
Graph-adaptive Rectified Linear Unit for Graph Neural
Networks

Yifei Zhang
yfzhang@cse.cuhk.edu.hk

The Chinese University of Hong Kong
Hong Kong SAR, China

Hao Zhu
allenhaozhu@anu.edu.au

Australian National University and
Data61/CSIRO

Canberra, Australia

Ziqiao Meng
zqmeng@cse.cuhk.edu.hk

The Chinese University of Hong Kong
Hong Kong SAR, China

Piotr Koniusz
piotr.koniusz@data61.csiro.au
Data61/CSIRO and Australian

National University
Canberra, Australia

Irwin King
king@cse.cuhk.edu.hk

The Chinese University of Hong Kong
Hong Kong SAR, China

ABSTRACT
Graph Neural Networks (GNNs) have achieved remarkable success
by extending traditional convolution to learning on non-Euclidean
data. The key to the GNNs is adopting the neural message-passing
paradigm with two stages: aggregation and update. The current
design of GNNs considers the topology information in the aggrega-
tion stage. However, in the updating stage, all nodes share the same
updating function. The identical updating function treats each node
embedding as i.i.d. random variables and thus ignores the implicit
relationships between neighborhoods, which limits the capacity
of the GNNs. The updating function is usually implemented with
a linear transformation followed by a non-linear activation func-
tion. To make the updating function topology-aware, we inject
the topological information into the non-linear activation function
and propose Graph-adaptive Rectified Linear Unit (GReLU), which
is a new parametric activation function incorporating the neigh-
borhood information in a novel and efficient way. The parameters
of GReLU are obtained from a hyperfunction based on both node
features and the corresponding adjacent matrix. To reduce the risk
of overfitting and the computational cost, we decompose the hyper-
function as two independent components for nodes and features
respectively. We conduct comprehensive experiments to show that
our plug-and-play GReLU method is efficient and effective given
different GNN backbones and various downstream tasks.

CCS CONCEPTS
• Information systems→ Data mining.

KEYWORDS
Graph Neural Networks, Rectified Linear Unit, Graph Representa-
tion Learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00
https://doi.org/10.1145/3485447.3512159

ACM Reference Format:
Yifei Zhang, Hao Zhu, Ziqiao Meng, Piotr Koniusz, and Irwin King. 2022.
Graph-adaptive Rectified Linear Unit for Graph Neural Networks. In Pro-
ceedings of the ACM Web Conference 2022 (WWW ’22), April 25–29, 2022,
Virtual Event, Lyon, France. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3485447.3512159

1 INTRODUCTION
Deep learning has revolutionized many machine learning tasks in
recent years, ranging from computer vision to speech and natural
language understanding [21]. The data in these tasks is typically
represented in the Euclidean space. However, there is an increasing
number of applications where data is generated from non-Euclidean
domains and is represented as graphs with complex relationships
between objects [5, 9, 22, 24, 35, 41, 42]. By defining the convolution
operators on the graph, graph neural networks (GNNs) extend
convolution neural networks (CNNs) from the image domain into
the graph domain. Thus, we can still adapt may tools from CNNs
to GNNs, i.e., ReLU [28], Dropout [32], or residual link [13].

GNN is now capable of mining the characteristics of the graph by
adopting the so-called message passing (MP) framework, which iter-
atively aggregates and updates the node information following the
edge path. Embracing the MP as a modeling tool, recent years wit-
nessed an unprecedented achievement in downstream tasks, such
as node/graph classification [30, 31] and link prediction [3, 4]. How-
ever, proven by many recent works, an inappropriately designed
propagation step in MP violates the homophily assumption held by
many real-world graphs, consequently causing critical performance
degradation [15, 46].

The aforementioned nuisances motivate us to refine the MP and
enhance the generalization ability of GNN. One promising line of
exploration is to dynamically consider the contribution of each
node during MP. Attention mechanisms are a good pointer as they
have been explored in [15, 34]. One of the benefits of attention
mechanisms is that they let network focus on the most relevant
information to propagate by assigning the weight to different nodes
accordingly e.g., works [15, 34] show that propagating information
by adaptive transformation yields impressive performance across
several inductive benchmarks.

However, the current design of adaptive transformation is ineffi-
cient. Our reasoning arises from two critical standpoints. Firstly,

ar
X

iv
:2

20
2.

06
28

1v
1

 [
cs

.L
G

]
 1

3
Fe

b
20

22

https://doi.org/10.1145/3485447.3512159
https://doi.org/10.1145/3485447.3512159
https://doi.org/10.1145/3485447.3512159

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Yifei Zhang, Hao Zhu, Ziqiao Meng, Piotr Koniusz, and Irwin King

Figure 1: Plugging GReLU in message passing with three
channels. The grey box with dash lines shows details of the
updating functionwhich consists of a linear transformation
(the blue box) and a non-linear activation function (the pink
circle). The black and red arrows indicate the aggregation
and updating processes. Note that the linear transformation
is shared across different nodes while the activation func-
tions are bothnode- and channel-specificwhich are adaptive
to both features and the adjacency matrix.

no topology information has been considered in inference of the
adaptive weight for each input node, thus, failing to capture the
homophily information of the graph [15]. Secondly, we suspect the
limitation in improving model generalization ability and accuracy
is due to sharing the adaptive weight across channels for each in-
put node. It may be undesirable to transform all channels with no
discrimination as some channels are less important than others.

Motivated by the issues above, we develop GReLU, a topology-
aware adaptive activation function, amenable to any GNN backbone.
GReLU refines the information propagation and improves the per-
formance on node classification tasks. As illustrated in Figure 1, our
mechanism is comprised of two components improving the train-
ing procedure of GNNs. On the one hand, the GReLU inherits the
topology information by taking features and graphs as input. On
the other hand, unlike standard rectifiers being the same function
w.r.t. all inputs, GReLU assigns a set of parameters to dynamically
control the piecewise non-linear function of each node and channel.
Such a topology-adaptive property provides a better expressive
power than the topology-unaware counterpart. Meanwhile, GReLU
is computationally efficient e.g., a two-layer GCN with GReLU and
a two-layer GAT [34] have similar computational complexity, while
the former is able to outperform GAT in node classification.

The main contributions of this work are listed below:
i. We incorporate the topology information in the updating func-
tion of GNNs by introducing a topology-aware activation func-
tion in the updating stage of message passing, which, to our
knowledge, is novel.

ii. We propose a well-designed graph adaptive rectified linear
unit for graph data, which can be used as a plug-and-play
component in various types of spatial and spectral GNNs.

iii. We evaluate the proposed methods on various downstream
tasks. We empirically show that the performance of various
types of GNNs can be generally improved with the use of our
GReLU.

2 RELATEDWORKS
2.1 Graph Neural Networks
GNNs can be categorized into spectral or spatial domain type [37].
The spectral domain is exploring GNNs design from the perspec-
tive of graph signal processing i.e., the Fourier transform and the
eigen-decomposition of the Laplacian matrix [7] are used to define
the convolution step. One can extract any frequency to design a
graph filter with the theoretical guarantees. However, these models
suffer from three main drawbacks: 1) a large amount of computa-
tional burden is induced by the eigen-decomposition of the given
graph; 2) spatial non-localization; 3) the filter designed for a given
graph cannot be applied to other graphs. Spatial GNNs general-
ize the architecture of GNNs by introducing the message passing
mechanism, which is aggregating neighbor information based on
some spatial characteristics of the graph such as adjacency matrix,
node features, edge features, etc. [11]. Due to its high efficiency and
scalability, spatial GNNs have become much more popular in recent
works. The most representative model is graph attention network
(GAT) [34], which weights the node features of different neighbors
by using the attention mechanism in the aggregation step. However,
for each node feature, GAT assigns the node a single weight shared
across all channels, which ignores the fact that different channels
may exhibit different importance.

