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ABSTRACT
Internet users make numerous decisions online on a daily ba-
sis. With the rapid advances in AI recently, AI-assisted decision
making—in which an AI model provides decision recommendations
and confidence, while the humans make the final decisions—has
emerged as a new paradigm of human-AI collaboration. In this pa-
per, we aim at obtaining a quantitative understanding of whether
and when would human decision makers adopt the AI model’s
recommendations. We define a space of human behavior models
by decomposing the human decision maker’s cognitive process in
each decision-making task into two components: the utility compo-
nent (i.e., evaluate the utility of different actions) and the selection
component (i.e., select an action to take), and we perform a sys-
tematic search in the model space to identify the model that fits
real-world human behavior data the best. Our results highlight that
in AI-assisted decision making, human decision makers’ utility eval-
uation and action selection are influenced by their own judgement
and confidence on the decision-making task. Further, human deci-
sion makers exhibit a tendency to distort the decision confidence
in utility evaluations. Finally, we also analyze the differences in
humans’ adoption behavior of AI recommendations as the stakes
of the decisions vary.
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1 INTRODUCTION
Internet users engage in many decision making activities online ev-
eryday, ranging from making investment choices for themselves, to
evaluating news veracity for the community, to annotating biomed-
ical images for citizen science projects. Recently, many AI-driven
decision aids have been developed to support human decision mak-
ing, and the widespread usage of these decision aids has created a
new paradigm of human-AI collaboration, i.e., AI-assisted decision
making—that is, given a decision-making task, an AI-based decision
aid provides a decision recommendation, while the human decision
maker makes the final decision. For example, an investor may be
advised by an AI-powered trading tool to buy and sell stocks online,
and a citizen scientist may get suggestions from a deep learning
model to detect diabetic retinopathy from images of the retina.

To fully unlock the potential of AI-driven decision aids in assist-
ing people to make better decisions, it is critical to obtain a solid
understanding of how human decision makers react to the decision
recommendations provided by the AI. In particular, how do humans
decide whether to trust the AI model and adopt its recommendation
or not in a decision-making task? To this end, there is a growing
line of experimental studies in the human-computer interaction
community which empirically identifies a wide range of factors
that can influence people’s trust in AI, such as the AI model’s ac-
curacy [20, 35, 45], the model’s confidence in the decision-making
task [35, 47], and the level of agreement between the human and the
AI [26]. However, attempts in probing deeper into the mechanisms
that govern how these factors interact to influence humans’ adop-
tion of AI recommendations is quite limited. This implies a missing
opportunity for obtaining more comprehensive and quantitative
understandings of human behavior in AI-assisted decision making,
which may inform theory development of human cognitive process-
ing. Moreover, due to the limited quantitative understandings of
humans’ adoption of AI recommendations, existing studies in the
AI community on optimizing human-AI joint decision making per-
formance (e.g., [3]) often make simplistic assumptions about how
humans interact with the AI model (e.g., assume that humans will
always accept the AI’s recommendation when the AI model’s confi-
dence is above a threshold). Building computational models of real
humans’ adoption behavior of AI recommendations in AI-assisted
decision making, thus, can potentially be helpful for redesigning
the AI to take the realistic humans’ reactions into consideration to
enhance human-AI collaborations.

Therefore, in this study, we focus on a basic AI-assisted decision
making setting and search for the best computational model to
characterize human decision makers’ behavior of adopting the
AI recommendation in such a setting. Specifically, in this setting,
the human decision maker is asked to solve a sequence of binary
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decision-making trials with the assistance of an AI model. On each
trial, the AI model provides its binary decision recommendation
as well as its confidence in this recommendation to the human
decision maker. Then, the human decision maker can make her
final decision by either accepting the model’s recommendation or
rejecting it, and depending on whether this final decision is correct
or not, the human decision maker will receive some reward or
penalty. The human decision maker’s objective is to maximize her
cumulative utility in all decision-making trials, though she will not
receive any feedback on the correctness of her final decisions while
she makes those decisions.

To characterize whether the human decision maker will adopt
the AI recommendation in each trial, we propose a space of human
behavior models by decomposing the human’s cognitive reasoning
process in each trial into two components: the utility component
for evaluating the utility of different actions (i.e., accept or reject
AI), and the selection component for stochastically determining an
action to take. Within each component, we first define a few basic
models to capture how the human decision maker computes the
utility of each action based on the AI model’s confidence in its rec-
ommendation, or how she turns the estimated utility of an action
into the probability of taking that action. To reflect the possibility
that the human decision maker may take her own judgement on a
decision-making trial as well as her confidence in this judgement
into account when determining whether to adopt the AI recommen-
dation, we further define a set of human-adjusted utility models
and human-adjusted selection models.

To explore which combinations of the two-component models
can best capture real-world human decision makers’ behavior of
adopting AI recommendations, we collect data on real human sub-
jects’ decisions in AI-assisted loan risk assessment tasks through a
randomized experiment. We also vary the stakes of the decisions
(i.e., reward/penalty associated with correct/incorrect decisions) in
different treatments of this experiment to simulate different decision
making environments. We find that the two-component models
using both human-adjusted utility models and human-adjusted se-
lection models outperform the combinations of basic utility and
selection models, in explaining real decision makers’ adoption of AI
assistance. This indicates that humans tend to aggregate their own
opinions with the AI’s advice when making AI-assisted decisions.
The best-performing two-component behavior model suggests that
human decision makers tend to apply a weighting function to inter-
pret probability estimates of the AI model’s recommended decision
being correct. Moreover, humans also tend to increase their likeli-
hood of accepting the AI recommendation if they agree with the
recommendation with high confidence, and decrease if they dis-
agree. Finally, comparing the best-performingmodels for explaining
humans’ behavior under different levels of decision stakes, we find
that when the decision stakes are higher, people tend to lower their
belief in the AI model being correct, and are more inclined to rely on
their own judgements on the decision-making trial when choosing
whether to accept or reject the AI recommendation.

