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ABSTRACT
Online social networks provide a medium for citizens to form opin-
ions on different societal issues, and a forum for public discussion.
They also expose users to viral content, such as breaking news
articles. In this paper, we study the interplay between these two
aspects: opinion formation and information cascades in online so-
cial networks. We present a new model that allows us to quantify
how users change their opinion as they are exposed to viral con-
tent. Our model is a combination of the popular Friedkin–Johnsen
model for opinion dynamics and the independent cascade model
for information propagation. We present algorithms for simulating
our model, and we provide approximation algorithms for optimiz-
ing certain network indices, such as the sum of user opinions or
the disagreement–controversy index; our approach can be used
to obtain insights into how much viral content can increase these
indices in online social networks. Finally, we evaluate our model
on real-world datasets. We show experimentally that marketing
campaigns and polarizing contents have vastly different effects
on the network: while the former have only limited effect on the
polarization in the network, the latter can increase the polarization
up to 59% even when only 0.5% of the users start sharing a polariz-
ing content. We believe that this finding sheds some light into the
growing segregation in today’s online media.
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• Information systems→ Social networks; Data mining; • The-
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1 INTRODUCTION
Online social networks are a ubiquitous part of modern societies.
In addition to connecting users with their friends, many people
also use them as content aggregators, by following media outlets
or reading articles shared by their peers. Clearly, engaging in social
networks may impact one’s opinions with respect to societal issues:
users might adjust their opinions during a discussion based on
arguments by their peers; or they might adapt their opinions based
on new facts revealed in a news article they read.

Due to this strong connection between opinion formation and in-
formation spread, online social networks have become the target of
viral disinformation campaigns. Popular examples include groups
like QAnon who spread conspiracy theories and fake news about
topics, such as vaccination, or state actors who try to influence
election results in opposing countries. While it is well-researched
how viral content spreads through social networks, such models do
not consider how user opinions are impacted by the viral content.
Therefore, understanding how new information influences user
opinions and being able to quantify the impact of such disinforma-
tion campaigns is highly desirable.

A prominent model to quantify opinion dynamics in social net-
works is the Friedkin–Johnsen (FJ) model [15]. The FJ model stipu-
lates that each user has an expressed opinion that the user reveals
publicly and is network-dependent, and an innate opinion that is
fixed and network-independent. However, it does not take into ac-
count how users change their opinions based on new information
(e.g., viral content) that is disseminated in the network.

Furthermore, researchers have studied problems related to opti-
mizing certain opinion-based network indices, for instance, maxi-
mizing the average opinion [17] or polarization [9, 16], or minimiz-
ing polarization and disagreement [10, 25, 27]. In this line of work,
optimization occurs by nudging the expressed or innate opinions
of a set of seed users towards a certain direction. However, existing
works do not specify how such nudging takes place, nor do they
consider the interplay of opinion nudging within a more realistic
setting of information cascades.

Therefore, the current research either allows us to quantify user
opinions and optimize opinion-based network indices without tak-
ing into account viral content or it allows to assess the spread of
viral content without reasoning about user opinions. This limitation
leads us to the following questions:

(1) Can we quantify how viral content influences user opinions in
online social networks?

(2) Can we study the interplay between information cascades and
opinion dynamics?

(3) Can we optimize opinion-based network indices by taking into
account the spread of viral content?
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Our contributions. We answer the above questions affirmatively
by proposing a new model that combines the Friedkin–Johnsen
model [15] and the influence-maximization framework of Kempe
et al. [21]. To the best of our knowledge, our model is the first that
allows to quantify the impact of viral content on user opinions.

Contrasted with the vanilla FJ model in which the innate user
opinions are “fixed” but the expressed opinions are changing over
time based on user interactions, our model considers the viral con-
tent that is shared in the network, and it assumes that for users
who are exposed to this content, there is a probability that their
innate opinion changes. This could be the case, for example, when a
user reads an article that makes them reconsider their stance on a
certain topic.

When a subset of users change their innate opinions, their ex-
pressed opinions will also be modified, which in turn will have an
impact on the whole network via the FJ opinion dynamics. Thus, the
change of the innate opinions of few users may have an impact on the
whole network: even when a user’s innate opinion does not change
by the viral content (because they ignore it or the content never
reaches them), they still might change their expressed opinion due
to “peer-pressure.”

Our model connects these two phenomena: it allows us to un-
derstand how viral content can impact individual users, while it
also enables us to study how individual behavior ripples through
the network and affects the overall discussion.

We consider two different types of content: non-polarizing and
polarizing. For non-polarizing content, such as marketing cam-
paigns, the innate opinions of the users can only increase. For
polarizing content, we take into account the backfire effect [28]:
interaction with opposing content may lead to a decrease in a user’s
innate opinion. This could be the case, e.g., in political campaigns
when a party runs an ad that makes their supporters react positively
but their opponents react negatively.

From an algorithmic view point, we present methods for sim-
ulating our model. Additionally, we consider the problem of opti-
mizing certain opinion-based network indices. We present a greedy
(1 − 1/e − ϵ)-approximation algorithm for maximizing the sum
of user opinions for non-polarizing content. We also present al-
gorithms for maximizing the controversy and the disagreement–
controversy indices [27] for non-polarizing content; our algorithms
have data-dependent approximation ratios. Finally, we provide
heuristics for maximizing other indices, such as polarization and
disagreement, for non-polarizing and polarizing content.

To obtain our optimization algorithms, we build upon the reverse-
reachable sets framework [6, 31, 32]. One challenge is that, in our
setting, the arising optimization problems are based on quadratic
forms and, therefore, we have to extend the reverse reachable set
framework to this more general setting.

We evaluate our methods on real-world data. Our experiments
reveal a striking difference between non-polarizing and polarizing
content. On the one hand, non-polarizing content can significantly
increase the sum of user opinions, but it has limited impact on
the polarization and sometimes even decreases it. The situation for
polarizing content is the opposite: it barely increases the sum of
user opinions but it can increase the polarization significantly. We
see that even when only 0.5% of the users start sharing a polarizing
content, the network polarization increases by more than 20% on

average and can rise up to 59%.We believe that this finding provides
an explanation for the growing polarization that can be witnessed
in modern day’s online media.

We present the proofs of our claims in the full version [33].

2 RELATEDWORK
Our aim is to quantify how viral content impacts user opinions in
social networks. Naturally, our approach builds on existing models
for opinion dynamics and information cascades.

Opinion dynamics have been studied in different research areas,
including psychology, social sciences, and economics [7, 20]. Here
we build on the popular Friedkin–Johnsen (FJ) model [15], which is
an extension of a classic model by DeGroot [14]. Many extensions
of the FJ model have been proposed. For example, Amelkin et al. [1]
assume that the innate user opinions change over time based on
the expressed opinions. We refer to the discussion in [1] for other
related models. However, these works do not take into account the
changes of innate opinions based on exposition to viral contents.

Recent work used these models for understanding properties of
opinion dynamics and formulating natural optimization problems.
Bindel et al. [5] analyze the “price of anarchy” in the FJ model
by considering as cost the internal conflict of the individuals in
the network and comparing the cost at equilibrium and the social
optimum. Gionis et al. [17] maximize the sum of opinions of the
network users. Other works study the problem of measuring and
reducing polarization of opinions, or other disagreement indices,
in the FJ model [12, 25, 27, 36], while adversarial settings have also
been considered, aiming to quantify the power of an adversary
seeking to induce discord in the model [9, 10, 16].