2.2 Activation Functions
Activation functions have been long studied over the entire his-
tory of neural networks. One of the few important milestones is
introducing the Rectified Linear Unit (ReLU) [28] into the neural
network. Due to its simplicity and non-linearity, ReLU became the
standard setting for many successful deep architectures. A series of
research has been proposed to improve ReLU. Two variants of ReLU
are proposed which adopt non-zero slopes 𝛼 for the input less than
zero: Absolute value rectification choose 𝛼 = −1 [14]; LeakyReLU
fixes 𝛼 to a small value [38]. PReLU [12] and [2] takes a further
step by making the nonzero slope a trainable parameter. Maxout
generalizes ReLU further, by dividing the input into groups and
outputting the maximum [10]. Since ReLU is non-smooth, some
smooth activation functions have been developed to address this
issue, such as soft plus [8], ELU [6], SELU [17], Misc [27], Exp [25]
and Sigmoid [20]. These rectifiers are all general functions that can
be used in different types of neural networks. None of them has a
special design for GNNs by considering the topology information.

2.3 Linear Graph Neural Network
In [33, 36, 43–45], the authors proposed simplified GNNs (SGC
and S2GC) by removing the activation function and collapsing the
weight matrices between consecutive layers. These works hypothe-
size that the non-linearity between GCN layers is not critical but
that the majority of the benefit arises from the topological smooth-
ing. However, removing non-linearity between layers sacrifices the
depth efficiency of GNNs. Moreover, the ReLU removed from SGC
is not topology-aware. Hence, the rectifiers play a less important
role in GNN. As stated in SGC, the topology information is crucial
in the aggregation stage to make GNN work, which also motivates
us to incorporate the topology information in the updating stage.

Graph-adaptive Rectified Linear Unit for Graph Neural Networks WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

3 PRELIMINARIES
3.1 Notations
In this paper, a graph with node features is denoted as G = (𝑿 ,𝑨),
where V is the vertex set, E is the edge set, and 𝑿 ∈ R𝑁×𝐶 is
the feature matrix where 𝑁 = |V| is the number of nodes and 𝐶
is the number of channels. 𝑨 ∈ {0, 1}𝑁×𝑁 denotes the adjacency
matrix of G , i.e., the (𝑖, 𝑗)-th entry in 𝑨, 𝑎𝑖 𝑗 , is 1 if there is an edge
between 𝑣𝑖 and 𝑣 𝑗 . We denote N(𝑖) = { 𝑗 |𝑎𝑖 𝑗 = 1} as the set of
indexes of neighborhoods of node 𝑖 . The degree of 𝑣𝑖 , denoted as 𝑑𝑖 ,
is the number of edges incident with 𝑣𝑖 . For a 𝑑-dimensional vector
𝒙 ∈ R𝑑 , we use 𝑥𝑖 to denote the 𝑖-th entry of 𝒙 . We use 𝒙𝑖 to denote
the row vector of 𝑿 and 𝑥𝑖 𝑗 for the (𝑖, 𝑗)-th entry of 𝑿 .

3.2 Message Passing (MP)
The success of spatial GNNs results from applying message passing
(also called neighbor aggregation) between nodes in the graph. In
the forward pass of GNNs, the hidden state of node 𝑖 is iteratively
updated via aggregating the hidden state of node 𝑗 from 𝑖’s neigh-
bors through edge 𝑒𝑖 𝑗 . Suppose there are 𝑙 iterations, the message
passing paradigm can be formalized as:

𝒎 (𝑙)
𝑖

= AGGREGATE(𝑙)
(
{𝒉(𝑙)
𝑖
,𝒉(𝑙)
𝑗
, 𝒆𝑖 𝑗 | 𝑗 ∈ N (𝑖)}

)
, (1)

𝒉(𝑙+1)
𝑖

= 𝜎
(
𝚯
(𝑙) [𝒉(𝑙)

𝑖
,𝒎 (𝑙)

𝑖
]
)
, (2)

where 𝒉𝑖 and 𝒉 𝑗 are hidden states of nodes 𝑖 and 𝑗 , 𝒎𝒊 denotes the
message that the node 𝑖 receives from its neighbors 𝑗 ∈ N (𝑖). The
updating function in (2) is modeled as a linear transformation fol-
lowed by a non-linear activation function 𝜎 (·) where 𝚯 ∈ R𝐶×(2𝐶)
matrix contains learned parameters for the linear transformation
and [·] concatenates vectors.

3.3 Parametric ReLU
The vanilla ReLU is a piecewise linear function, 𝒚 = max(𝒙, 0),
where max(·) is an element-wise function applied between each
channel of the input 𝒙 and 0. A more generalized way to extend
ReLU is to let each channel enjoy different element-wise function:

𝑦𝑐 = 𝜎𝑐 (𝑥𝑐) = max
1<𝑘≤𝐾

{𝛼𝑘𝑥𝑐 + 𝛽𝑘 }, (3)

where 𝑥𝑐 and 𝑦𝑐 are the 𝑐-th channels of 𝒙 and 𝒚 respectively,
𝑘 is the 𝑘-th segmentation in (3), and {(𝛼𝑘 , 𝛽𝑘)}𝐾

𝑘=1 is the set of
parameters for the parametric ReLU. Note that when 𝛼1 = 0, 𝛽1 =

0, 𝛼2 = 1, 𝛽2 = 0, then (3) reduces to ReLU, whereas maxout [10] is
a special case if 𝐾 = 2. Furthermore, instead of learning parameters
(𝛼𝑘 , 𝛽𝑘) directly, approach [2] proposes the hyperfunction 𝜔 (𝑥) to
estimate sample-specific (𝛼𝑘 , 𝛽𝑘) for different channels.

4 METHOD
We refer to the proposed adaptive rectified linear unit for GNNs as
GReLU. The rest of the sections are organized as follows. Firstly,
we introduce the parametric form of GReLU by defining two func-
tions: the hyperfunction that generates parameters and activation
function for computing the output. Then, we detail the architecture
of hyperfunction of GReLU, and we link GReLU with GAT from
the perspective of neighborhood weighting. We finally analyze the
time complexity of GReLU and compare it with prior works.

Figure 2: The architecture of GReLU. The arrows in the box
indicate the flow for computing the parameter for hyper-
function. The arrow outside the box indicates the calcula-
tion of GReLU. The channel-wise block produces the 𝐾 × 𝐶
parameters for 𝐶 channels and 𝐾 segments. The node-wise
block generates𝑁 parameters for𝑁 nodes. The total𝐾×𝐶×𝑁
parameters are obtained via computing the outer product of
channel-wise and node-wise parameters.

4.1 Graph-adaptive Rectified Linear Unit (GReLU)
Given the input feature of node 𝑛 where 𝒙𝑛 ∈ R𝐶 , the GReLU is
defined as the element-wise function:

𝜎𝜔 (𝑿 ,𝑨) (𝑥𝑛𝑐) = max
1≤𝑘≤𝐾

{𝛼𝑘𝑛𝑐𝑥𝑛𝑐 + 𝛽𝑘𝑛𝑐 }, (4)

which consists of two parts:
• Hyperfunction 𝜔 (𝑿 ,𝑨) whose inputs are the adjacency ma-
trix 𝑨 and the node feature matrix 𝑿 , and whose output
parameters {(𝛼𝑘𝑛𝑐 , 𝛽𝑘𝑛𝑐)}𝐾𝑘=1 are used by the parametric acti-
vation function.
• The parametric activation function 𝜎 (·) generates activation
with parameters 𝛼𝑘𝑛𝑐 .

