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ABSTRACT
When annotators label data, a key metric for quality assurance is
inter-annotator agreement (IAA): the extent to which annotators
agree on their labels. Though many IAA measures exist for simple
categorical and ordinal labeling tasks, relatively little work has
considered more complex labeling tasks, such as structured, multi-
object, and free-text annotations. Krippendorff’s α , best known
for use with simpler labeling tasks, does have a distance-based
formulation with broader applicability, but little work has studied
its efficacy and consistency across complex annotation tasks.

We investigate the design and evaluation of IAA measures for
complex annotation tasks, with evaluation spanning seven diverse
tasks: image bounding boxes, image keypoints, text sequence tag-
ging, ranked lists, free text translations, numeric vectors, and syntax
trees. We identify the difficulty of interpretability and the complex-
ity of choosing a distance function as key obstacles in applying Krip-
pendorff’s α generally across these tasks. We propose two novel,
more interpretable measures, showing they yield more consistent
IAA measures across tasks and annotation distance functions.

CCS CONCEPTS
• Information systems → Crowdsourcing; Trust; • Computing
methodologies → Unsupervised learning; Learning in probabilis-
tic graphical models.
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1 INTRODUCTION
Data annotations are often collected from human experts or crowd-
sourcing [2] as part of the process for training and evaluating mod-
els. As an early and crucial node of the machine learning pipeline,
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it is important both to have quality labels [5, 31] and to be able to
measure label quality. In real-world applications that require gath-
ering many labels, measures of inter-annotator agreement (IAA)
[34] can be used to detect problems with data reliability stemming
from task design, workers’ performance, or other causes [1]. Due to
the wide variety of different annotation tasks, there is typically no
single method for measuring agreement that is suitable for every
purpose, and sometimes the inappropriate use and interpretation
of such statistics can lead to wasted effort and resources or mis-
specified and biased models. A more comprehensive approach for
this problem is to understand the complexity of the labeling task,
identify an agreement metric that is explainable and fits the specific
project requirements, in combination with other quality control
mechanisms that can quantify the quality of a dataset.

In this paper, we investigate the use of IAA measures for “com-
plex” annotation tasks [10, 11] having large (finite or continuous)
answer spaces, such as bounding boxes and keypoints in images,
named entities in text, syntactic parse trees, free-text translations,
ranked lists, and multi-dimensional numeric vectors. Most prior
IAA studies assume relatively simple labeling tasks, such as classi-
fication or ordinal rating tasks.

One of the most versatile IAA measures, Krippendorff’s α [18],
can (in its most general form) be applied across diverse labeling
tasks. As a baseline, we present empirical results for α across a
variety of complex annotation tasks and task-specific distance func-
tions for measuring annotation similarity. However, we observe
two important limitations of Krippendorff’s α . First, α is difficult
to interpret because its threshold for acceptable agreement varies
greatly by task and distance function. This makes it confusing to
understand when collected labels are of sufficient quality for use,
especially with new tasks in which the task-specific α threshold
is not yet known. Second, α requires selection of an appropriate
distance function for the annotation task, and a poor choice can
add noise, obscuring and underestimating agreement. This choice
of distance function can be complicated as well. While prior work
has relied on building simulators such as the Corpus Shuffle Tool
(CST) [22] to evaluate distance functions, this requires creating an
annotation simulator for each new labeling task of interest.

Our innovation is to propose new, distributional variants of
Krippendorff’s α that provide a conceptually and empirically more
interpretable threshold for deciding that the data is “good enough”,
as well as clearer insight into selecting a distance function, without
requiring either task-specific label noise simulation or gold data.

Contributions of our work include:
• We provide a guide to the considerations and techniques for
specifying an annotation distance function, that generalizes
across various complex annotation tasks.
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• We identify two key limitations of the general form of Krip-
pendorff’s α and provide novel alternatives.

• A new IAA measure based on the Kolmogorov-Smirnov test
[21] is shown to be particularly effective in evaluating dis-
tance functions for use with IAA, precluding need for either
label noise simulation or gold data.

• A new IAA measure σ provides a clear and task-general in-
terpretation, with a lower bound to what fraction of observed
label distances are significantly smaller than chance.

• To support reproducibility, we share our code and data1.

2 RELATEDWORK
2.1 Inter-annotator Agreement
In collecting labeled data, it is useful to distinguish between objec-
tive tasks (in which a single best response is presumed to exist for
each item) vs. subjective labeling tasks [29] that expect diverse re-
sponses (e.g., soliciting personal preferences or opinions). Whereas
high inter-annotator agreement (IAA) [34] is typically a goal with
objective tasks, that is not the case with subjective tasks.

Even with objective tasks, annotator disagreement can still be
a useful signal to model training and evaluation [6], indicating
varying confidence of “ground truth” labels for across items (e.g.,
due to corner-cases in annotation guidelines or difficult instances
such as blurry images, etc.). Annotators may also cluster into differ-
ent schools of thought [44] in interpreting or executing annotation
guidelines due to different personal backgrounds, task ambiguity,
etc. In addition, there are further risks of data bias [26, 41]: a pool
of homogeneous annotators may agree with one another yet miss
important problems with task guidelines or specific items that may
be apparent to more diverse and representative annotators.