To model information cascades, we build on the popular inde-
pendent-cascade model of Kempe et al. [21]. Many extensions and
variants of this model have been proposed. For example, Sathanur
et al. [30] incorporate intrinsic user activations based on exter-
nal sources. Another popular extension is the topic-aware cascade
model by Barbieri et al. [4], and has various applications including
social advertising [2, 3]. While such models allow to model infor-
mation spread, they do not allow to quantify how these change the
user opinions.

The backfire effect, the tendency of individuals to hold firmly on
their beliefs when faced with factual corrections, has been observed
in political sciences [28], but has not been studied extensively in
computational social sciences. Exceptions are the works of Chen et
al. [11], who incorporate backfire in an opinion-dynamics model
for biased assimilation [13], and Hirakura et al. [19], who propose
a model of polarization that incorporates empathy and repulsion.

Our optimization algorithms rely on reverse reachable sets, in-
troduced by Borgs et al. [6], and improved by subsequent tech-
niques [31, 32]. We extend these ideas to our setting, to obtain
algorithms for objectives that include quadratic terms. We note that
the activity-maximization task defined by Wang et al. [34] is a spe-
cial case of our setting. We apply the “sandwich” framework [24] to
obtain data-dependent approximation guarantees for some of our
objectives. For the efficient computation of our objective functions,
we use the methods by Xu et al. [35] based on Laplacian solvers.

To our knowledge, this is the first work that studies how user
opinions change due to viral information in online social networks.
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Table 1: Matrices of the different indices.
Index Notation Matrix

Polarization P(L) (I + L)−1(I − 11⊺
n )(I + L)−1

Disagreement D(L) (L + I)−1L(L + I)−1

Internal conflict I(L) (L + I)−1L2(L + I)−1

Controversy C(L) (L + I)−2

Disagreement–controversy Idc(L) (L + I)−1

For fixed user opinions, Monti et al. [26] studied how cascades
spread through the network, based on the user opinions and the
topics of the contents.

3 PRELIMINARIES
Let G = (V ,E,w) be an undirected weighted graph, with n = |V |
nodes and edge weightsw : E → R>0. We let N (u) denote the set
of neighbors of u ∈ V . The Laplacian of G is L = D −W, where D
is the n × n diagonal matrix with Du,u =

∑
v ∈N (u)w(u,v) for all

u ∈ V andW is the n ×n matrix withWu,v = wu,v for all u,v ∈ V .
Friedkin–Johnsen (FJ) model. In the FJ model, we are given a
weighted undirected graphG = (V ,E,w)with n nodes. Each nodeu
corresponds to a user of a social network. Each user u has an ex-
pressed opinion zu ∈ [0, 1], which depends on the network, and a
fixed innate opinion su ∈ [0, 1]. We write s ∈ [0, 1]n and z ∈ [0, 1]n
to denote the vectors of innate and expressed opinions.

The expressed opinions are updated in rounds. More concretely,
let s be the vector of innate opinions, and z(t ) be the vector of
expressed opinions at time t . The update rule is given by

z(t+1) = (D + I)−1(Wz(t ) + s). (3.1)
Taking the limit t →∞, the expressed opinions converge to

z∗ = (I + L)−1s. (3.2)
We study the following popular network indices in our model,

where the matrices of the quadratic forms are as defined in Table 1:
• sum of user opinions, which is given by Ss = 1⊺s, and it is well-
known that Ss = 1⊺z;
• polarization [27] PG,s =

∑
u ∈V (z∗u − z̄)2 = s⊺P(L) s, where z̄ =

1
n
∑
u ∈V z∗u is the average user opinion;

• disagreement [27] DG,s =
∑
(u,v)∈E wu,v (z∗u − z∗v )2 = s⊺D(L) s;

• internal conflict [10] IG,s =
∑
u ∈V (su − z∗u )2 = s⊺I(L) s;

• controversy [10, 25] CG,s =
∑
u ∈V (z∗u )2 = s⊺C(L) s; and

• disagreement-controversy [27, 35]IdcG,s=s⊺Idc(L) s=CG,s+DG,s.

4 MODELLING THE INFLUENCE OF VIRAL
CONTENT ON USER OPINIONS

We formally introduce our model in Sec. 4.1 and show how it can
be simulated in Sec. 4.2.

4.1 The spread-acknowledge model
Following the independent cascade model [21], we assume that a
value pu,v ∈ [0, 1] encodes the probability that userv reacts to con-
tent received from user u; we allow that pu,v , pv,u . Furthermore,
we introduce parameters ϵ,δ > 0, as explained below.

As per the FJ model, each useru has an expressed opinion zu and
an innate opinion su . Additionally, each user has a state, which is

inactive ignore acknowledge spread

innate

opinion

viral 
content

update

share

exposed to viral content from neighbor vertex u 
probabilistic state transition path
action

state transition node
state

puv

1 − puv δ1 − δ

1 − δpuv

δpuv

Figure 1: An illustration of the spread-acknowledge model
with respect to state transitioning and actions performed for
a single nodev. In the initial round, k seed nodes are in state
spread, while the rest of nodes are in state inactive.

either inactive, ignore, acknowledge or spread. We order the states
by “inactive < ignore < acknowledge < spread” and we follow the
convention that when a user changes their state, they can only pick
one that is higher with respect to this ordering. An illustration of
the model with respect to state transitioning and actions performed
for a single node v is provided in Figure 1.

Our model proceeds in rounds. Initially, in round 0, there are
k users whose state is spread and all other users are inactive; in
later rounds, it is possible that users change their state. We will
refer to the users whose initial state is spread as seed nodes. Each
round t > 0 has two phases:1 In the first phase, the users update
their expressed opinions. In the second phase, the viral content is
spread through the network and users may change their state and
their innate opinion. We describe both phases below.
Phase I: Updating user opinions. The users update their ex-
pressed opinion as in the FJ model, i.e., according Eq. (3.1).
Phase II: Information spreading. Consider round t > 0. Let U
denote the set of users who have changed their state to spread in
round t − 1. If U = ∅, we consider Phase II finished. Otherwise
(U , ∅), each user u ∈ U shares the viral content with all of its
neighbors. When a neighbor v of u is exposed to the viral content,
it switches to a new state and possibly adjusts its innate opinion. If
v is in state inactive or ignore, then this is done as follows:
• With probability δpuv , user v switches to state spread; v adjusts
its innate opinion (described below) and shares the content in
the next round with its neighbors.
• With probability (1−δ )puv , userv switches to state acknowledge;
v adjusts its innate opinion (described below) but does not share
the content with its neighbors in the next round.
• With probability 1 − puv , user v switches to state ignore; v per-
forms no action (i.e., v does not try to share the content and v
also does not adjust its innate opinion).

If v is in state acknowledge then it switches to state spread with
probability δpuv and remains in state acknowledge with probability
1 − δpuv . Finally, if v is in state spread then v always stays in this
state. In both of these cases, v does not adjust its opinion again.

1We note that for our model and our analysis it is not necessary to consider two phases,
we only make this assumption for the sake of better exposition. We could as well
assume that both phases are interleaved and happen simultaneously.
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The above process ensures that the state ordering defined before
is obeyed during state switching and that each user adjusts its innate
opinion at most once. Finally, note that our model is a generalization
of the independent cascade model if δ = 1.
Adjusting innate opinions. Now we describe how users change
their innate opinions when they are exposed to viral content.