Together, these results provide a useful starting point for quanti-
tatively characterizing humans’ adoption behavior of AI assistance,
which can potentially serve as the foundation for developing more
effective AI-driven decision aids that are aware of real-world human
behavior in the future.

2 RELATEDWORK
Empirical Studies in AI-Assisted Decision Making.Many em-
pirical studies have been carried out to explore whether people
are willing to trust AI in AI-assisted making, and which factors
will influence people’s trust. Beyond the exploration into how trust
in AI is impacted by some most straight-forward factors such as
the performance indicators of the AI model [20, 35, 45, 47], the
recent surge of interests in increasing the interpretability of AI
(e.g., [16, 18, 36]) has led to an increasing number of evaluations on
understanding whether and how AI explanations impact people’s
trust in the AI model [23, 31, 41, 47]. Most recently, researchers have
started to study people’s trust in the AI model under some special
conditions, such as when the distribution shift occurs [8, 23].
ModelingHumanDecisionMaking.Understanding how people
make decisions is a central problem in psychology and econom-
ics. Various theoretical frameworks have been proposed to explain
human decision making behavior under uncertainty. One of the
earliest frameworks is the expected utility model, which is based
on the hypothesis that individuals always choose the options that
maximize their expected utilities [40]. However, the recurring ob-
servations of people deviating from the optimal decisions lead to
the development of many new theories. For example, one of the
alternatives is the random utility model [27], which states that the
utility of an option is composed of an observable part (e.g., expected
utility) and an unobservable stochastic error term. Another alter-
native is the prospect theory (PT), with the most popular modern
variant of it being the cumulative prospect theory (CPT) [11, 24, 39].
Studies have also been carried out to model human behavior in
settings where agents have to repeatedly make decisions under
uncertainty [2, 44]. More recently, data-driven approaches using
machine learning to predict human decisions have been explored
to complement the theory-driven approaches [12, 29, 30].
Modeling Interactions betweenHumans andAI/Automation.
With the increased use of AI-driven assistive tools in decision mak-
ing, a growing line of research on designing AI models that can
optimize the human-AI team decision-making performance has
emerged. Many of these studies aim to exploit the human-machine
complementarity by finding an effective “division of labor” between
the AI and humans, either by training the algorithmic model in a
supervised way to leverage the distinctive strengths of both ma-
chines and humans [9, 34], or by explicitly routing the tasks to the
appropriate party through formulating the problem in a bandit feed-
back setting [2, 13]. Most recently, some researchers (e.g., [3]) also
looked into the problem of optimizing human-AI team performance
in an AI-assisted decision making setting in which humans are al-
ways the final decision maker. However, these studies often make
overly-simplified assumptions on how humans will interact with
the AI (e.g., accept the AI recommendation if that maximizes her ex-
pected utility), despite the reasoning processes underlying humans’
decisions to trust an AI or not are highly sophisticated [4, 5, 19].

In addition, various works directly model human trust in automa-
tion. For example, studies in the field of human-robot interaction
provided insights on how a human’s trust changes as a human
agent interacts with a robotic agent over time, by analyzing the
autonomy’s performance, the human agent’s behavior, and real-
time physiological signals [14, 15, 17, 25]. Common approaches
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Figure 1: The AI-assisted decision making setting we have
studied in this paper.

used in these studies are mostly data-driven, including time se-
ries model [22], machine learning techniques [25], and Bayesian
inference framework [42], with limited effort spent on providing
theory-grounded explanations to the learned models.

Different from the earlier research, in this paper, we focus on
computationally exploring how real humans behave when assisted
by an AI model, and we borrow theories from behavioral economics
to construct elements of human behavior models.

3 PROBLEM DESCRIPTION
We now formally describe the AI-assisted decision making setting
that we have studied in this paper (see Figure 1 for an overview
diagram). Suppose a decision-making trial can be characterized by
an n-dimensional feature vector x (i.e., x ∈ Rn ), and y is the correct
decision to make in this trial. In this study, we focus on decision-
making tasks with binary choices of decisions, i.e.,y ∈ {+1,−1}. We
usem(x) to denote the AI model’s output on the decision-making
trial, which is a probability distribution over the set of possible
decisions, i.e.,m(x) = {+1 : P(y = +1|x),−1 : P(y = −1|x)}. Given
m(x), the AI model will make a decision recommendation to the
human decision maker, which is composed of two parts—the rec-
ommended binary decision ŷm = argmaxm(x), and the confidence
in its recommended decision cm = maxm(x) = m(x)[y = ŷm ].
We assume that the AI model’s confidence is calibrated, that is,
cm = P(y = ŷm ). Similarly, we assume that the human deci-
sion maker will also form her own judgement on the decision-
making trial—h(x) is used to characterize the human’s output on
the decision-making trial, ŷh = argmaxh(x) is the human’s bi-
nary decision, and ch = maxh(x) = h(x)[y = ŷh ] is the human’s
confidence on her decision. Finally, we’ll also use h(x)[y = +1]
and h(x)[y = −1] later to refer to the human decision maker’s
confidence on a specific decision.