The purpose of collecting multiple annotations per item is typi-
cally to assess and/or improve the quality of the labels, where the
quality is presumed better when annotators agree (given the above
caveats). Annotator agreement should not be confused with correct-
ness; annotators can agree with one another yet share a systematic
bias in collectively interpreting task guidelines differently than the
author of those guidelines had intended. A common practice is thus
to first check if annotators agree with one another (i.e., is the task
clear?), then sample agreed-upon labels to ensure they are further
consistent with what was actually desired from data collection.

Given the inherent variability in human judgement as well as
complexity of the collection process, disagreements can arise for a
large variety of reasons, such as annotator heterogeneity (which
is often desirable). Beyond demographics, annotators may vary in
their training or skill, or in the effort they apply. Their labels may
change over time from fatigue [12] or calibration [38].

Inter-annotator disagreement may also arise from heterogeneous
items. Some items may be more difficult to annotate than other
items [45]. Even the definition of difficulty itself can be divided into
multiple types. For example, items might be more discriminating,
in that the more skilled annotators are much less prone to error
than the less skilled ones, or more ambiguous in that both skilled
and less skilled annotators are equally prone to error [8].

Global sources of inter-annotator disagreement include a
random noise factor that may affect any given annotation, as well as
1https://github.com/Praznat/annotationmodeling

systematic problems in the annotation process such as an unreliable
platform or confusing instructions. These can stem frommanyways
in which annotations are collected, whether it be a crowdsourcing
platform, an internal lab or team, managed workers, etc, with wide
varieties in how tasks are designed and implemented.

Finally, one global source of measured inter-annotator disagree-
ment is the method by which it is being measured. Much of the
prior work on measuring IAA is around improving these measures
so that they do not show more or less agreement than what arises
from the aforementioned factors. One of the major innovations
from prior work is the chance correction, or the separation of ob-
served disagreements between annotations from what should be
expected due to chance. Many such chance-corrected agreement
measures exist, including Scott’s π [39], Cohen’s κ [15], and Fleiss’
κ [16]. The common approach for chance correction is to distin-
guish observed disagreements Do from expected disagreements De .
Not performing such a correction can hinder the interpretability
of the agreement measure, as the size of the possible and likely
response spaces would heavily affect the magnitude of the measure.

Krippendorff’s α [18] is a measure that aims to generalize many
others. Not only can it handle any number of annotators and miss-
ing values, it also allows plugging in a distance function that could in
principle apply to any type of annotation for which such a function
can be conceived. However, because of its design in the context of
certain specific tasks such as content analysis, there is sometimes
confusion around its definition. When the literature refers to Krip-
pendorff’s α , it may refer to either: i) the general formula α = 1− D̂o

D̂e
for computing agreement given a distance function D(a,b); or ii) a
specific distance function D(a,b) to use in this general formula.

Krippendorff [18] prescribes distance functions for several kinds
of data, including nominal, ordinal, interval, ratio, polar, and circular.
Sometimes alternatives to Krippendorff’s α are actually alternatives
to the prescribed distance functions rather than the general form.
For example “weighted Krippendorff’s α” [3] distinguishes the use
of a Euclidean distance function from a binary distance function,
but relies on the same general form 1 − D̂o

D̂e
. In this paper, when we

refer to Krippendorff’s α we mean specifically the general formula
and not any de facto prescriptions of distance functions. It is im-
portant to make this distinction in order to separate properties and
criticisms of the general formula from properties and criticisms of
specific distance functions that plug into it. This paper investigates
challenges with both the general formula and with the variety and
assessment of distance functions for complex annotations.

2.2 Complex Annotations
As practitioners seek to automate ever-more sophisticated tasks, an-
notation needed to train and evaluate models becomes increasingly
complex. More complex tasks [4, 10, 11, 33] may involve open-
ended answer spaces (e.g., translation, transcription, extraction) or
structured responses (e.g., annotating ranked lists, linguistic syntax
or co-reference), such as those shown in Figure 1.

In addition, while simple labeling tasks like classification may
require only a single label for each input item (e.g., a document or
image), many complex annotation tasks require annotators to label
an unknown number of objects per item — such as demarcating
named-entities in a sentence [37] or visual entities in an image [9],
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Figure 1: Examples of complex annotations. Open-ended:
language translation. Structured: a syntactic parse tree, and
a ranked list of elements. Multi-object: text sequences for
information extraction, image bounding boxes for object de-
tection, and image keypoints for pose estimation.

as shown in the last three examples of Figure 1. Mathet et al. [23]
refer to this part of a task as unitizing – defining the boundaries
objects of interest – in contrast to categorizing, or assigning a class
to each object. Braylan and Lease [10] define complex annotations
as anything that is not a categorical or simple numerical label –
basically anything with a large to infinite response space. These
tasks may also require greater cognitive effort by annotators.

Recent work has explored modeling distances between anno-
tations as a general approach to label aggregation across diverse
annotation types [10, 11, 19, 27]. A commonality among these is
the use of a task-specific distance function to convert each specific
complex domain into a much more general numeric one. This is the
same trick Krippendorff’s α takes advantage of to handle complex
annotations, but this prior work recommends the use of common
evaluation functions – measures of a predicted label against gold –
which when inverted can be used as distance functions. An open
question in this prior work is how to judge what distance function
works best when there are multiple options.