Consider user u at state inactive or ignore whose new state be-
comes acknowledge or spread. Then the innate opinion su changes
to a new value ŝu . We consider two scenarios:
• Marketing campaign: The user’s opinion becomes more positive
after seeing the content, i.e., ŝu = min{su+ϵ, 1} for the parameter
ϵ > 0 from above. Here, we use the min-operation to ensure that
the new opinion ŝu is in the interval [0, 1].
• Polarizing campaign with backfire: In a polarizing campaignwe as-
sume that while some users embrace the content, others will find
it repelling. More concretely, we assume that there is a threshold
τ ∈ [0, 1] such that: (1) If su ≥ τ then u embraces the content
and adjusts its opinion to ŝu = min{su + ϵ, 1}; (2) If su < τ , then
u finds the content repelling and adjusts ŝu = max{0, su − ϵ}.
Note that in our model with polarizing campaigns, users can still

share a content they dislike. While this might seem non-intuitive
at first, we believe that it is a realistic behavior: users who oppose
a certain content often share it together with a counter-argument.
We remark that our model can be modified to avoid this.

Finally, observe that ŝ is a random vector that depends on the
outcome of the information spread. However, once we fix the ran-
domness of the information spread, ŝ becomes deterministic. This
will be a useful property in the following.
Possible model extensions.We note that our model is quite gen-
eral and can be extended in various ways. First, we modelled infor-
mation cascades via the independent cascade model [21]. However,
our model and our result from Lemma 4.1 also hold if we used the
linear threshold model [21], topic-aware versions of the indepen-
dent cascade and linear threshold models [4], as well as intrinsic
user activations [30]. In particular, using the linear threshold model
could lead to insights on contents that spread via complex conta-
gion [8, 18]. Second, above we considered the two relatively simple
settings for adjusting the innate user opinions ŝu . However, we
note that Lemma 4.1 below generalizes to the setting when ŝu is
any user-defined function of su .

4.2 Equivalence with the two-stage model
While the spread-acknowledge model is easy to explain and mo-
tivate by real-world scenarios, it is not clear how to simulate it
efficiently. If we implemented the model as described above, we
would have to update the expressed opinions in each round, which
can be costly. To avoid this, we now introduce a new model that
can be simulated more efficiently, and we show that it produces an
identical distribution over the innate and expressed opinions.
The two-stage model. Our simplified model also proceeds in
rounds, but it performs the information spreading and the updating
of the user opinions in two sequential stages. More concretely, in
each round of the first stage, we perform the information spreading
process that is described in Phase II above (and we do not per-
form the updating of the expressed opinions as per Phase I). In this
process, some of the users’ innate opinions and their states might

change. When after a round no new users have changed their state
to spread, we start the second stage. In each round of the second
stage, we perform the same update of the expressed opinions as
described in Phase I above (and we do not run Phase II).
Simulating the two-stage model. Next, we discuss why the two-
stage model is well-suited for efficient simulations. First, observe
that the first stage stops when no node changed their state to spread
in the previous round, i.e., whenU = ∅. Therefore, the first stage can
have at mostO(n) rounds (since each of the n users can take at most
four different states and since we assumed that users only increase
their state with respect to the ordering of the states). Additionally,
in each round of the first stage, we can update the states of the nodes
by iterating over all nodes v that are neighbors of a node u ∈ U
and then updating the state of v with the probability described in
Phase II. Since each user can become a spreader only once, the time
for executing all rounds of the first stage is O(m), wherem is the
number of edges in the graph.

Second, recall that the adjusted innate opinions ŝu only depend
on the randomness from the information spreading process. There-
fore, after the first stage finished, the innate opinions ŝu are fixed.
Thus, we can assume that the vector ŝu is known and the expressed
equilibrium opinions are given by ẑ∗ = (I + L)−1ŝ. The time com-
plexity for the second stage is the time required to solve for ẑ∗.
Equivalence of the opinion distributions. It remains to show
that both models induce the same distribution over the innate
and expressed opinions. To show this equivalence, we assume
that both models are run with the same input graphs, the same
seed nodes, and the same (non-adjusted) innate opinions s. Now
let us denote the adjusted innate opinions generated by the
spread-acknowledge model by ŝu and those by the two-stagemodel
by s̃u . Recall that both ŝu and s̃u are random vectors that depend
only on the outcome of the information-spreading process. The
following lemma asserts the equivalence of the two models. The
proof is presented in [33].

Lemma 4.1. For all a ∈ [0, 1]n , Pr[ŝ = a] = Pr[s̃ = a]. Further-
more, let ẑ∗ = (I + L)−1ŝ and z̃∗ = (I + L)−1s̃ be the equilibrium
opinions. Then Pr[ẑ∗ = b] = Pr[z̃∗ = b] for all b ∈ [0, 1]n .

5 ALGORITHMS
We present algorithms for maximizing the indices defined in Sec. 3.
We give algorithms for approximating the indices (Sec. 5.1). Then
we present our algorithms for maximizing the sum of user opinions
(Sec. 5.2) and for maximizing the controversy and the disagreement–
controversy indices (Sec. 5.3). We present our proofs in [33].

5.1 Estimating indices
LetM(L) be one of the matrices from Table 1, which induces the
quadratic form for each of the indices that we wish to study. Recall
that s is the non-adjusted vector of innate opinions and ŝ is the
random vector of adjusted innate opinions. In the following, our
goal is to compute E[ŝ⊺M(L) ŝ].

Let ∆ŝ = ŝ − s be the random vector that denotes how the users
changed their opinions. Then observe that

E[ŝ⊺M(L) ŝ] = s⊺M(L) s + E[2s⊺M(L)∆ŝ + ∆ŝ⊺M(L)∆ŝ].
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Since the first term in the sum is deterministic, we drop it and focus
on E[h(∆ŝ)], where h(∆ŝ) := 2s⊺M(L)∆ŝ+∆ŝ⊺M(L)∆ŝ. We show
that computing E[h(∆ŝ)] is #P-hard since our model generalizes the
independent cascade model.

Lemma 5.1. Given seed nodes S , computing E[h(∆ŝ)] is #P-hard.

Monte Carlo Simulation. Since Lemma 5.1 shows that computing
E[h(∆ŝ)] exactly is hard, we resort to approximations. One option is
to use Monte Carlo simulations of our model. More concretely, we
can simulate our model as described in Sec. 4.2 to obtain multiple
samples of ŝ. Now a Chernoff bound implies that we can compute
an approximation of E[ŝ] with high probability. Then we can com-
pute an approximation of E[h(∆ŝ)] in near-linear time using the
algorithms by Xu et al. [35], which are based on Laplacian solvers.
This approach is efficient when the number of seed node sets for
which we wish to compute E[h(∆ŝ)] is small.
Reverse reachable sets. However, in our optimization algorithms
we will need to evaluate E[h(∆ŝ)] for a large number of different
seed node sets and thus using the Monte Carlo approach is too
inefficient. Therefore, we use reverse influence sampling [6, 31, 32],
which allow us to reduce the number of simulations of our model.

Our notion of reverse reachable sets is as follows. Suppose that
we want to simulate our model on a graph G = (V ,E). A possible
world is a copy of G that has labels on the edges and we generate
the labels as follows. For each edge (u,v) ∈ E, we pretend that u
has state spread and v has state inactive. Now we sample the state
of v as described in Phase II above and we label (u,v) with the new
state of v . For example, if v changes its state to acknowledge then
the label of (u,v) is acknowledge. This process is repeated for all
edges (u,v) ∈ E and we always assume that u has state spread and
v has state inactive, regardless of the outcomes of previous samples.

Now consider a possible world д. We say that there exists a live
path from u to v if there exists a path in д in which all edges have
label spread except the edge incident upon v which may have label
acknowledge or spread. Notice that live paths encode when users
change their opinions in our model: user v adjusts its opinion if
and only if there exists a live path from a seed node to v .

