and CTR task:

L𝑠𝑡𝑢𝑑𝑒𝑛𝑡 = L𝐶𝑉𝑅 + 𝛾L𝐶𝑇𝑅 (10)

where L𝐶𝑇𝑅 =
∑

D ℓ (𝑦𝑐𝑙𝑖𝑐𝑘 ,𝒑𝑐𝑙𝑖𝑐𝑘 ).

3.2.2 Uncertainty-regularized Student: Alleviate Noise. It is
expected that the confidence of unclicked ads’ pseudo-conversion

labels is inferior to that of clicked ads’ ground-truth conversion

labels, because the latter is obtained from user feedback logs while

the former is produced by the teacher model. Due to inherent noise

existed in teacher’s predictions, the unclicked samples having noisy

pseudo-labels mislead the student model’s training procedure.

For effective knowledge distillation from unclicked ads, the key is

two-fold: (i) identify noisy and unreliable unclicked samples, and (ii)

reduce their negative impacts during distillation. To identify them,

we resort to estimate the uncertainty of unclicked samples’ pseudo-

labels, where a higher uncertainty value indicates worse reliability.

By using high uncertainty as a measure of noisy unclicked samples,

we can reduce the negative impacts of such samples via simply

assigning low weights to their CVR losses, which avoids misleading

the student model’s distillation procedure. Based on the above con-

siderations, we propose an uncertainty-regularized student model.

It estimates uncertainty to each unclicked ad’s pseudo-label, and

dynamically adjusts weights to unclicked ads’ CVR losses according

to uncertainty levels, reducing the negative impact of noise.
2

How to Identify Noisy Samples To design a student model

that possesses the ability of identifying noisy pseudo-labels, we

first conduct an experiment to explore: on clean samples and noisy
samples, what difference will a CVR model perform?

We use clicked dataset D𝑐𝑙𝑖𝑐𝑘 = {(𝑥,𝑦𝑐𝑜𝑛𝑣)} to run such experi-

ment, because all labels in it are known and we can synthesize noisy

dataset as well as controlling the proportion of
# 𝑐𝑙𝑒𝑎𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

# 𝑛𝑜𝑖𝑠𝑦 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
. We

add noise to obtain a noisy dataset D ′
𝑐𝑙𝑖𝑐𝑘

by randomly choosing

𝑘% of positive samples in D𝑐𝑙𝑖𝑐𝑘 and converting the labels from

1 to 0 (to keep the ratio of positive samples unchanged, we also

convert the same size of negative samples’ labels from 0 to 1).

The studies of learning from noisy data [10, 13, 22, 32] reveal

that the inconsistency of two neural models’ predictions on noisy

training samples is usually larger than that on clean samples. Based

on such guidance, we use the noisy dataset D ′
𝑐𝑙𝑖𝑐𝑘

to train a CVR

model, which contains an embedding layer, a representation learner

1
We can distill more knowledge such as the learned representations of the represen-

tation learner𝑇𝑓 ( ·) [19, 28]. In this work we focus on verifying the effectiveness of

knowledge distillation paradigm for CVR estimation, and leave that in future work.

2
Unlike the work [14] which aims to distill knowledge from a clean teacher, we learn

from noisy pseudo-labels.
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Figure 3: KL-divergence of two predictors’ outputs (×10−3).

and two seperate CVR predictors on top (the objective is the average

of two predictors’ cross-entropy losses). After training, we observe

the averaged KL-divergence of two predictors’ outputs on (1) noisy

samples and (2) clean samples, respectively. Figure 3 shows the

results with different 𝑘 , and the KL-divergence on noisy samples is

larger than that on clean samples for each value of 𝑘 . This phenom-

enon can be explained that if a sample’s label is clean, both two

predictors easily fit the label during training, where the correspond-

ing two loss values are small and the two predictions are similar. In

contrast, if a label is noisy, the fitting procedures of two predictors

will be hard to be consistent, and they tend to produce inconsistent

predictions that result in a large variance. The experimental results

verify that the inconsistency of two CVR predictors can be utilized

to identify noisy training samples.

