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ABSTRACT
Mobile cloud gaming enables high-end games on constrained de-
vices by streaming the game content from powerful servers through
mobile networks. Mobile networks suffer from highly variable band-
width, latency, and losses that affect the gaming experience. This
paper introduces Nebula, an end-to-end cloud gaming framework
to minimize the impact of network conditions on the user experi-
ence. Nebula relies on an end-to-end distortion model adapting the
video source rate and the amount of frame-level redundancy based
on the measured network conditions. As a result, it minimizes the
motion-to-photon (MTP) latency while protecting the frames from
losses. We fully implement Nebula and evaluate its performance
against the state of the art techniques and latest research in real-
time mobile cloud gaming transmission on a physical testbed over
emulated and real wireless networks. Nebula consistently balances
MTP latency (<140ms) and visual quality (>31dB) even in highly
variable environments. A user experiment confirms that Nebula
maximizes the user experience with high perceived video quality,
playability, and low user load.

CCS CONCEPTS
• Networks→ Cross-layer protocols; • Computer systems orga-
nization→ Reliability; Real-time system architecture.
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Figure 1: Nebulaminimizes latency while maximizing mobile cloud
gaming video quality by performing joint source rate and FEC re-
dundancy control over unpredictable mobile wireless networks.

1 INTRODUCTION
Cloud gaming enables high-quality video gaming on lightweight
clients, supported by powerful servers in the cloud [29]. As a highly
interactive multimedia application, cloud gaming requires reliable
and low-latency network communication [7]. Mobile cloud gaming
(MCG) leverages the pervasivity of mobile networks to serve video
game content on constrained mobile devices. Such networks exhibit
unpredictable variations of bandwidth, latency, jitter, and packet
losses, significantly impacting the transmission of game content.

Currently, most commercial cloud gaming platforms target seden-
tary gaming at home. These platforms often prioritize low latency
over video quality through protocols such as WebRTC [5, 9]. Al-
though WebRTC minimizes transmission latency, the resulting low
video quality can have a detrimental effect on the users’ quality of
experience (QoE)1. Hence, improving the visual quality while pre-
serving low latency remains a core challenge. Mobile networks’ in-
herent unpredictability further complicates the transmission of real-
time MCG content. Sudden bandwidth drops reduce the amount of
data that can be transmitted, while packet losses cause distortions in
the decoded video flow. Cloud providers over public WANs present
higher latency variation compared to providers with private net-
work infrastructure [8]. Adaptive bit rate (ABR) and forward error
correction (FEC) have been widely used to minimize the influence
of bandwidth variations and packet loss on video transmission [24].
However, most ABR solutions suffer from inaccurate estimations
of the available bandwidth [3], while FEC comes at the cost of high

1https://www.windowscentral.com/early-tests-call-google-stadias-picture-quality-
question-and-thats-shame
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overhead. Besides, these two schemes have rarely been combined
to optimize network usage and improve the QoE.

In this paper, we introduce Nebula, the first end-to-end frame-
work combining video distortion propagation modelling with adap-
tive frame-level FEC and joint video encoding bitrate and FEC redun-
dancy control for MCG over mobile networks (see Figure 1). Nebula
relies on a mathematical model of video distortion that considers,
for the first time, the propagation of errors among multiple game
frames. As such, contrary to existing solutions that apply FEC to the
entire group of picture (GoP) [28, 30], Nebula applies frame-level
FEC and unequally protects GoP frames prioritized by their proxim-
ity to the GoP’s intra-frame. Nebula thus minimizes the end-to-end
latency while significantly attenuating the effect of packet loss and
the propagation of distortion in the GoP. Nebula also integrates
source rate control to mitigate the effect of bandwidth variation.

We evaluate Nebula against standard TCP Cubic- and WebRTC-
based video streaming solutions, and recent research on video
streaming (Buffer-Occupancy, BO) [18, 19] and mobile cloud gam-
ing (ESCOT) [30]. In both emulated environments and in-the-wild,
Nebula balances motion-to-photon (MTP) latency and visual qual-
ity. TCP Cubic may present a higher visual quality, but the MTP
latency shoots up with variable bandwidth. WebRTC keeps the
MTP latency low at the cost of significant degradation of the visual
quality, especially on networks with high jitter. BO and ESCOT
critically affect video quality and latency, respectively. A user study
performed with 15 participants over a real-life WiFi network con-
firms the benefits of Nebula on the QoE. Nebula results in higher
perceived video quality, playability, and user performance while
minimising the task load compared to all other streaming solutions.

Our contribution is fourfold:
• We propose the first model of end-to-end distortion that ac-
counts for the error propagation over a GoP.
• We introduce Nebula, an end-to-end framework for joint
source/FEC rate control in MCG video streaming.
• We implementNebula and the typical transmission protocols
within a functional cloud gaming system.
• We evaluate Nebula over a physical testbed through exten-
sive experiments and a user study. Nebula balances low-
latency with resilience to distortion, leading to a good QoE.

2 BACKGROUND AND RELATEDWORKS
Although few works target MCG specifically, there is significant
literature on real-time mobile video streaming. This section summa-
rizes the major works on both video streaming and MCG systems.

2.1 Real-time Mobile Video Streaming
FEC leads to high decoding delay when applied to full GoPs [28, 30].
Xiao et al. [32] use randomized expanding Reed-Solomon (RS) code
to recover frames using parity packets of received frames. They
propose an FEC coding scheme to group GoPs as coding blocks,
reducing the delay compared to GoP-based FEC [31]. However, they
do not address burst packet loss. Yu et al. [33] study the effects of
burst loss and long delay on three popular mobile video call appli-
cations. The study highlights the importance of conservative video
rate selection and FEC redundancy schemes for better video qual-
ity. Frossard et al. [11] adapt the source rate and FEC redundancy

according to the network performance. Wu et al. [27] propose flow
rate allocation-based Joint source-channel coding to cope with burst
and sporadic packet loss over heterogeneous wireless networks.
Although these works employ FEC for video transmission, they do
not address the low-latency requirements of MCG.

