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ABSTRACT

We present ALFRED: a virtual memory abstraction that resolves
the dichotomy between volatile and non-volatile memory in in-
termittent computing. Mixed-volatile microcontrollers allow pro-
grammers to allocate part of the application state onto non-volatile
memory. Programmers are therefore to manually explore the trade-
off between simpler management of persistent state against energy
overhead and possibility of intermittence anomalies due to non-
volatile memory operations. This approach is laborious and yields
sub-optimal performance. We take a different stand with ALFRED:
we provide programmers with a virtual memory abstraction de-
tached from the specific volatile nature of memory and automat-
ically determine an efficient mapping from virtual to volatile or
non-volatile memory. Unlike existing works, ALFRED does not re-
quire programmers to learn a new language syntax and themapping
is entirely resolved at compile-time, reducing the run-time energy
overhead.We implement ALFRED through a series of machine-level
code transformations. Compared to existing systems, we demon-
strate that ALFRED reduces energy consumption by up to two orders
of magnitude given a fixed workload. This enables workloads to
finish sooner, as the use of available energy shifts from ensuring
forward progress to useful application processing.

CCS CONCEPTS

• Computer systems organization→ Embedded software.

KEYWORDS

Intermittent computing, virtual memory abstraction.

ACM Reference Format:

Andrea Maioli and Luca Mottola. 2021. ALFRED: Virtual Memory for Inter-
mittent Computing. In The 19th ACM Conference on Embedded Networked

Sensor Systems (SenSys’21), November 15–17, 2021, Coimbra, Portugal. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3485730.3485949

1 INTRODUCTION

Ambient energy harvesting [10] enables deployments of battery-
less sensing devices [1, 20, 23, 27, 48, 50], reducing environment
impact and maintenance costs. However, harvested energy is erratic
and may not suffice to power devices continuously. Frequent power
failures occur that cause executions to become intermittent, with
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periods of active operation interleaved by periods where a device is
off recharging energy buffers. Power failures cause devices to lose
the program state, restarting all over again when energy is newly
available. Forward progress of programs is therefore compromised.
Problem. Several systems exist to ensure forward progress, as we
discuss in Sec. 2. Common to these solutions is the insertion of
state-saving operations within the execution flow. These opera-
tions offer the opportunity to create a replica of the program state,
including main memory, register files, and program counter, onto
non-volatile memory. The program state is eventually restored
from non-volatile memory when energy returns, ensuring forward
progress across power failures. The placement of state-saving oper-
ations in the program may be either decided in a (semi-)automatic
fashion [7, 8, 11, 29, 36, 46, 49] or driven by programmers with
custom programming abstractions [16, 34, 35, 44, 47, 52].

Mixed-volatile microcontrollers also exist, which offer the abil-
ity to store slices of the program state directly onto non-volatile
memory. This is achieved using specific pragma statements [28], as

#pragma PERSISTENT(x)
unsigned int x = 5;

Program state allocated on non-volatile memory is automatically
retained across power failures and may be excluded from state-
saving operations, simplifying the management of persistent state.

Using mixed-volatile microcontrollers comes at the cost of in-
creased energy consumption: non-volatile memory operations may
require up to 247% the energy of their volatile counterpart [28, 40].
Storing only parts of the program state on non-volatile memorymay
also yield intermittence anomalies [43, 45], due to re-executions
of non-idempotent code, which require further energy to be cor-
rected. Using mixed-volatile platforms, quantifying the advantages
in simpler management of persistent state against the correspond-
ing energy overhead is complex, as these depend onmultiple factors
including energy patterns and execution flow.
ALFRED.We take a different stand. Rather than requiring program-
mers to manually determine when to use non-volatile memory for
what slice of the program state, we promote a higher-level of ab-
straction through a concept of virtual memory. Programmers write
intermittent code without explicitly mapping variables to volatile or
non-volatile memory. Given a placement of state-saving operations
in the code, we automatically decide what slice of the program state
must be allocated onto non-volatile memory, and at what point in
the execution. Programmers are therefore relieved from deciding
the mapping between program state and memory. Moreover, the
mapping is not fixed at variable level, but is automatically adjusted

at different places in the code for the same data item, based on
read/write patterns and program structure.
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ALFRED1 is our implementation of virtual memory for intermit-
tent computing, based on two key features:

(1) it is transparent to programmers: no dedicated syntax is to
be learned, and programmers write code in the familiar se-
quential manner without the need to tag variables.