Uncertainty Modeling Motivated by the above experiment,

our uncertainty-regularized student model contains two CVR pre-

dictors 𝑆𝑣𝑝 (·) and 𝑆𝑣𝑝′ (·) to simultaneously estimate CVR scores (as

illustrated in the right part of Fig. 2), and then models the uncer-

tainty as the inconsistency of them. Formally, let 𝒑𝑐𝑜𝑛𝑣 and 𝒑′
𝑐𝑜𝑛𝑣

denote the predicted distributions from the two CVR predictors. We

formulate the uncertainty as the KL-divergence of two predictions:

𝒑𝑐𝑜𝑛𝑣 = 𝑆𝑣𝑝 (dropout(𝒉𝑐𝑜𝑛𝑣)) , 𝒑′
𝑐𝑜𝑛𝑣 = 𝑆𝑣𝑝′

(
dropout′(𝒉𝑐𝑜𝑛𝑣)

)
KL

(
𝒑𝑐𝑜𝑛𝑣 | |𝒑′

𝑐𝑜𝑛𝑣

)
= 𝒑𝑐𝑜𝑛𝑣 log

𝒑𝑐𝑜𝑛𝑣
𝒑′
𝑐𝑜𝑛𝑣

(11)

where we apply independent dropout operations to the learned

representation 𝒉𝑐𝑜𝑛𝑣 to increase the discrepancy of two predictors.

DistillationwithUncertaintyRegularization Based on the

estimated uncertainty for each unclicked sample, we reduce the

negative impacts of noisy unclicked samples during distillation via

dynamically adjusting uncertainty-based weights to CVR losses.

Compared to the base student model, now the distillation procedure

from unclicked ads is regularized by pseudo-label’s uncertainty,

alleviating the inherent noise existed in the teacher’s predictions.

For each unclicked sample, we weight its original CVR loss with

a factor exp
(
−𝜆 · KL

(
𝒑𝑐𝑜𝑛𝑣 | |𝒑′

𝑐𝑜𝑛𝑣

) )
∈ (0, 1] as uncertainty regu-

larization. The factor is inversely related to uncertainty (𝜆 controls

its scale). Thus, the loss L𝐶𝑉𝑅_𝑢𝑛𝑐𝑙𝑖𝑐𝑘 is reformulated as:∑︁
D̃𝑢𝑛𝑐𝑙𝑖𝑐𝑘

exp
(
−𝜆 · KL

(
𝒑𝑐𝑜𝑛𝑣 | |𝒑′

𝑐𝑜𝑛𝑣

) )
· ℓ

(
𝒑 (𝑇 )
𝑐𝑜𝑛𝑣,𝒑𝑐𝑜𝑛𝑣

)
(12)

If a sample has high uncertainty, the factor returns a small value to

down-weigh its CVR loss. If the uncertainty is close to 0, the factor

tends to 1, and such student devolves to the base student model.

We also add a loss term

∑
D̃𝑢𝑛𝑐𝑙𝑖𝑐𝑘

KL
(
𝒑𝑐𝑜𝑛𝑣 | |𝒑′

𝑐𝑜𝑛𝑣

)
that acts

as a regularization for uncertainty estimation. Without minimizing

such term, a large KL-divergence leads to small label distillation

loss, which will make the model poorly optimized.



Table 1: Statistics of five datasets.

Dataset # Impression # Click # Conversion # Time Interval

Ali-CCP 84M 3.4M 18k N/A

EC-Small 0.18B 26M 88k 39 Days

EC-Large 0.51B 95M 0.3M 72 Days

LS-Small 0.28B 15M 0.2M 31 Days

LS-Large 0.75B 37M 0.5M 92 Days

4 EXPERIMENTS
In this section, we conduct both offline and online experiments,

and intend to answer the following research questions:

• RQ1 (offline performance): Does our proposed UKD outper-

form the state-of-the-art CVR estimation models?

• RQ2 (teacher’s utility): Is the teacher model necessary for

debiasing CVR estimation models, and does the choice of

teacher model affect the performance of our UKD?

• RQ3 (student’s utility): Does the distillation strategy of un-

certainty regularization effectively help the student model?

• RQ4 (model analysis): Does our UKD benefit from incorpo-

rating more unclicked samples during distillation?

• RQ5 (online performance): Does our UKD achieve improve-

ments when we deploy it to industrial advertising system?

4.1 Experimental Setup
4.1.1 Datasets. Offline experiments are conducted on a public

available dataset Ali-CCP, and four large-scale production datasets

from a leading advertising platform. Table 1 lists the statistics.

Public Dataset The Ali-CCP dataset [16] is the benchmark of

CVR estimation, collected from user traffic logs in Taobao.