The hyperfunction encodes the adjacency matrix 𝑨 and node fea-
tures matrix 𝑿 to determine the parameters of GReLU, adding
the topology information to the non-linear activation function. By
plugging GReLU into MP, the updating function becomes adap-
tive, gaining more representational power than its non-adaptive
counterpart.

4.2 Design of Hyperfunction of GReLU
Note that to fully get GReLU, the hyperfunction needs to produce
𝐾 sets of parameters {(𝛼𝑘𝑛𝑐 , 𝛽𝑘𝑛𝑐)}𝐾𝑘=1 for 𝐶 channels and 𝑁 nodes.
The total number of parameters needed in GReLU is 2𝐾 ×𝐶×𝑁 . We
can simply model the hyperfunction 𝜔 (𝑿 ,𝑨) as a one-layer graph
convolution neural network (GCN) with output dimensions 2𝐾×𝐶×
𝑁 . However, this implementation results in too many parameters
in the hyperfunction, which poses the risk of overfitting, as we
observe performance degradation in practice. To solve this issue,
we decompose the parameters of nodes from channels by modeling
them as two different blocks. One block learns the channel-wise
parameters 𝛼𝑘𝑐 , 𝛽𝑘𝑐 and another block learns node-wise parameters
𝛾𝑛 . The final outputs (𝛼𝑘𝑛𝑐 , 𝛽𝑘𝑛𝑐) are computed as:

𝛼𝑘𝑛𝑐 = 𝛾𝑛𝛼
𝑘
𝑐 and 𝛽𝑘𝑛𝑐 = 𝛾𝑛𝛽

𝑘
𝑐 . (5)

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Yifei Zhang, Hao Zhu, Ziqiao Meng, Piotr Koniusz, and Irwin King

Table 1: Different Variants of ReLU.

Type Formula Learnable Input Plugin

ReLU max(𝑥, 0) No 𝑿 Yes
LReLU max(𝑥, 𝛼𝑥) No 𝑿 Yes
ELU max(𝑥, 𝛼 (𝑒𝑥 − 1)) No 𝑿 Yes
PReLU max(𝑥, 𝛼𝑝𝑥) Yes 𝑿 Yes
Maxout max(𝑤1𝑥 + 𝑏1,𝑤2𝑥 + 𝑏2) Yes 𝑿 No

GReLU max1≤𝑘≤𝐾 {𝛼𝑘𝑛𝑐𝑥𝑛𝑐 + 𝛽𝑘𝑛𝑐 } Yes 𝑿 ,𝑨 Yes

This factorization limits parameters that need to be learned by
the hyperfunction from 2𝐾 ×𝐶 × 𝑁 to 2𝐾 × (𝐶 + 𝑁). As a result,
the generality of the model and the computational efficiency are
improved.
Channel-wise Parameters. To encode the global context of the
graph G while reducing the number of learnable parameters as
much as possible, we adopt the graph diffusion filter 𝑺𝑃𝑃𝑅 to squeeze
and extract the topology information from 𝑨 and 𝑿 . We propagate
input matrix 𝑿 via the fully personalized PageRank scheme:

𝑬 = 𝑺PPR𝑿 = 𝛼

(
𝑰𝑛 − (1 − 𝛼)𝑫−1/2𝑨𝑫−1/2

)−1
𝑿 , (6)

with teleport (or restart) probability 𝛼 ∈ (0, 1], where 𝑫 is the
degree matrix and 𝑫−1/2𝑨𝑫−1/2 denotes the normalized adjacency
matrix 𝑨. We average the diffusion results and transform them
into the channel-wise parameters (𝛼𝑘𝑐 , 𝛽𝑘𝑐) with the use of a linear
transformation followed by a tanh function. We normalize (𝛼𝑘𝑐 , 𝛽𝑘𝑐)
to be within [−1, 1] range using tanh(·) with the purpose of con-
trolling the parameter scale. We define 𝒉 ∈ R𝐶 as the average of
diffusion results and 𝑷 ∈ R2×𝐾×𝐶 as the channel-wise parameters.
The channel-wise block is computed as:

𝑷 = tanh(MLP(𝒆)) where 𝒆 =
1
𝑁

𝑁∑︁
𝑛=1

𝒆𝑛 . (7)

Node-wise parameters. The node-wise block computes the pa-
rameter for each node. We also use the diffusion matrix to capture
the graph information. To get the parameter 𝛾𝑛 for each node 𝑛,
instead of averaging the diffusion results, we directly squeeze each
𝒆 into one dimension using MLP. To reflect the importance of each
node, softmax is applied to normalize 𝛾𝑛 as:

𝛾𝑛 =
exp(MLP(𝒆𝑛))∑𝑁

𝑛′=1 exp(MLP(𝒆𝑛′))
. (8)

Plugging Step into the Updating Function. By combining equa-
tions (8) and (7), we obtain the full parameters for GReLU via (5).
We plug GReLU into the 𝑙-th layer updating function:

𝒉(𝑙+1)𝑛 = 𝜎
(𝑙)
𝑛

(
𝚯
(𝑙) [𝒉(𝑙)𝑛 ,𝒎 (𝑙)𝑛]

)
, (9)

where 𝜎𝑙𝑛 (·) is GReLU in the 𝑙-th layer. As illustrated in Figure 1, in
the updating function, there is one set of parameters 𝚯(𝑙) per layer
𝑙 , while GReLU is channel- and nose-adaptive.
Application to spectralGNNs.Wealso notice the proposedmethod
is also applicable for Spectral GNNs not only spatial GNNs. Specif-
ically, the graph convolution layer in the spectral domain can be

Figure 3: Plots to the left and middle side are the piecewise
functions in GReLUwith𝐾 = 3 and𝐾 = 2. They cut the input
value 𝑥 in different ranges 𝑟1, 𝑟2, 𝑟3 and re-scale the 𝑥 w.r.t. 𝑟 .
The plot to the right is the weighted function used in GAT:
the input is re-scaled regardless of the value range of 𝑥 .

written as a sum of filtered signals followed by an activation func-
tion as:

𝑯 (𝑙+1) = 𝜎
((𝑘∑︁
𝑖=0

𝜃𝑖𝜆𝑖𝒖𝑖𝒖
⊤
𝑖

)
𝑯 𝑙

)
= 𝜎 (𝑼𝒈𝜃 (𝚲)𝑼⊤𝑯 (𝑙)) (10)

Here, 𝜎 (·) is the activation function, 𝑯 (𝑙) is the hidden representa-
tion of nodes in the 𝑙-th layer, 𝑼 contains eigenvectors of the graph
Laplacian 𝑳 = 𝑫−𝑨 (or 𝑳 = 𝑰 −𝑫−1/2𝑨𝑫−1/2), where𝑫 ∈ R𝑁×𝑁 is
the diagonal degree matrix with entries, 𝜆𝑖 are eigenvalues of 𝑳 and
𝒈𝜽 (·) is the frequency filter function controlled by parameters 𝜽 ,
where 𝑘 lowest frequency components are aggregated. Our method
can be plugged by simply replacing the 𝜎 (·) with GReLU.