Next, let д be a randomly generated possible world and let u be
a random node in G. A random rr-set R for u in д is a set of nodes
in д such that there exists a live path to u.
Estimating indices. Now we turn to estimating E[h(∆ŝ)]. Exist-
ing information propagation methods can be used for estimating
2E[s⊺M(L)∆ŝ], because ∆ŝ is the only random quantity in this ex-
pression. However, we also need to approximate E[∆ŝ⊺M(L)∆ŝ] =∑
u,vM(L)u,vE[∆ŝu∆ŝv ], which involves products of random

variables and which existing methods cannot do. Our main ob-
servation is that in each possible world it holds that ∆ŝu∆ŝv , 0 if
and only if there exist live paths from the seed nodes to u and v .
Wang et al. [34] followed a similar approach but only considered
pairs (u,v) for which there exist edges in the graph; here, we have
to perform this operation for all pairs (u,v) ∈ V 2.

In the following, we set ∆su ∈ [−ϵ, ϵ] to denote how much
user u adjusts its opinion once it reaches state acknowledge or
spread. Note that |∆su | can be smaller than ϵ because of the interval
concatenation that we described in Phase II above. Next, let S be
a set of seed nodes and let 1u (S) be an indicator with 1u (S) = 1

if u adjusts innate opinion and otherwise 1u (S) = 0. Let 1(S) be a
vector of 1u (S) consisting of each u ∈ V . Note that 1(S) is a random
vector and that ∆s is deterministic. Observe that ∆ŝ = ∆s ⊙ 1(S),
where is ⊙ the Hadamard product.

To simplify our notation, we setwu = (2s⊺M(L) )u∆su and let
mu,v = (∆su )⊺M(L)u,v∆sv . Then we obtain:

h(∆ŝ) =
∑

u,v ∈V

1
n
wu1u (S) +mu,v1u (S)1v (S) =: F (S).

Given these definitions, we let Ru and Rv be random rr-sets for
u and v , respectively, and we set
ωRu ,Rv (S) = ⊮[(Ru∩S) , ∅]wu+⊮[(Ru∩S) , ∅, (Rv∩S) , ∅]nmu,v ,

and for a set R of random rr-sets we define

FR (S) =
∑
(Ru ,Rv )∈R ωRu ,Rv (S)

|R| . (5.1)

We show that FR (S) is an unbiased estimator for E[F (S)].
Lemma 5.2. Let R be a set of samples of pair of random rr-sets.

Then E[F (S)] = Eu,д∼G[n FR (S)].
Since the previous lemma only holds in expectation, we now

consider approximations that hold with high probability. Let ℓ > 0
be an error parameter, θ = |R | be the number of rr-sets and
suppose we know OPT = max |S | ≤k E[F (S)] (we show later how to
obtain bounds on OPT using statistical tests). Our goal will be to
pick θ large enough such that

Pr[|n FR (S) − E[F (S)]| ≥
ϵ

2 OPT] ≤ 1
nℓ

(n
k
) , (5.2)

since then a union bound implies that for any seed set S of size k ,
E[F (S)] is a good estimator for FR (S) w.h.p. We show that if we
pick θ large enough then Equation (5.2) is satisfied.

Lemma 5.3. Let χ = maxu,v ∈V |wu + nmu,v | and λ = 8nχ
ϵ 2 ( ϵ3 +

1)(ℓ lnn + ln 2 + ln
(n
k
)). If θ ≥ λ

OPT then Equation (5.2) holds.

5.2 Maximizing network indices
Now we consider the sum of expressed opinions problem, where
we are given an undirected weighted graphG = (V ,E) with edge
probabilities pu,v and a positive integer k . The goal is to find a set
of seed nodes of cardinality at most k that maximizes the sum of
expressed opinions E[Sŝ] = E[1⊺ ẑ∗]. Our main result is as follows.

Theorem 5.4. There exists a greedy approximation algorithm that
computes a (1 − 1/e − ϵ)-approximation with high probability.

Indeed, in [33] we show that our model is strictly more powerful
than the FJ model in which we can increase k innate user opinions.

To obtain the theorem, we maximize the sum of the adjusted
parts of the innate opinions E[∑u ∆ŝu ], since it is well-known that∑
u ẑ∗u =

∑
u ŝu and thuswe canmaximizeE[∑u ∆ŝu ]. Equivalently,

we can maximize F (S) :=
∑
u ∈V 1u (S)∆su , as we show next.

Lemma 5.5. arg maxS
∑
u ∈V z∗u (S) = arg maxS F (S)

The main benefit of Lemma 5.5 is that to maximize F (S), we do
not have to compute the sparse matrix inverse from Equation (3.2)
which is very costly. Note that if ∆su = ϵ for all u ∈ V , maximizing
F (S) reduces to the influence maximization problem [21]. However,
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We show that computing E[ℎ(Δŝ)] is #P-hard since our model
generalizes the independent cascade model.

Lemma 5.1. Given seed nodes 𝑆 , computing E[ℎ(Δŝ)] is #P-hard.

Monte Carlo Simulation. Since Lemma 5.1 shows that computing
E[ℎ(Δŝ)] exactly is hard, we resort to approximations. One option
is to use Monte Carlo simulations of our model. More concretely, we
can simulate our model as described in Sec. 4.2 to obtain multiple
samples of ŝ. Now a Chernoff bound implies that we can compute
an approximation of E[ŝ] with high probability. Then we can com-
pute an approximation of E[ℎ(Δŝ)] in near-linear time using the
algorithms by Xu et al. [35], which are based on Laplacian solvers.
This approach is efficient when the number of seed node sets for
which we wish to compute E[ℎ(Δŝ)] is small.
Reverse reachable sets. However, in our optimization algorithms
we will need to evaluate E[ℎ(Δŝ)] for a large number of different
seed node sets and thus using the Monte Carlo approach is too
inefficient. Therefore, we use reverse influence sampling [6, 31, 32],
which allow us to reduce the number of simulations of our model.

Our notion of reverse reachable sets is as follows. Suppose that
we want to simulate our model on a graph 𝐺 = (𝑉 , 𝐸). A possible
world is a copy of 𝐺 that has labels on the edges and we generate
the labels as follows. For each edge (𝑢, 𝑣) ∈ 𝐸, we pretend that 𝑢
has state spread and 𝑣 has state inactive. Now we sample the state
of 𝑣 as described in Phase II above and we label (𝑢, 𝑣) with the new
state of 𝑣 . For example, if 𝑣 changes its state to acknowledge then
the label of (𝑢, 𝑣) is acknowledge. This process is repeated for all
edges (𝑢, 𝑣) ∈ 𝐸 and we always assume that 𝑢 has state spread and
𝑣 has state inactive, regardless of the outcomes of previous samples.

Now consider a possible world 𝑔. We say that there exists a live
path from 𝑢 to 𝑣 if there exists a path in 𝑔 in which all edges have
label spread except the edge incident upon 𝑣 which may have label
acknowledge or spread. Notice that live paths encode when users
change their opinions in our model: user 𝑣 adjusts its opinion if
and only if there exists a live path from a seed node to 𝑣 .

Next, let 𝑔 be a randomly generated possible world and let 𝑢 be
a random node in 𝐺 . A random rr-set 𝑅 for 𝑢 in 𝑔 is a set of nodes
in 𝑔 such that there exists a live path to 𝑢.
Estimating indices. Now we turn to estimating E[ℎ(Δŝ)]. Exist-
ing information propagation methods can be used for estimating
2E[s⊺M(L) Δŝ], because Δŝ is the only random quantity in this ex-
pression. However, we also need to approximateE[Δŝ⊺M(L) Δŝ] =∑
𝑢,𝑣M(L) 𝑢,𝑣E[Δŝ𝑢Δŝ𝑣], which involves products of random vari-

ables and which existing methods cannot do. Our main observation
is that in each possible world it holds that Δŝ𝑢Δŝ𝑣 ≠ 0 if and only
if there exist live paths from the seed nodes to 𝑢 and 𝑣 . Wang et
al. [34] followed a similar approach but only considered pairs (𝑢, 𝑣)
for which there exist edges in the graph; here, we have to perform
this operation for all pairs (𝑢, 𝑣) ∈ 𝑉 2.