Now suppose the human decision maker is asked to complete a
sequence ofT decision-making trials with the help of the AI model.
In each trial t (1 ≤ t ≤ T ), the human decision maker is provided
with the feature vector xt , along with the AI model’s binary recom-
mendation ŷm,t and confidence cm,t . She also develops her own
judgement h(xt ) on the trial. With all these information, the hu-
man decision maker needs to make a final decision ŷt by taking an
action dt ∈ {accept , reject} to either accept the AI model’s binary
decision recommendation or reject it. That is, when dt = accept ,

ŷt = ŷm,t , otherwise ŷt = −ŷm,t . The human decision maker is
informed that based on the correctness of her final decision in each
trial, she could get different utility U t—if her final decision is cor-
rect (i.e., ŷt = yt , yt is the correct decision for trial t ), she will
receive a reward of 1 (i.e., U t = 1); otherwise, she will receive a
penalty of β (i.e.,U t = −β). The human decision maker’s objective,
thus, is to maximize her cumulative utility

∑T
t=1U

t in all T trials.
In this study, we focus on the scenario that the human deci-

sion maker will not receive immediate feedback after each trial on
whether her final decision in trial t is correct or not. The goal of
our study, then, is to quantitatively characterize how the human
decision maker chooses to adopt the AI model’s decision recom-
mendation or not (i.e., determines dt ) in each trial t .

4 MODELS
In this section, we outline the set of computational models for
modeling human decision makers’ adoption behavior of the AI
recommendations in AI-assisted decision making. Specifically, we
propose a space of models by decomposing the human decision
maker’s cognitive reasoning processes in each decision-making trial
into two components (see Figure A1 in Appendices for a diagram
of the model space)—the utility component, in which the decision
maker evaluates the utility of different actions, and the selection
component, in which the decision maker stochastically selects an
action to take based on the estimated utility of each action.

4.1 Utility Component
The utility component characterizes how the human decisionmaker
estimates the utility utj of each action j ∈ {accept , reject} in a
decision-making trial. We first consider a few basic utility models
in which the human decision maker infers the utility of each ac-
tion only based on the AI model’s output, that is, ûtj = f (m(xt )).
In addition, we conjecture that the human decision maker’s own
judgement on the decision-making trial may also influence her per-
ceived utility of each action—for example, when the human decision
maker’s own binary decision is different from that of the model’s,
she may decrease her estimated utility of the action of accepting the
AI model’s recommendation. To reflect this possibility, we further
propose a few human-adjusted utility models to capture humans’
possible behavior of aggregating both her own judgement and the
AI model’s recommendation to evaluate the utility of each action,
i.e., ûtj = f (m(xt ),h(xt )).

4.1.1 Basic Utility Models. We consider two basic utility models:

• ExpectedUtility (EU): In this model, aligningwith the expected
utility theory, we assume the human decision maker estimates
the utility of an action as her expectation of the utility that she
would receive by taking that action. Since we assume the AI
model’s confidence is calibrated, the AI model’s confidence cm,t

on the decision-making trial t effectively reflects the probability
that the model’s binary decision ŷm,t is correct. Thus, we have:

ûtaccept = EU (ŷt = ŷm,t ) = (1 + β)cm,t − β

ûtr e ject = EU (ŷt = −ŷm,t ) = 1 − (1 + β)cm,t
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• CPT-Based Utility (CPTU): In behavioral economics, the Cu-
mulative Prospect Theory (CPT) [11, 24, 39] provides a generaliza-
tion of the expected utility theory to explain humans’ irrational
behavior in decision making. In particular, a key observation
of CPT is that people tend to interpret probabilities in a non-
linear way such that there exists a probability weighting function
to transform the objective cumulative probabilities into subjec-
tive cumulative probabilities. Further, CPT states that people
tend to overweight extreme events, but underweight “average”
events (i.e., the probability weighting function has an inverse-S
shape), which is consistent with the rank-dependent expected
utility theory [24, 33]. In this study, following the earlier liter-
ature [21, 32, 38], we adopt a probability weighting function
w(p) =

pk

pk+(1−p)k where k > 0 is a parameter controlling the
shape of the function. When 0 < k < 1, the probability weight-
ing function takes an inverse-S shape, and the smaller k is, the
more the probabilities are distorted. In contrast, when k > 1, the
weighting function takes an S-shape (i.e., underweight the ex-
treme events while overweight the average events). Finally, when
k = 1, the weighting function is the linear function w(p) = p,
and the CPT-based utility becomes effectively the same as the
expected utility. Note here, we havew(p) = 1 −w(1 − p). When
human decision makers apply the probability weighting function
to interpret the AI model’s confidence cm,t , we have:

ûtaccept = (1 + β)w(cm,t ) − β

ûtr e ject = 1 − (1 + β)w(cm,t )

