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ABSTRACT

Social media has become an indispensable channel for political
communication. However, the political discourse is increasingly
characterized by hate speech, which affects not only the reputation
of individual politicians but also the functioning of society at large.
In this work, we empirically analyze how the amount of hate speech
in replies to posts from politicians on Twitter depends on personal
characteristics, such as their party affiliation, gender, and ethnicity.
For this purpose, we employ Twitter’s Historical API to collect
every tweet posted by members of the 117th U.S. Congress for
an observation period of more than six months. Additionally, we
gather replies for each tweet and use machine learning to predict
the amount of hate speech they embed. Subsequently, we implement
hierarchical regression models to analyze whether politicians with
certain characteristics receive more hate speech. We find that tweets
are particularly likely to receive hate speech in replies if they are
authored by (i) persons of color from the Democratic party, (ii) white
Republicans, and (iii) women. Furthermore, our analysis reveals
that more negative sentiment (in the source tweet) is associated
with more hate speech (in replies). However, the association varies
across parties: negative sentiment attracts more hate speech for
Democrats (vs. Republicans). Altogether, our empirical findings
imply significant differences in how politicians are treated on social
media depending on their party affiliation, gender, and ethnicity.
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1 INTRODUCTION

Social media has become an indispensable communication chan-
nel for politicians in the U.S. and around the world. Compared to
traditional media, it provides a number of key benefits for politi-
cians: (i) social media provides a tool to spread messages to the
public at scale, thereby increasing people’s awareness of their (po-
litical) agenda [25, 30, 46]. (ii) Social media encourages the dialogue
between politicians and users, allowing for direct feedback from
constituents and discussions of political ideas [18]. (iii) Due to its
interactive nature, social media can be used as a tool for political
mobilization [31, 34]. These benefits are further reinforced by the
openness of social media as politicians are no longer restricted
by geography, scope, or content and can reach significantly wider
audiences [23].

However, the shift from traditional channels towards social me-
dia does not necessarily improve the quality of the political dis-
course. Instead, social media is known to foster echo chambers and
“us versus them” rhetoric [36]. These factors correlate with cyber-
bullying, harassment, and, in particular, hate speech [19]. Broadly
speaking, hate speech refers to abusive or threatening speech (or
writing) that expresses prejudice against a particular group, often on
the basis of ethnicity or sexual orientation [49]. Hate speech often
originates from semi-anonymous trolls [28, 36], and is particularly
frequent in discussions that cause a strong emotional response, such
as in political topics [57]. The adoption of social media by politi-
cians is thus a double-edged sword posing risks both to themselves
and society as a whole [29]. At the individual level, hate speech can
threaten reputations and may even lead to long-run mental health
issues [56]. At the societal level, it fosters political polarization [32],
which can have severe consequences. Examples include erosion of
intergroup political relations and increased opportunities for the
spread of ideologically branded misinformation [21, 45, 51].

Research Goal: In this study, we empirically analyze how the
user base on Twitter responds to posts from members of the U.S.
Congress. We are interested in understanding whether differences
in the prevalence of hate speech can be explained by personal
characteristics of politicians, such as their party affiliation, gender,
and ethnicity. More precisely, we address the following research
questions:

o (RQ1) Are Twitter users more likely to respond with hate speech
to tweets from U. S. representatives depending on party affiliation,
gender, and ethnicity of the members of the U.S. Congress?

o (RQ2) Does hate speech in the replies to tweets depend on the
sentiment of the source tweet? Does the strength of the association
differ depending on their party, gender, and ethnicity?



Data & Methods: To address our research questions, we employ
the Twitter Historical API to collect all tweets from members of
the 117th U.S. Congress between the first session on January 3,
2021 and the end of July 2021. In addition, we collect replies to each
source tweet. We then use machine learning to determine the share
of replies of each tweet that embeds hate speech. Subsequently, we
implement a multilevel binomial regression model with random
effects to estimate whether Twitter users are more likely to respond
with hate speech depending on the party affiliation, gender, and
ethnicity of the politician that has posted the tweet.