Production Datasets We further collect four large-scale pro-

duction datasets from Alibaba advertising platform. Specifically,

we collected 3-month consecutive user feedback logs from two

different marketing scenarios: the first scenario is named EC, which
contains e-commerce ads for attracting potential customers. The

second scenario is named LS, in which the ads are about local life

services. We organize them into four datasets: EC-Small/Large and
LS-Small/Large. See Table 1 for their statistics.

4.1.2 Competitors of CVR Estimation. We compare our UKD
with the following strong baselines. Except the first model, all the

rest models are trained with impression dataset D:

• SingleCVR (§ 2.2.1) is a single-task network that estimates

𝑝𝐶𝑉𝑅 , and is trained on clicked samples D𝑐𝑙𝑖𝑐𝑘 .

• Joint (§ 2.2.2) is a multi-task model that estimates both

CVR and CTR. The CTR task is trained on impression data

D, and the CVR task is trained on clicked data D𝑐𝑙𝑖𝑐𝑘 .

• ESMM (§ 2.3.1) is an entire space model that learns CTR

and CTCVR estimation [16]. It is optimized in impression

spaceD, where the predicted CTCVR is equal to 𝑝𝐶𝑇𝑅 ·𝑝𝐶𝑉𝑅 .

• Division is a variant of ESMM, which formulates the CVR

estimation task as 𝑝𝐶𝑉𝑅 = 𝑝𝐶𝑇𝐶𝑉𝑅/𝑝𝐶𝑇𝑅 [16]. Compared

to ESMM, its two dense blocks produce 𝑝𝐶𝑇𝑅 and 𝑝𝐶𝑇𝐶𝑉𝑅 .

• CFL (§ 2.3.2) employs counterfactual learning and achieves

the state-of-the-art performance [9, 31]. Here we implement

the model in [31] as our competitor because we find that its

performance is superior and stable among counterfactual

learning based CVR models.

4.1.3 EvaluationMetrics. We use AUC and NLL (a.k.a., LogLoss)

as evaluation metrics, where the former reflects ranking ability

on candidates and the latter measures fitting ability of predicted

scores. Specifically, (i) AUCCVR and NLLCVR denote the metrics

of CVR estimation on clicked samples in test set, because only

clicked ads have post-click conversion labels 𝑦𝑐𝑜𝑛𝑣 for evaluation.

(ii) AUCCTCVR and NLLCTCVR denote the metrics of CTCVR estima-

tion on entire impression samples (i.e., the whole test set), because

all samples have post-view conversion labels 𝑦𝑝𝑣-𝑐𝑜𝑛𝑣 for evalua-

tion. Following [16], we use this metric to reflect the CVR model

performance of alleviating the SSB issue. For each competitor, we

compute predicted CTCVR score as 𝑝𝐶𝑇𝐶𝑉𝑅 = 𝑝𝐶𝑇𝑅 · 𝑝𝐶𝑉𝑅 , where

𝑝𝐶𝑉𝑅 is estimated by the competitor, and 𝑝𝐶𝑇𝑅 is from the same

independently trained CTR model.

We further design two new metrics, named Debiased-AUC and

Debiased-NLL (D-AUC and D-NLL for short), to evaluate the perfor-

mance of entire space CVR estimation using clicked samples only.

Formally, the conventional AUCCVR metric on clicked samples is:∑
𝑖∈D+

𝑐𝑙𝑖𝑐𝑘
, 𝑗 ∈D−

𝑐𝑙𝑖𝑐𝑘
I (𝑝𝐶𝑉𝑅 (𝑖) > 𝑝𝐶𝑉𝑅 ( 𝑗))

|D+
𝑐𝑙𝑖𝑐𝑘

| · |D−
𝑐𝑙𝑖𝑐𝑘

| (13)