4.1.2 Human-adjusted Utility Models. In human-adjusted utility
models, we attempt to capture the possibility that the human deci-
sion maker aggregates her own judgement on the decision-making
trial,h(xt ), with the AI model’s outputs,m(xt ), when evaluating the
utility of different actions. Specifically, given the AI model’s binary
decision recommendation ŷm,t , the human decision maker’s belief
in how likely this recommended decision is correct is captured by
h(xt )[yt = ŷm,t ]—when the decision maker’s own binary decision
is the same as that of the AI model’s (i.e., ŷh,t = ŷm,t ), we have
h(xt )[yt = ŷm,t ] = ch,t ; otherwise, h(xt )[yt = ŷm,t ] = 1 − ch,t .
Given both her own and the AI model’s probabilistic estimates
h(xt )[yt = ŷm,t ] and cm,t , the human decision maker next needs
to combine them to produce an aggregate estimate cm+h,t to infer
the likelihood of the AI model’s binary decision recommendation
being correct, before she computes the utility of accepting or re-
jecting the model’s recommendation. To do so, two qualitatively
different approaches have previously been proposed in the proba-
bilistic forecast aggregation literature [6, 7, 28]—the compromising
approach which combines estimates by taking the average, and the
naïve Bayesian approach that tends to push the combined estimate
to the extreme (e.g, “60% and 60% is 70%”). Corresponding to these
two approaches, we consider 4 ways of aggregating human and
model confidence on the AI model’s binary decision recommenda-
tion in this study:
• Averaging (AVG): Following this rule, the human decisionmaker
simply averages her confidence and the AI model’s confidence on
each decision as the final, aggregated confidence, i.e., cm+h,t =
cm,t+h(x t )[yt=ŷm,t ]

2 .

• Naïve Bayes (NB): In this rule, it is assumed that the two proba-
bilistic estimates on the correctness likelihood of the AI model’s
binary decision recommendation (i.e.,h(xt )[yt = ŷm,t ] and cm,t )
are conditionally independent with each other. Thus, the human
decision maker combines these two estimates according to a
naïve implementation of the Bayes rule:

cm+h,t =
1

1 + (1−cm,t )·(1−h(x t )[yt=ŷm,t ])

cm,t ·h(x t )[yt=ŷm,t ]

Under this rule, the human decision maker tends to produce a
more certain final estimate on the correctness likelihood of a
decision than the individual estimate of the AI model or her own.
In other words, the human decision maker becomes “overconfi-
dent” in her final estimate on the correctness likelihood of each
decision after the aggregation.

• Weighted Mean Log-Odds (WMLO): This rule is a combina-
tion of averaging and naïve Bayes rule [7], which states that the
log-odds of the aggregated probabilistic estimate is the average
value of the log-odds of the individual estimate:

cm+h,t =
exp(α)

1 + exp(α)
,

where α =
1
2
(ln

cm,t

1 − cm,t + ln
h(xt )[yt = ŷm,t ]

1 − h(xt )[yt = ŷm,t ]
)

As taking the log-odds value of a probability accentuates the
differences for extreme probabilities (i.e., probabilities that are
close to 0 or 1), the net effect of this rule is thus to stretch out
the extreme probabilities before taking the average.

• Adjusted Naïve Bayes (ANB): Following this adjusted naïve
Bayes rule [7], the human decision maker will first correct each
probabilistic estimate by discounting it and moving it closer to
0.5, and then aggregate them using the naïve Bayes rule:

cm+h,t =
1

1 + (1−a)·(1−b)
a ·b

,where a =
(cm,t )γ

(cm,t )γ + (1 − cm,t )γ
,

b =
(h(xt )[yt = ŷm,t ])γ

(h(xt )[yt = ŷm,t ])γ + (1 − h(xt )[yt = ŷm,t ])γ

The parameter γ varies from 0 to 1 and controls the degree of
adjustment before applying the naïve Bayes rule—when γ = 0,
all the probabilities are transformed to 0.5, while when γ = 1, no
adjustment is applied to probabilities.
Finally, after the human decision maker obtains the aggregated

confidence cm+h,t on the AI model’s binary decision recommen-
dation on a decision-making trial, she can compute the utility of
each action following any of the basic utility models as we have
discussed in Section 4.1.1. That is, combining the 4 ways of aggre-
gating confidence with the 2 basic utility models, in total, we have
8 possible human-adjusted utility models.

4.2 Selection Component
The selection component describes how the human decision maker
stochastically decides which action to take. Again, we first consider
a few basic models in which this selection process is only influenced
by the estimated utility of each action, i.e., r tj = д(û

t
accept , û

t
r e ject ),

where r tj is the probability of choosing the action j ∈ {accept , reject}
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in trial t and
∑
j r

t
j = 1. Then, we consider the possibility that the

selection process is affected by the human decision maker’s own
judgement on the decision-making trial, especially in terms of the
agreement between the human’s and the model’s decisions. We
thus look into the human-adjusted selection models to capture such
behavior, i.e., r tj = д(û

t
accept , û

t
r e ject ,m(xt ),h(xt )).

4.2.1 Basic Selection Models. We consider three basic selection
models in this study:

• ϵ-Greedy: Suppose the action with the highest estimated utility
ûtj is j

∗. Then, r tj = ϵ when j = j∗; otherwise, r tj = 1−ϵ . In other
words, the action with the maximal utility will be chosen, but
there is a constant chance (i.e., 1 − ϵ) for humans to make errors.

• Logit: The probability for the human decision maker to take ac-

tion j is given by a softmax function r tj =
exp(δûtj )∑
j′ exp(δûtj′ )

. The Logit

model is a widely-used discrete choice model in economics [1, 37],
which assumes that humans choose a suboptimal option more
often when it is associated with a larger utility. The parameter
δ in the model reflects the human decision maker’s sensitivity
to utilities: when δ → 0, the human decision maker takes ac-
tions randomly; when δ → ∞, the human decision maker almost
always takes the action with the optimal estimated utility.