2.3 Agreement for Complex Annotations
While theoretically Krippendorff’s α is applicable to any complex
annotation task that has an available distance function, the prior
work investigating such applications is sparse. Skjærholt [42] in-
vestigates agreement metrics for dependency syntax trees, based
on Krippendorff’s α . They evaluate different distance functions on

syntax trees for use with Krippendorff’s α . Mathet et al. [23] pro-
pose a Holistic γ measure of IAA for various linguistic annotation
tasks such as Named Entity Recognition and Discourse Framing.

Both of the above works depend on the use of a Corpus Shuffling
Tool (CST) [22] for evaluating IAA measures. The insight of CST
is to use a simulator of noise applied to complex annotations to
control the expected amount of disagreement. A proposed measure
of IAA is evaluated by plotting the amount of simulated error in a
dataset against the measured agreement. An ideal measure should
span from 0 to 1 as simulated error spans from 1 to 0, and this
response should be strictly decreasing. Many of the conclusions
from this prior work come from using CST to judge and rank various
candidate distance functions to plug into Krippendorff’s α .

The downside of CST is that it is taxing to build simulators of
possible error. Furthermore, these simulators might deviate from
reality in the types of errors they capture. These reasons make it
difficult to apply CST to a wide range of different complex annota-
tion tasks, and therefore make it difficult to choose an appropriate
distance function for a given task.

Choosing an effective distance function is crucial for measuring
IAA. As discussed in Section 2.1, a poor distance function can be
a global contributor to total measured disagreement. That means
the distance function competes as an explanation of disagreement
with the other potential sources such as task difficulty, ambiguity,
etc, that practitioners care about. The only way to isolate the effect
of the distance function is to choose one that works better.

One desirable property of an IAA measure is thus its absolute
level to distinguish good distance functions from bad ones.
In Section 4 we argue that Krippendorff’s α does not fulfill this
need, which is why prior work has relied on CST experiments.

3 GENERALIZING TO COMPLEX TASKS
In this section we lay out the assumptions, requirements, and pro-
cedure for measuring IAA in a way that generalizes across many
diverse complex annotation modalities.

The general formula for Krippendorff’s α = 1 − D̂o
D̂e

, where D̂o

is the average distance observed, and D̂e is the average distance
expected. Observed distances Do are the set of within-item pairwise
distances between annotations, given a distance function D.

Do = {D(a,b) | ITEM(a) = ITEM(b)} , D̂o =
1

|Do |

∑
d ∈Do

d

The standard method for getting the set of expected distances
De is to sample inter-item pairwise distances between annotations,
which is generally applicable to complex annotations as well.

De = {D(a,b) | ITEM(a) , ITEM(b)} , D̂e =
1

|De |

∑
d ∈De

d

Recall that expected distances are used for chance correction.
That means that expected distances should represent what a mea-
sured distance might be between randomly-made annotations. For
example, taking translations from two different items (source sen-
tences) is a reasonable proxy for randomly generating translations.
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3.1 Distance Function Properties
This method for computing De introduces one limitation: distance
functions must be applicable to pairs of annotations from
different items. As noted by Skjærholt [42], such a limitation
precludes a number of candidate distance functions for syntactic
parse trees, including EVALB [40], causing them to choose Tree
Edit Distance (TED) which does not have this limitation.

Also noted in Mathet et al. [23] is that distance functions are
metrics that must fulfill the requirements of Non-negativity, Sym-
metry, Zero only for identical inputs, and Triangle inequal-
ity. One may skip the triangle inequality requirement and call it
a dissimilarity, as in Mathet et al. [23]. However, we will continue
to use the term “distance” in this paper, assuming the triangle in-
equality requirement without studying whether it is truly needed.

3.2 Supporting Multi-object Items
With multi-object labeling tasks (e.g., labeling named-entities in
a text or bounding boxes in an image), annotators or prediction
models must locate (aka unitize [23]) and categorize 1-many objects
in each input text/image. Evaluation metrics then score how well
the set of annotated or predicted objects matches the true set of
gold objects for the text/image. As Braylan and Lease [11] note,
evaluation metrics already exist for many suchmulti-object labeling
tasks and often can be directly applied as distance functions.

Another general strategy for supporting multi-object labeling
tasks is to induce a multi-object distance function Dm (A,B) from
a single-object distance function Ds (a,b) by finding the minimum
distance from each object in A to each object in B and vice-versa.

∆(A,B) = E{min({Ds (a,b) | b ∈ B}) | a ∈ A}

Dm (A,B) =
∆(A,B) + ∆(B,A)

2

For example, Mathet et al. [23] provide a comparable algorithm
for computing an alignment that minimizes local disagreements
between units in different annotations. The benefit of this kind of
approach is that it abstracts away everything except the choice of
single-object distance function Ds , which can be easier to provide.

Yet another general approach for dealing with complex anno-
tations is to first decompose them into simpler annotations and
operate on these instead [11, 33]. For example, Nguyen et al. [30]
relax traditionally “strict” NER scoring of exact spans [37] by de-
composing them into tokens and computing “partial-credit” scor-
ing by token. Similarly, Jaccard index or Intersection-over-Union
(IoU) decompose labeled image regions into pixels and measure
partial-credit label distance based on area overlap. The benefit of
decomposition is that since every annotator (implicitly) labels ev-
ery low-level token/pixel, there is no need to align labels across
annotators.