(2) the mapping from virtual to volatile or non-volatile mem-
ory is entirely resolved at compile-time, reducing the energy
overhead that represents the cost of using the abstraction.

The virtual memory abstraction we conceive does not provide
virtualization in the same sense as mainstream OSes. Instead, it
offers an abstraction that shields programmers from the need to stat-
ically determine a specific memory allocation schema. ALFRED is
therefore sharply different compared tomainstream virtual memory
systems [5, 19]. These usually provide an idealized abstraction of
storage resources, so that software processes operate as if they had
access to a contiguous memory area, possibly even larger than the
one physically available. Address translation hardware maps virtual
addresses to physical addresses at run-time. In ALFRED, we target
resource-constrained energy-harvesting devices that compute in-
termittently [23]. The abstraction we offer provides programmers
with a higher-level view on the persistency properties of different
memory areas, and automatically determines the mapping from
the virtual memory to the volatile or non-volatile one. Because of
resource constraints, we determine this mapping at compile-time.

ALFRED determines this mapping using three key program trans-
formation techniques, illustrated in Sec. 3. Their ultimate goal is
simple, yet challenging to achieve, especially at compile-time:

Use the energy-efficient volatile memory as much as possible,

while enabling forward progress using non-volatile memory

with reduced energy consumption compared to existing solutions.

This entails that we need to promote the use of volatile memory
whenever convenient, for example, to compute intermediate results
or to store temporary data that need not survive a power failure,
while allocating the data that does require to be persistent onto
non-volatile memory in anticipation of a possible power failure.
By doing so, we decrease energy consumption by taking the best
of both worlds: we benefit from the lower energy consumption
of volatile memory whenever possible, and rely on the persistency
features of non-volatile memory whenever required.

Applying program transformations at compile-time is, however,
challenging because of the lack of run-time information. Sec. 4 il-
lustrates how we address the uncertainty that arises, using a set of
dedicated program normalization passes. The result of the trans-
formations require a specific memory layout to operate correctly
and a solution to the possible intermittence anomalies. We describe
in Sec. 5 how we deal with these issues, using an approach that is
co-designed with our program transformation techniques.

We build an implementation of ALFRED based on ScEpTIC [38,
43], an extensible open-source emulation environment for inter-
mittent programs. Given fixed workloads and staple benchmarks
in the field [7, 8, 26, 29, 43, 46, 49], we measure ALFRED perfor-
mance in energy consumption, number of clock cycles, memory
accesses, and restore operations. We compare ALFRED with multi-
ple baselines obtained by abstracting the key design dimensions of

1
Automatic aLlocation oF non-volatile memoRy for transiEntly-powered Devices.

existing systems in a framework that allows us to instantiate base-
lines matching existing systems, while also exploring alternative
configurations. Depending on the benchmark, ALFRED can provide
several-fold improvements in energy consumption, which allow the
system to shift the energy budget to useful application process-
ing. This correspondingly allows the system to achieve comparable
improvements in the time to complete the workloads.

2 RELATEDWORK

Ensuring forward progress is arguably the focus of most existing
works in intermittent computing [23]. Common to these is the use
of some form of persistent state on non-volatile memory.

A significant fraction of existing solutions employ a form check-
pointing to cross power failures [3, 7, 11, 36, 46]. This consists
in replicating the content of main memory, special registers, and
program counter onto non-volatile memory at specific points in
the code. Whenever the device resumes with new energy, state is
retrieved back from non-volatile memory and computations restart.
Systems such as Hibernus [7, 8] operate in a reactive manner: an
interrupt is fired from a hardware device that prompts the applica-
tion to take a checkpoint, for example, whenever the energy buffer
falls below a threshold. Differently, systems exist that place explicit
function calls to perform checkpoints [11, 36, 46, 49]. The specific
placement is a function of program structure and energy patterns.

Other approaches offer abstractions that programmers use to
define and manage persistent state [16, 34, 35, 52] and time pro-
files [24]. For example, DINO [34] allows programmers to split the
sequential execution in individual tasks and ensures transactional
semantics between consecutive task boundaries. Alpaca [35] goes
a step further and provides dedicated abstractions to defines tasks
as individual execution units that run with transactional semantics
against power failures and subsequent reboots.