Congestion and overshooting are key sources of loss and dis-
tortion. WebRTC controls congestion using Google Congestion
Control (GCC) algorithm. GCC adapts the sending bitrate based
on the delay at the receiver and the loss at the sender [4, 20]. As a
result, WebRTC favors real-time transmission to video quality. On
the other hand, TCP Cubic [15] is one the most widely deployed
TCP variants in mobile networks that does not use latency as a
congestion signal. TCP Cubic is sensitive to large buffers in cel-
lular networks leading to bufferbloat [13]. The Buffer-Occupancy
(BO) algorithm [18, 19] selects the video rate based on the playback
buffer occupancy. BO keeps a reservoir of frames with minimum
quality and requests a lower rate upon low buffer occupancy signals.
Such buffer-based technique encounters either low visual quality
or lengthy latency, especially in extremely variable settings [19].

2.2 Mobile Cloud Gaming
A few works target specifically MCG due to its novelty. Provision
of MCG is challenging owing to the high transmission rate and
the limited resources. Chen et al. [6] use collaborative rendering,
progressive meshes, and 3D image warping to cope with provision-
ing issues and improve the visual quality. Guo et al. [14] propose a
model tomeet players’ quality requirements by optimizing the cloud
resource utilization with reasonable complexity. Outatime [21] ren-
ders speculative frames that are delivered one RTT ahead of time,
offsetting up to 120ms of network latency. Wu et al. [26] distribute
the game video data based on estimated path quality and end-to-
end distortion. In another work, they adjust the frame selection
dynamically and protect GoP frames unequally using forward er-
ror correction (FEC) coding [29]. They refine the distortion model
in [30] to support both source and channel distortion. Fu et al. [12]
investigate the source and channel distortion over LTE networks.
All the above works apply GoP-level FEC, allowing them to cancel
out error propagation at the cost of high motion to photon latency.
In this work, we consider for the first time the distortion propaga-
tion across the GoP and adapt the frame-level FEC accordingly. As
such, Nebula improves the quality of interaction and preserves the
video quality beyond conventional (WebRTC and TCP Cubic) and
research (ESCOT, BO) cloud gaming systems performance.

3 MODELLING THE JOINT SOURCE/FEC
RATE PROBLEM

MCG relies on lossy video compression and protocols, leading to
distortion in the decoded video. After justifying the need for joint
source/FEC rate adaption, we refine existing distortion models to
account for error propagation within a GoP, before formulating the
joint source/FEC rate optimization problem.

3.1 Joint Source/FEC Rate Problem
MCG is a highly interactive application that promises high-quality
graphics on mobile devices. As such, a key metric of user experience
is the MTP latency, defined as the delay between a user action and
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its consequences on the display. In mobile networks, ensuring a low
MTP latency with a high visual quality is the primary challenge.

FEC minimizes the impact of packet losses and video distortion.
However, the redundancy introduces significant overhead that in-
creases latency and reduces the available bandwidth. Moreover,
network congestion often leads to burst of losses [30], for which
FEC is often ineffective or even detrimental [34]. Although FEC
minimizes retransmission latency, most current works [28–30] on
FEC for cloud gaming apply FEC on the entire GoP, which either
significantly increase the motion to photon delay (all GoP frames
must be decoded before display), demand higher bandwidth, or de-
creases the visual quality. Besides, any large loss burst can prevent
the recovery of the entire GoP.

We combine source rate with FEC redundancy control to mitigate
congestion and residual packet losses and adapt the encoding bitrate
of the video. Tominimize theMTP latency, we perform FEC at frame
level instead of GoP level and vary the amount of redundancy based
on the position of the frame in the GoP.

3.2 Distortion Propagation Model
End-to-end distortion represents the difference between the original
frame at the sender, and the decoded frame at the receiver, and is
represented by the Mean Square Error (MSE):

𝑀𝑆𝐸 =
1

𝐾𝑀𝑁

𝐾∑︁
𝑘=1

𝑀∑︁
𝑚=1

𝑁∑︁
𝑛=1

(
𝑓𝑘 (𝑚,𝑛) − 𝑓𝑘 (𝑚,𝑛)

)2
(1)

where K is the number of frames with resolution MxN. 𝑓𝑘 (𝑚,𝑛)
is the original pixel value and ˆ𝑓𝑘 (𝑚,𝑛) is the reconstructed pixel
value at location (𝑚,𝑛) of the 𝑘𝑡ℎ frame.

We consider three distortion components:
Encoder distortion 𝐷𝑒 : information lost during encoding. It pro-
vides the definitions for source distortion and transmission distor-
tion as follows. Encoder distortion depends on the encoder rate 𝑅𝑒
and empirical parameters 𝛼 and 𝑅0 so that 𝐷𝑒 = 𝜃1

𝑅𝑒−𝑅0 [26].
Transmission distortion 𝐷𝑐 : caused by packet losses during net-
work transmission. Depending on the compression scheme, a packet
loss may result into partial or complete frame loss. Transmission dis-
tortion is directly related to the packet loss rate Π so that 𝐷𝑐 = 𝜃2Π
where 𝜃2 is an empirical parameter [26].
Decoder distortion 𝐷𝑑 : the additional distortion that propagates
over multiple frames after a network packet loss. Existing works
modelling distortion for FEC encoding applies FEC to the entire GoP
so as not to consider error propagation in modelling video quality.
However, in frame-level FEC encoding, losing any packet corrupts
the corresponding frame, directly impacting the subsequent frames
in the same group of pictures (GoP). The model should thus account
for such distortion propagation.

Let 𝛽 denotes I-frame rate, number of Intra-frames per second.
We define 𝐷𝑑 =

𝜃3Π
𝛽

where 𝜃3 is an empirical parameter. The end-
to-end distortion is the summation of the three components:

𝐷 = 𝐷𝑒 + 𝐷𝑐 + 𝐷𝑑 =
𝜃1

𝑅𝑒 − 𝑅0
+ 𝜃2Π + 𝜃3Π

𝛽
(2)

Consequently, the PSNR of the pipeline is:
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Figure 3: Nebula’s detailed architecture. On the video data line,
the server captures frames, video-encodes them into multiple spa-
tiotemporal resolutions, FEC-encodes the output, and sends them
to the clients. The client FEC-decodes, video-decodes the incoming
stream into frames, and then displays them. On the feedback line,
the client measures the network performance (Client→Monitor),
and sends the network parameters to the server so as to control the
rate and redundancy (Server→Controller).