• Double Hurdle (DH): The previous two models assume that
humans select actions in each trial independently. In the Double
Hurdle model [10], we assume that in each trial, with a probabil-
ity of π (π ≥ 0), the human decision maker takes the same action
as that in the last trial, regardless of the estimated utility of that
action. This could reflect humans’ inherent trust or distrust in the
AI model. In addition, conditioned on that the human decision
maker takes utility into account in a trial, the probability for her
to select each action follows the Logit model:

r tj =


π +

(1 − π ) exp(δûtj )∑
j′ exp(δûtj′)

, j = dt−1

(1 − π ) exp(δûtj )∑
j′ exp(δûtj′)

, j , dt−1

4.2.2 Human-adjusted Selection Model. In human-adjusted selec-
tion models, we attempt to characterize how the human decision
maker’s judgement on the decision-making trial changes the ways
that she takes actions. Intuitively, if the human decision maker’s
own binary decision ŷh,t is the same as (different from) the AI
model’s decision ŷm,t , she may increase (decrease) the probability
of accepting the model’s decision recommendation and decrease
(increase) the probability of rejecting the model’s recommendation;
moreover, the more confident she is about her own decision (i.e.,
the larger ch,t is), the more she would increase (decrease) r taccept
and decrease (increase) r tr e ject . To reflect this intuition, we propose
the following adjustment method. In particular, the human decision
maker first computes the probability of choosing each action using
a basic selection model. Then, she will adjust these probabilities
based on the agreement between her decision and the AI model’s

decision, as well as her own decision confidence:

r taccept ∝ r taccept · exp(η · ŷm,t · ŷh,t · (ch,t − 0.5))

r tr e ject ∝ r tr e ject · exp(−θ · ŷm,t · ŷh,t · (ch,t − 0.5))

After the adjustment, the human decision maker normalizes the
values of r tj to ensure that

∑
j r

t
j = 1. In thismodel, parametersη and

θ (η,θ > 0) describe the extent to which the human decision maker
adjusts the selection probabilities of each action—the larger η (or θ )
is, the more the human decision maker will change the probability
of accepting (or rejecting) the AI model’s decision recommendation
based on her own judgement.

As the proposed adjustment method can be applied on top of the
probabilities produced by any basic selection model, in this study,
we have a total of 3 human-adjusted selection model corresponding
to the 3 basic selection models.

5 EXPERIMENTAL DESIGN
To explore which combinations of the two-component models
can best capture human decision makers’ behavior in AI-assisted
decision-making, we conduct a human-subject experiment to collect
the real human behavior data in AI-assisted decision making.

5.1 Decision-Making Task
The decision-making task that we asked subjects to complete in
our experiment was to evaluate loan default risks. Specifically, in
each task, the subject was presented with the profile of a loan ap-
plicant consisting of 7 features—the amount and interest rate of
the loan, the number of months to pay off the loan, the value of
each monthly installment, as well as the applicant’s annual income,
credit score, and homeownership status. After reviewing this in-
formation, the subject was asked to predict whether this applicant
would default on the loan or not. Loan applicant profiles that we
showed to subjects in the experiment were taken from a public
dataset that records the loan information of a peer-to-peer lending
platform, LendingClub [43]. To simplify the problem as a binary
prediction, we restricted our attention only to those cases where
the loan applicant either fully paid back the loan or defaulted on the
loan. Further, the loan risk assessment tasks that subjects worked
on in the experiment were randomly sampled from a pool of 1300
candidate loans that we selected from the dataset—We conjectured
that humans may consider 4 factors to be highly predictive of the
default risk of a loan, i.e., the loan amount, interest rate, install-
ment to income ratio, and the applicant’s credit score. Thus, we
maximized the representativeness of our selected pool of decision-
making tasks by ensuring a balanced distribution of values for each
of these four factors as well as the intersection of these factors.

5.2 Pilot Study: Human Decisions Only
We first conducted a pilot study to collect data on how humans
make loan default risk predictions without the assistance of an
AI model. In this pilot study, each subject was asked to complete
a sequence of 40 loan risk assessment tasks that were randomly
sampled from a subset of 300 tasks in our task pool. In each task,
the subject was asked to provide her binary prediction (i.e., “will
default” or “will not default”). Further, she also needed to report
her confidence in her prediction by indicating the probability that
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she believed her prediction would be correct as a value between
50% to 100%1. In total, 211 subjects participated in this pilot study.
Data collected from this pilot study later enables us to learn the
human decision-making function h(x) to infer the human decision
maker’s prediction and confidence on a decision-making trial. In
practice, given a decision-making task, any historic data on how
humans make decisions on this task can effectively serve as the
“pilot study data” to allow us to model h(x).

5.3 AI-Assisted Decision Making Experiment
Our real experiment was conducted to collect human behavior data
under the AI-assisted decision-making setting.

5.3.1 AI model. First, we trained a gradient boosted trees model
based on the LendingClub dataset to predict whether loan appli-
cants would default on their loans. We then used the histogram
binning method [46] to calibrate this model’s confidence so that
the model’s confidence score on a decision-making trial could ac-
curately reflect the correctness likelihood of the model’s prediction
on that trial. We evaluated the performance of this model on a
hold-out test dataset and found an AUC score of 0.731, suggesting
a reasonable predictive validity. Thus, the outputs of this model
(including both the binary prediction and the prediction confidence)
were provided as the decision recommendation to subjects in each
of the decision-making tasks in the experiment.