Using mixed-volatile platforms, intermittence anomalies poten-
tially occur due to repeated executions of non-idempotent code [43,
45]. These are unexpected program behaviors that make executions
differ from their continuous counterparts. Systems are available
that address these issues with dedicated checkpoint placement
strategies [49] or custom programming abstractions [16, 34, 35, 52],
and to test their occurrence [38, 43]. Approaches are available that
conversely take advantage of them to realize intermittence-aware
control flows, promoting the occurrence of power failures to an
additional program input [40]. Additional issues in intermittent
computing include performing general testing of intermittent pro-
grams [15, 17, 21, 22], profiling their energy consumption [2, 15, 21],
and handling peripheral states across power failures [6, 9, 12, 37].

Our work offers a different standpoint. Unlike the works above,
we take the decision about what part of the application state to
allocate on non-volatile memory away from programmers, and
offer a uniform abstraction that does not entail any specific mem-
ory configuration. A set of program transformation techniques
automatically determines an energy-efficient allocation at compile
time, as a function of program structure and read/write patterns.
Most importantly, such an allocation is not fixed once and for all
at variable-level as in current practice, but is possibly adjusted at
different places in the code for the same data item.
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Figure 1: ALFRED compile-time pipeline.

Closest to our work are TICS [31] and the system of Jayakumar
et al. [30]. TICS [31] limits the size of persistent state by solely
saving the active stack frame and modified memory locations out-
side of it, which is conceptually similar to our approach. How-
ever, TICS primarily helps programmers deal with time across
power failures, whereas we specifically target energy efficiency.
TICS also exclusively uses non-volatile memory for global data
and undo-logging [36] to avoid intermittence anomalies [43, 45].
In contrast, we opportunistically allocate slices of program state
onto the energy-efficient volatile memory and employ program
transformation techniques that ensure memory idempotency [49].

The system of Jayakumar et al. [30] adjusts the mapping of global
variables, program code, and stack frames between volatile and non-
volatile memory, doing so at the granularity of individual functions.
They rely on hardware interrupts to trigger state-saving operations
at runtime and tentatively allocate everything to non-volatile mem-
ory first, then incrementally move data or code to volatile memory
until forward progress is compromised. At that point, they back-
track to the latest functioning configuration. Besides working at the
granularity of single data items and at compile-time, rather than at
run-time, our design is fundamentally different, as memory alloca-
tions are thought to systematically improve energy consumption.
Therefore, if forward progress is possible before applying ALFRED,
it remains so afterwards. ALFRED is thus never detrimental to the
application’s ability to do useful work.

3 VIRTUAL MEMORY MAPPING

The program transformation techniques of ALFRED determine the
mapping from virtual to volatile or non-volatile memory. They
are independent of the target architecture, as they are applied on
an architecture-independent intermediate representation of the
input program commonly used in compilers [33]. We illustrate the
compile-time pipeline in Sec. 3.1, followed by an explanation of the
single techniques in Sec. 3.2 to Sec. 3.4.

3.1 Overview

Fig. 1 shows the compile-time pipeline of ALFRED. The input at
stage ⟨1⟩ is a programwritten using the virtual memory abstraction;
therefore, variables in the program are not explicitly mapped to
either volatile or non-volatile memory.

The program is first processed through the compile-time support
an existing checkpoint system [7, 8, 11, 29, 36, 46, 49] or task-based
programming abstraction [16, 34, 35, 44, 47, 52]. Either way, at
stage ⟨2⟩ the program includes state-save operations inlined in the
execution flow as calls to a checkpointing subsystem or placed at
task boundaries. These operations are meant to dump program state

onto non-volatile memory prior to a power failure and to restore
the program state from non-volatile memory when energy is newly
available. The techniques we explain next are orthogonal to how
state-save operations are placed in the code.

Unlike existing programming systems for intermittent comput-
ing, our techniques work at the level of machine-code. At this level,
memory operations are visible as they are actually executed on the
target platform. At stage ⟨3⟩ in Fig. 1 we translate the program into
an intermediate representation of the source code and initially map
every memory operation to volatile memory. If we were to execute
the code this way, state-save operations would need to dump the
entire main memory to the non-volatile one when executing.