In the following, we set Δ𝑠𝑢 ∈ [−𝜖, 𝜖] to denote how much
user 𝑢 adjusts its opinion once it reaches state acknowledge or
spread. Note that |Δ𝑠𝑢 | can be smaller than 𝜖 because of the interval
concatenation that we described in Phase II above. Next, let 𝑆 be
a set of seed nodes and let 1𝑢 (𝑆) be an indicator with 1𝑢 (𝑆) = 1
if 𝑢 adjusts innate opinion and otherwise 1𝑢 (𝑆) = 0. Let 1(𝑆) be a
vector of 1𝑢 (𝑆) consisting of each𝑢 ∈ 𝑉 . Note that 1(𝑆) is a random

Algorithm 1: RR-Greedy
input :R, 𝑘
output :𝑋̃𝐺

𝑋̃𝐺 ← ∅
while |𝑋̃𝐺 | ≤ 𝑘 do

𝑥 ← arg max𝑥 𝐹R (𝑋̃𝐺 ∪ {𝑥}) − 𝐹R (𝑋̃𝐺 );
𝑋̃𝐺 ← 𝑋̃𝐺 ∪ {𝑥};

return 𝑋̃𝐺

vector and that Δs is deterministic. Observe that Δŝ = Δs ⊙ 1(𝑆),
where is ⊙ the Hadamard product.

To simplify our notation, we set𝑤𝑢 = (2s⊺M(L) )𝑢Δ𝑠𝑢 and let
𝑚𝑢,𝑣 = (Δ𝑠𝑢 )⊺M(L) 𝑢,𝑣Δ𝑠𝑣 . Then we obtain:

ℎ(Δŝ) =
∑︁

𝑢,𝑣∈𝑉

1
𝑛
𝑤𝑢1𝑢 (𝑆) +𝑚𝑢,𝑣1𝑢 (𝑆)1𝑣 (𝑆) =: 𝐹 (𝑆).

Given these definitions, we let 𝑅𝑢 and 𝑅𝑣 be random rr-sets for
𝑢 and 𝑣 , respectively, and we set
𝜔𝑅𝑢 ,𝑅𝑣

(𝑆) = 1[(𝑅𝑢∩𝑆) ≠ ∅]𝑤𝑢+1[(𝑅𝑢∩𝑆) ≠ ∅, (𝑅𝑣∩𝑆) ≠ ∅]𝑛𝑚𝑢,𝑣,

and for a set R of random rr-sets we define

𝐹R (𝑆) =
∑
(𝑅𝑢 ,𝑅𝑣 ) ∈R 𝜔𝑅𝑢 ,𝑅𝑣

(𝑆)
|R| . (5.1)

We show that 𝐹R (𝑆) is an unbiased estimator for E[𝐹 (𝑆)].
Lemma 5.2. Let R be a set of samples of pair of random rr-sets.

Then E[𝐹 (𝑆)] = E𝑢,𝑔∼G [𝑛 𝐹R (𝑆)].
Since the previous lemma only holds in expectation, we now

consider approximations that hold with high probability. Let ℓ > 0
be an error parameter, 𝜃 = |R | be the number of rr-sets and
suppose we know OPT = max |𝑆 | ≤𝑘 E[𝐹 (𝑆)] (we show later how to
obtain bounds on OPT using statistical tests). Our goal will be to
pick 𝜃 large enough such that

Pr[|𝑛 𝐹R (𝑆) − E[𝐹 (𝑆)] | ≥ 𝜖

2 OPT] ≤ 1
𝑛ℓ

(𝑛
𝑘

) , (5.2)

since then a union bound implies that for any seed set 𝑆 of size 𝑘 ,
E[𝐹 (𝑆)] is a good estimator for 𝐹R (𝑆) w.h.p. We show that if we
pick 𝜃 large enough then Equation (5.2) is satisfied.

Lemma 5.3. Let 𝜒 = max𝑢,𝑣∈𝑉 |𝑤𝑢 + 𝑛𝑚𝑢,𝑣 | and 𝜆 =
8𝑛𝜒
𝜖2 ( 𝜖3 +

1) (ℓ ln𝑛 + ln 2 + ln
(𝑛
𝑘

)). If 𝜃 ≥ 𝜆
OPT then Equation (5.2) holds.

5.2 Maximizing network indices
Now we consider the sum of expressed opinions problem, where
we are given an undirected weighted graph𝐺 = (𝑉 , 𝐸) with edge
probabilities 𝑝𝑢,𝑣 and a positive integer 𝑘 . The goal is to find a set
of seed nodes of cardinality at most 𝑘 that maximizes the sum of
expressed opinions E[Sŝ] = E[1⊺ ẑ∗]. Our main result is as follows.

Theorem 5.4. There exists a greedy approximation algorithm that
computes a (1 − 1/𝑒 − 𝜖)-approximation with high probability.

Indeed, in [33] we show that our model is strictly more powerful
than the FJ model in which we can increase 𝑘 innate user opinions.

To obtain the theorem, we maximize the sum of the adjusted
parts of the innate opinions E[∑𝑢 Δŝ𝑢 ], since it is well-known that
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Algorithm 2: Sampling
input : G̃, 𝜆, 𝛽 , 𝜖2, 𝑘 , Δs, 𝜒 , LB0
output :R
R ← ∅, LB← LB0;

for 𝑖 = 1, . . . , log2 𝑛 − 1 do
𝑦 ← 𝑛/2𝑖 , 𝜃𝑖 ← 𝛽

𝑦 ;
while |R | ≤ 𝜃𝑖 do R ← R ∪ GenerateRR-Set;
X̃𝑖 ← RR-Greedy(R, 𝑘);
if 𝑛 𝐹R (X̃𝑖 ) ≥ (1 + 𝜖2) 𝑦𝜒, then LB← 𝑛 𝐹R (X̃𝑖 )

1+𝜖2
, break;

𝜃 ← 𝜆/LB;
while |R | ≤ 𝜃 do R ← R ∪ GenerateRR-Set;
Return R;

∑
𝑢 ẑ∗𝑢 =

∑
𝑢 ŝ𝑢 and thus we canmaximizeE[∑𝑢 Δŝ𝑢 ]. Equivalently,

we can maximize 𝐹 (𝑆) :=
∑
𝑢∈𝑉 1𝑢 (𝑆)Δ𝑠𝑢 , as we show next.

Lemma 5.5. arg max𝑆
∑
𝑢∈𝑉 𝑧∗𝑢 (𝑆) = arg max𝑆 𝐹 (𝑆)

The main benefit of Lemma 5.5 is that to maximize 𝐹 (𝑆), we do
not have to compute the sparse matrix inverse from Equation (3.2)
which is very costly. Note that if Δ𝑠𝑢 = 𝜖 for all 𝑢 ∈ 𝑉 , maximizing
𝐹 (𝑆) reduces to the influence maximization problem [21]. However,
if Δ𝑠𝑢 < 𝜖 for some𝑢, the solutions might differ. The approximation
result from the theorem stems from the following lemma.

Lemma 5.6. The function E[𝐹 (·)] is monotone and submodular.
Thus the greedy algorithm achieves an approximation ratio of 1 − 1

𝑒 .