5.3.2 Experimental treatments. We included two treatments in our
experiment to simulate different types of decision-making environ-
ments. In particular, we suspected that human decision makers’
behavior in AI-assisted decision making may vary with the stakes
of the decision. As discussed in Section 3, we could use a parameter
β , which is the ratio between the penalty triggered by a wrong
decision and the reward associated with a correct decision, to char-
acterize the relative stakes of the decision. We thus created two
treatments by varying the value of β—in the high penalty (HP)
treatment, we set β = 2, while in the low penalty (LP) treatment,
we had β = 0.5. The behavior data that we obtained from these
two treatments, thus, allows us to explore whether human decision
makers utilize different processes to decide whether to adopt the AI
model’s recommendations when the stakes of the decisions vary.

5.3.3 Experimental Procedure. We conducted our experiment by
posting human intelligence tasks (HITs) on Amazon Mechanical
Turk (MTurk) and recruiting MTurk workers as our subjects. Upon
arrival, subjects were randomly assigned to one of the two exper-
iment treatments. Subjects were told that they need to complete
a sequence of loan default risk assessment tasks in the HIT. We
also told subjects that they were given a bonus account with an
initial balance of 200 virtual points, and their bonus account balance
would be updated based on whether her prediction in each task
was correct (though the updated account balance would not shown
to subjects in the real time)—a correct prediction would bring an
addition of 10 points, while a wrong prediction would result in a
deduction of 5 points for subjects in the LP treatment and 20 points
for subjects in the HP treatment. Next, subjects received a tutorial
about the meaning of each feature in a loan applicant’s profile. At
1On the task interface, we told the subject that if she believed the probability for her
prediction to be correct was lower than 50%, she might want to flip her prediction.

the end of the tutorial, we tested whether subjects understand the
information presented in loan applicants’ profiles via qualification
questions, and subjects can only proceed after answering them
correctly. After completing the tutorial, the subject started to work
on a set of 40 decision-making tasks that were randomly selected
from our task pool (we excluded the subset of 300 tasks used in
the pilot study from the pool), with the assistance of our AI model.
Specifically, in each task, the subject first saw the loan applicant’s
profile as well as the AI model’s prediction and confidence on this
profile, then she needed to make a final prediction by either ac-
cepting or rejecting the model’s recommendation (see Figure A2
in Appendices for our task interface). The subject was explicitly
told that the model’s confidence scores were calibrated. We did not
provide any immediate feedback to the subject on whether her or
the model’s prediction was correct on any of the tasks.

Our experiment was posted on weekdays 8am–6pm EST, and
was open to U.S. workers only. Workers who had participated in
our pilot study were not allowed to take the real experiment, and
each worker can participate only once. Further, we included three
common-sense questions (e.g., “what is 2+3?”) in our HIT as the
attention check questions, which later helped us to filter out the
data from inattentive subjects. The base payment of the experiment
was $1.80. We converted the subject’s bonus account balance to the
actual bonus payment using a rate of 400 points to $1, which leads
to a maximum bonus of $1.50. The median time a subject spent on
our HIT was 8.1 minutes, leading to a median hourly wage of $15.9.

6 RESULTS
After filtering data from inattentive subjects, we obtained data from
404 subjects in our AI-assisted decisionmaking experiment (HP: 214,
LP: 190). In this section, we first examine the performance of various
computational models in explaining an average human decision
maker’s behavior in adopting the AI model’s recommendation in
AI-assisted decision making (i.e., one model is learned to predict
all human subjects’ behavior). Then, we explore how changes in
decision stakes impact human behavior.

6.1 Model Training
6.1.1 Human decision-making function h(x). We first learned the
human’s decision-making function h(x) by utilizing the data col-
lected in our pilot study as the training data. Specifically, we pro-
cessed the data by transforming the combination of each subject’s
self-reported binary prediction and prediction confidence in a task
into the subject’s confidence in the positive prediction for that
task (i.e., h(x)[y = +1]). Next, for each task, we used the aver-
age value of h(x)[y = +1] across all subjects who worked on that
task to represent the average decision maker’s binary decision yh

and confidence ch = h(x)[y = yh ] on that task. We next trained
a multi-output neural network to predict yh and ch based on x .
Through 5-fold cross-validation, we found the average accuracy of
this model in predicting yh was 0.783, and its mean absolute error
in predicting ch was 0.056. In the following, we used this model’s
outputs to estimate the average decision maker’s binary decision
and decision confidence in each task.
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6.1.2 Human behavior models. To evaluate the performance of
different models in fitting the average human decision maker’s
behavior in AI-assisted decision making, we conducted a 5-fold
cross-validation within each experimental treatment. That is, we
randomly split subjects of that treatment into 5 groups and then
created five folds of the behavior dataset based on the partition
of the subjects. Within each iteration of cross-validation, given
a particular type of two-component model (e.g., EU+Logit), we
trained the model based on the training folds, using grid search
to identify the best hyper-parameters with learning rate scheduler
and early-stopping being implemented to avoid over-fitting. We
then evaluated the performance of the trained model on the testing
fold by computing the average negative log-likelihood (NLL) value
of a subject’s decisions to adopt the AI recommendations in the
experiment across all subjects in the testing fold. We compared
the performance of various models in fitting the average human
decision maker’s behavior by reporting the mean values of the
average NLL across 5 cross-validation iterations. Intuitively, the
lower the mean NLL, the better the model.