Krippendorff’s α plus an appropriate task-specific distance func-
tion provides a very general approach for measuring IAA across
diverse types of complex annotations. However, questions remain
as to how to choose between distance functions and how to inter-
pret the IAA measure. In the following section we will discuss why
Krippendorff’s α presents difficulties towards these ends, and we
propose methods to address those difficulties.

4 ALTERNATIVES TO KRIPPENDORFF’S α
So far we have assumed IAA should be measured for complex
annotations using Krippendorff’s α , with the main question being
what distance function to use. In this section, however, we argue
that Krippendorff’s α falls short when applied generally to complex
annotations, for two reasons: its difficulty of interpretation and the
complexity of using it to choose between distance functions. We
provide two novel IAA measures to help address this.

4.1 Problem of Interpretability
IAA scores should aid interpetation of collected data. While a single
agreement number does not provide all possible useful informa-
tion about all possible sources of disagreement (such as annotator
subjectivity, item ambiguity, etc.), this top level number should
describe how much the overall data is better than chance. By
looking at some examples we see that Krippendorff’s α does not
quite communicate that information sufficiently for complex data.

For example, noting the contrast in Figure 2 between observed
distances Do on the diagonal blocks and expected distances De

Figure 2: Top: Heatmap of GLEU distance between transla-
tions for three sentences (darker being more similar). High
contrast between within-item distances Do and inter-item
distances De implies annotators are much more in agree-
ment than random. Bottom: Distribution of within-item
GLEU distances Do and inter-item GLEU distances De for
same dataset. While the distribution for observed GLEU dis-
tances is quite wide, only a small portion of it overlaps the
distribution of GLEU distances expected at random.
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Figure 3: Hypothetical datasets with low agreement (left)
and high agreement (right). Purple-shaded regions denote
area of overlap between observed annotation distances and
distance expected from chance. Krippendorff’s α is 0.33 for
both datasets, whereas our measure σ distinguishes 0.26 for
the left and 0.98 for the right.

outside those, it is surprising that the calculated Krippendorff’s
α is only 0.35. This number seems low given the obvious con-
trast between within-item and inter-item distances and the overall
qualitatively acceptable level of agreement between translations.
Krippendorff [18] stipulated 0.667 as the “lowest conceivable limit”
of acceptable α , although anticipating that such guidelines would
not likely extrapolate as far as something like translation data. Still,
one may ask what to do with such a low number in this exam-
ple. Should we simply lower our expectations for acceptable α in
Japanese-English translation tasks? What about other languages?
What about other kinds of complex tasks? This difficulty is what
we mean when we discuss the interpretability of an agreement mea-
sure.To be interpretable, ameasuremust have a stable notion
across new annotation tasks of when annotations are “good
enough” to proceed from pilot to production.

The reason for Krippendorff’s α ’s low interpretability across
tasks stems from the fact that it compares an average observed
distance to an average expected distance. And depending on the
task, there may be a whole range of acceptable distances that is lost
when summarizing in the average. To clarify what we mean by this,
consider the bottom of Figure 2, in which theDo (in blue) andDe (in
red) values are rearranged into histograms. While the distribution
for observed distances is quite wide, only a small portion of it
overlaps the distribution of distances expected at random.

To more generally see the shortcoming of comparing averageDo
and De , consider two hypothetical datasets illustrated in Figure 3
which have the same average but different scales ofDo and likewise
for De . The dataset with the smaller scales intuitively has more
agreement, as observed distances between annotations are more
discernible from chance expected distances. However, both datasets
yield the same value for Krippendorff’s α .

4.2 Problem of Distance Function Choice
Section 2.3 discussed the CSTmethod used for judging and choosing
between candidate distance functions for complex annotations. To
reiterate, the CST method requires designing a simulator of errors
specific to the complex annotation task at hand, which is impractical
for the common practitioner who just wants a good way to measure
agreement for their collected data. It would be ideal to have an easily
computable single number that could grade a candidate distance

function against another. Alas, Krippendorff’s α cannot itself be
used this way. As seen in the previous section and Figure 3, α is
sometimes unable to differentiate a distance function that better
separates Do and De distributions from one that produces more
overlap. Furthermore, we will see in Section 6.2 that Krippendorff’s
α sometimes scores much higher for distance functions that we
expect to be much worse, relative to other distance functions.

4.3 Methods Proposed
In order to better generalize to a wider set of tasks, we propose
calculating agreement based on the difference in distribution of Do
and De rather than the difference in their averages.

For comparing distributions there are a number of options. To
grade options we consider two of the shortcomings of Krippen-
dorff’s α on complex annotations that we would like to remedy:
the need for stable interpretability of the agreement score and the
need for using the score to choose between distance functions. The
former also depends on the latter – agreement should be measured
using the best distance function available in order to minimize the
effect of the distance function as a source of disagreement.

One way to compare distributions is to first perform kernel den-
sity estimation to get a smooth probability distribution function
(PDF) for the De that can be evaluated for any individual observa-
tion from Do . Then we can simply ask, “for each observed distance
in Do what is the probability that a random draw from the distri-
bution of expected disagreements De could be smaller than it?” For
any given observation d from Do , we can say that it is statistically
significantly different from a random distance, if the cumulative
distribution function (CDF, i.e. the integral of the PDF) of De up
to d is smaller than p = 0.05 (this p threshold parameter is flexible
but should be used consistently). Finally, we note the fraction of
Do deemed to have passed this one-sided significance test. This
measure is easy to calculate and interpret: the fraction of the ob-
served distances that are unlikely to be drawn from random
expected distances. We denote this measure as σ :

σ = E
d ∈Do

[ p >

∫ d
PDF(De )]

A second option for comparing empirical distributions is the
one-sided Kolmogorov-Smirnov (KS) test [21], used to determine
whether a sample (Do ) could be a drawn from a reference distribu-
tion (De ). While σ compares each observation from Do indepen-
dently against the De distribution, KS compares the whole sample.