At the same stage we also partition the code into logical units
we call computation intervals. A computation interval consists in a
sequence of machine-code instructions executed between two state-
save operations. For programs using checkpoint mechanisms [7, 8,
11, 29, 36, 46, 49], computation intervals correspond to sequences of
instructions between two checkpoint calls. For programs using task-
based programming abstractions [16, 34, 35, 44, 47, 52], computation
intervals essentially correspond to tasks.

From now on, the three program transformations we illustrate
next are applied in the order we present them. We focus on the
intuition and general application of each transformation and post-
pone the discussion about dealing with compile-time uncertainty
to Sec. 4. Our techniques operate on every memory target in the
program, including not just memory targets that the compiler uses
to map variables in source code, but also memory locations used by
operations that are normally transparent to programmers, such as
PUSH or POP. We detail how we identify the memory addresses of
data items possibly involved in a transformation in Sec. 4 and how
to compute their addresses after the transformations in Sec. 5.

As we hinted earlier, the mapping we want to achieve is one
where volatile memory is used as much as possible for data that
requires no persistency, for example, intermediate results or tem-
porary data, as it is more energy efficient than its non-volatile
counterpart. However, we want to make sure to use the latter, pay-
ing an energy overhead, whenever persisting data to survive power
failures is necessary. Intuitively, the transformations generate a
mapping from virtual to volatile or non-volatile memory where the
former acts as a volatile cache of sorts.

The snippets we show next include both source and machine
code for clarity. Line numbers refer to source code.

3.2 Mapping Write Operations

The first transformation we apply is based on a key intuition: a
memory write operation should target non-volatile memory as soon
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1. save state();
2. a = ...
3. a = a+ 1;
4. x = sin(a);
5. y = cos(a);
6. save state();
7. a = f(a);

...

2.1. STORE R0, a

3.1. LOAD a, R1

3.2. STORE R2, a

4.1. LOAD a, R3

5.1. LOAD a, R4

6.1. LOAD a, R5

6.2. STORE R5, anv

redundant

(a) Before the transformation.

1. save state();
2. a = ...
3. a = a+ 1;
4. x = sin(a);
5. y = cos(a);
6. save state();
7. a = f(a);

...

2.1. STORE R0, a

3.1. LOAD a, R1

3.2. STORE R2, anv

No longer saves a

4.1. LOAD a, R3

5.1. LOAD a, R4

(b) After the transformation.

Figure 2: Example of mapping write operations.

as the written data is final compared to the next state-save operation,

so it relieves the latter from the corresponding processing.

The notion of final describes situations where the program no
longer alters the data before the next state-save operation. Our
intuition essentially corresponds to anticipating the actions that
the state-save operation would perform anyways. This allows these
operations to spare the overhead for saving data that can be con-
sidered final earlier: after the transformation the data is already on
non-volatile memory when the state-save operation executes.
Example. Consider the program of Fig. 2(a) and let us focus on the
computation interval extending up to line 6. We find two STORE
instructions that target the volatile memory location that variable
𝑎 is initially mapped to. Note that the second STORE instruction
writes the same value that the state-save operation of line 6 stores
for variable 𝑎, because the latter is initially allocated onto volatile
memory and must be preserved across power failures. This is the
case because the data for variable 𝑎 is final already at line 3.

To save the overhead of redundant memory operations, we make
the STORE instruction of line 3 immediately target non-volatile
memory. This transformation allows us to remove the instructions
that are necessary to save variable 𝑎 at the state-save operation
of line 6, along with the corresponding energy overhead, as line 3
already saves the content variable 𝑎 onto non-volatile memory.

Fig. 2(b) shows the resulting program, which has reduced energy
overhead because the state-save operation is no longer concerned
with variable 𝑎 that is made persistent already at line 3. Conceptu-
ally, this corresponds to moving the STORE instruction that would
normally be part of the state-save operation to the last point in the
program where variable 𝑎 is actually written.