4.3 Understanding GReLU with Weighted
Neighborhood and Attention Mechanism

Below, we analyze GReLU through the lens of Weighted Neighbor-
hood and Attention Mechanism. To this end, we first introduce the
so-call masked attention adopted in the graph attention network
(GAT) [34], which uses the following form:

𝒉′𝑛 = 𝛼𝑛𝒉𝑛 and 𝛼𝑛 = MaskAttention(𝑯 ,𝑨), (11)

where 𝛼𝑛 is the attention coefficient assigned to node 𝑛. Note that
(11) has the linear form of GReLU where the bias parameter and
max(·, ·) is omitted by setting 𝛽 = 0 and 𝐾 = 1. When 𝐾 = 1,
there is only one segment in the piecewise function of GReLU, the
non-linear max operation reduces to a linear transformation and
thus it can be removed. An illustration is shown in Figure 3. The
success of GAT is due to selecting the important node information
by weighting them differently during aggregation. While GAT is
able to consider the difference of individual nodes, it fails to distin-
guish the difference between channels. GReLU solves this issue by
making the parameter adaptive to both nodes and channels:

ℎ′𝑛𝑐 = max
1≤𝑘≤𝐾

{𝛼𝑘𝑛𝑐ℎ𝑛𝑐 + 𝛽𝑘𝑛𝑐 } where {(𝜶𝑘 , 𝜷𝑘)}𝐾
𝑘=1 = 𝜔 (𝑿 ,𝑨),

(12)
where 𝜶𝑘 , 𝜷𝑘 ∈ R𝑁×𝐶 . Thus, instead of learning a single parame-
ter shared across all channels, GReLU learns multiple weights to
evaluate the importance of different channels. Moreover, adding
max(·) makes GReLU a piecewise linear function that cuts the input
values in different ranges and rescales them differently. This further
enables GReLU to consider the effect of different value ranges.

In particular, when 𝐾 = 1, GReLU reduces to linear transforma-
tions that assign a single weight regardless of the range of input.

Graph-adaptive Rectified Linear Unit for Graph Neural Networks WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

GReLU performs similar as attentionmechanism described in global
attention [23, 34]. In such a special case, these transformations are
also related to Linear Graph Networks SGC [36] and S2GC [43].

4.4 Computational Complexity.
Below, we analyze the Computational Complexity of GReLU, which
is efficient as we decouple the node- and channel-wise parameters.
Moreover, the computation cost of GReLU is better compared to
the multi-head attention mechanism (MA) adopted in GAT.

4.4.1 Time Complexity. The complexity of GReLU consists of two
parts: (i) the complexity of the hyperfunction 𝜔 (X,A) which is used
to infer the parameters of GReLU. (ii) the complexity of activation
function 𝜎𝜔 (X,A) (·) which outputs the activations.
i. Hyperfunction includes two components: (1) computation of
the channel-wise parameters which consists of computing the
average of diffusion output and MLP layer (with tanh(·)), and
(2) the computation of node-wise parameters which includes
the cost of diffusion and one-layer MLP with softmax. In the
channel-wise block, GReLU spends O(|E|) in the diffusion
layer and O(2𝐾𝐶) in the MLP. In the node-wise block, GReLU
spends O(|E|) in diffusion and O(|V|) in MLP with softmax.

ii. Activation function requires that GReLU is applied per channel
of each node, which requires O(𝐶 |V|) to compute outputs.

Thus, GReLU has the complexity O(|E| + 𝐶 |V|). As the compu-
tation cost of activation function, O(𝐶 |V|), is the same for all
rectifiers, the extra cost is mainly introduced by the computation
of hyperfunction. Due to the light design of hyperfunction: 1) the
averaging of diffusion output results in a single vector 𝒆 ∈ R𝐶 ; 2)
the MLP in node block contains only one output dimension and 3)
the choice of 𝐾 is 2 (discussed in Section 5.4), the computation cost
of hyperfunction is negligible compared to cost of GNN.

4.4.2 Complexity of GReLU vs. Multi-head Attention Mechanism.
GReLU is faster than the multihead attention mechanism used in
GAT. Note that MA needs to compute coefficient for |E | edges of
𝑀 heads, resulting in O(𝑀 |E |), whereas GReLU only computes
coefficient for 𝐶 channel and |V| nodes, resulting in O(|V| +𝐶)
complexity. As |V| >> |E | and 𝐶 is a relatively small number
compared to both |V| and |E |, adopting GReLU with a simple
backbone (e.g., GCN) is faster than GAT.

5 EXPERIMENTS
Below, we evaluate the proposed method GReLU on two tasks,
node classification in Section 5.1 and graph classification in Sec-
tion 5.2. We show the effectiveness of GReLU by comparing it with
different ReLU variants with several GNN backbones. We show the
contribution of different modules of GReLU in an ablation study
in Section 5.3. The effect of choosing the hyper-parameter 𝐾 is
discussed in Section 5.4. To verify the GReLU acts adaptively, an
analysis of parameters is conducted in Section 5.5.We aim to answer
the following Research Questions (RQ):
• RQ1: Does applying GReLU in the updating step help im-
prove the capacity of GNNs for different downstream tasks?
• RQ2: What kind of factors does GReLU benefit from in its
design and how do they contribute to performance?

• RQ3: How does the choice of parameter 𝐾 affect the perfor-
mance of GReLU?
• RQ4: Does GReLU dynamically adapt to different nodes?

5.1 Node Classification (RQ1)
Datasets. GReLU is evaluated on five real-world datasets:
• Cora, PubMed, CiteSeer [16] are well-known citation net-
work datasets, where nodes represent papers and edges rep-
resent their citations, and the nodes are labeled based on the
paper topics.
• Flick [26] is an image and video hosting website, where
users interact with each other via photo sharing. It is a social
network where nodes represent users and edges represent
their relationships, and all nodes are divided into 9 classes
according to the interest groups of users.
• BlogCatalog[26] is a social network for bloggers and their
social relationships from the BlogCatalog website. Node at-
tributes are constructed by the keywords of user profiles,
and the labels represent the topic categories provided by the
authors, and all nodes are divided into 6 classes.

Baselines. We compare GReLU with different ReLU variants (as
shown in Table 1) and choose several representative GNNs as back-
bone:
• Chebyshev [7] is a spectral GNNmodel utilizing Chebyshev
filters.
• GCN [16] is a semi-supervised graph convolutional network
model which transforms node representations into the spec-
tral domain using the graph Fourier transform.
• ARMA [1] is a spectral GNN utilizing ARMA filters.
• GraphSage [11] is a spatial GNN model that learns node
representations by aggregating information from neighbors.
• GAT [34] is a spatial GNN model using the attention mech-
anism in the aggregate function.
• APPNP [18] is a spectral GNN that propagates the message
via a fully personalized PageRank scheme.

Experimental Setting. To evaluate our model and compare it
with existing methods, we use the semi-supervised setting in the
node classification task [16]. We use the well-studied data splitting
schema in the previous work [16, 34] to reduce the risk of overfit-
ting. To get more general results, in Cora, CiteSeer and Pubmed, we
do not employ the public train and test split [16]. Instead, for each
experiment, we randomly choose 20 nodes from each class for
training and randomly select 1000 nodes for testing. All baselines
are initialized with the parameters suggested by their papers, and
we also further carefully tune the parameters to get the optimal
performance. For our model, we choose 𝐾 = 2 for the whole exper-
iment. A detailed analysis of the effect of 𝐾 is in Section 5.4. We
use a 2-layer GNN with 16 hidden units for the citation networks
(Cora, PubMed, CiteSeer) and 64 units for social networks (Flick,
BlogCatalog). In both networks, dropout rate 0.5 and L2-norm regu-
larization are exploited to prevent overfitting. For each combination
of ReLUs and GNNs, we run the experiments 10 times with random
partitions and report the average results and the best runs. We
use classification accuracy to evaluate the performance of different
models.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Yifei Zhang, Hao Zhu, Ziqiao Meng, Piotr Koniusz, and Irwin King

Table 2: The average node classification accuracy (over 10 runs). The training set and test set are randomly divided. The results
in parentheses are the best results achieved among the 10 experiments. We omit the results of Cheb in BlogCatalog and Flickr
dataset due to the out-of-memory issue during the training step.