𝑃𝑆𝑁𝑅 = 20 log10 (𝑀𝐴𝑋𝐼 ) − 10 log10
(

𝜃1
𝑅𝑒 − 𝑅0

+
(
𝜃2 +

𝜃3
𝛽

)
Π

)
(3)

Figure 2 displays the source, transmission, and decoder distor-
tion, and their combined effect on the end-to-end distortion.We also
display the end-to-end distortion as represented in previous mod-
els [30]. With our model, end-to-end distortion decreases at first,
until the decoder distortion takes over. The end-to-end distortion
then increases linearly with the bitrate. By considering for the first
time interframe error propagation, our model raises a significant
source of distortion for higher source rates.

3.3 Joint source/FEC Coding Model
Distortion is a function of the available bandwidth and packet loss
rate. The system objective is to minimize distortion while meeting
the MCG constraints of real-time video transmission, limited and
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variable available bandwidth, and variable packet loss rate. We
represent this objective as an optimization problem.

The available bandwidth between the MGC server and client
𝜇 determines the rate constraint as the upper bound for the final
sending rate (𝑅𝑒 + 𝑅𝑟 ). The goal of the adaption scheme is to find
the optimal solution to minimize the end-to-end video distortion
𝐷 , given the measured network parameters at the client side (i.e.,
RTT, 𝜇, Π and MTP latency𝑀𝑇𝑃 ), video encoding rate 𝑅𝑒 and delay
constraint 𝑇𝑑 . In MCG, interactive response is critical to ensure a
high quality of experience, with the MTP latency as the primary
metric. The MTP latency is defined as the time between a user
action in the game and its effect on the display. It comprises user
input delivery, game execution, frame rendering and capturing,
video encoding, transmission, and decoding, channel encoding,
and playback delay. MTP is disproportional to both sending rate
𝑅 = 𝑅𝑒 + 𝑅𝑟 and available bandwidth 𝜇, and proportional to the
queuing delay 𝑄𝑑 = 𝑅𝑇𝑇 − 𝑅𝑇𝑇𝑚𝑖𝑛 . The joint source and FEC
coding adaptation problem for each frame can be formulated as
follows.

{𝑅𝑒 , 𝑅𝑟 } = 𝑎𝑟𝑔min 𝐷 + 𝜑𝑀𝑇𝑃

𝑆.𝑡 : 𝐷 =
𝜃1

𝑅𝑒 − 𝑅0
+ 𝜃2Π +

𝜃3Π

𝛽

𝑀𝑇𝑃 =
𝛼1
𝜇
+ 𝛼2
𝑅𝑒 + 𝑅𝑟

+ 𝛼3𝑄𝑑 + 𝛼4

Latency Cnst 𝑀𝑇𝑃 ≤ 𝑇𝑑
Throughput Cnst 𝑅𝑒 + 𝑅𝑟 ≤ 𝜇

(4)

where𝜑 is a hyper-parameter,𝑇𝑑 is the upper-bound ofMTP latency
(i.e., 130ms), 𝜃1, 𝑅0, 𝜃2 and 𝜃3 are empirical parameters based on
the encoder’s configuration, and 𝛼1, 𝛼2, 𝛼3, and 𝛼4 are parameters
derived from multivariate regression with goodness of fit 𝑅2 = 95%.
In the regression, we use a collective dataset of 12 experiments over
both wired and wifi networks to fit the linear model. Given the
number of source packets 𝑘 and Π, we derive the total number of
packets (sum of source and redundant packets) 𝑛 as follows:

𝑛 =


Π(𝑡) > 0,

{
𝑚𝑎𝑥 (𝑘 + 1, ⌈𝑘 · (1 + 𝜔 (𝐹 − 𝑓 ) · Π(𝑡))⌉) , cut 𝐷𝑑

𝑚𝑎𝑥 (𝑘 + 1, ⌈(𝑘 · (1 + Π(𝑡)))⌉, Otherwise

Π(𝑡) = 0, 𝑘

(5)
As the I-frame rate 𝛽 decreases, the decoding distortion, and thus
the end-to-end distortion, increases rapidly as shown in Figure 2.
The longer the error propagates, the higher the decoding distortion
at the client side. To overcome the inter-frame error propagation
that causes the decoding distortion, we protect the frames unevenly
based on the frame index 𝑓 within the GoP. The redundant packets
𝑘 · 𝜔 · Π · (𝐹 − 𝑓 ) ensures higher protection as frame gets closer
to the I-Frame (smaller 𝑓 ), where 0 < 𝜔 < 0.4 is an empirical
weight that increases or decreases with the packet loss rate. When
𝜔 · (𝐹 − 𝑓 ) = 1, all frames are protected equally, and there is no
extra protection against error propagation.

3.4 Heuristic Model
Minimizing the encoding distortion 𝐷𝑒 requires maximizing the
encoding bitrate 𝑅𝑒 . We do so heuristically by taking the maximum
feasible source bitrate and the minimum redundancy rate at each
time step 𝑡 as follows:


𝑀𝑎𝑥 (𝑅𝑒 ) =

𝑇∑
𝑡=0

𝑀𝑎𝑥 (𝑅𝑒 (𝑡))

𝑀𝑖𝑛(𝑅𝑟 ) =
𝑇∑
𝑡=0

𝑀𝑖𝑛(𝑅𝑟 (𝑡)),∨𝑡 ∈ 𝑇
(6)

To satisfy the latency and throughput constraints in the opti-
mization problem 4, the sending bitrate (𝑅 = 𝑅𝑒 + 𝑅𝑟 ) decreases
automatically once experiencing a high round trip while not ex-
ceeding the measured throughput 𝜇 at the client. At a time t, the
sending rate 𝑅 is upper-bounded by 𝜇 (𝑡) ∗ (1 − 𝑄𝑑 (𝑡)), where
𝑄𝑑 (𝑡) = 𝑅𝑇𝑇 (𝑡) − 𝑅𝑇𝑇𝑚𝑖𝑛 is the queuing delay, the difference be-
tween recent and min round trip time. Experimentally, satisfying
the latency and throughput constraints prevents overshooting, thus
satisfying the loss constraint implicitly. The formula that deter-
mines the sending bitrate 𝑅 is therefore defined as follows:

𝑅 =


max𝑅𝑒 (𝑡) +min𝑅𝑟 (𝑡) < 𝜇 (𝑡) (1 −𝑄𝑑 (𝑡)),

1 −𝑄𝑑 (𝑡) > 0
min𝑅𝑒 (𝑡) +min𝑅𝑟 (𝑡), 1 −𝑄𝑑 (𝑡) <= 0

(7)

With 𝑡 ∈ 𝑇 is the current time, and 𝑇 is the total streaming
duration. 𝑡 takes discrete values. In our evaluation, we choose a
time interval of 1 second for a 1-minute long video game session.