This transformation does not alter the target of the STORE in-
struction of line 2, where the data is not final yet. Doing so would
incur an unnecessary energy overhead due to a write operation on
non-volatile memory for non-final data, which is going to be over-
written soon after. In fact, the STORE instruction of line 2 produces
an intermediate result for variable 𝑎, which we need not persist.
Generalization.We apply this technique to an arbitrary compu-
tation interval as follows. For each memory location 𝑥 , we con-
sider the possibly empty set of memory write instructions 𝐼𝑤 =

(𝐼𝑤1, ..., 𝐼𝑤𝑛) that manipulate 𝑥 and are included in the computa-
tion interval; 𝐼𝑤𝑛 is the last such instruction and there is no other
memory write instruction before the next state-save operation.

We relocate the target of 𝐼𝑤𝑛 to non-volatile memory, as what-
ever data 𝐼𝑤𝑛 stores is final. The targets of all other write instruc-
tions 𝐼𝑤1, ..., 𝐼𝑤 (𝑛−1) remains on volatile memory, as they produce
intermediate results that 𝐼𝑤𝑛 eventually overwrites. Note that this
transformation is sufficient to preserve the value of the memory

4. x = sin(a);
5. y = cos(a);
6. save state();
7. a = f(a);

...

R.1. LOAD anv , R0

R.2. STORE R0, a

state restore();

7.1. LOAD a, R1

7.2. STORE R2, a

redundant

(a) Before the transformation.

4. x = sin(a);
5. y = cos(a);
6. save state();
7. a = f(a);

...

state restore();

7.1. LOAD anv, R1

7.2. STORE R2, a

No longer restores a

(b) After the transformation.

Figure 3: Example of mapping read operations.

location 𝑥 across power failures, while reducing the number of
instructions targeting non-volatile memory.

By applying this transformation to all computation intervals
and all memory locations, state-saving operations at stage ⟨4⟩ in
Fig. 1 are left with only register file and special registers to handle,
and accordingly modified. If a memory location is altered in a
computation interval, our technique identifies when such a change
is final and persists the data there. Otherwise, if 𝐼 = ∅ there is
no need to persist the data, as some previous state-save operation
already did that the last time the data changed.

This processing not only reduces the operations on non-volatile
memory, but also reduces the overhead of state-saving operations.
A regular checkpoint mechanism would save the entire content of
volatile memory onto the non-volatile one [7, 8, 11, 46], including
unmodified memory locations. In our case, memory locations not
modified in a computation interval are excluded from processing.
We thus achieve differential checkpointing [3] with zero run-time
overhead in both energy and memory consumption.

Next, consider the read instructions possibly included in the
computation interval between 𝐼𝑤𝑛 and the state-save operation. As
the data is now on non-volatile memory, in principle, they should
also be redirected to non-volatile memory. Whether this is the most
efficient choice, however, is not as simple. The third transformation,
described in Sec. 3.4, addresses the related trade-offs.

3.3 Mapping Read Operations

The second transformation is based on the dual intuition: when
resuming, restore routines may be limited to register file and special

registers, while memory read operations from non-volatile memory

should be postponed to whenever the data is needed, if at all.

This transformation effectively corresponds to postponing the
restore operation to when the data is actually used and a read opera-
tion would execute anyways. By doing so, we spare the instructions
in the restore routines that would load the data back to volatile
memory from the non-volatile one. This is the case after applying
the first transformation, which makes state-save operations be lim-
ited to restoring the register file and special registers. The content
of main memory is persisted earlier, when it becomes final.
Example. Consider the program of Fig. 3(a). Following a power
failure, the execution resumes from line 6 as the restore routines
loads the value of the program counter from non-volatile memory,
along with register file, other special registers, and the slice of main
memory that was persisted prior to the power failure. However,
note that the LOAD instruction of line 7 reads the same value for
variable 𝑎 that is loaded earlier as part of the restore routine.

A more efficient strategy is to limit the restore routine to register
file and special registers, and make the LOAD instruction of line 7
target the non-volatile memory where the data resides. Compared
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1. save state();
2. a = ...
3. a = a+ 1;
4. x = sin(a);
5. y = cos(a);
6. save state();
7. a = f(a);

...

3.2. STORE R2, anv

3.3. STORE R2, a

Target volatile copy

Create volatile copy

4.1. LOAD a, R3

5.1. LOAD a, R4

Figure 4: Consolidating read operations.

to a regular checkpoint mechanism, this transformation allows us
to remove the instructions that restore variable 𝑎 from checkpoint
data, as the first read instruction that is actually part of the program
is relocated to the right address on non-volatile memory.