where D+
𝑐𝑙𝑖𝑐𝑘

and D−
𝑐𝑙𝑖𝑐𝑘

denote the sets of positive and negative

samples respectively, 𝑝𝐶𝑉𝑅 (𝑖) is the predicted CVR score of sample

𝑖 , and I(·) ∈ {0, 1} is indicator function. Inspired by the idea of

inverse propensity score estimator [20, 21], which utilizes 𝑝𝐶𝑇𝑅 as

propensity score to induce an unbiased estimate of true prediction

error (i.e., ED𝑐𝑙𝑖𝑐𝑘

[
1
|D |

∑
D

1
𝑝𝐶𝑇𝑅

· 𝑦𝑐𝑙𝑖𝑐𝑘 · ℓ (𝑦𝑐𝑜𝑛𝑣, 𝑝𝐶𝑉𝑅)
]
), we as-

sign each sample 𝑖 with a weight
1

𝑝𝐶𝑇𝑅 (𝑖) to compute D-AUCCVR:∑
𝑖∈D+

𝑐𝑙𝑖𝑐𝑘
, 𝑗 ∈D−

𝑐𝑙𝑖𝑐𝑘

1
𝑝𝐶𝑇𝑅 (𝑖) ·

1
𝑝𝐶𝑇𝑅 ( 𝑗) · I (𝑝𝐶𝑉𝑅 (𝑖) > 𝑝𝐶𝑉𝑅 ( 𝑗))(∑

𝑖∈D+
𝑐𝑙𝑖𝑐𝑘

1
𝑝𝐶𝑇𝑅 (𝑖)

)
·
(∑

𝑗 ∈D−
𝑐𝑙𝑖𝑐𝑘

1
𝑝𝐶𝑇𝑅 ( 𝑗)

) (14)

We can similarly define themetric D-NLLCVR bymodifying NLLCVR

(equations are listed in Appendix A.2).

4.2 Performance Comparison (RQ1)
Table 2 and Table 3 show the comparative results of all CVR models

on production and public datasets respectively. On all datasets,

SingleCVR performs poorly, which indicates that the models trained

using clicked samples only may not be suitable for CVR estimation.

The training procedure of the Joint model incorporates unclicked

samples via a shared embedding layer between CVR and CTR tasks,

and it consistently outperforms SingleCVR. Thus CVR estimation

models can benefit from sharing embeddings between the two tasks.

ESMM is a strong baseline, which alleviates the SSB issue via

learning CTR and CTCVR estimation in impression space as auxil-

iary tasks to indirectly produce an entire space CVR estimator. It

outperforms Joint on production datasets and achieves the second-

best performance on the LS datasets. This demonstrates that learn-

ing with CTCVR estimation task is an effective way to exploit

unclicked samples. Although Division has the same motivation

with ESMM, it performs worse than Joint. We suggest that the rea-

son is the instability of division operation, which may introduce

unstable numerical range that does harm to model optimization.

CFL is the state-of-the-art by producing a theoretically unbiased



Table 2: Results on four large-scale production datasets. Bold/Underlined values denote the best/second-best results.

Method

Dataset: EC-Small Dataset: EC-Large

AUCCTCVR AUCCVR D-AUCCVR NLLCTCVR NLLCVR D-NLLCVR AUCCTCVR AUCCVR D-AUCCVR NLLCTCVR NLLCVR D-NLLCVR

SingleCVR 0.7401 0.6531 0.6558 0.00393 0.02095 0.02372 0.7454 0.6634 0.6623 0.003908 0.02087 0.02347

Joint 0.7445 0.6584 0.6582 0.00391 0.02091 0.02355 0.7470 0.6685 0.6705 0.003908 0.02086 0.02323

Division 0.7434 0.6559 0.6572 0.00392 0.02104 0.02371 0.7471 0.6635 0.6625 0.003905 0.02096 0.02335

ESMM 0.7441 0.6584 0.6585 0.00391 0.02086 0.02349 0.7480 0.6686 0.6697 0.003900 0.02093 0.02359

CFL 0.7453 0.6600 0.6587 0.00391 0.02110 0.02381 0.7486 0.6685 0.6722 0.003899 0.02067 0.02321

UKD 0.7513 0.6699 0.6732 0.00389 0.02077 0.02347 0.7531 0.6741 0.6752 0.003890 0.02066 0.02319

Method

Dataset: LS-Small Dataset: LS-Large

AUCCTCVR AUCCVR D-AUCCVR NLLCTCVR NLLCVR D-NLLCVR AUCCTCVR AUCCVR D-AUCCVR NLLCTCVR NLLCVR D-NLLCVR

SinlgeCVR 0.7801 0.6773 0.6711 0.00413 0.08505 0.10098 0.7833 0.6835 0.6723 0.00412 0.08521 0.10225

Joint 0.7856 0.6927 0.6792 0.00411 0.08556 0.10174 0.7861 0.6911 0.6774 0.00410 0.08487 0.10241

Division 0.7822 0.6851 0.6725 0.00405 0.08417 0.10001 0.7839 0.6741 0.6638 0.00414 0.08236 0.09993
ESMM 0.7864 0.6936 0.6801 0.00406 0.08487 0.10064 0.7876 0.6924 0.6791 0.00406 0.08418 0.10205

CFL 0.7839 0.6823 0.6783 0.00409 0.08438 0.10268 0.7849 0.6869 0.6825 0.00409 0.08466 0.10271

UKD 0.7937 0.6958 0.6831 0.00406 0.08498 0.10086 0.7955 0.7001 0.6872 0.00405 0.08448 0.10204

Table 3: Results on the public Ali-CCP dataset.