Contributions: To the best of our knowledge, this study is the
first to empirically model how hate speech in replies to tweets from
politicians depends on their personal characteristics (party affilia-
tion, gender, ethnicity). All else being equal, we find that tweets are
more likely to receive hate speech in replies if they are authored
by (i) persons of color from the Democratic party, (ii) white Repub-
licans, and (iii) women. As an additional contribution, our analysis
reveals that more negative sentiment (in the source tweet) is asso-
ciated with more hate speech (in replies). However, the association
varies across parties: negative sentiment attracts more hate speech
for Democrats (vs. Republicans). Altogether, our findings fuel new
insights into ongoing discussions on political polarization on so-
cial media and highlight disparities in how politicians are treated
depending on their party affiliation, gender, and ethnicity

2 BACKGROUND

Political communication on Twitter: The use of social media by
U.S. politicians has experienced a rapid surge. At the start of 2009,
only 69 individual members of Congress had a Twitter account [24].
Today, every member of the U.S. Congress has a professional Twit-
ter account and oftentimes a second personal account being active
at the same time. Existing studies suggest that there are three main
reasons why politicians adopt social media [29]. First, social me-
dia allows for unidirectional delivery of information to the public.
Compared to classical media, there is less moderation and real
time scrutiny allowing politicians to freely express themselves [4].
Second, social media enables dialogue between politicians and the
public. Politicians can use social media as a tool to connect with
constituents to discuss political issues and receive feedback [18].
Engaged users may further spread the message with likes and/or
reshares. Third, social media can be seen as a tool for political mobi-
lization. Specifically, it allows politicians to rally for projects, events,
and movements [55], though it does not guarantee success [35].
Hate speech: Although there is no all-encompassing defini-
tion [10], hate speech is typically considered to refer to abusive or
threatening speech (or writing) that expresses prejudice against a
particular group, often on the basis of ethnicity or sexual orienta-
tion [49]. While research on hate speech has received increasing
attention lately [e. g., 3, 12, 13, 17, 37, 38, 41, 47, 58, 60], studies that
analyze hate speech in the context of political communication are
scant. The few existing works typically focus on qualitative insights
or analysis of summary statistics. For instance, previous works have
studied hate speech towards female Japanese politicians [22], far-
right political party discourse in Spain [9], hateful propaganda to-
wards politicians in Macedonia [9], hate speech against Members of
Parliament in the UK. [2], and hate against German politicians [15].

We are aware of only one paper analyzing hate speech and incivility
in the context of tweets from members of the U.S. Congress [54].
However, this study again focuses on summary statistics. In par-
ticular, it does not model the effects of personal characteristics
of politicians (e. g., ethnicity) on the likelihood of receiving hate
speech.

Disparities across parties, gender, and ethnicity: Existing
research suggest that political party leanings in the U.S. correlate
with different speech patterns: Democrats tend to use more swear
words and higher sentiment, while Republicans prefer to commu-
nicate more negative sentiment and group identity [52]. Besides
party differences, a vast strand of studies has shown that there
are discrepancies in communication behavior across genders. For
instance, women are more likely to hide expressive and negative
emotions [14], and are guided by a greater focus on care in moral
dilemmas [39]. This is directly applicable to the domain of social
media, where women are more likely to report messages targeting
racial minorities and women [16]. Gender differences are further re-
inforced by widespread stereotypes regarding the role of women in
society [42], who are perceived as less persuasive and are often out-
right dismissed when displaying aggressive and forceful behavior
online [59]. Furthermore, survey studies suggest that women more
often tend to be a target of cyber-bullying and hateful attacks [8],
especially if they present an openly active stance, such as femi-
nism [26]. Ethnicities and racial stereotypes play a similar role in
offline and online discourse and differ greatly across countries [53].
For instance, for the U.S., existing studies suggest frequent hate
speech against African Americans [33].

Research gap: Existing research on hate speech in the political
discourse focuses either on qualitative insights or on summary
statistics. We are not aware of previous works empirically modeling
the effect of personal characteristics on the likelihood of a politician
to receive hate speech. This presents our contribution.

3 DATASET

Members of the U.S. Congress: We analyze tweets from all 541
members of the 117th U.S. Congress that convened on January 3,
2021. Data on the members of Congress was gathered from the
official webpage of the U.S. Congress [40], which provides links
to personal and campaign web pages. By following these links, we
collected the following information about each politician: (i) party
affiliation, (ii) branch of Congress in which the politician serves,
(iii) time served in Congress, (iv) gender, and (v) ethnicity. Fig. 1
provides an overview of the composition of the 117th U. S. Congress.
Most voting seats are held by members of the two major political
parties with 269 Democrats (D) and 263 Republicans (R), while 2
seats are occupied by independent senators. Women (W) hold 27%
of all Congress Seats, accounting for 39% of all Democrats and 15%
of all Republicans, respectively. Notably, the 117th U.S. Congress is
the most ethnically diverse so far with 39% of Democrats and 8% of
Republicans identifying as people of color (PoC).

For the sake of simplicity and interpretability, we focus our
later empirical analysis on tweets from Republican and Democratic
members; and exclude tweets from the two independent senators.