The system periodically reacts to the loss rate Π, available band-
width 𝜇, and the MTP latency𝑀𝑇𝑃 by adapting 𝑅𝑒 and 𝑅𝑟 , avoiding
overshooting and distortions that result from sporadic packet loss.

4 DISTORTION MINIMIZATION
FRAMEWORK

Figure 3 illustrates our proposed end-to-end framework. This frame-
work aims to provide MCG systems with error resiliency and
achieve optimal video quality by combining source rate control
and FEC coding adaptation. After providing a general description
of the framework architecture, we will focus on how the adaptive
FEC coding and the adaptive source coding models operate.

4.1 Framework Architecture
The framework includes two components, a controller and a pa-
rameter tuner. The parameter tuner receives feedback from the
client at runtime, tunes parameters related to the source and FEC
encoding rate, and passes them to the controller. The controller
combines the video rate controller (to control the video encoder
according to the tuned source coding rate 𝑅𝑒 ) and the redundancy
rate controller (to control the RLNC coder according to the tuned
redundancy rate 𝑅𝑟 and packet size 𝑆). Each captured frame at the
server-side is compressed using the VP8 codec2 and split into pack-
ets encoded for network transmission using RLNC [17]. The RLNC
packets are transmitted using a UDP socket to the client’s mobile

2https://www.webmproject.org/code/

https://www.webmproject.org/code/
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Figure 4: Illustration of VPX and FEC coding. VPX encoder uses
multiple encoders (Enc1-9) for multiple bitrates (resolutions). Per-
formance Tuner determines encoding and redundancy rate. FEC en-
coder applies unequal redundancy for GoP frames (equation 5). FEC
coder start decoding once 𝑙 ≥ 𝑘 packets arrived

device. The client decodes the RLNC packets to recover the frame
data, which is then decoded to recover and display the game frame.

The framework also includes the network performance mon-
itor at the client-side to monitor the bandwidth, the loss rate, the
network round-trip-time, and the total MTP latency. These parame-
ters are sent periodically to the parameter tuner at the server-side.

4.2 Adaptive FEC Coder Model
Our system uses Random Linear Network Coding (RLNC) to protect
the game frames against channel loss. The frame data is divided
into 𝑘 packets of size 𝑆 and linearly combined. The RLNC encoder
generates a redundancy rate 𝑅𝑟 of 𝑟 = 𝑛−𝑘 redundant packets with
an FEC block of size 𝑛 data packets [17]. The decoder recovers the
frame if any random 𝑘 packets in the block are received, as shown in
Figure 4. The parameter tuner extracts the packet loss information
from the client’s report and tunes the redundancy based on the
frame index within the GoP (see Equation 5). The variable FEC
coding of the GoP frames ensures lower error propagation as the
frames leading to higher propagation receive higher protection.

4.3 Adaptive Source Coding Model
The bandwidth often shrinks when congestion occurs, leading to
burst traffic loss [30]. Injecting more FEC-based redundant pack-
ets is ineffective to cope with congestion losses in the presence of
burstiness [34]. As such, we introduce the source rate controller to
control both the frequency of capturing the rendered frames and
video encoding rate 𝑅𝑒 . The parameter tuner extracts the available
bandwidth and𝑀𝑇𝑃 latency from the client’s report adjusts 𝑅𝑒 by
scaling down the game frames. It adapts to the client’s bandwidth
while minimizing both the distortion (see equation 4) and 𝑀𝑇𝑃
latency and relieving the congestion. Figure 4 illustrates the opera-
tion of the source rate control and redundancy control. By encoding
videos several resolutions, the video encoder can dynamically adapt
the bitrate of the video to the channel conditions. The video is en-
coded into nine resolutions: HD (1080p, 720p), High (480p, 540p),
Med (360p, 376p), and Low (270p, 288p and 144p), corresponding to
bitrates of (6.5 Mb/s, 4.5 Mb/s), (3 Mb/s, 2 Mb/s), (1.8 Mb/s, 1.2 Mb/s),

and (1 Mb/s, 0.6 Mb/s and 0.2 Mb/s), respectively. The source rate
controller selects the closest bitrate to the measured throughput 𝜇.
The resulting video dynamically changes resolution with minimal
distortion as few packets are lost due to the bandwidth variations.

5 IMPLEMENTATION
We implement the distortion minimization framework into a func-
tional prototype system. The framework leaves multiple aspects at
the discretion of the developer, that we discuss in this section.

5.1 Video and Network codecs
The framework is designed to be video and FEC codec-agnostic.
However, we chose to focus on VP8 for video encoding/decoding
and RLNC for FEC in our implementation.
Video codec: We use VP8 [2], an open-source codec developed
by Google. Like H.264, VP8 compresses the game’s frames spa-
tially (intra-frame coding) and temporally (inter-frame coding). VP8
presents it presents similar performance as H.264 (encoding time,
video quality) while being open-source. VP8 also combines high
compression efficiency and low decoding complexity [1]. We rely
on libvpx, the reference software implementation of VP8 developed
by Google and the Alliance for Open Media (AOMedia) 3.
FEC codec: We use Random Linear Network Coding (RLNC) 4 for
channel coding. RLNC relies on simple linear algebraic operations
with random generation of the linear coefficients. As such, RLNC
is operable without a complex structure. RLNC can generate coded
data units from any two or more coded or uncoded data units locally
and on the fly [10]. The RLNC decoder can reconstruct the source
data packets upon receiving at least 𝑙 linearly independent packets
(see Figure 4). To use RLNC encoding and decoding functionalities,
we use Kodo [23], a c++ library for network/channel coding.