Method AUC
CTCVR

AUC
CVR

D-AUC
CVR

NLL
CTCVR

NLL
CVR

D-NLL
CVR

SingleCVR 0.6156 0.6514 0.6447 0.00211 0.04420 0.05507
Joint 0.6206 0.6699 0.6644 0.00205 0.04553 0.05599

Division 0.6172 0.6647 0.6598 0.00205 0.04607 0.05667

ESMM 0.6290 0.6711 0.6627 0.00206 0.04493 0.05535

CFL 0.6371 0.6789 0.6738 0.00205 0.04510 0.05577

UKD 0.6493 0.6919 0.6864 0.00204 0.04553 0.05627

CVR estimator. On EC datasets, it is superior to ESMM on most

metrics and achieves the second-best performance, indicating that

counterfactual learning has advantages to alleviate the SSB issue.

Our UKD outperforms all competitors by a large margin on both

the public and production datasets. Specifically, compared to the

second-best results, UKD consistently shows around 5‰ improve-

ment on AUCCTCVR and D-AUCCVR, which is a large uplift on

billion-scale dataset. This demonstrates that UKD is an effective de-

biasing framework for CVR estimation, which benefits from pseudo-

conversion labels learned by the click-adaptive teacher model and

distillation strategy of the uncertainty-regularized student model.

In the next three sections, we further conduct detailed experi-

ments on EC-Small dataset to verify the effectiveness of UKD from

three perspectives: the teacher’s utility (§ 4.3), the student’s utility

(§ 4.4), and effects of unclicked samples (§ 4.5).

4.3 Utility of the Click-Adaptive Teacher (RQ2)
4.3.1 Necessity of Click-Adaptive Teacher. The teacher model

in UKD is responsible to learn click-adaptive representation and

produce pseudo-conversion labels for unclicked ads, aiming to

alleviate the SSB issue via explicitly taking unclicked samples into

account during training CVR models (i.e., the student in UKD).
To verify the necessity of the knowledge distillation paradigm

(i.e., incorporating such a teacher model for pseudo-labels), we

compare the base version of UKD with the models that utilize

unclicked samples but do not follow knowledge distillation:

• UKD-base (§ 3.2.1) is the base version of UKD, which con-

tains a click-adaptive teachermodel and a base studentmodel

(equation 9) that does not utilize uncertainty modeling.

• Joint+D directly embodies domain adaptation into the Joint
model by adding a click discriminator to the dense block

𝐹𝑣 (·) of CVR task, without incorporating a teacher model.

Table 4: Necessity of the click-adaptive teacher.

w/ teacher? Method AUCCTCVR AUCCVR D-AUCCVR

✓ UKD-base 0.7485 0.6664 0.6689
× Joint+D 0.7375 0.6464 0.6511

× Joint 0.7445 0.6584 0.6582

× CFL 0.7453 0.6600 0.6587

Results are shown in Table 4. UKD-base beats all other models

(including the state-of-the-art model CFL), indicating that learning

click-adaptive representations for producing pseudo-conversion

labels is an ideal solution for entire space CVR estimation. Joint+D
performs worse than our UKD-base. According to the performance

drop on AUCCVR, the poor results can be attributed the reason that

adding an discriminator hurts the optimization on clicked samples.

The superiority of UKD-base verifies that the knowledge distillation
paradigm is necessary to alleviate the SSB issue.

4.3.2 Effectiveness ofClick-Adaptive Teacher. Awell-trained

teachermodel can provide powerful guidance for distilling unclicked

samples’ knowledge to the student model.

To verify the effectiveness of our click-adaptive teacher model,

we compareUKD-base to a variant that replaces the teacher from our

click-adaptive model with a SingleCVR model (i.e., a naive teacher

that does not learn any information from unclicked ones) and keeps

the student model unchanged (i.e., a base student model in § 3.2.1).