Collection of tweets: Twitter handles (user names) of every
politician in the U.S. Congress are provided by the University of



California San Diego library [50]. We employed the Twitter His-
torical API to download the complete timelines of every politician
between January 3, 2021 and the end of July 2021. Here we collected
the entire tweet history of each person, excluding retweets and
replies, resulting in a total number of 199,294 tweets. The average
number of tweets per politician is 368.38. We additionally queried
Twitter’s Historical API to gather the replies to every source tweet
in our data set. To ensure feasibility, we restricted the data collec-
tion to up to 250 replies for each original tweet, starting with the
earliest reply. The crawling process resulted in a total number of
8,362,555 replies.
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Figure 1: Venn Diagram visualizes the composition of the
117th U.S. Congress.

4 METHODS
4.1 Hate Speech Detection

In this work, we use machine learning to detect hate speech in
replies to tweets. Compared to dictionary-based methods that merely
count hate-related words [5], this approach is generally considered
as being more accurate [6]. Nonetheless, as part of our robustness
checks, we validate our results with the frequently-employed Hate-
base dictionary [27], finding confirmatory results.

We implement machine learning for hate speech detection as
follows: we employ the annotated twitter dataset from [13], con-
taining 25,000 tweets labeled as hateful or not hateful. Each tweet
was annotated by at least 3 users who were explicitly instructed
to think about the context of the message and not only the words
contained within [13]. We use the annotated tweets to implement a
deep neural network classifier that predicts whether or not a tweet
is hateful.! The hate speech classifier is then used to predict a binary
label of whether or not a tweet is hateful (= 1 if true; otherwise
= 0) for each reply tweet in our dataset. For each source tweet, we
calculate the share of replies that are hateful. The resulting variable
ranges from 0 to 1, with 0 indicating the lack of hate speech in
replies, and 1 indicating that every reply is hateful.

!We use Universal Sentence Encoder (USE) [11] as text representation. The machine
learning classifier yields a weighted out-of-sample F1 score of 0.89, which is similar

to previous works [13] and can be seen as reasonably accurate in the context of our
study. The model is implemented in Python 3.8.5 using TensorFlow 2.6.0 [1].

4.2 Explanatory Regression Model

We implement a multilevel binomial regression to estimate the
effects of party, gender, and ethnicity on the likelihood of a tweet
receiving hate speech.

Formally, we model the number of hate speech replies, HReplies,
as a binomial variable with probability parameter 6. The number
of trials is given by the total number of replies a tweet receives
(Replies). The key explanatory variables are the politicians’ party
affiliation (Party; = 1 if Republican, otherwise 0), gender (Gender;
= 1 if Man, otherwise 0), and ethnicity (Ethnicity; = 1 if Person of
Color, otherwise 0). Furthermore, for each source tweet, we calcu-
late a sentiment score (SourceSentiment) using SentiStrength.
We also control for the congressperson’s age (Age), the number of
years served ( YearsInOffice), whether media was attached to the
tweet (AttachedMedia; = 1 if true, otherwise 0), and the chamber
of congress at which the politician serves (Chamber; = 1 if Senate,
otherwise 0). Based on these variables, we specify the following
regression model:

logit(0) = fo + p1 Party + fo Gender + f3 Ethnicity (1)
+ paSourceSentiment + fs YearsInOffice + P Age
+ pr AttachedMedia + fg Chamber

+ Uyser T &,

HReplies ~ Binomial[Replies, 0], (2)

with intercept fo, error term ¢, and user-specific random effects
uyser- Note that the latter is important as it allows us to control for
heterogeneity in users’ social influence (e. g., some accounts have
many followers and reach different audiences) [43, 44].

We estimate Eq. 1 and Eq. 2 using MLE and generalized lin-
ear models. To facilitate the interpretability of our findings, we
z-standardize all variables, so that we can compare the effects of
regression coefficients on the dependent variable measured in stan-
dard deviations. Our regression analyses are implemented in R 4.0.5
using the 1me4 package [7].