5.2 Client
Network Performance Monitor (NPM): This component mea-
sures the experienced packet loss rate Π, bandwidth 𝜇, round trip
time 𝑅𝑇𝑇 , and MTP latency (𝑀𝑇𝑃 ). The link throughput 𝜇 is com-
puted every Δ𝑡 as the net summation of the received frames’ size
over the net summation of frames’ receiving time as follows:

𝜇 =

∑𝐹𝑠
𝑓 =1

(∑𝑘
𝑝=2 𝑆 (𝑝)

)
∑𝐹𝑠
𝑓 =1 𝑡 (𝑓 )

(9)

where 𝐹𝑠 is the number of frames received in the current second, 𝑓
is the current frame of 𝑘 packets, 𝑆 (𝑓 ) is the size of received frame,
and 𝑡 (𝑓 ) is the elapsed time to receive it. We start the frame’s
timer upon the reception of the frame’s first packet, and disregard
the size of this packet in 𝑆 (𝑓 ). Π is the ratio of the number of
missed packets to 𝑘 , the number of missing sequence numbers in
the received packets until the successful recovery of the frame.𝑀𝑇𝑃
is computed as the difference between the time of user input and
the time for the corresponding frame to be displayed on the client
screen. The NPM smoothes these values by applying a moving
average over the latest five measurements.

3https://www.webmproject.org/code/
4http://docs.steinwurf.com/nc_intro.html

http://docs.steinwurf.com/nc_intro.html
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5.3 Server
The servermeasures the𝑅𝑇𝑇 through periodicpacket probing [22],
at regular intervals Δ𝑡 .
Parameter Tuner tunes the source rate 𝑅𝑒 and the redundancy
rate 𝑅𝑟 according to the packet loss rate Π, and network throughput
𝜇 received from the clients, and 𝑅𝑇𝑇 . It adjusts the number of
redundant packets 𝑟 = 𝑛 − 𝑘 according to the number of source
packets 𝑘 and Π based on equation 5. It also determines the suitable
spatial resolution of the game frames and frame capturing frequency
to maximize quality with a source rate 𝑅𝑒 lower than 𝜇.
Redundancy Controller reads 𝑅𝑟 from the Parameter Tuner and
updates the redundant packets for the encoded video frame. Like-
wise, the Rate Controller reads 𝑅𝑒 to update the frame resolution.

5.4 Prototype System Implementation
We implement our system as a python program with C and C++
bindings. We adopt a multi-process approach to improve perfor-
mance and prevent a delayed operation to interrupt the entire
pipeline. We separate the pipeline into 3 processes (frame capture,
VP8 encoding, and RLNC encoding and frame transmission) at the
server and 3 processes (frame reception and RLNC decoding, VP8
decoding, display) at the client. These processes intercommunicate
using managed queues, where Queue and Process are classes in
multiprocessing5 module. We develop a protocol on top of UDP
to carry server-to-client video data and client-to-server information.
Referring to figure 3, the first server process captures the frames us-
ing the mss library. The video encoding process VP8-encodes them
using a custom-written wrapper to the libvpx6. Libvpx does not
currently provide a GPU implementation, thus, encoding/decoding
is performed on machines’ CPU. We use the python bindings of the
Kodo7 library to handle the RLNC operations. The server transmits
packets carrying the encoded data to the client using FEC Forward
Recovery Realtime Transport Protocol (FRTP) packets. The client
recovers the encoded frame using the Kodo RLNC decoder. The
VP8 video frames are decoded by the libvpx and displayed. The
client reports the experienced network conditions periodically us-
ing the Network Performance/Parameters Report (NPR) packets.
The client also listens to the user’s input and sends the event in-
formation to the server. The server returns the event sequence
number in the FRTP packet carrying the corresponding encoded
frame, allowing the client to measure MTP latency. The server also
probes the round-trip time periodically using RTTP packets (see
Supplementary Materials - Figure 10).

5.5 Feasibility as a Web Service
Many implementation choices in this section are consistent with the
current practice in WebRTC. Although most current web browsers
provide VP8 encoding and decoding, they do not expose these
functions to web applications. Instead, they provide an interface to
the main functions of the libwebrtc. Similarly, we implement the
core functions of Nebula as a C++ library to easily interface with
web browsers with minimal logic in Python.Nebula is implemented
primarily under an asynchronous fashion, exposing callbacks to

5https://docs.python.org/3/library/multiprocessing.html
6https://github.com/webmproject/libvpx
7https://www.steinwurf.com/products/kodo.html

Figure 5: Experimental Testbed. It emulates amobile network’s link
bandwidth, delay and packet loss using tc, netem and HTB. A refer-
ence link transmits original frame to compute the distortion 𝐷 .

applications that may use it. It can thus easily be implemented in
current web browsers, and its API endpoints can be called through
JavaScript with minimal modifications.

6 EVALUATION
In this section, we evaluate Nebula through both system and user
experiments. We first evaluate the system in terms of objective
latency (MTP) and visual quality (PSNR) measures, before inviting
users to rate their experience based on subjective metrics. All experi-
ments are performed over a controlled testbed, with both controlled
and uncontrolled network conditions to ensure reproducibility.

6.1 Evaluation Setup
We characterize Nebula over the physical testbed represented in
Figure 5. This testbed is composed of two computers: PC1 as a
server (Ubuntu 18.04 LTS, Intel i7-5820K CPU @ 3.30GHz) and PC2
as a client (Ubuntu 18.04 LTS, Intel(R) Core(TM) i5-4590 CPU @
3.30GHz). Using a computer as a client simplifies the implementa-
tion of the prototype system and the system measures. The two
computers are connected first through an Ethernet link to and en-
sure control and reproducibility. On PC1, we emulate a wireless
link with bandwidth 𝜇, latency 𝑑 , and packet loss rate Π using tc8,
NetEm9, and Hierarchy Token Bucket (HTB)10. We then connect
the computers through the eduroam WiFi to perform in-the-wild
experiments. On both machines, we set up the kernel HZ parameter
to 1,000 to avoid burstiness in the emulated link up to 12Mb/s.

On this testbed, we compare Nebula to the following baselines
(see Table 1 in 8): TCP Cubic, WebRTC, Buffer Occupancy (BO) [18,
19], and ESCOT [30]. These baselines are standard in network trans-
mission (TCP Cubic), in video streaming (WebRTC), or correspond
to the latest related research works (BO, ESCOT). We implement
all baselines in the pipeline described in Section 6.2 as follows. TCP
Cubic is provided by the Linux Kernel. We integrate WebRTC using
AioRTC11, that we modify to support customized source streams at
the server and remote stream track of WebRTC at the client (see
Supplementary Materials - Figure 12). We implement BO as a queue-
based playback buffer in the pipeline. Finally, we modify Nebula
to perform FEC at GoP level to implement ESCOT. We implement
a user-event listener to send user’s input to the server. The server
executes the game logic and renders the frames upon event arrival.