KS = maxx (CDF(Do ≤ x) − CDF(De ≤ x))

The measure of separation between distributions as a means to
judge distance functions is supported by analogy to themetric learn-
ing literature[47], in which the objective is to learn a good metric:
one that distinguishes data of the same class from data of different
classes. Another analogy is clustering, where the objective is to
have the ratio of within-cluster distances to inter-cluster distances
be as small as possible [25]. A key takeaway from these analogies
is that a better distance function will better separate distri-
butions of different classes, without having to compare across
different scenarios of simulated noise as CST does. We will also
show through experiments in Section 6.2 how our approach ranks
distance functions appropriately according to how established lit-
erature would rank distance functions.
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We calculate IAA KS measure as the complement of the statisti-
cal significance p-value (1 − p) returned by the KS test. While we
recommend the KS measure as a means to compare distance func-
tions, we argue that the σ measure has a more useful interpretation
for deciding whether there is sufficient agreement in the data. Once
a distance function has been chosen according to the highest KS
score, we use the corresponding σ for that distance function as a
lower bound for how much of the data differs from chance. Just as
“indistinguishable from random” does not necessarily mean random,
the observed distances inside the expected distance distribution
are not necessarily made in bad faith or due to errors or ambiguity.
Therefore, a low σ score does not necessarily mean the data should
be discarded, it only means further investigation is necessary.

On the other hand, as a lower bound measure, a high σ score is a
good indication that there is not a significant amount of confusion
or spamming or other causes for random-seeming annotations. A
high σ does not necessarily mean there is nothing left to investi-
gate, but as a summary measure it serves the purpose of comparing
agreements overall against chance. What this does not guarantee
is whether these annotations are useful enough to deploy in the
real world. For that, it is still important to consider the needs and
nuances that vary from task to task. Overall we recommend inter-
preting IAA by using these proposed measures, but not exclusively
as there can be other sources of data reliability issues that these
measures do not specifically identify, such as bias.

5 EXPERIMENTAL SETUP
To compare inter-annotator agreement (IAA) metrics across a broad
range of complex annotation types, we now summarize the datasets
and distance functions used. For each dataset, we compare IAA
using Krippendorff’s α vs. our two new IAA metrics: KS and σ .

Vectors. Dataset. Snow et al. [43] ask workers to score short
text headlines according to six emotions on a [0-100] interval. Such
data is typically modeled as a set of independent ordinal rating
questions, neglecting that the same headline is being rated for all
six emotions. In this work, we treat each headline as a single item to
which the annotator assigns a complex, vector of six scalar values.
Distance functions. We compare coarse exact match (binary) vs.
finer-grained Euclidean distance; Antoine et al. [3] recommend the
latter for use of Krippendorff’s α with ordinal annotations.

Translations.Dataset. Li and Fukumoto [20]’s CrowdWSA2019
dataset of crowdsourced Japanese-to-English translations is drawn
mostly from Japanese native speakers and non-native speakers of
English. They encourage beginner English speakers to participate
and collect a dataset of more diverse quality than usually used
to train machine translation models. Distance functions. The four
distance functions we compare are (in order of expected quality):
Levenshtein, BLEU, GLEU, and BERTScore. Levenshtein is a general
edit distance measure that ignores the finer nuances of natural lan-
guage. BLEU [32] is a traditional baseline for evaluating translations.
GLEU [46] is a variant and improvement on BLEU, which is spe-
cialized for comparisons between individual sentences. BERTScore
[48] is the most modern approach, which takes advantages of the
nuances of meaning and grammar baked into BERT embeddings.
Zhang et al. [48] find it to correlate better with human judgements
than quite a large assortment of competing measures.

Bounding Boxes. Dataset. Braylan and Lease [11] share an im-
age bounding box dataset in which each box is defined by an upper-
left and lower-right vertex. An image may contain several visual
entities to annotate, resulting in one to many bounding boxes per
image to annotate. Distance functions. We compare four distance
functions: “Count Diff” measures only the difference in bounding
box count between two annotations, L2 norm, Intersection Over
Union (IoU), and Generalized IoU (GIoU). Rezatofighi et al. [35]
propose and show GIoU to be an improvement over standard IoU,
which is itself an improvement over the L2 norm.

Named Entity Recognition. Dataset. Sang and De Meulder
[37] share a NER dataset in which annotators highlight and catego-
rize multiple spans of text within news articles. Distance functions.
We compare five distance functions varying in leniency. The coars-
est “Count Diff” measures only the difference in named-entity count
between two annotations. Leniency in the range gives partial credit
for range overlap, while leniency in the tag simply ignores it. The
strictest distance function requires both span and tag to be correct,
while relaxations allow leniency in either or both span or tag.