5 EMPIRICAL ANALYSIS

5.1 Summary Statistics

We start our analysis by evaluating summary statistics. The av-
erage share of hateful replies per tweet in our dataset amounts
to 1.99 %. We perform both t—tests and Kolmogorov-Smirnov (KS)
tests to evaluate whether there are statistically significant differ-
ences across parties, genders, and ethnicities. Our findings are as
follows: (i) tweets from Democrats (vs. Republicans) receive, on av-
erage, a 3.67% higher share of hate replies. (ii) Tweets from women
(vs. men) politicians receive 7.71% higher share of hate replies.
(iii) Tweets from persons of color (vs. whites) receive 37.75% higher
share of hate replies. For each of these comparisons, two-sided
t—tests confirm that the differences in means are statistically sig-
nificant (p < 0.01). In Fig. 2, we visualize the complementary
cumulative distribution functions (CCDFs) for the ratio of hate
speech in replies. We again find that Democrats, women and per-
sons of color receive more hate speech. KS-tests confirm that all
differences in distributions are statistically significant (p < 0.01).
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Figure 2: CCDFs for the ratio of hate speech in replies sepa-

rated by (a) party, (b) gender, and (c) ethnicity.

5.2 Regression Analysis

We estimate a multilevel binomial regression to understand the
effects of party affiliation, gender, and ethnicity on the likelihood
of a tweet receiving hate speech (see model w/o interactions in
Fig. 3). In contrast to summary statistics, this allows us to estimate
effect sizes after controlling for confounding effects. The largest
effect size is estimated for Ethnicity with a coefficient of 0.346
(p < 0.01), which implies that the odds of receiving hate speech for
persons of color are e9-346 ~ 1.41 times the odds for whites. We
further observe pronounced party and gender effects. Compared to
Democrats, the odds for tweets from Republicans to receive hate
speech are 22.02% higher (f = 0.199, p < 0.01). The odds for men
to receive hate speech are 8.33% (8 = —0.087, p < 0.05) lower than
for women. We also find that a more negative sentiment in the
source tweet is associated with more hate speech in replies. A one
standard deviation increase in SourceSentiment is associated with a
25.99% (f = —0.301, p < 0.01) decrease in the odds of receiving hate
speech. We find no statistically significant effects from a politician’s
age, time in office, chambers, and media attachments.

We add interaction terms to test whether users react differently to
gender, ethnicity, and sentiment depending on the party affiliation
(see model w/ interactions in Fig. 3). Here we find a statistically sig-
nificant interaction term between Partyand Ethnicity (f = —0.287,
p < 0.01). This implies that persons of color from the Democratic
party have higher odds for receiving hate speech than persons of
color from the Republican party. Furthermore, the strength of the
association between sentiment in the source tweet and hate speech
varies across parties (f = 0.235, p < 0.01). Specifically, negative
sentiment attracts more hate speech for Democrats. The interaction
between party affiliation and gender is not significant at common
statistical significance thresholds.

Altogether, our analysis implies that three groups of politicians
are particularly likely to receive hate speech in response to their

tweets: (i) persons of color from the Democratic party, (ii) white
Republicans, and (iii) women.
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Figure 3: Coefficient estimates for binomial regression w/o
(coral) and w/ (teal) interaction terms for political party. The
horizontal bars represent 95% confidence intervals. User-
specific random effects are included.

5.3 Robustness Checks

We conducted additional checks to validate the robustness of our
analysis: (1) We repeated our analysis with a dictionary-based ap-
proach for hate speech detection, specifically the Hatebase dic-
tionary [27]. (2) We calculated variance inflation factors for all
independent variables in our regression model and found that all
remain below the critical threshold of four. (3) We repeated our
analysis with alternative estimators (e. g., beta regression), con-
trolled for outliers, tested for quadratic effects, and added multiple
interaction terms for each explanatory variable. In all cases, our
results are robust and consistently support our findings.

6 DISCUSSION

Summary of findings: This work empirically models how the
amount of hate speech in replies to tweets from politicians de-
pends on their personal characteristics (party affiliation, gender,
ethnicity). All else being equal, we find that Tweets are particu-
larly likely to receive hate speech replies if they are authored by (i)
persons of color from the Democratic party, (ii) white Republicans,
and (iii) women. Furthermore, our analysis reveals that more nega-
tive sentiment (in the source tweet) is associated with more hate
speech (in replies). However, the association varies across parties:
negative sentiment attracts more hate speech for Democrats (vs.
Republicans). Altogether, our empirical findings imply statistically
significant differences in how politicians are treated on social media
depending on their party affiliation, gender, and ethnicity.
Implications: Our findings are relevant both for politicians
and from a societal perspective. Politicians should be aware that
social media is a double-edged sword as it comes with the risk of
receiving vast numbers of hate comments. This is concerning as
hate speech can destroy reputations and may even lead to long-run
mental health consequences [56]. Given that hate speech can affect
peoples’ decision to participate in politics [48], this may also impede
diversity in the composition of political institutions. Furthermore,
hate speech goes hand in hand with increased polarization, hyper-
partisanship, and less common ground between opposing political
sides [20], thereby threatening the functioning of democracy itself.
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