Fig. 3(b) shows the program after this transformation, which
bears reduced energy overhead because the restore routine is no
longer concerned with variable 𝑎, as it is loaded straight from non-
volatile memory if and when necessary. This corresponds to moving
the LOAD instruction normally be part of the restore to routine for
variable 𝑎 to where in the program variable 𝑎 is actually read.
Generalization. Similar to the previous transformation, we apply
this technique to an arbitrary computation interval as follows. First,
we limit restore routines to register file and special registers. Next,
for each memory location 𝑥 , we consider the possibly empty set
of memory read instructions 𝐼𝑟 = (𝐼𝑟1, ..., 𝐼𝑟𝑛) that manipulate 𝑥
and are included in the computation interval. Dually to the first
transformation, 𝐼𝑟1 is the first such instruction and there is no
other memory read instruction after the state-save operation at the
start of the computation interval. We relocate the target of 𝐼𝑟1 to
non-volatile memory, as that is where the data is to be loaded from.

Whether the remaining 𝑛 − 1 read operations 𝐼𝑟2, ..., 𝐼𝑟𝑛 in a
computation interval are to target volatile or non-volatile memory
is determined by applying the program transformation that follows.

3.4 Consolidating Read Operations

Starting with a program that exclusively uses volatile memory at
stage ⟨3⟩ in Fig. 1, the first two transformations relocate the target
of selected read or write operations to non-volatile memory. As data
now resides on non-volatile memory near state-save operations,
further relocations to non-volatile memory may be required for
other read operations. This is the case, for example, for read opera-
tions following the last non-volatile write operation that makes data
final, as mentioned in Sec. 3.2. Whether this is the most efficient
choice, however, is not straightforward to determine.

The third transformation is based on the intuition that whenever
memory operations are relocated to non-volatile memory, it may be

convenient to create a volatile copy of data to benefit from lower

energy consumption for read operations.

Example. The program in Fig. 2(b) includes further read operations
after line 3 and memory location 𝑎 is on non-volatile memory as a
result of the first transformation. In principle, we should relocate
the read instructions on line 4 and 5 to non-volatile memory, as that
is where the sought data resides. Because of the higher energy con-
sumption of non-volatile memory, doing so may possibly backfire,
outweighing the gains of the first transformation.

We must thus determine whether it is worth paying the penalty
for creating a volatile copy of variable 𝑎 to benefit from the more
energy efficient operations there. Such a penalty is represented

by an additional STORE instruction to create a copy of the data on
volatile memory, as shown in Fig. 4. The new STORE uses the same
source register, hence it represents the only added overhead. The
benefit is the improved energy consumption obtained by making
the instructions of line 4 and 5 target volatile memory, instead of
the non-volatile one. Note that the exact same situation occurs for
read instructions following the first LOAD instruction in Fig. 3(b).

Consider the frequently used MSP430-FR5969 [16, 28, 34, 35, 40]
with internal FRAM as non-volatile memory, and say it runs at
16𝑀𝐻𝑧, where FRAM accesses require an extra clock cycle. Based
on the datasheet [28], we calculate that if read operations in line 4
and 5 target non-volatile memory, the program consumes 1.522𝑛𝐽
for these operations. I we pay the penalty of the additional STORE
instruction, but use volatile memory for all other read operations,
the program consumes 1.376𝑛𝐽 for the same processing. This is
a 10.6% improvement. We accordingly insert an additional STORE
instruction after line 3 to copy 𝑎 to volatile memory and we keep
the read operations of line 4 and 5 target volatile memory.
Generalization. For each memory location 𝑥 , we consider the
𝑛 read instructions 𝐼𝑟1, ..., 𝐼𝑟𝑛 in a computation interval that we
need to consolidate, thus excluding those altered by the second
transformation. We compute the energy consumption of a single
non-volatile memory read instruction as

𝐸𝑟𝑒𝑎𝑑_𝑛𝑣 = 𝐸𝑛𝑣_𝑟𝑒𝑎𝑑_𝑐𝑐 ∗ (1 +𝐶𝐶𝑟𝑒𝑎𝑑 ), (1)

where 𝐸𝑛𝑣_𝑟𝑒𝑎𝑑_𝑐𝑐 is the energy consumption per clock cycle of
the non-volatile memory read instruction and 𝐶𝐶𝑟𝑒𝑎𝑑 are the extra
clock cycles possibly required, as mixed-volatile microcontrollers
may incur in extra clock cycles when operating on the slower non-
volatile memory. These clock cycles consume the same energy as a
regular non-volatile read operation.