Keypoints. Dataset. Braylan and Lease [11] share a synthetic
dataset for image annotation using keypoints, generated by sim-
ulating various types of annotator noise over a base dataset from
COCO [14]. An image may contain multiple visual entities to be
annotated with keypoints. Distance functions. We compare three
distance functions: the coarsest “Count Diff” of objects annotated, a
coarse measurement of the IoU of the smallest boxes containing the
keypoints, and the most commonly used function for comparing
keypoints: Object Keypoint Similarity (OKS) [36].

Parse Trees. Dataset. Braylan and Lease [10] share a dataset of
simulated syntactic parse data using the Brown corpus [17] and
the Charniak parser [24]. This dataset provides an alternate test for
agreement measures on syntactic parse trees compared to Skjærholt
[42]’s syntactic parse data. Its source of simulated noise comes from
error in sub-optimal machine parses, rather than random relabeling
or reattaching of nodes. Distance functions. Following Skjærholt
[42], we compare three variants of Tree Edit Distance (TED): αplain,
αnorm, and αdiff, the latter two being different ways to normalize
TED by the compared tree sizes. Skjærholt [42] finds αplain to be
the best distance function based on a CST analysis.

Ranked Lists.Dataset. Braylan and Lease [10] share a dataset of
simulated ranked lists of elements. Distance functions. We compare
three distance functions: a coarse Kendall’s τ over only the top-5
ranks, and τ and Spearman’s ρ calculated over the full ranking.

6 RESULTS
We evaluate our methods with consideration of the following two
objectives. First, the interpretation of our measures of IAA should
be useful and general across a wide variety of different complex
annotation tasks, with minimal need for domain-specific nuance.
Second, our methods should help determine better distance func-
tions, not only for measuring agreement but potentially also for
aggregation and evaluation against gold.

6.1 Score Interpretability
Recall that an IAA score for a dataset should describe how much
better the observed distances are from chance. However, there are
several methods for describing such difference from chance, and it
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Dataset Distance f(x) α KS σ

Vector Binary 0.1277 0.5011 0.1151
Euclidean [3] 0.2146 0.5885 0.1593

Translations Levenshtein 0.2762 0.7735 0.5373
BLEU [32] 0.1816 0.8532 0.5791
GLEU [46] 0.1656 0.8758 0.8100
BERTScore [48] 0.4534 0.9085 0.8952

Bounding Boxes Count Diff 0.4365 0.6169 0.3736
L2 0.6873 0.9130 0.7640
IoU Score 0.5046 0.9543 0.8418
GIoU Score [35] 0.5069 0.9615 0.8711

NER Count Diff 0.3900 0.6205 0.1969
both lenient 0.4054 0.7816 0.6324
both strict [37] 0.3324 0.7340 0.6620
strict range 0.3776 0.7688 0.6520
strict tag 0.3605 0.7848 0.6735

Keypoints Count Diff 0.0419 0.3871 0.4007
IoU Score 0.2924 0.7989 0.6278
OKS Score 0.6726 0.8715 0.5666

Parse Trees [42] αdiff 0.8422 0.9815 0.9181
αplain 0.8768 0.9909 0.9601
αnorm 0.8626 0.9987 1.0000

Ranked Lists Kendall’s τ @5 0.2005 0.6099 0.6158
Kendall’s τ 0.4915 0.9893 1.0000
Spearman’s ρ 0.5413 0.9867 1.0000

Table 1: IAA metrics for different distance functions across
datasets. Best α varies greatly between datasets, sometimes
reaching very low levels despite these being mostly reliable
datasets. For distinguishing between distance functions, α is
also unreliable, making questionable preferences such as L2
> GIoU and Levenshtein > GLEU. Our measure KS’s ordering
of distance functions is more in line with expectations.

can be difficult to compare these methods when there is no ground
truth for how useful each one is. One way to compare methods is to
understand why they conflict with one another. Table 1 shows the
different agreement scores for Krippendorff’s α , KS, and σ across
different distance functions for each dataset.

The top Krippendorff’s α across distance functions varies dras-
tically from dataset to dataset. This is expected because it is well
known that α cannot be interpreted the same way across very dif-
ferent domains or across different distance functions [7]. In order
to get a “good” α score, Do and De should cluster heavily around 0
and 1, respectively. For complex annotations, such results are very
rare, as the distributions of Do and De can be quite wide.

On the other hand, KS seems to vary more from the choice in
distance functions than from the task. The top KS score for each
dataset is consistently high, with a single exceptionally low score
for the Vector dataset. One explanation is that these are all fairly
“good” datasets that were released publicly or generated with simu-
lators. The entire sample of observed distances would need to be
hard to differentiate from chance in order to produce a low KS score.
Other than a serious problem in annotation task design, the only

(a) De concentrated on the low
end for vector interval labels.

(b) Do with a tall mode on the
high end for NER exact-match.

Figure 4: Examples of IAA underestimated by σ due to a
smaller response space than ideal for using σ . This can be
remedied forNERbyusing amore lenient distance function.

other ways KS can receive a very low score are if 1) a sub-optimal
distance function obscures the signal separating the observed from
the expected distributions, or 2) the space of possible responses
is small enough to make the expected and observed distributions
overlap significantly. Case 1) we discuss in Section 6.2 and is the
main contributor to variation in KS for complex annotations with
large response spaces. Case 2) seems to contribute to the low KS
score for the Vector dataset, as Figure 4a exemplifies how the ob-
served and expected distances mostly overlap. Notably, most of
the mass of the expected distance distribution falls on the low side,
even more than would be expected for random independent draws
from a six-dimensional uniform or Gaussian distribution, implying
that the likely annotation space across all items is much smaller
than the possible annotation space. This problem with interval data
is pointed out by Checco et al. [13], whose alternative to Krippen-
dorff’s α is better suited to bounded numerical tasks like this one,
though not applicable to more complex annotation types.