8https://man7.org/linux/man-pages/man8/tc.8.html
9https://man7.org/linux/man-pages/man8/tc-netem.8.html
10https://linux.die.net/man/8/tc-htb
11https://github.com/aiortc/aiortc

https://docs.python.org/3/library/multiprocessing.html
https://github.com/webmproject/libvpx
https://www.steinwurf.com/products/kodo.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://linux.die.net/man/8/tc-htb
https://github.com/aiortc/aiortc
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Figure 6: Latency Decomposition of the MCG Pipeline (without the
additional network latency).

The architecture of the WebRTC implementation requires us to
measure the visual quality in real-time. As such, we use the PSNR
as it is the least computationally-intensive measure. We monitor
the network conditions and all performance metrics under the same
method for all experiments to ensure results consistency.

6.2 Pipeline Characterization
We first evaluate the prototype system’s pipeline presented in Sec-
tion 5.4. We set up the testbed with a fixed bandwidth of 20Mb/s,
latency of 50ms, and PLR of 1%. These network conditions corre-
spond to a typical client-to-cloud link [35], and the minimal require-
ments of Google Stadia. Over this testbed, we generate, encode,
transmit, decode, and display a 1920×1080 video, encoded at a bi-
trate of 6.5Mb/s and a frame rate of 30 FPS, with GoPs of size 10.

Figure 6 presents the latency decomposition of the pipeline with-
out the network latency. Introducing RLNC adds a marginal delay
before (0.8ms), and after (1.1ms) the transmission. Video encoding
and decoding take the most time, 20.8 and 9.1ms respectively as the
libvpx operates solely on CPU. By leveraging hardware-level video
encoding and decoding as it would be the case onmobile devices, we
expect to reduce these values to 5-10ms12, and achieve a pipeline
latency below 30ms. Nebula thus does not introduce significant
latency compared to typical cloud gaming systems, while bringing
loss recovery capabilities in a lossy transmission environment.

6.3 Emulated Network
To showcase the loss recovery and rate adaptation properties of the
considered solutions, we emulate a wireless network with varying
bandwidth over our physical testbed. On this link, we set up a
bandwidth ranging between 2Mb/s and 10Mb/s, changing every
5 s. Such values allow us to stress the transmission solutions over
variable network conditions. To ensure the reproducibility of the
experiments, we generate a sequence of bandwidth allocation over
time represented by the gray filled shape in Figure8 and average the
results over five runs for each solution. The link round-trip delay
and loss probability remain constant over time, standing at 20ms
and 1% with probability of successive losses of 25%, respectively.
Over this link, we transmit 60 seconds of a gameplay video, recorded
at a resolution of 1080p, and encoded in VP8 in various resolutions
by the transmission scheme.

Figure 7.a represents the MTP latency, network RTT, and aver-
age PSNR for all solutions. Only BO satisfies the requirement of
MTP latency below 130ms in such constrained environment, while

12https://developer.nvidia.com/nvidia-video-codec-sdk

Nebula and WebRTC remain close (138.6ms and 144.8ms respec-
tively). TCP Cubic collapses under the abrupt bandwidth changes
and presents the highest motion-to-photon latency (807.6ms), with
a high variance caused by the loss retransmission. Many frames do
not reach on-time (330ms with our pipeline) and are thus dropped
by the pipeline. ESCOT also shows high MTP latency (489.8ms)
due to its GoP-level FEC encoding. As a result, ESCOT requires to
receive the entire GoP before decoding, resulting in 330ms added
latency at 30 FPS with a GoP of 10. In terms of PSNR, BO can main-
tain such a low latency by significantly decreasing the video quality.
TCP Cubic presents the highest PSNR as it does not integrate a
mechanism to vary the video encoding quality. Only Nebula and
WebRTC balance latency and video quality, withNebula presenting
slightly higher PSNR and lower MTP latency.

To better understand this phenomenon, we record the received
rate at the client’s physical interface and present the throughput of
each solution in Figure 8. BO strives to eliminate video playback
stalls by keeping a reservoir of frames with minimum rate. It thus
dramatically underestimates the available bandwidth, between 191
and 542 Kb/s. WebRTC consistently sends data at a rate much lower
than the available bandwidth, while TCP Cubic tends to overshoot
due to aggressive congestion window increase. Although Nebula
and ESCOT rely on the same bandwidth estimation mechanism,
ESCOT unsurprisingly tends to slightly overshoot by transmitting
the entire GoP at once. By optimizing bandwidth usage, Nebula
maximizes the video quality while minimising latency and losses.

6.4 Wireless Network
Following the evaluation on emulated links, we proceed to an ex-
periment on a real-life uncontrolled WiFi network. We perform the
experiment on eduroam, a network commonly used by all students
of the university. To ensure the statistical significance of the results,
we transmit the video from the previous experiment five times per
solution and average the results. We first characterize the network
by first sending a continuous flow using iPerf over 10 minutes. The
network features an average bandwidth of 8.1Mb/s (std=5.1Mb/s)
and latency of 22.7ms (std=38.8ms). These average values are fairly
similar to our emulated network. However, the variability of the
available bandwidth is lower while the latency jitter skyrockets,
with up to 70ms difference between measurement points.

Figure 7.7b represents the MTP latency, network RTT, and av-
erage PSNR for all solutions. With the more stable bandwidth, all
solutions except ESCOT achieve a MTP latency below 130ms. Sim-
ilar to the previous experiment, BO achieves minimal MTP latency,
at the cost of a PSNR half of the other solutions. WebRTC collapses
under the high variability of the latency, resulting in a low PSNR.
ESCOT still presents high MTP latency by transmitting frames by
GoP-sized batches. Finally, Nebula and TCP Cubic perform simi-
larly, with low MTP latency and high PSNR.