The break-even point between paying the penalty of an ad-
ditional STORE instruction to benefit from more energy-efficient
volatile read operations, versus the cost of allocating all read opera-
tions to non-volatile memory is determined according to inequality

𝐸𝑟𝑒𝑎𝑑_𝑛𝑣 ∗ 𝑛 < 𝐸𝑤𝑟𝑖𝑡𝑒 + 𝐸𝑟𝑒𝑎𝑑 ∗ 𝑛, (2)

where 𝐸𝑟𝑒𝑎𝑑_𝑛𝑣 is the one of Eq. 1, 𝑛 is the number of considered
memory read instructions, and 𝐸𝑟𝑒𝑎𝑑 and 𝐸𝑤𝑟𝑖𝑡𝑒 represent the en-
ergy consumption of a volatile memory read and write instruction,
respectively. This can be rewritten as

0 < 𝐸𝑤𝑟𝑖𝑡𝑒 − 𝑛 ∗ (𝐸𝑛𝑣_𝑟𝑒𝑎𝑑_𝑐𝑐 ∗ (1 +𝐶𝐶𝑟𝑒𝑎𝑑 ) − 𝐸𝑟𝑒𝑎𝑑 ). (3)

As the energy figures are fixed for a given microcontroller, Eq. 3
is exclusively a function of 𝑛, that is, the number of memory read
instructions to consolidate in the computation interval. We can
accordingly state that creating a volatile copy of the considered
memory location is beneficial as long as

𝑛 > 𝑛𝑚𝑖𝑛 , with 𝑛𝑚𝑖𝑛 =

⌊
𝐸𝑤𝑟𝑖𝑡𝑒

𝐸𝑛𝑣_𝑟𝑒𝑎𝑑_𝑐𝑐 ∗ (1 +𝐶𝐶𝑟𝑒𝑎𝑑 ) − 𝐸𝑟𝑒𝑎𝑑

⌋
,

(4)
where 𝑛𝑚𝑖𝑛 is the minimum number of memory read instructions
to ensure that creating a volatile copy of a memory location incurs
in lower overall energy consumption. If the condition of Eq. 4 is not
met, we make the 𝑛 read operations target non-volatile memory.

Interestingly,𝑛𝑚𝑖𝑛 is independent of the specific read/write mem-
ory patterns and of program structure. It only depends on hardware
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1. save state();
2. for(i = 0; i <N; i++) {
3. sum = sum+ a[i];
4. x = a[i];
5. y = a[N − i+ 1];
6. ...
7. }
8. save state();

3.1. LOAD i, R0

3.2. LOAD [a+R0], R1

tag: i

tag: a[i]

4.1. LOAD i, R2

4.2. LOAD [a+R2], R3

tag: i

tag: a[i]

5.1. LOAD i, R4

5.2. SUB R5, N , R4

5.3. ADD R6, R4, 1
5.4. LOAD [a+R6], R7

tag: i
tag: N-i
tag: N-i+1
tag: a[N-i+1]

Figure 5: Example of the same group of instructions access-

ing multiple memory locations.

features. As an example, 𝑛𝑚𝑖𝑛 is 0 (2) for the MSP430-FR5969 at a
clock frequency of 16𝑀𝐻𝑧 (8𝑀ℎ𝑧). This means that if the micro-
controller runs at 16𝑀𝐻𝑧, it is always beneficial to create a volatile
copy of the relevant memory locations.

4 COMPILE-TIME UNCERTAINTY

The transformation techniques of Sec. 3 rely on program infor-
mation, such as the order of instruction execution and accessed
memory addresses, that may not not be completely available at com-
pile time. Constructs altering the control flow, such as conditional
statements or loops, and memory accesses through pointers make
these information a function of the run-time state. We describe next
how we resolve this uncertainty, making it possible to apply the
techniques of Sec. 3 to arbitrary programs.