Maximizingnetwork indices. To estimate 𝐹 (𝑆), we define 𝐹R (𝑆)
similar to Equation (5.1). The difference is that we drop the qua-
dratic terms 1[(𝑅𝑢 ∩ 𝑆) ≠ ∅, (𝑅𝑣 ∩ 𝑆) ≠ ∅]𝑛𝑚𝑢,𝑣 , and we set
𝑤𝑢 = Δ𝑠𝑢 .

Our algorithm works as follows. We sample a set R of rr-sets
and greedily pick the nodes that maximize 𝐹R (𝑆). The algorithm
keeps on adding rr-sets to R until a statistical test asserts that we
have found a lower bound on OPT. More concretely, we keep on
sampling if the value estimated by 𝑛𝐹R (𝑆) is not a lower bound on
OPT (see (1) in Lemma 5.7) and when we stop sampling then we
obtain a good enough lower bound LB (see (2) in Lemma 5.7). Then
we can apply Lemma 5.3with𝜃 ≥ 𝜆/LB to obtain our approximation
guarantees. We present the pseudocode including the sampling in
Algorithm 2 and the greedy subroutine in Algorithm 1. We run
our algorithms with parameters LB0 = max𝑢 |Δ𝑠𝑢 | and 𝛽 = 𝑛( 43𝜖2 +
2) (𝑙 ln𝑛 + ln log2 2𝑛 + ln

(𝑛
𝑘

))/𝜖2
2 .

Lemma 5.7. Let X̃ be the output of Algorithm 1 and suppose that
|R | = 𝜃 ≥ 𝛽

𝑦 . Then with probability at least 1 − 𝑛−ℓ
log2 (𝑛) : (1) If OPT <

𝑦𝜒 , then 𝑛 𝐹R (X̃) < (1 + 𝜖2)𝑦𝜒 . (2) If OPT ≥ 𝑦𝜒 , then 𝑛 𝐹R (X̃) ≤
(1 + 𝜖2)OPT.

The above approach also extends to other indices if we use 𝐹R (𝑆)
as per Equation (5.1) and set LB0 = max𝑢,𝑣 |𝑤𝑢 +𝑚𝑢,𝑣 |.

5.3 The sandwich method
Now we present an algorithm for finding at most 𝑘 seed nodes that
maximize the Dis-Con Index Idc

𝐺,s and the Controversy Index C𝐺,s.

Table 2: Statistics of the datasets, where 𝑛 is the number of
nodes and𝑚 is the number of edges.

Dataset 𝑛 𝑚

Convote 219 521
Netscience 379 914
WikiTalkHT 404 734
WikiVote 889 2914
Reed98 962 18812
EmailUniv 1133 5451
Hamster 2000 16097
USFCA72 2672 65244

Dataset 𝑛 𝑚

NipsEgo 2888 2981
PagesGov 7057 89429
HepPh 11204 117619
Anybeat 12645 49132
CondMat 21363 91286
Gplus 23613 39182
Brightkite 56739 212945
WikiTalk 92117 360767

Since these optimization problems are not submodular, we cannot
use the greedy algorithm from above. However, the indices’ matri-
ces Idc (L) and C(L) only contain non-negative entries and this
allows us to define submodular upper and lower bounds on the
objective functions. Thus, we apply the sandwich method [24] to
obtain data-dependent approximation guarantees.

We obtain our upper and lower bounds as follows. LetM(L) ∈
{Idc (L) , C(L) }. Now letM(L) 𝑈 be the diagonal matrix in which
M(L) 𝑈

𝑖𝑖
is the sum of all entries in the 𝑖’th row of M(L) . Let

𝜇0 (𝑆) = E[2s⊺M(L) Δŝ+Δŝ⊺M(L) Δŝ], 𝜇𝐿 (𝑆) = E[2s⊺M(L) Δŝ],
𝜇𝑈 (𝑆) = E[2s⊺M(L) Δŝ + Δŝ⊺M(L) 𝑈 Δŝ]. Since the entries of all
of these matrices are non-negative, we obtain our desired relation-
ship 𝜇𝐿 (𝑆) ≤ 𝜇0 (𝑆) ≤ 𝜇𝑈 (𝑆).

As both 𝜇𝐿 (𝑆) and 𝜇𝑈 (𝑆) aremonotone and submodular, a greedy
algorithm can approximate them within factor 1 − 1

𝑒 − 𝜖 . In our
sandwich algorithm, we greedily select nodes 𝑆𝐿 , 𝑆𝑈 and 𝑆0 that
maximize 𝜇𝐿 (𝑆), 𝜇𝑈 (𝑆) and 𝜇0 (𝑆), respectively. Then we evaluate
each of the sets on 𝜇0 (𝑆) and return the one with the highest ob-
jective value, i.e., we return arg max𝑆 ∈{𝑆0,𝑆𝐿,𝑆𝑈 } 𝜇0 (𝑆). We obtain
the following approximation guarantees.

Theorem 5.8 (Lu et al. [24]). Let 𝑆∗ = arg max |𝑆 | ≤𝑘 𝜇0 (𝑆). Then
𝜇0 (𝑆) ≥ max

{
𝜇0 (𝑆𝑈 )
𝜇𝑈 (𝑆𝑈 ) ,

𝜇𝐿 (𝑆∗)
𝜇0 (𝑆∗)

}
(1 − 1

𝑒 − 𝜖) 𝜇0 (𝑆∗).

6 EXPERIMENTS
We proceed to the experimental evaluation. Our experiments were
conducted on an Intel Xeon E5 2630 v4 at 2.20GHz with 128GB
memory. Our code is written in Julia and is available on github.2

Datasets. We use publicly available real-world datasets [22, 23,
29] of social networks. For each network we extracted the largest
connected component. Dataset statistics are presented in Table 2.
Parameters. For each network, we set the innate opinion 𝑠𝑢 of each
user 𝑢 uniformly at random in [0, 1] [35]. We set the parameters
𝑝𝑢,𝑣 as in the weighted cascade model [21, 31, 32], i.e., 𝑝𝑢,𝑣 = 1

𝑑 (𝑣) ,
where 𝑑 (𝑣) is the in-degree of 𝑣 . We set𝑤𝑢,𝑣 = 1 for the FJ model.
For polarizing campaigns with backfire, we set 𝜏 = 0.5. For all of
our algorithms and heuristics, we set 𝜖 = 0.1, ℓ = 1 and 𝜖2 = 0.6.
Algorithms.We implemented our approximation algorithms from
Sec. 5 and we denote them Sum for the sum index, and DisCon for
the disagreement–controversy index. Additionally, we use heuristic
versions of the greedy Algorithm 1, together with the statistical test
scheme from Algorithm 2. This gives us the following algorithms:
2https://github.com/SijingTu/WebConf-22-Viral-Marketing-Opinion-Dynamics

if ∆su < ϵ for someu, the solutions might differ. The approximation
result from the theorem stems from the following lemma.

Lemma 5.6. The function E[F (·)] is monotone and submodular.
Thus the greedy algorithm achieves an approximation ratio of 1 − 1

e .

Maximizing network indices. To estimate F (S), we define FR (S)
similar to Equation (5.1). The difference is that we drop the quadratic
terms ⊮[(Ru ∩ S) , ∅, (Rv ∩ S) , ∅]nmu,v , and we setwu = ∆su .