Our agreement measure σ has the added value of interpretability
over α and KS. A common struggle with α is that different distance
functions result in very different values [7], and the relative order
of α between distance functions we see is difficult to explain as
well. While KS yields a favorable ordering of distance functions, σ
actually has a relatively simple natural language explanation.

In Section 4 we argue that the σ score serves as a good lower
bound measure of non-chance agreement. The reason it is a lower
bound is that some of the real-life agreement can be occluded and
underestimated due to the choice of distance function or nature
of the annotation task. For example, using the Count Diff distance
for bounding boxes, we see that the σ of 0.3736 only considers
agreement on the number of boxes and ignores the tendency for
annotators to agree on their boundaries. Diagnosing a low σ more
generally can involve looking at histograms of the Do and De
distributions. Examining the behavior of σ across various datasets
and distance functions, we find some common pathologies:
▶ Mode of expected distances near the low boundary. As
seen in the example of numeric vectors, this case can be common
for lower-dimensional interval spaces. As σ is developed for more
complex annotation tasks with large response spaces, something
like Checco et al. [13]’s Φ may be more appropriate for interval
annotations. This is also seen for certain distance functions that
greatly constrain the response space, such as Count Diff.
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▶ Mode of observed distances near the high boundary. This
case can occur when there is a common cause of zero-credit com-
parison between annotations. For example, in the NER task, the
stricter the distance function (e.g. ranges and tags must match ex-
actly) the greater the density at the high-boundary mode becomes
for observed distances (see Figure 4b).
▶ Multi-modal observed or expected distances. Both of the
previous two cases can also be instances where the distance distri-
butions exhibit multiple modes. A general concern is whether the
complex response space is actually contracted in some way due to
distance function or task design. For example, the task may have
a first step asking whether an object exists in an image (binary
response), followed by an image annotation if it exists at all. This
example could result in a very tall mode for the instances where
the first step precludes any following complex annotation.

Absent these problems, a low σ score might just mean low agree-
ment. For example, the Keypoints dataset is simulated with a large
amount of noise in the location, rotation, and magnitude of the
keypoint annotations, perhaps justifying its low σ = 0.5666.

6.2 Comparing Distance Functions
To assess howwell our KS approach for choosing a distance function
works, we compare the KS rankings of distance functions against
“expected” orderings. The intuition behind these expected orderings
stems from two lines of prior work. First, for each specific task or
domain, prior work has often established current state-of-the-art
distance functions (or evaluation metrics) for each task. Second,
prior CST work [22] also induced an ordering of distance functions
across different tasks, showing that that weaker distance functions
were less sensitive to detecting label error, with less correlation ob-
served between annotator agreement and simulated errors. During
development we also conducted CST experiments and confirmed
(unsurprisingly) that our agreement measures correlate negatively
with increasing injected noise for stronger distance functions (Fig-
ure 5 in Appendix). Furthermore, our KS approach yields consistent
distance function orderings with prior work and without requiring
a task-specific noise simulator, which is particularly useful for novel
annotation tasks lacking prior work. One interesting finding is that
“fine-grained” distance functions that capture more meaningful
information than “coarse” ones tend to perform better.

We now discuss the resulting IAA scores seen in Table 1.
Numeric Vector. All three measures show the finer-grained

Euclidean distance outperforming mean element-wise binary exact
match, consistent with Antoine et al. [3]’s recommendation of
Euclidean distance over binary for use on ordinal annotations.

Translations. Both of our measures yield the expected order of
distance functions (from best to worst): BERTScore, GLEU, BLEU,
Levenshtein. Note that using Krippendorff’s α here to compare the
means rather than the full distributions of expected and observed
differences ranks Levenshtein above BLEU and GLEU.

Bounding boxes. Krippendorff’s α is actually highest by far for
L2, again indicating its inappropriateness for comparing distance
functions simply in terms of levels of disagreement. Both of our
measures on the other hand yield the expected order of distance
functions (from best to worst): GIoU, IoU, L2, Count Diff.

Named Entity Recognition. As expected, the coarsest “Count
Diff” distance function is the least discriminating. We see lenient

distance functions slightly outperform stricter ones, particularly
leniency in the range, according to KS. Whereas leniency in range
creates finer-granularity partial-credit in measuring distance, le-
niency in tag (i.e., ignoring tags) actually makes the distance mea-
sure coarser since categorical tags do not have any obvious notion
of “nearby” for awarding partial credit, and ignoring tags entirely
makes the distance function less discriminating. While in prior
work, models trained on this dataset were evaluated using a strict
metric [37], a more lenient metric that gives partial credit for range
overlap provides finer-granularity of distance for calculating IAA.
Our KS findings are consistent with CST findings [23] on other
datasets: finer-grained distance measures beat coarse, binary ones.

Keypoints. The order of distance functions under KS from best
to worst matches expectations: OKS, IoU, and Count Diff.