Finally, in addition to the two-componentmodels, we also trained
a few standard supervised learning models (e.g., SVM, logisitic
regression, XGBoost) that directly predict dt based on the task
features xt , the AI model’s recommendation ŷm,t and confidence
cm,t in a decision-making trial. Among these models, the logistic
regression model achieved the lowest mean NLL, thus we used it
as our baseline in the analysis below.

6.2 Comparison in Model Performance
6.2.1 Basic Utility + Basic Selection. We first examine the perfor-
mance of the two-component models that is composed of the basic
utility models and the basic selection models in predicting the adop-
tion behavior of the average human decision maker in AI-assisted
decision making. We find here that the average decision maker’s
selection of different actions is best explained by the ϵ-Greedy se-
lection model, which effectively makes the choice of utility model
irrelevant (see Figure A3 in Appendices). However, all combina-
tions of basic utility models and basic selection models are shown
to perform worse than the baseline logistic regression model.

In addition, we notice that for models containing the Double
Hurdle selection model, the optimal parameter value for π is always
estimated to be 0, effectively making the Double Hurdle model de-
generate to the Logit model. This implies that the average human
decision maker’s decision of adopting the AI model’s recommen-
dation or not in each trial is likely made in a case-by-case manner
rather than being heavily influenced by their inherent trust dispo-
sition. In light of this, we exclude the Double Hurdle model from
the set of selection models in our further analysis.

6.2.2 Human-adjustedModels. Wenext explorewhether taking hu-
man’s own judgement in a decision-making trial into consideration
could improve the predictive performance of the two-component
models. To do so, we first fix the utility model to be the basic ones,
while replacing the selection model with the human-adjusted selec-
tion models. For example, Figure 2 reports the comparison between
the human-adjusted selection models and the basic selection mod-
els in fitting the behavior of the average decision maker in the HP
treatment. We find that for every combination of basic utility and

Figure 2: Performance of the two-component models in the
HP treatment when using a basic utility model, and the se-
lection model is either basic (gray bars) or human-adjusted
(green bars). The red line represents the performance of the
baseline logistic regression model. Error bars (shade) repre-
sent the standard errors of the mean.

selection model, applying human-based adjustment on the selection
component of it significantly increases the model’s performance
in fitting the human behavior data, and we observe a similar trend
in the LP treatment as well (see Figure A4 in Appendices). Further,
we experiment with fixing the selection model to be the basic ones
while replacing the utility model to be the human-adjusted versions.
In this case, we found that when the selection model was the Logit
model, applying human-based adjustment on the utility component
of the two-component model always helps to increase the model’s
predictive performance (see Figure A5 in Appendices).

Finally, we apply the adjustment to both the utility and the se-
lection model simultaneously. Figure 3 compares the predictive
performance of the two-component models that are composed of
both human-adjusted utility model and human-adjusted selection
model, against that of the two-component models that are com-
posed of the basic utility and basic selection model (gray bars).
In both treatments, we find the best predictive performance we
could get in predicting the average decision maker’s behavior is
achieved by the combination of the human-adjusted utility model
(following the Adjusted Naïve Bayes rule) and the human-adjusted
selection model2. Moreover, the best-performing two-component
models can match the average performance of the baseline logistic
regression model, while their performance variance decreases.

Taken together, our results here provide clear evidence support-
ing the conjecture that the average human decision maker incor-
porates her own judgement in a decision-making trial to decide
whether to accept an AI model’s recommendation. Further, such
judgement may influence the decision makers’ behavior through
multiple steps in their cognitive reasoning processes.

6.3 Comparing Behavior Across Treatments
Lastly, we explore how the average decision makers’ adoption be-
havior of the AI assistance is similar or different in varying decision
making environments where the decision stakes vary. To do so, we
compare the learned model parameters between the two experimen-
tal treatments for the combination of the adjusted CPT-based utility
model (following the Adjusted Naïve Bayes rule) and the adjusted
Logit selection model, as this two-component model achieves the
best predictive performance in both treatments. In total, there are
5 model parameters for this two-component model: k,γ ,δ ,η,θ .

2The choice of the basic utility/selection model before applying adjustment does not
seem to affect the two-component model’s predictive performance significantly.
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(a) Low Penalty Treatment (b) High Penalty Treatment
Figure 3: Performance of the two-component models when both utility and selection models are the basic models (gray bars),
and when both the utility and selection models are human-adjusted models (the other four bars). The red lines represent the
performance of the baseline models. Error bars (shades) represent the standard errors of the mean.

(a) Difference in bt (b) Difference in r taccept (c) Difference in r taccept
Figure 4: Comparing human behavior in the two treatments
with different decision stakes. Colors reflect the average
value of the variable (bt or r taccept ) in the HP treatment mi-
nus the average value of that variable in the LP treatment.

We first note that based on the 5 models that we’ve obtained
through the 5-fold cross-validation, the average estimates of the pa-
rameter k in the CPT-based utility model are kLP = 1.99(σ = 0.07)
for the LP treatment and kHP = 0.63(σ = 0.01) for the HP treat-
ment. This implies that in the LP treatment, the average decision
maker tends to apply an S-shape weighting function to interpret
probabilities, while the probability weighting function takes an
inverse-S shape in the HP treatment. In other words, humans tend
to overweight probabilities that are close to 0.5 when the decision
stake is low and underweight them when the decision stake is high.