Our algorithm works as follows. We sample a set R of rr-sets
and greedily pick the nodes that maximize FR (S). The algorithm
keeps on adding rr-sets to R until a statistical test asserts that we
have found a lower bound on OPT. More concretely, we keep on
sampling if the value estimated by nFR (S) is not a lower bound on
OPT (see (1) in Lemma 5.7) and when we stop sampling then we
obtain a good enough lower bound LB (see (2) in Lemma 5.7). Then
we can apply Lemma 5.3withθ ≥ λ/LB to obtain our approximation
guarantees. We present the pseudocode including the sampling in
Algorithm 2 and the greedy subroutine in Algorithm 1. We run our
algorithms with parameters LB0 = maxu |∆su | and β = n( 43ϵ2 +
2)(l lnn + ln log2 2n + ln

(n
k
))/ϵ2

2 .

Lemma 5.7. Let X̃ be the output of Algorithm 1 and suppose that
|R | = θ ≥ β

y . Then with probability at least 1 − n−ℓ
log2(n) : (1) If OPT <

yχ , then n FR (X̃) < (1 + ϵ2)yχ . (2) If OPT ≥ yχ , then n FR (X̃) ≤
(1 + ϵ2)OPT.

The above approach also extends to other indices if we use FR (S)
as per Equation (5.1) and set LB0 = maxu,v |wu +mu,v |.

Table 2: Statistics of the datasets, where n is the number of
nodes andm is the number of edges.

Dataset n m

Convote 219 521
Netscience 379 914
WikiTalkHT 404 734
WikiVote 889 2914
Reed98 962 18812
EmailUniv 1133 5451
Hamster 2000 16097
USFCA72 2672 65244

Dataset n m

NipsEgo 2888 2981
PagesGov 7057 89429
HepPh 11204 117619
Anybeat 12645 49132
CondMat 21363 91286
Gplus 23613 39182
Brightkite 56739 212945
WikiTalk 92117 360767

5.3 The sandwich method
Now we present an algorithm for finding at most k seed nodes that
maximize the Dis-Con Index IdcG,s and the Controversy Index CG,s.
Since these optimization problems are not submodular, we cannot
use the greedy algorithm from above. However, the indices’ ma-
trices Idc(L) and C(L) only contain non-negative entries and this
allows us to define submodular upper and lower bounds on the
objective functions. Thus, we apply the sandwich method [24] to
obtain data-dependent approximation guarantees.

We obtain our upper and lower bounds as follows. LetM(L) ∈
{Idc(L) ,C(L) }. Now letM(L)U be the diagonal matrix in which
M(L)Uii is the sum of all entries in the i’th row of M(L) . Let
µ0(S) = E[2s⊺M(L)∆ŝ + ∆ŝ⊺M(L)∆ŝ], µL(S) = E[2s⊺M(L)∆ŝ],
µU (S) = E[2s⊺M(L)∆ŝ+∆ŝ⊺M(L)U ∆ŝ]. Since the entries of all of
these matrices are non-negative, we obtain our desired relationship
µL(S) ≤ µ0(S) ≤ µU (S).

As both µL(S) and µU (S) are monotone and submodular, a greedy
algorithm can approximate them within factor 1 − 1

e − ϵ . In our
sandwich algorithm, we greedily select nodes SL , SU and S0 that
maximize µL(S), µU (S) and µ0(S), respectively. Then we evaluate
each of the sets on µ0(S) and return the one with the highest objec-
tive value, i.e., we return arg maxS ∈{S0,SL,SU } µ0(S). We obtain the
following approximation guarantees.

Theorem 5.8 (Lu et al. [24]). Let S∗ = arg max |S | ≤k µ0(S). Then
µ0(S) ≥ max

{
µ0(SU )
µU (SU ) ,

µL (S∗)
µ0(S∗)

}
(1 − 1

e − ϵ) µ0(S∗).

6 EXPERIMENTS
We proceed to the experimental evaluation. Our experiments were
conducted on an Intel Xeon E5 2630 v4 at 2.20GHz with 128GB
memory. Our code is written in Julia and is available on github.2

Datasets. We use publicly available real-world datasets [22, 23,
29] of social networks. For each network we extracted the largest
connected component. Dataset statistics are presented in Table 2.
Parameters. For each network, we set the innate opinion su of each
user u uniformly at random in [0, 1] [35]. We set the parameters
pu,v as in the weighted cascade model [21, 31, 32], i.e., pu,v = 1

d (v) ,
where d(v) is the in-degree of v . We setwu,v = 1 for the FJ model.
For polarizing campaigns with backfire, we set τ = 0.5. For all of
our algorithms and heuristics, we set ϵ = 0.1, ℓ = 1 and ϵ2 = 0.6.

2https://github.com/SijingTu/WebConf-22-Viral-Marketing-Opinion-Dynamics
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Algorithms.We implemented our approximation algorithms from
Sec. 5 and we denote them Sum for the sum index, and DisCon for
the disagreement–controversy index. Additionally, we use heuristic
versions of the greedy Algorithm 1, together with the statistical test
scheme from Algorithm 2. This gives us the following algorithms:
Pol for maximizing the polarization index, IntCon for maximizing
the internal conflict, and Dis for maximizing disagreement.

We will see below that those algorithms that include quadratic
terms are very costly to run. Therefore, we introduce scalable heuris-
tics. We make two changes in the heuristics: (1) To obtain the seed
nodes, we only consider the indices’ linear components, but we
evaluate the final set of seed nodes on the whole function (including
the quadratic part). (2) Following the sampling scheme from Algo-
rithm 2 typically leads to large sampling sizes and sometimes caused
our algorithms to run out of memory. Thus, we sample at most 200n
rr-sets for smaller datasets, and 5n rr-sets when n > 50, 000. This
gives good estimates in practice (typically with < 1% error). We
denote the heuristics by LinDisCon, LinPol, LinIntCon, and LinDis.

We compare our optimization algorithms against three base-
lines:MaxInflu chooses the seed nodes that maximize the influence;
HighDegree picks the seed nodes with highest degrees; Random
selects seed nodes uniformly randomly. Since Random is the only
randomized baseline, we report average values over 10 runs. As
these methods provide us with a fixed seed set, we use the Monte
Carlo simulation from Sec. 5.1 to evaluate their results.

Additionally, we compare against a greedy heuristic FJ by Chen
and Racz [9] that maximizes the indices from Table 1 under the
vanilla FJ model. FJ is allowed to change k innate user opinions
arbitrarily much but, unlike in our model, there is no information
spread; we provide FJ with the same parameter k as all other algo-
rithms. Unlike for the other methods, we do not take the seed set
returned by FJ and compute its score in our model, but we report
the relative increase of FJ in the vanilla FJ model; this will allow us
to evaluate whether the information spreading makes our model
more powerful. We will also include a value FJUpp by Gaitonde,
Kleinberg and Tardos [16, Thm. 3.4] which gives an analytic up-
per bound on what is achievable in the setting of FJ ; we note that
this upper bound might be loose (i.e., it is possible that it is too
large). Note that if our algorithms achieve values larger than FJUpp,
our model is strictly more powerful than what is achievable in the
vanilla FJ model without the information propagation step.

Evaluation. We report the relative increases of the indices from
Sec. 3. That is, for M(L) being a matrix from Table 1, s being
the non-adjusted innate opinions, and ŝ being the adjusted innate
opinions, we report (ŝ⊺M(L) ŝ − s⊺M(L) s)/(s⊺M(L) s).

How does viral marketing change the indices? First, let us
consider how our baselines influence the user opinions under the
spread-acknowledge model. In Figure 2, we report how the polar-
ization index changes when we pick 2% of the nodes as seeds. We
repeat our experiments 5 times and present the mean and the vari-
ance. In Figure 2(a) we see that marketing campaigns have little
effect on the polarization index in the network and increase it by
less than 0.1%. However, the situation is very different when we
consider polarizing campaigns with backfire (Figure 2(b)): the po-
larization increases up to 60% and typically increases at least 20%
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Figure 2: The relative change of the Polarization Index on
different datasetswithk = ⌈2%·n⌉ seed nodes. The plots show
(a) marketing campaigns and (b) polarizing campaigns.

if the most influential users share the polarizing campaign. Using
random seed nodes has little impact on the polarization.