Dataset Model ReLU LReLU ELU PReLU Maxout GReLU

Cora Cheb 76.5 ± 2.2(79.4) 75.5 ± 2.2(80.0) 74.9 ± 2.9(80.4) 75.6 ± 3.0(80.6) 75.4 ± 2.0(77.8) 78.3 ± 1.7(79.4)
GCN 79.2 ± 1.4(81.6) 79.4 ± 1.6(80.6) 78.8 ± 1.3(80.2) 78.9 ± 1.0(80.2) 79.8 ± 1.5(81.5) 81.8 ± 1.8(83.0)
SAGE 78.6 ± 1.7(81.3) 77.6 ± 1.8(79.9) 77.5 ± 1.4(79.9) 77.6 ± 1.7(78.7) 77.7 ± 1.7(79.9) 79.3 ± 1.5(80.7)
GAT 81.2 ± 1.3(83.3) 80.8 ± 2.3(83.1) 80.5 ± 1.7(83.0) 80.4 ± 2.1(83.1) 80.2 ± 1.7(82.5) 81.5 ± 2.1(84.1)
ARMA 79.0 ± 1.4(80.8) 79.2 ± 2.1(82.9) 79.7 ± 0.8(80.6) 79.3 ± 2.0(81.9) 79.8 ± 1.3(81.3) 80.1 ± 1.5(82.6)
APPNP 82.0 ± 1.3(83.1) 81.0 ± 2.3(83.1) 81.5 ± 1.7(83.4) 81.4 ± 2.1(83.4) 81.0 ± 1.7(82.5) 82.5 ± 2.1(84.7)

PuMed Cheb 68.1 ± 4.1(74.9) 70.5 ± 3.0(76.7) 68.4 ± 2.8(72.7) 71.5 ± 3.1(76.3) 71.8 ± 3.9(75.8) 73.4 ± 2.9(75.6)
GCN 77.6 ± 2.2(81.6) 76.8 ± 1.6(79.4) 76.8 ± 2.2(80.5) 77.3 ± 3.7(82.5) 77.3 ± 2.9(80.6) 78.9 ± 1.7(81.3)
SAGE 75.7 ± 3.1(79.8) 75.3 ± 3.3(79.8) 74.8 ± 2.7(78.6) 76.0 ± 2.5(80.5) 74.5 ± 2.7(77.4) 76.2 ± 1.6(78.4)
GAT 77.2 ± 3.1(81.3) 78.7 ± 1.7(81.2) 78.9 ± 2.3(82.1) 76.2 ± 3.0(80.7) 77.9 ± 1.7(80.3) 79.1 ± 1.8(80.6)
ARMA 76.9 ± 2.6(80.7) 76.5 ± 1.9(80.3) 77.3 ± 2.5(80.4) 76.5 ± 2.4(80.7) 76.6 ± 2.9(81.3) 77.4 ± 3.0(80.2)
APPNP 78.2 ± 3.1(82.3) 78.2 ± 1.7(81.7) 79.0 ± 2.3(82.1) 79.2 ± 3.0(80.7) 78.9 ± 1.7(81.3) 79.8 ± 1.8(81.2)

CiteSeer Cheb 67.8 ± 1.8(71.0) 67.1 ± 2.9(71.1) 67.8 ± 2.4(71.1) 67.0 ± 2.3(70.5) 67.4 ± 1.5(70.7) 68.1 ± 1.3(70.4)
GCN 67.7 ± 2.3(72.1) 68.4 ± 1.8(71.2) 68.3 ± 1.4(70.1) 67.3 ± 2.1(70.7) 68.5 ± 2.2(72.5) 68.5 ± 1.9(71.7)
SAGE 67.1 ± 2.8(70.1) 67.3 ± 2.1(70.1) 67.8 ± 1.7(70.2) 66.2 ± 2.6(69.6) 67.5 ± 1.8(71.5) 68.0 ± 1.3(69.7)
GAT 68.6 ± 1.4(70.8) 69.2 ± 1.9(71.7) 68.4 ± 1.6(71.2) 68.2 ± 1.6(69.7) 68.6 ± 1.6(71.3) 69.3 ± 1.7(71.9)
ARMA 67.7 ± 1.3(68.9) 68.6 ± 2.4(71.5) 67.9 ± 2.1(71.3) 66.8 ± 1.5(69.4) 68.5 ± 1.8(70.9) 69.0 ± 2.2(71.7)
APPNP 68.7 ± 1.3(70.5) 69.3 ± 1.6(71.2) 69.4 ± 1.4(71.2) 69.5 ± 1.6(70.7) 69.2 ± 1.6(72.0) 70.0 ± 1.7(72.3)

BlogCatalog GCN 72.1 ± 1.9(75.5) 72.6 ± 2.1(75.2) 72.6 ± 1.8(75.3) 71.4 ± 2.1(74.5) 72.4 ± 1.4(75.3) 73.7 ± 1.2(74.2)
SAGE 71.9 ± 1.3(76.0) 72.2 ± 1.9(74.9) 72.1 ± 1.8(74.3) 72.0 ± 2.1(74.4) 71.6 ± 1.4(74.3) 73.3 ± 1.6(75.3)
GAT 41.7 ± 7.3(54.4) 38.2 ± 3.3(41.8) 46.6 ± 3.6(51.7) 67.2 ± 2.6(71.8) 54.2 ± 3.9(59.3) 67.8 ± 3.9(72.3)
ARMA 72.5 ± 3.3(79.1) 72.5 ± 5.9(78.7) 77.2 ± 2.2(79.2) 79.6 ± 3.0(84.5) 84.4 ± 1.8(86.9) 85.7 ± 2.7(88.4)
APPNP 71.1 ± 1.8(75.3) 72.5 ± 2.0(75.2) 72.4 ± 1.8(75.3) 71.7 ± 2.1(74.8) 72.8 ± 1.4(75.3) 73.8 ± 1.5(74.8)

Flickr GCN 50.7 ± 2.3(54.8) 51.0 ± 2.0(53.8) 52.8 ± 1.8(56.0) 53.0 ± 1.6(54.9) 54.0 ± 1.8(56.8) 54.4 ± 1.6(56.8)
SAGE 49.7 ± 2.2(53.8) 50.8 ± 2.1(54.0) 52.6 ± 1.8(56.7) 53.2 ± 1.3(56.1) 54.0 ± 1.7(56.5) 55.3 ± 1.4(57.2)
GAT 20.2 ± 3.1(25.2) 20.3 ± 2.5(23.8) 23.8 ± 2.9(28.1) 32.8 ± 4.9(43.2) 30.0 ± 2.6(34.6) 33.7 ± 3.1(36.3)
ARMA 48.4 ± 4.7(56.1) 52.0 ± 3.9(59.0) 52.2 ± 4.1(58.1) 45.9 ± 3.5(53.1) 52.7 ± 4.0(59.4) 56.5 ± 2.4(59.1)
APPNP 51.6 ± 2.0(54.0) 51.6 ± 2.1(53.8) 53.0 ± 1.8(56.0) 53.2 ± 1.4(54.9) 53.9 ± 1.9(56.6) 54.8 ± 1.9(56.7)

Observations. The node classification results are reported in Ta-
ble 2. We have the following observations:

• Compared with all baselines, the proposed GReLU generally
achieves the best performance on all datasets in different
GNNs. Especially, Compared with ReLU, GReLU achieves
maximum improvements of 13.2% on BlogCatalog and 8.1%
on Flickr using ARMA backbone. The results demonstrate
the effectiveness of GReLU.
• We particularly notice that GReLU with a simple backbone
(i.e., GCN) outperforms the GAT with other ReLUs. This
indicates that the mask edge attention adopted in GAT is not
the optimal solution to weighting the information from the
neighbors. As GReLU is both topology- and feature-aware,
it can be regarded as a more effective and efficient way to
weigh the information over both nodes and channels.