By comparing the variant’s performance with our UKD-base, we
can verify the effectiveness of the click-adaptive teacher. Table 5

shows the comparison results. We observe that equipping our click-

adaptive teacher can boost the performance on all metrics around

3‰, demonstrating the effectiveness of unsupervised domain adap-

tation for producing pseudo-conversion labels on unclicked ads.

We also evaluate the click discriminator in our teacher model.

Its output 𝒑𝑑 predicts the domain of an impression ad, which can

be regarded as the predicted CTR distribution. We use 𝒑𝑑 to cal-

culate CTR AUC with click labels 𝑦𝑐𝑙𝑖𝑐𝑘 . We observe that at both

training and test phrases, CTR AUC is always around 0.50, indi-
cating that the learned representations are indeed click-adaptive

because they fools the well-trained click discriminator. Thus, our

click-adaptive teacher model eliminates the discrepancy between

the representations of clicked and unclicked ads.



Table 5: Effectiveness of the click-adaptive teacher.
Teacher AUCCTCVR AUCCVR D-AUCCVR

Click-adaptive Model 0.7485 0.6664 0.6689
SingleCVR 0.7462 0.6633 0.6657

No (i.e., Joint) 0.7445 0.6584 0.6582

Table 6: Comparisons of different uncertainty strategies.

Uncertainty Strategy AUCCTCVR AUCCVR D-AUCCVR

Ours 0.7513 0.6699 0.6732
Monte-Carlo dropout 0.7490 0.6678 0.6695

No (i.e., UKD-base) 0.7485 0.6664 0.6689

4.4 Utility of the Uncertainty-Regularized
Student (RQ3)

To alleviate noisy pseudo-conversion labels produced by the teacher,

our student model employs the variance of two CVR predictors to

estimate uncertainty during distillation. To verify this strategy’s

effectiveness, we compare it with Monte-Carlo dropout [6], a rep-

resentative method for uncertainty estimation, which employs the

variance of repeated predictions from the same model (but with

different dropout at inference) as the uncertainty for a sample.

To adopt Monte-Carlo dropout into our knowledge distillation

framework, for each unclicked ad, the trained teacher model (af-

ter adding dropout with rate 0.2) performs inference 10 times to

produce pseudo-labels. The mean of 10 predictions is used as the

pseudo-label, and the variance is used as its uncertainty. We then

rank all unclicked samples in ascending sort order based on their

uncertainty, and retain the top 80% samples (i.e., lower uncertainty)

to train a base student model for CVR estimation.

Table 6 lists the comparison results. Compared to Monte-Carlo

dropout, our strategy shows around 2~3‰ improvement, indicating

that uncertainty regularization is more effective for alleviating label

noise. Besides, repeated predictions in Monte-Carlo dropout con-

sume much more computing resources (for reference, the time cost

of performing CVR estimation on EC-Small dataset is over 30 min-

utes, and we need to perform 10 times to estimate the uncertainty).

In contrast, our uncertainty regularization strategy only employs

an additional CVR predictor 𝑆𝑣
𝑝′ (·) following the representation

learner, thus the introduced resource consumption is negligible.

4.5 Model Analysis of UKD (RQ4)
We give more analysis including model performance w.r.t. the size

of unclicked samples, and hyperparameter sensitivity.
3

4.5.1 Effect of Unclicked Samples’ Size. In UKD, the core in-
tuition of alleviating the SSB issue is to explicitly incorporate

unclicked samples during training. To show the effect of unclicked

samples’ size used in the teachermodel, we vary the ratio of #clicked

ads : #unclicked ads to 1:0 (no unclicked samples), 1:0.5 (less than

clicked samples), 1:1 (equal to clicked samples) and 1:6 (all unclicked

samples) to train different teacher models, and then train corre-

sponding base student models to compare their performance.

Figure 4 shows the results. As the size of unclicked samples

increases, the student model’s performance generally gains. Thus

our UKD-base benefits from incorporating more unclicked samples.

3
Hyperparameters used in our experiments can be found in Appendix A.1.
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Figure 5: Impacts of dropout rate after the learned represen-
tation, and factor 𝛼 on unclicked samples’ losses.

4.5.2 Hyperparameter SensitivityAnalysis. In the uncertainty-
regularized student model, the dropout rate after the learned repre-

sentation (equation 9) and the balance factor 𝛼 of unclicked samples’

losses (equation 11) are two key hyperparameters. Figure 5 illus-

trates the sensitivity analysis of them.