From the emulated network and uncontrolled WiFi experiments,
only Nebula performs on average the best, balancing latency and
visual quality consistently. Although TCP’s behavior with vary-
ing bandwidth and the moderate loss rate is known and expected,
we were surprised to notice the collapse of the visual quality of
WebRTC in environments with high latency jitter, as is the case

https://developer.nvidia.com/nvidia-video-codec-sdk
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Figure 7:MTP latency, networkRTT, andPSNRon emulated network (a) and eduroamWiFi network (b). On the emulated network (a),WebRTC
and Nebula balance low MTP latency and high visual quality. BO achieves lower MTP latency with considerable visual quality degradation,
while TCPCubic and ESCOT suffer frommassiveMTP latency. On the eduroamWiFi (b), all solutions achieve aMTP latency lower than 130ms
except ESCOT. WebRTC’s visual quality collapses due to the high jitter, while TCP Cubic remains stable thanks to the higher bandwidth. In
both scenarios, Nebula presents the second best visual quality and the second lowest MTP latency.
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Figure 9: Users’ perception of the gaming experience under tradi-
tional cloud gaming measures (left) and task load (right). Nebula
presents the highest visual quality and playability and the lowest
mental demand and frustration of all solutions. Score and perceived
success are also the highest with Nebula. WebRTC collapses under
the high jitter of the WiFi network, resulting in low playability.

in most public wireless and mobile networks. Overall, ESCOT per-
forms poorly due to the GoP size used in the experiments. However,
a lower GoP would lead to larger videos for similar quality, and we
expect the PSNR to drop with the MTP latency. Finally, BO often
underestimates the bandwidth and consistently chooses the lowest
quality video flow, leading to a dramatically low PSNR.

6.5 User Study
Participants and Apparatus: We perform a user study with 15
participants, aged 20 to 40. The participants are recruited on campus
and are primarily students and staff. Most participants play video

games at least a few times a month and have some familiarity
with First Person Shooter games. The participants play the game
openarena in a cloud gaming setting using the prototype system
described in Section 5 and the transmission techniques defined in
Section 6.1 over the eduroam WiFi network.
Protocol: Each participant starts with 5 minutes of free play of the
game openarena executed on-device. This phase allows the partic-
ipants to get familiar with the game and establish a reference of
playability and visual quality. During this phase, an operator guides
the participants and answers their questions. The participants then
play the game for two minutes for each streaming method. The
order in which the participants experience each streaming solution
follows the balanced latin square design [25] to avoid learning and
order effect. After each run, the participants fill a short question-
naire on the perceived visual quality and playability on a 5-point
Likert scale (1 - bad, 2 - poor, 3 - fair, 4 - good, 5 - excellent), and a
simplified version of the NASA TLX [16] survey considering the
perceived mental demand, frustration, and success on a [0-20] scale.
We do not disclose the streaming methods used in order not to
affect the participants’ ratings.
Results: Figure 9 presents the results of the user study, with the
95% confidence intervals as error bars.Nebula results in the highest
visual quality and playability, as well as the lowest mental demand
and frustration. Nebula also leads to the highest objective (score)
and subjective (success) performance indicators. TCP also performs
well. However, the inability to reduce the video quality in case of
congestion causes transient episodes of high latency that leads the
server to drop the frames, resulting in lower visual quality and
playability. Similar to Section 6.4, BO leads to low latency, explain-
ing the high playability score. However, the video quality drops
so low that players have trouble distinguishing what happens on
screen, resulting in high mental demand and frustration. WebRTC
collapses due to the high jitter, leading to an almost-unplayable ex-
perience. Finally, the high latency of GoP-level encoding proves to
be highly incompatible with a fast-paced game such as openarena.
Overall, Nebula maintains latency consistently low while adapting
the visual quality to the best achievable quality given the network
conditions, leading to the highest user satisfaction.
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7 CONCLUSION
This paper introducedNebula, an end-to-end framework combining
per-frame adaptive FEC with source rate control to provide MCG
with low-latency yet error-resilient video streaming capabilities.
By combining adaptive FEC and source rate adaptation, Nebula
minimizes the distortion propagation while maximizing the band-
width usage, leading to a high end-to-end PSNR without sacrificing
latency. Our system evaluation shows that Nebula balances low
latency and high PSNR under all scenarios, even in highly variable
conditions where other solutions (TCPCubic andWebRTC) collapse.
Under high latency jitter, it significantly outperforms WebRTC, the
current industry standard for video transmission in cloud gaming.
Our user study over a real-life public WiFi network confirms these
findings, with Nebula consistently presenting higher visual quality,
playability, and user performance while requiring a lower workload
than the other solutions.

We aim to focus on multiplayer streaming in our future work,
where several devices share a given scene. By generating the video
in multiple resolutions, our system allows distributing content to
clients connected through variable network conditions. We will
also continue the study ofNebula over mobile networks to evaluate
the effect of mobility on the frame transmission of video games and
the resulting user experience.
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8 SUPPLEMENTARY MATERIALS
8.1 System Protocol Packets

Media Stream

Network Parameters

RTT Probing

FRTP packet

[frame, event no]
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packet

User Input

Event packet

[input, event no]

Figure 10: Illustration of media delivery and RTT probing on
the forward channel and feedback reporting and user input on
the reverse channel.

In this section, we illustrate Nebula’s transmission protocol
packets as an integral component in the prototype system
implementation (see Section 5.4). Figure 10 illustrates the
packet type used to deliver the game frames (i.e., FRTP packet),
the one used to collect reports about the network conditions
(i.e., NPR), the packet type used to probe the presence of
congestion (i.e., RTTP packet), and the one used to send the
user input to the server (i.e., Event packet). The server sends
packets carrying the encoded game frame’s data to the client
using FEC Forward Recovery Realtime Transport Protocol
(FRTP) packets. FRTP packets contains the event’s sequence
number if the frame is rendered in response to a user’s event.
The client reports the experienced network conditions and
MTP periodically using the Network Performance/Parameters
Report (NPR) packets. It also sends user input as event
identifier and number using Event packets. Moreover, the
server probes the round trip time periodically using RTT
Probing (RTTP) packets. Eventually, the client can compute
MTP latency by subtracting the timestamp of sent event from
the timestamp of a received frame having a corresponding
event sequence number.