Parse Trees. Compared to Skjærholt [42], our dataset shows
similar KS and σ scores across all three distance functions. The KS
score for αdiff is slightly worse than the others, also consistent.

Ranked lists. As expected, the coarser measure of Kendall’s τ
over only the top-5 ranks performs worst. Over the full ranking,
both distance functions yield similar values for all agreement met-
rics. This is unsurprising because both correlation functions tend
to return similar p-values for the same given data [28].

7 CONCLUSION
Because human annotations are pivotal in training and testing
machine learning systems, it is important to have both reliable
labels and effective ways to assess label quality. This is challenging
due to the many possible sources of label disagreement and great
variation in the nature of annotation across different labeling tasks,
especially with “complex” labeling tasks [10, 11] having large (finite
or continuous) answer spaces. A common approach, inter-annotator
agreement (IAA), supports assessment label quality on the basis of
agreement between annotators, without assumption of any oracle
“gold standard”. However, most IAA methods do not generalize to
complex labeling tasks. While the most general (and less known)
form of Krippendorff’s α [18] can be used, we showed two key
limitations of it: difficulty identifying suitable distance functions
and interpreting α across tasks and distance functions.

To address this, we described two novel IAA measures that offer
greater conceptual and empirical interpretability than α for assess-
ing when human annotations for complex labeling tasks are “good
enough” to be used. Empirical testing across seven diverse complex
annotation tasks shows how these measures add great value toward
assessing IAA for complex annotations.

Various limitations remain for future work. For example, once we
have isolated as best as possible the global sources of disagreement
from noise and distance function, how do we go further in diag-
nosing the contributions from annotator and item heterogeneity,
without which we cannot fully understand IAA? How do we use
IAA to predict how useful annotations will be after aggregation?
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8 APPENDIX
Distance functions

Vectors: Binary

D(a,b) = 1 −
1
N

N∑
i
1ai=bi

Vectors: Euclidean

D(a,b) = 1 − RMSE(a,b)

RMSE(a,b) =

√√√
1
N

N∑
i
(ai − bi )2

Translations: Levenshtein
https://en.wikipedia.org/wiki/Levenshtein_distance
(on tokens not characters)
Translations: BLEU

D(a,b) =
bleu(a,b) + bleu(b,a)

2
bleu: nltk version 3.4.5 sentence_bleu smoothing method 4
Translations: GLEU

D(a,b) =
gleu(a,b) + gleu(b,a)

2
gleu: nltk version 3.4.5 sentence_gleu smoothing method 4
Translations: BERTScore
D(a,b) = 1 − F1 using BERTScorer.score(a, b) from bert_score

version 0.3.10
Various: Count Diff

Dm (A,B) = | |A| − |B | |

Bounding Box and Keypoints: single to multi

Dm (A,B) =
∆(A,B) + ∆(B,A)

2
∆(A,B) = E{min({Ds (a,b) | b ∈ B}) | a ∈ A}

Bounding Box: L2

Ds (a,b) = 1 −
RMSE(a0,b0) + RMSE(aF ,bF )

20
Bounding Box: IoU Score

Ds (a,b) =
∩(a,b)

AREA(a) + AREA(b) − ∩(a,b)

Bounding Box: GIoU Score Adjustment to IoU described in
Rezatofighi et al. [35].

Keypoints: OKS ScoreOKS distance function described in Rug-
gero Ronchi and Perona [36].

NER: single to multi

Dm (A,B) = 1 −
2∆(A,B)∆(B,A)
∆(A,B) + ∆(B,A)

NER: both lenient

∆(A,B) = E{

∑
t ∈a

∑
s ∈b |b ∈B 1s=t

|{t ∈ a}|
| a ∈ A}

NER: strict tag

∆(A,B) = E{

∑
t ∈a

∑
s ∈b |b ∈B 1s=t∧TAG(a)=TAG(b)

|{t ∈ a}|
| a ∈ A}

NER: strict range

∆(A,B) =

∑
a∈A

∑
b ∈B 1a=b
|A|

NER: both strict

∆(A,B) =

∑
a∈A

∑
b ∈B 1a=b∧TAG(a)=TAG(b)

|A|

Parse Trees: αplain
D(a,b) = TED(a,b)

TED: zss version 1.2.0 simple_distance
Parse Trees: αdiff

D(a,b) = TED(a,b) − |NLEAVES(a) − NLEAVES(b)|

Parse Trees: αnorm

D(a,b) =
TED(a,b)

NLEAVES(a) + NLEAVES(b)
Ranked Lists: Kendall’s τ
scipy version 1.3.1 stats.kendalltau
Ranked Lists: Spearmans’ ρ
scipy version 1.3.1 stats.spearmanr

Dataset Annotators Items Annotations

Vectors 38 100 1000
Translations 70 250 2490
Bounding Box 196 200 1723
NER 46 199 982
Keypoints 100 199 1000
Parse Trees 24 128 512
Ranked Lists 30 100 600
Table 2: Datasets used and summary statistics

Figure 5: Unsurprisingly, σ measure decreases with in-
creased noise (expected distance from gold), NER example.

1729

https://en.wikipedia.org/wiki/Levenshtein_distance


Measuring Annotator Agreement Generally across Complex Structured, Multi-object, and Free-text Annotation Tasks WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Figure 6: Distributions of expected and observed distances
across all datasets and distance functions.
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