We can observe that the model performs better when dropout

rate is not 0.0, and the best result is achieved at 0.2 rate, indicating

that the dropout operation is crucial to our student model. We also

see that the performance usually gains with the increasing of factor

𝛼 and the best result is achieves at 𝛼 = 0.5, thus tuning the balance
factor can contribute to the performance.

4.6 Online Experimental Results (RQ5)
We deploy UKD to the LS scenario on Alibaba advertising plat-

form and conduct online A/B test for one-week. To make a fair

comparison, we follow the same configuration with the best model

deployed online, such as feature set and model size. The online

metrics include CVR (
#𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛

#𝑐𝑙𝑖𝑐𝑘
), CTCVR (

#𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛
#𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ) and cost

per action (i.e., CPA, equal to
𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡
#𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 , lower is better).

We observe that UKD achieves +3.4% lift on CVR, +5.0% lift on

CTCVR and -4.3% lift on CPA, thus UKD improves the important

online metrics and promotes the performance of advertising system.

5 CONCLUSION
In this paper, we propose an uncertainty-regularized knowledge dis-

tillation framework named UKD for debiasing CVR estimation via

distilling knowledge from unclicked ads. It employs a click-adaptive

teacher to produce pseudo-conversion labels for unclicked ads, and

then trains a student model in entire space by taking both clicked

and unclicked samples into account. Moreover, our student model

performs uncertainty estimation to alleviate the inherent noise in

pseudo-labels to improve the distillation performance. Experimen-

tal results on large-scale production datasets strongly demonstrate

the superiority of UKD for CVR estimation. Online experiments

further verify that it achieves significantly improvements on core

online metrics including CVR, CTCVR and CPA.
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A SUPPLEMENTARY MATERIAL
A.1 Implementation Details
All competitors use the same feature set and embedding sizes, as

well as the same model architecture for fair comparison. Each dense

block contains four fully-connected layers with the output sizes

of [1024, 512, 256, 2], where the first three layers belong to repre-

sentation learner and the last layer belongs to predictor. During

optimization, we set the batch size to 128, and adopt Adam op-

timizer with 0.005 learning rate. For training the teacher model

of UKD, we randomly sample unclicked ads to keep the ratio of

#clicked ads : #unclicked ads as 1:1 for optimizing click discrimina-

tor. For the student model, the rate of dropout operation is set to 0.2.

Other hyperparameters are set as follows: 𝛾 = 0.2, 𝛼 = 0.5, 𝜆 = 100.
In practice, we treat the two predictors 𝑆𝑣𝑝 (·) and 𝑆𝑣

𝑝′ (·) equally,
therefore the objective L𝐶𝑉𝑅 also contains the symmetrical terms∑

D𝑐𝑙𝑖𝑐𝑘
ℓ (𝑦𝑐𝑜𝑛𝑣,𝒑′

𝑐𝑜𝑛𝑣) and𝛼
∑

D̃𝑢𝑛𝑐𝑙𝑖𝑐𝑘
exp

(
−𝜆 · KL

(
𝒑′
𝑐𝑜𝑛𝑣 | |𝒑𝑐𝑜𝑛𝑣

) )
·

ℓ

(
𝒑 (𝑇 )
𝑐𝑜𝑛𝑣,𝒑

′
𝑐𝑜𝑛𝑣

)
. During inference, we use the average of the two

predictors’ outputs for estimating CVR., i.e., (𝒑𝑐𝑜𝑛𝑣 +𝒑′
𝑐𝑜𝑛𝑣)/2. For

each production dataset, we use the data at the penultimate/last

day as validation/test set, and all the rest data as training data.

A.2 Definition of D-NLLCVR
Let NLLCVR (𝑖) denote the NLL of the sample 𝑖 , and the metric

NLLCVR is defined as:

1

|D𝑐𝑙𝑖𝑐𝑘 |
∑︁

𝑖∈D𝑐𝑙𝑖𝑐𝑘

NLLCVR (𝑖) (15)

Our metric D-NLLCVR is defined as:

1∑
𝑖∈D𝑐𝑙𝑖𝑐𝑘

1
𝑝𝐶𝑇𝑅 (𝑖)

∑︁
𝑖∈D𝑐𝑙𝑖𝑐𝑘

1

𝑝𝐶𝑇𝑅 (𝑖)
· NLLCVR (𝑖) . (16)
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