8.2 Heuristic Algorithm Detail
Nebula ’s rate and FEC adaptation is based on discrete optimization
which follows the heuristic model (see section 3.4). Algorithm 1
presents the pseudo-code of the heuristic approach. It takes as in-
put: the ascending ordered list 𝑙𝑖𝑠𝑡𝑅𝑒 , the previous encoding rate
𝑙𝑎𝑠𝑡𝑅𝑒 , the size of GoP frame 𝑆𝑓𝐺𝑜𝑃

, and the recent𝑀𝑇𝑃 as well as
constants, namely GoP length 𝐹 and end-to-end delay upper-bound
𝑇𝑑 . It returns the redundancy rate 𝑅𝑟 and the video encoding rate
𝑅𝑒 . After determining the number of packets 𝑘 and computing the
number redundant packets 𝑟 , it computed the redundancy rate 𝑅𝑟 .
Afterwards, it determines the video encoding rate 𝑅𝑒 heuristically
(lines 8-10) based on network throughput 𝜇 and queuing delay 𝑄𝑑
and according to equation 7. Finally, it refines the video encod-
ing rate based on the experienced motion-to-photon latency𝑀𝑇𝑃
which ensures not to exceed the latency constraint (i.e.,𝑇𝑑 = 130𝑚𝑠)
. 𝑙𝑒𝑣𝑒𝑙 in lines 16 or 19 determines the resultant quality level (reso-
lution) and thus the suitable video encoding rate from the list 𝑙𝑖𝑠𝑡𝑅𝑒 .
Given the heuristic algorithm, Figure 11 illustrates how adaptive

Algorithm 1 Pseudo-code of heuristic algorithm
1: Input: 𝜇, 𝛽,𝑄𝑑 , Π, S, 𝑙𝑎𝑠𝑡𝑅𝑒 , 𝑙𝑖𝑠𝑡𝑅𝑒 , 𝑆𝑓𝐺𝑜𝑃

, MTP, F, 𝑇𝑑
2: Output: 𝑅𝑟 , 𝑅𝑒
3: 𝑘 ← 𝑆𝑓𝐺𝑜𝑃

𝑆
4: Compute 𝑛 using equation 5
5: 𝑟 ← 𝑛 − 𝑘
6: 𝑅𝑟 ← 𝑟 .𝑆 .𝐹 .𝛽 × 8

1024×1024
7: if 1 - 𝑄𝑑 > 0 then
8: for Each 𝑙𝑒𝑣𝑒𝑙𝑅𝑒 do
9: if 𝑙𝑖𝑠𝑡𝑅𝑒 [𝑙𝑒𝑣𝑒𝑙𝑅𝑒 ] + 𝑅𝑟 ≥ 𝜇 (1 −𝑄𝑑 ) then
10: 𝑙𝑒𝑣𝑒𝑙 ← 𝑙𝑒𝑣𝑒𝑙𝑅𝑒 - 1
11: break
12: end if
13: end for
14: end if
15: if 𝑙𝑖𝑠𝑡𝑅𝑒 [𝑙𝑒𝑣𝑒𝑙] ≥ 𝑙𝑎𝑠𝑡𝑅𝑒 & MTP > 𝑇𝑑 then
16: 𝑙𝑒𝑣𝑒𝑙 ← 𝑙𝑒𝑣𝑒𝑙 - 1
17: end if
18: if 1 - 𝑄𝑑 ≤ 0 | 𝑙𝑒𝑣𝑒𝑙 < 0 then
19: 𝑙𝑒𝑣𝑒𝑙 ← 0
20: end if
21: 𝑅𝑒 = 𝑙𝑖𝑠𝑡𝑅𝑒 [𝑙𝑒𝑣𝑒𝑙]
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Figure 11: Illustration of redundancy and sending rate given a
streaming of 1-minute gameplay video over emulated network (see
Section 6.3). (a) FEC redundant information percentage (solid line)
vs packet loss rate 𝑃𝐿𝑅 (Π) (dashed line) for frames over 40 packets,
and (b) sending rate vs network throughput.

Table 1: Baselines considered in the system evaluation

Protocol Loss Recovery Rate Control

TCP Cubic NACK Congestion Window

WebRTC Hybrid NACK/FEC GCC

BO [18, 19] N/A Buffer Occupancy

ESCOT [30] GoP-level FEC Throughput-latency based
Nebula Frame-level FEC

are the redundancy and the total sending rate 𝑅 as response to
packet loss rate and throughput changes. By considering all the
frames, however, the redundancy rate show in Figure 11a increases
reaching 9% on average, as described in Section 8.4.

8.3 Baselines
Table 1 illustrated the baselineswhich are: the network transmission
standard (TCP Cubic), the video streaming standard (WebRTC),
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Buffer Occupancy (BO)-based video streaming [18, 19], and GoP-
based MCG (ESCOT) [30]. We integrate both BO and WebRTC
to operate as streaming platform for mobile cloud gaming (see
Figure 12). In both, we integrate the captured frames as source
stream at the server, and a remote stream track at the client. We
enable RTT probing in WebRTC using its data channel and we
implement a queue-based playback buffer in BO based on which
the Rate Selection component in the client requests the next rate
from the server. Such integration of the baselines allows us not only
to measure both visual quality and MTP on frame basis but also
create reproducible experiments and findings.

8.4 Overhead
Overall, FEC-based approach tends to have a higher reliability over-
head compared to ACK-based techniques that requires overhead
equals to the packet loss rate. Figure 13 illustrates the reliability
overhead ofNebula and the baselines’s streaming over the emulated
network described in Section 6.3.

Nebula’s satisfactory visual quality is obtained at the expense of
redundancy overhead. Nebula presents a redundancy rate of 9% on
average, due to the per-frame encoding and the minimum redun-
dancy. Each frame require a minimum of 1 redundant packet, and
P-frames tend to be small (a couple of packets). Besides, unequally
protecting the GoP frames leads to extra redundancy. As such, the
overall overhead becomes relatively high, compared to GoP-level
FEC coding. However, such overhead is compensated by the better
throughput utilisation, minimizing its impact on the transmission.
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Figure 12: WebRTC’s and BO’s experimental frameworks.

Nebula TCP/Cubic ESCOT BO WebRTC0.0

2.5

5.0

7.5

10.0

12.5

Ov
er

he
ad

 % 9.0

1.8
3.4

0.0

3.0

Figure 13: Redundant packet as reliability overhead for each so-
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