Scalability and accuracy of the heuristics. In [33] we show that
the heuristics scale linearly in the graph size and are up to three
orders of magnitude faster than the greedy algorithms, while being
of similar quality. Thus, next we focus on the heuristics that only
consider the linear terms and scale to larger datasets.

Experiments for marketing campaigns. Next, we evaluate our
methods for marketing campaigns with k = ⌈0.5%·n⌉ seed nodes. In
Table 3 we report the results for all previously mentioned methods,
excluding HighDegree which behaves very similarly to MaxInflu.
We will consider the Sum Index and the Polarization Index and
we will evaluate how these indices change based on solutions of
algorithms with different objectives. While this might look counter-
intuitive at first, this approach reveals interesting connections be-
tween the different methods we consider and the indices we opti-
mize. For FJ , we use two corresponding versions that maximize the
Sum Index and the Polarization Index, respectively; for two large
datasets, FJ and FJUpp ran out of time.

Let us consider the Sum Index. Themethods Sum, LinDisCon and
MaxInflu typically achieve the highest values and all of them are of
similar quality. Not surprisingly, this suggests that for marketing
campaigns maximizing the user opinions is essentially the same as
maximizing influence. For nine datasets, the Sum Index increases
by less than 5% but for some it increases by up to 18.75%. Quite
interestingly, only on two datasets LinPol increases the Sum Index
by more than 1%, which suggests that the solutions of LinPol and
the other methods are quite dissimilar. Additionally, we observe
that the solution by FJ barely increases the Sum Index.

However, the situation is quite different for the Polarization In-
dex. Here, LinPol clearly achieves the biggest increases followed
by LinDis and FJ . Interestingly, on several datasets the seed nodes
produced by Sum, LinDisCon and MaxInflu even decrease the po-
larization; we explain this by the fact that if many users increase
their opinions with respect to a topic, then the overall acceptance of
this topic increases and the topic becomes less polarizing. Addition-
ally, we observe that on all datasets, LinPol achieves slightly higher
values than FJ , even though FJ can change the k innate opinions
arbitrarily much, while our marketing campaign can increase each
innate user opinion by at most ϵ . For both indices, Random and
LinIntCon have little to no effect.
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Table 3: Results for marketing campaigns with k = ⌈0.5% · n⌉ seeds. We report the relative increase of each index in percent.
Dataset Sum Index Polarization Index

Sum LinDisCon LinPol LinDis LinIntCon MaxInflu Random FJ Sum LinDisCon LinPol LinDis LinIntCon MaxInflu Random FJ FJUpp

Netscience 2.79 2.75 0.74 1.01 0.21 2.78 0.27 0.11 3.15 3.18 7.54 5.89 -0.35 3.17 -0.06 2.36 10.54
WikiVote 4.14 4.12 0.53 0.64 0.48 4.11 0.3 0.11 -0.64 -0.61 3.83 3.2 0.81 -0.58 -0.06 2.92 12.29
Reed98 3.2 3.22 0.28 0.3 0.3 3.2 0.27 0.1 0.14 0.09 10.13 8.04 0.15 0.11 -0.13 9.56 68.48

EmailUniv 3.31 3.36 0.37 0.41 1.18 3.35 0.29 0.11 0.51 0.42 4.64 4.13 0.35 0.44 -0.13 3.8 18.12
Hamster 4.09 4.07 0.76 0.81 0.45 4.06 0.27 0.1 0.39 0.46 7.59 5.82 0.43 0.72 0.01 5.18 25.70
USFCA72 3.09 3.09 0.23 0.22 0.28 3.1 0.3 0.11 -0.68 -0.67 11.7 11.01 0.47 -0.68 -0.07 11.57 82.48
NipsEgo 18.75 18.75 0.47 0.1 0.1 18.75 0.15 0.1 -5.3 -5.29 1.71 0.51 0.12 -5.29 -0.09 0.79 5.34
PagesGov 3.47 3.47 0.53 0.5 0.44 3.48 0.28 0.1 0.78 0.79 7.31 5.49 0.85 0.51 -0.06 6.96 36.87
HepPh 2.52 2.53 0.61 0.67 0.42 2.52 0.26 0.1 -0.3 0.01 6.83 4.5 0.43 -0.09 -0.05 3.26 16.03
Anybeat 11.96 11.96 0.93 1.02 0.53 11.96 0.25 0.1 -1.21 -1.19 3.18 2.58 0.52 -1.24 -0.08 1.7 7.80
CondMat 2.79 2.79 0.59 0.65 0.48 2.79 0.25 0.1 0.35 0.58 6.9 4.61 0.44 0.31 -0.07 3.42 15.69
Gplus 18.06 18.06 3.85 0.37 0.44 18.06 0.26 0.1 -4.98 -4.98 6.2 1.03 0.29 -4.98 -0.07 0.92 6.41

Brightkite 6.16 6.15 0.72 0.89 0.53 6.17 0.27 - -0.17 -0.06 4.27 2.53 0.47 -0.24 -0.07 - -
WikiTalk 9.27 9.27 1.73 1.59 0.71 9.28 0.29 - -0.82 -0.71 3.37 2.63 0.62 -0.79 -0.09 - -

Experiments with polarizing campaigns.Next, we consider po-
larizing campaigns with backfire and k = ⌈0.5% ·n⌉ seed nodes. We
report our results in Table 4.

Let us start with the Sum Index. Unlike in marketing cam-
paigns, now Sum is clearly the best method overall and outperforms
MaxInflu. However, for all methods the increase is very small, indi-
cating that it is difficult to increase the sum of the user opinions
with polarizing campaigns.

Now consider the Polarization Index where the increases com-
pared to the marketing campaigns are startling. On 10 out of 14
datasets, LinPol increases the polarization by at least 10% and the
biggest increases reach up to 59%. This is in stark contrast to mar-
keting campaigns where on all but two datasets the polarization
increased by at most 10%. Even MaxInflu always increases the po-
larization by more than 5% and up to 59%. Next, we observe that
LinPol achieves much larger increases in polarization than FJ , typi-
cally being at least factor 2 larger and up to factor 75 (for NipsEgo).
Finally, we observe that on three datasets, LinPol outperforms that
analytic lower bound FJUpp and for 10 out of 12 datasets it is within
factor 3. These findings suggest that for polarizing campaigns, the
information spread is very powerful compared to only changing
the innate opinions of a given set of users.
Further experiments are provided in [33].

7 CONCLUSIONS
We presented a novel model that allows to quantify how viral
information effects user opinions in online social networks. We
presented algorithms to simulate the model and to optimize dif-
ferent network indices. This allowed us to understand how much
impact adversaries can have on the social network. Our experiments
showed that marketing campaigns and polarizing contents behave
very differently. While for marketing campaigns it is possible to
significantly increase the user opinions, this seems very difficult
for polarizing contents. However, the picture is vastly different for
the polarization in the network: it barely increases for marketing
campaigns but for polarizing contents the increase can be very high,
even when the number of seed nodes is small. We believe that this
gives an insight into the growing polarization observed in today’s
social media.

There are several interesting directions for future work. Obtain-
ing approximation algorithm for polarizing contents is intriguing.

Another important question is to study how the parameters of our
model should be set to capture real-world behaviors as accurately
as possible; beyond pure parameter estimation, this might involve
replacing the independent cascade model or the FJ-model with
other models from the literature.
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