5.2 Graph Classification(RQ1)
Dataset. In the graph classification task, our proposed GReLU is
evaluated on two real-world datasets MUTAG [40] and PROTEINS
[40] which are common for graph classification tasks.

Baselines. Similarly to the node classification task, we compare
GReLU with ReLU variants (Table 1) with various GNN-based poo-
ing methods:
• GCN [16] is a multi-layer GCN model followed by mean
pooling to produce the graph-level representation.
• GraphSage [11] is a message-passing model. The max aggre-
gator is adopted to obtain the final graph representation.
• GIN [39] is a graph neural network with MLP, which is
designed for graph classification.

Experiment Setting. The graph classification is evaluated on two
datasets via 10-fold cross-validation. We reserved one fold as a
test set and randomly sampled a validation set from the rest of
the nine folds. We use the first eight folds to train the models.
Hyper-parameter selection is performed for the number of hidden
units {16, 32, 64, 128} and the number of layers {2, 3, 4, 5} w.r.t. the
validation set. Similarly to the node classification task, we choose
𝑝 = 0.01 for LeakyReLU and 𝐾 = 2 for our model. We report the
accuracy with the optimal parameters setting of each model. The
classification accuracy is shown in Table 5.
Observations. We observe that GReLU achieves the best results
on both datasets, indicating that the graph-level task can benefit

Graph-adaptive Rectified Linear Unit for Graph Neural Networks WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

Table 3: Ablation study: different GReLU variants (ABCD) evaluated on the Flickr dataset, the GCN backbone is used.

Model Type K Hyperfunction Activation Classification Accuracy

GReLU-A Non-linear 𝐾 = 2 𝛼𝑘𝑛𝑐 , 𝛽
𝑘
𝑛𝑐 ← 𝜔 (𝑿 ,𝑨) max1≤𝑘≤𝐾 {𝛼𝑘𝑛𝑐𝑥𝑛𝑐 + 𝛽𝑘𝑛𝑐 } 54.4 ± 1.6

GReLU-B Non-linear 𝐾 = 2 𝛼𝑘𝑛𝑐 , 𝛽
𝑘
𝑛𝑐 ← 𝜔 (𝑿) max1≤𝑘≤𝐾 {𝛼𝑘𝑛𝑐𝑥𝑛𝑐 + 𝛽𝑘𝑛𝑐 } 53.4 ± 1.8

GReLU-C Linear 𝐾 = 1 𝛼𝑘𝑛𝑐 , 𝛽
𝑘
𝑛𝑐 ← 𝜔 (𝑿 ,𝑨) 𝛼𝑘𝑛𝑐𝑥𝑛𝑐 + 𝛽𝑘𝑛𝑐 53.7 ± 1.4

GReLU-D Linear 𝐾 = 1 𝛼𝑘𝑛𝑐 , 𝛽
𝑘
𝑛𝑐 ← 𝜔 (𝑿) 𝛼𝑘𝑛𝑐𝑥𝑛𝑐 + 𝛽𝑘𝑛𝑐 52.2 ± 1.6

ReLU Non-linear / / max{𝒙𝑛, 0} 50.7 ± 2.3
SGC Linear / / 𝒙𝑛 48.6 ± 1.3

Table 4: Ablation study: different GReLU variants (AEFG) are evaluated on the Flickr dataset, the GCN backbone is used.

Model Parameter Hyperfunction Activation Classification Accuracy

GReLU-A Node/Channel-wise 𝛼𝑘𝑛𝑐 , 𝛽
𝑘
𝑛𝑐 ← 𝜔 (𝑿 ,𝑨) max1≤𝑘≤𝐾 {𝛼𝑘𝑛𝑐𝑥𝑛 + 𝛽𝑘𝑛𝑐 } 54.4 ± 1.6

GReLU-E Node/Channel-wise 𝛼𝑘𝑛𝑐 ← 𝜔 (𝑿 ,𝑨) max1≤𝑘≤𝐾 {𝛼𝑘𝑛𝑐𝑥𝑛𝑐 } 54.0 ± 1.4
GReLU-F Channel-wise 𝛼𝑘𝑐 , 𝛽

𝑘
𝑐 ← 𝜔 (𝑿 ,𝑨) max1≤𝑘≤𝐾 {𝛼𝑘𝑐 𝑥𝑛𝑐 + 𝛽𝑘𝑐 } 53.0 ± 1.9

GReLU-G Node-wise 𝛾𝑛 ← 𝜔 (𝑿 ,𝑨) max1≤𝑘≤𝐾 {𝛾𝑘𝑛𝑥𝑛,𝑐 } 53.8 ± 2.1

Table 5: Graph classification results.

Dataset Model ReLU LReLU ELU PReLU Maxout GReLU

PROTEINS GCN 76.0 ± 3.2 75.1 ± 2.2 76.3 ± 3.0 76.3 ± 3.2 76.5 ± 3.2 76.7 ± 2.8
SAGE 75.9 ± 3.2 75.7 ± 1.2 76.5 ± 3.4 75.9 ± 3.4 76.6 ± 3.2 76.9 ± 1.6
GIN 76.2 ± 2.8 76.1 ± 2.9 77.4 ± 2.6 76.4 ± 3.8 76.8± 2.7 77.8 ± 3.1

MUTAG GCN 85.6 ± 5.8 86.2 ± 6.8 85.7 ± 5.5 86.6 ± 5.3 85.9 ± 5.8 87.2 ± 7.0
SAGE 85.1 ± 7.6 84.5 ± 7.7 85.1 ± 7.2 85.7 ± 7.4 86.0 ± 7.6 86.7 ± 6.4
GIN 89.0 ± 6.0 89.2 ± 6.2 88.9 ± 5.8 89.2 ± 6.1 88.7 ± 6.0 89.5 ± 7.4

from the global information extracted by GReLU. Compared to
ReLU which is the default setting for most of GNNs, GReLU obtains
the maximum improvement of 1.7% with GCN on PROTEINS. For
other backbones, GReLU also improves the performance. Note that
the non-linearity choice is orthogonal to the choice of pooling i.e.,
combining GReLU with high-order pooling [19] may yield further
improvements on the MUTAG and PROTEINS datasets.