Next, we focus on the two model parameters that belong to the
utility component of the model, i.e., k and γ . Recall that the cumu-
lative effect of k and γ is to transform the AI model’s confidence in
its decision recommendation cm,t and the human decision maker’s
confidence in the AI model’s decision h(xt )[yt = ŷm,t ] into a
distorted probability bt = w(cm+h,t ), which is the human deci-
sion maker’s final “belief” in the AI model’s correctness after the
confidence aggregation and probability weighting. It is therefore in-
teresting to explore that given the same cm,t and h(xt )[yt = ŷm,t ],
how would the value of bt differ when the decision stake is dif-
ferent. Given the 5 behavior models we’ve learned in our 5-fold
cross-validation, we computed the difference in the average value of
bt between the HP treatment and the LP treatment, for all combi-
nations of cm,t and h(xt )[yt = ŷm,t ], and the result is shown as a
heatmap in Figure 4(a). We find that as the decision stakes become
larger, human decision makers tend to increasingly underweight
the likelihood for the AI model’s decision recommendation being
correct, as their final belief in AI correctness bt is smaller in the HP
treatment than that in the LP treatment for most combinations of
AI confidence and human confidence. Such underweighting is par-
ticularly significant when the AI model’s confidence (i.e., cm,t ) is
relatively low while the human decision maker is highly uncertain
in her decision (i.e., (h(xt )[yt = ŷm,t ]) is around 0.5).

Similarly, we then look into the three model parameters in the se-
lection component of the model, i.e., δ , η, and θ—they cumulatively
transform the human decision maker’s final belief in AI correctness
bt , together with her confidence in her own decision ch,t , into a
probability of accepting the AI model’s recommendation r taccept ,
and this transformation follows different formulas depending on
whether the human decision maker’s own decision ŷh,t agrees with
the AI’s decision ŷm,t or not. Again, Figures 4(b) and 4(c) show
the difference in the average value of r taccept between the HP and
LP treatments for different combinations of bt and ch,t , when the
human decision maker agrees or disagrees with the AI model’s
decision recommendation, respectively. We find that when the hu-
man’s own decision is the same (different) as that of the AI’s, such
agreement (disagreement) leads to a consistently higher (lower)
probability for the average decision maker to accept the AI’s rec-
ommendation when the decision stake is larger. This is particularly
salient when a human’s confidence in her own decision ch,t is high.

7 CONCLUSION AND DISCUSSION
In this paper, we propose a two-component human behavior model
space, including the utility component and the selection component,
to describe humans’ decisions to adopt the AI recommendation in
AI-assisted decision making. We evaluate the performance of a
variety of computational models in this space in fitting the real
human behavior data collected through a large-scale randomized
experiment. Our results show that the human-adjusted models out-
perform models that are only based on the AI model’s outputs,
suggesting that humans are prone to make use of their own judge-
ment in a decision-making trial to gauge whether to adopt the AI
recommendation. Moreover, the comparison of model parameters
suggests that when the stakes of the decisions become larger, people
tend to lower their belief in AI recommendation’s correctness and
rely more on their own judgement in AI-assisted decision making.

There are a few limitations in our current study. For example,
the performance of our behavior models could be limited by the ac-
curacy of the human decision-making function h(x). Also, whether
people will accept an AI recommendation may be affected by many
more factors in real-world AI-assisted decision making settings,
such as the presence of AI explanations and people’s inherent pref-
erence to one decision. We believe our work still provides a general
framework for modeling more realistic human-AI interaction in the
future. For example, inherent preference among decisions can be
captured by selection models with a “default” decision, while the
presence of AI explanations may indicate human adjustment should
also consider whether the humans’ and AI’s rationale matches. We
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hope our work can inspire more studies in modeling human-AI
interaction and in integrating realistic human behavior models into
the optimization of AI-driven decision aids.
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A APPENDICES
A.1 An Overview of the Model Space

components.png

Figure A1: An overview of the two-component model space. The utility component contains the basic utility models and
the human-adjusted utility models. Similarly, the selection component contains the basic selection models and the human-
adjusted selection models. A two-component model can be composed by any model in the utility component and any model
in the selection component.

A.2 Interface of the Loan Default Risk Assessment Tasks

Figure A2: An example of the task interface that subjects saw in the AI-assisted decision making experiment.
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A.3 Additional Experiment Results

(a) Low Penalty Treatment (b) High Penalty Treatment

Figure A3: Performance of the two-component models that are composed of basic utility and selection models, as well as the
baseline model (the red line). Error bars (shade) represent the standard errors of the mean.

Figure A4: Performance of the two-component models in the LP treatment when using a basic utility model, and the selection
model is either basic (gray bars) or human-adjusted (green bars). The red line represents the performance of the baseline
logistic regression model. Error bars (shade) represent the standard errors of the mean.

(a) Low Penalty Treatment (b) High Penalty Treatment

Figure A5: Performance of the two-componentmodels when using a basic selectionmodel, and the utilitymodel is either basic
(gray bars) or human-adjusted (the other four bars). The red lines represent the performance of the baseline logistic regression
models. Error bars (shades) represent the standard errors of the mean.
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