5.3 Ablation Study (RQ2)
Below, we perform the ablation study (Flick dataset) on GReLU by
removing different modules to validate the effectiveness of incor-
porating the graph topology into a non-linear activation function
and the design of hyperfunction of GReLU. To further show the
difference between GReLU and previous works, we also compare
the variants with SGC. We define four variants as:

• GReLU-A: GReLU with 𝐾 = 2 which is a non-linear function
that rescales the input value in two different ranges.
• GReLU-B: No topology information due to omitting the ad-
jacency matrix 𝑨 in the hyperfunction.
• GReLU-C: No non-linearity from GReLU-A due to setting
𝐾 = 1. In this case, GReLU-C is a linear transformation.
• GReLU-D: Both non-linearity and the topology information
are removed.

Table 3 shows the difference of GReLU variants and the classi-
fication accuracy evaluated on the Flickr dataset. The results of
GReLU-A and GReLU-D are 1% and 1.5% better than GReLU-B
and GReLU-D, indicating the topology information introduced by
the adjacency matrix 𝑨 are useful in both linear and non-linear
settings. GReLU-A outperforms the GReLU-C, verifying the neces-
sity of adding the non-linearity. Note that GReLU-B and ReLU use
adaptive and non-adaptive rectifiers, respectively. GReLU-B boosts
the classification accuracy from 50.7% to 53.4% which implies the
adaptive property plays a vital role in GReLU.

Based on these observations, we conclude that the major gain
stems from three parts: introducing the topological structure, adding
non-linearity, and making the rectifier be adaptive. Also, as SGC
is the GNN without non-linear activation, it is somewhat related
to the GReLU with 𝐾 = 1. The major difference between them lies
in the GReLU adopting the topology information to reweight the
input 𝑥 using learnable parameters, whereas SGC uses an identical
mapping. We compare SGC with GReLU-C and GReLU-D. Both
GReLU variants with or without the adjacency matrix 𝑨 are better
than the SGC, which again strengthens our conclusion.

We also study the need for the bias parameter 𝛽 and the use of
node- and channel-wise functions. We further define three variants:

• GReLU-E: The parameters 𝛽 are dropped.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. Yifei Zhang, Hao Zhu, Ziqiao Meng, Piotr Koniusz, and Irwin King

Figure 4: The visualization of the
GReLU function with 𝐾 = 2. Each
line in different colors denotes the
piecewise function applied on a sin-
gle channel of each node.

Figure 5: The effect of different 𝐾 eval-
uated on Cora, PubMed, and CiteSeer. 𝑥
axis denotes the number of segments 𝐾
used in GReLU. 𝑦 axis denotes the classi-
fication accuracy.

Figure 6: Runtimes of different models
with variousReLUvariants onCiteSeer.
y-axis denotes the runtime of training
200 epochs in seconds.

• GReLU-F: The parameters of 𝛼 and 𝛽 are channel-wise due
to removing the node-wise block. All nodes share the same
set of parameters.
• GReLU-G: The parameters of 𝛼 and 𝛽 are node-wise due to
removing the channel-wise block. All channels share the
same set of parameters.

The results are shown in Table 4. We have observed different
degrees of performance degradation by ablating different modules,
which confirms the effectiveness of our design.

5.4 The Effect of Parameter 𝐾 (RQ3)
Note that 𝐾 , which determines the number of segments in the non-
linear function, needs to be predefined for GReLU. In this section, we
discuss the effect of 𝐾 in the GReLU function max1≤𝑥≤𝐾 {𝛼𝑘𝑛𝑐𝑥𝑛𝑐 +
𝛽𝑘𝑛𝑐 }. We adopt GCN as the backbone model. To show the effect of
𝐾 , we evaluate GReLU on the node classification task w.r.t. 𝐾 . We
choose 𝐾 ∈ {2, 3, 4, 5, 6, 7}. Note that 𝐾 = 2 is the default setting for
the experiments. Figure 5 shows the fluctuation w.r.t. different 𝐾 is
small. There is no obvious upward trend and a downward trend for
all three datasets. The choice of 𝐾 is not a significant factor that
influences performance. For the sake of saving computations,𝐾 = 2
is recommended.

5.5 Inspecting GReLU (RQ4)
We check if GReLU is adaptive by examining the input and output
over different node attributes. We randomly choose 1,000 sets of
parameters from GReLU on the node classification task with the
CiteSeer dataset. We visualize the piecewise functions of the GReLU
in Figure 4 which shows that they differ, which indicates GReLU
is adaptive to different inputs. Some of the piecewise functions
of GReLU are monotonically increasing, indicating both 𝛼1 and
𝛼2 are positive, which is consistent with other ReLU variants like
PReLU and LeakyReLU.We observe that there are functions that are
horizontal lines (𝑦 = 0) and lines with small slopes in GReLU. This
indicates the parameters (𝛼1, 𝛼2, 𝛽1, 𝛽2) for a particular channel
of a node are zero. As a consequence, there is no activation for
this channel 𝑐 in node 𝑛. This shows that GReLU can work as a
sparse selector that filters nodes and channels. Moreover, there are
monotonically decreasing piecewise functions indicating 𝛼1 and
𝛼2 are negative. This is interesting since it will flip the sign and
take a controversial effect on its input. Such an effect is similar to

the negative part of the concatenated ReLU (CReLU)[29] defined
as CReLU(𝑥) = [ReLU(𝑥), ReLU(−𝑥)] . CReLU simply makes an
identical copy of the linear responses, negates them, concatenates
both parts of the activation, and then applies ReLU on both parts.
The extra performance is gained by taking ReLU of the negative
input −𝑥 which is similar to setting 𝛼 < 0.

5.6 Runtime Comparisons
Below, runtimes of training different ReLU variants with 200 epochs
on CiteSeer are reported. As shown in Figure 6, the runtime of
the GReLU is shorter than that of the Maxout and slightly larger
compared to other variants. The extra runtime is mainly caused by
the hyperfunction that infers the parameters of GReLU, whereas
other baselines (ReLU, leakyReLU, ELU, PReLU) do not use any
hyperfunction. As discussed in Section 4, the hyperfunction of
GReLU is simple. GReLU incurs a negligible computation cost.

6 CONCLUSIONS
We have proposed a topology adaptive activation function, GReLU,
which incorporates the topological information of the graph and
incurs a negligible computational cost. The model complexity is
controlled by decoupling the parameters from nodes and channels.
By making the activation function adaptive to nodes in GNN, the
updating functions are more diverse than the typical counterparts
in the message passing frameworks. Therefore, GReLU improves
the capacity of the GNNs. Although GReLU is designed for the use
in the spatial domain with message passing frameworks, GReLU
can be regarded as a plug-and-play component in both spatial and
spectral GNNs.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valuable
comments. Thework described in this paperwas partially supported
by the National Key Research and Development Program of China
(No. 2018AAA0100204) and CUHK 2300174, Collaborative Research
Fund (CRF), No. C5026-18GF. We also acknowledge the in-kind
support from the Amazon AWS Machine Learning Research Award
(MLRA) 2020.

Graph-adaptive Rectified Linear Unit for Graph Neural Networks WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

REFERENCES
[1] Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi.

2019. Graph neural networks with convolutional arma filters. arXiv preprint
arXiv:1901.01343 (2019).

[2] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and
Zicheng Liu. 2020. Dynamic ReLU. arXiv preprint arXiv:2003.10027 (2020).

[3] Yankai Chen, Menglin Yang, Yingxue Zhang, Mengchen Zhao, Ziqiao Meng,
Jianye Hao, and Irwin King. 2022. Modeling Scale-free Graphs with Hyper-
bolic Geometry for Knowledge-aware Recommendation. In The Fifteenth ACM
International Conference on Web Search and Data Mining.

[4] Yankai Chen, Yaming Yang, Yujing Wang, Jing Bai, Xiangchen Song, and Irwin
King. 2022. Attentive Knowledge-aware Graph Convolutional Networks with
Collaborative Guidance for Personalized Recommendation. In The 38th IEEE
International Conference on Data Engineering.

[5] Yankai Chen, Jie Zhang, Yixiang Fang, Xin Cao, and Irwin King. 2020. Effi-
cient community search over large directed graphs: An augmented index-based
approach. In IJCAI. 3544–3550.

[6] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2015. Fast and
accurate deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289 (2015).

[7] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. Advances
in neural information processing systems 29 (2016), 3844–3852.

[8] Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia.
2000. Incorporating second-order functional knowledge for better option pricing.
Advances in neural information processing systems 13 (2000), 472–478.

[9] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. 2020. MAGNN: metap-
ath aggregated graph neural network for heterogeneous graph embedding. In
Proceedings of The Web Conference 2020. 2331–2341.

[10] Ian Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua
Bengio. 2013. Maxout networks. In International conference on machine learning.
PMLR, 1319–1327.

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in neural information processing systems.
1024–1034.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE international conference on computer vision. 1026–1034.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[14] Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. 2009.
What is the best multi-stage architecture for object recognition?. In 2009 IEEE
12th international conference on computer vision. IEEE, 2146–2153.

[15] Dongkwan Kim and Alice H. Oh. 2021. How to Find Your Friendly Neighborhood:
Graph Attention Design with Self-Supervision. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net. https://openreview.net/forum?id=Wi5KUNlqWty

[16] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[17] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.
2017. Self-normalizing neural networks. Advances in neural information processing
systems 30 (2017), 971–980.

[18] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Pre-
dict then propagate: Graph neural networks meet personalized pagerank. arXiv
preprint arXiv:1810.05997 (2018).

[19] Piotr Koniusz and Hongguang Zhang. 2022. Power Normalizations in Fine-
Grained Image, Few-Shot Image and Graph Classification. IEEE Transactions on
Pattern Analysis and Machine Intelligence 44, 2 (2022), 591–609. https://doi.org/
10.1109/TPAMI.2021.3107164

[20] Piotr Koniusz, Hongguang Zhang, and Fatih Porikli. 2018. A Deeper Look at
Power Normalizations. In CVPR. 5774–5783.

[21] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436–444.

[22] Dongho Lee, Byungkook Oh, Seungmin Seo, and Kyong-Ho Lee. 2020. News
Recommendation with Topic-Enriched Knowledge Graphs. In Proceedings of the
29th ACM International Conference on Information & Knowledge Management.
695–704.

[23] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015. Gated
graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015).

[24] Nicholas Lim, Bryan Hooi, See-Kiong Ng, Xueou Wang, Yong Liang Goh, Ren-
rong Weng, and Jagannadan Varadarajan. 2020. STP-UDGAT: Spatial-Temporal-
Preference User Dimensional Graph Attention Network for Next POI Recommen-
dation. In Proceedings of the 29th ACM International Conference on Information &

Knowledge Management. 845–854.
[25] J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid. 2014. Convolutional Kernel

Networks. NIPS (2014).
[26] Zaiqiao Meng, Shangsong Liang, Hongyan Bao, and Xiangliang Zhang. 2019. Co-

embedding attributed networks. In Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining. 393–401.

[27] Diganta Misra. 2019. Mish: A self regularized non-monotonic neural activation
function. arXiv preprint arXiv:1908.08681 (2019).

[28] Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve restricted
boltzmann machines. In ICML.

[29] Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. 2016. Under-
standing and improving convolutional neural networks via concatenated rectified
linear units. In international conference on machine learning. PMLR, 2217–2225.

[30] Zixing Song, Ziqiao Meng, Yifei Zhang, and Irwin King. 2021. Semi-supervised
Multi-label Learning for Graph-structured Data. In CIKM ’21: The 30th ACM
International Conference on Information and Knowledge Management, Virtual
Event, Queensland, Australia, November 1 - 5, 2021, Gianluca Demartini, Guido
Zuccon, J. Shane Culpepper, Zi Huang, and Hanghang Tong (Eds.). ACM, 1723–
1733. https://doi.org/10.1145/3459637.3482391

[31] Zixing Song, Xiangli Yang, Zenglin Xu, and Irwin King. 2021. Graph-based Semi-
supervised Learning: A Comprehensive Review. CoRR abs/2102.13303 (2021).
arXiv:2102.13303 https://arxiv.org/abs/2102.13303

[32] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[33] Ke Sun, Piotr Koniusz, and Zhen Wang. 2020. Fisher-Bures Adversary Graph
Convolutional Networks. In Proceedings of The 35th Uncertainty in Artificial
Intelligence Conference (Proceedings ofMachine Learning Research, Vol. 115), Ryan P.
Adams and Vibhav Gogate (Eds.). PMLR, 465–475. http://proceedings.mlr.press/
v115/sun20a.html

[34] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[35] Yaqing Wang, Fenglong Ma, and Jing Gao. 2020. Efficient Knowledge Graph
Validation via Cross-Graph Representation Learning. In Proceedings of the 29th
ACM International Conference on Information & Knowledge Management. 1595–
1604.

[36] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In International
conference on machine learning. PMLR, 6861–6871.

[37] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. 2021. A Comprehensive
Survey on Graph Neural Networks. IEEE Transactions on Neural Networks and
Learning Systems 32, 1 (2021), 4–24. https://doi.org/10.1109/TNNLS.2020.2978386

[38] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. 2015. Empirical evaluation of
rectified activations in convolutional network. arXiv preprint arXiv:1505.00853
(2015).

[39] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[40] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions. https://openreview.net/forum?id=ryGs6iA5Km

[41] Menglin Yang, Ziqiao Meng, and Irwin King. 2020. FeatureNorm: L2 Feature Nor-
malization for Dynamic Graph Embedding. In 2020 IEEE International Conference
on Data Mining (ICDM). IEEE, 731–740.

[42] Menglin Yang, Min Zhou, Marcus Kalander, Zengfeng Huang, and Irwin King.
2021. Discrete-time Temporal Network Embedding via Implicit Hierarchical
Learning in Hyperbolic Space. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining. 1975–1985.

[43] Hao Zhu and Piotr Koniusz. 2020. Simple spectral graph convolution. In Interna-
tional Conference on Learning Representations.

[44] Hao Zhu and Piotr Koniusz. 2021. Refine: Random range finder for network
embedding. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management. 3682–3686.

[45] Hao Zhu, Ke Sun, and Peter Koniusz. 2021. Contrastive laplacian eigenmaps.
Advances in Neural Information Processing Systems 34 (2021).

[46] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai
Koutra. 2020. Beyond Homophily in Graph Neural Networks: Current Limitations
and Effective Designs. In Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.
cc/paper/2020/hash/58ae23d878a47004366189884c2f8440-Abstract.html

https://openreview.net/forum?id=Wi5KUNlqWty
https://doi.org/10.1109/TPAMI.2021.3107164
https://doi.org/10.1109/TPAMI.2021.3107164
https://doi.org/10.1145/3459637.3482391
https://arxiv.org/abs/2102.13303
https://arxiv.org/abs/2102.13303
http://proceedings.mlr.press/v115/sun20a.html
http://proceedings.mlr.press/v115/sun20a.html
https://doi.org/10.1109/TNNLS.2020.2978386
https://openreview.net/forum?id=ryGs6iA5Km
https://proceedings.neurips.cc/paper/2020/hash/58ae23d878a47004366189884c2f8440-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/58ae23d878a47004366189884c2f8440-Abstract.html