We distinguish between two types of compile-time uncertainty.
Memory uncertainty occurs when the exact memory address that a
read/write operation targets cannot be determined. We resolve this
uncertainty using virtual memory tags, as described in Sec. 4.1. In-
struction uncertainty occurs when the order of instruction execution
is not certain. Addressing this issue requires different techniques de-
pending on program structure. In the interest of brevity, we give an
intuition of how we can achieve this in the case of loops in Sec. 4.2.
The corresponding generalization is available nonetheless [41].

Here again, the code snippets include both source and machine
code for easier illustration, with line numbers pointing to the former,
yet ALFRED operates entirely on machine code.

4.1 Memory Uncertainty

Our key observation here is that the techniques of Sec. 3 do not
necessarily require exact memory addresses to operate; rather, they
must identify the groups of instructions accessing the samememory
location, whatever that may be.
Example. Fig. 5 shows an example. Lines 3, 4, and 5 target multiple
memory locations across different iterations of the loop. The corre-
sponding physical addresses in memory change at every iteration.

To apply the techniques of Sec. 3, however, exact knowledge
of the physical addresses in memory is not required. We rather
need to determine that, at any given iteration of the loop, lines 3
and 4 target the same memory location, whereas line 5 targets a
different one. Note that the information available in machine code
is insufficient to this end: from that, we can only conclude that lines
3, 4, and 5 access all the addresses in the range (𝑎[0], 𝑎[𝑁 − 1]).

We automatically associate a virtual memory tag to every mem-
ory locations an instruction targets, as shown in Fig. 5. A virtual
memory tag is an abstraction of physical memory that aids the
application of the techniques of Sec. 3 by succinctly capturing what
memory locations are the same in a computation interval.

1. save state();
2. for(i = 0; i <N; i++) {
3. tmp = sum;
4. tmp = tmp+ a[i];
5. sum = tmp;
6. }
7. save state();

3.1. LOAD sum, R0

• During first iteration, it needs to
read sum from NVM

• During other iterations, it needs
to read sum from volatile memory

✗ Ir1 uncertain

5.1. STORE R2, sum

• During last iteration, it needs to
write sum onto NVM

• During other iterations, it needs
to write sum onto volatile memory

✗ Iwn uncertain

(a) Example of a compile-time uncertainty in a loop.

1. save state();
2. sum = sum;
3. for(i = 0; i <N; i++) {
4. tmp = sum;
5. tmp = tmp+ a[i];
6. sum = tmp;
7. }
8. sum = sum;
9. save state();

2.1. LOAD sum, R0

Dummy write to fix Ir1

3.1. LOAD sum, R1

• During all the iterations, it needs
to read sum from volatile memory

✔ Uncertainty removed

5.1. STORE R2, sum

• During all the iterations, it needs
to write sum onto volatile memory

8.1. STORE R3, sum

Dummy write to fix Iwn

✔ Uncertainty removed

(b) Normalized form of the loop that removes the compile-time uncertainty.

Figure 6: Example of compile-time uncertainty with loops.

In the program of Fig. 5, we attach the tag 𝑎[𝑖] to the memory lo-
cations read in lines 3 and 4. Instead, we attach the tag 𝑎[𝑁 − 𝑖 + 1]
to the memory location read in line 5. This information is sufficient
for the technique mapping read operations, described in Sec. 3.3, to
understand that line 3 and 4 are to be considered as one sequence
𝐼 ′𝑟 , whereas line 5 is to be considered as a different sequence 𝐼 ′′𝑟 .

Virtual memory tags are, in a way, similar to debug symbols
attached to machine code. They are obtained by inspecting the
source code ahead of the corresponding translation, through mul-
tiple passes of a dedicated pre-processor. The transformations of
Sec. 3 look at these information, instead of the memory locations in
machine code. To handle pointers, we combine virtual memory tags
with memory alias analysis [14, 32] to identify cases of indirect ac-
cess to the same memory location. Unlike debug symbols, however,
these information is removed from the program at stage ⟨5⟩.

4.2 Instruction Uncertainty→ Loops

Key to the application of the program transformations in Sec. 3.2 and
Sec. 3.3 is the identification of the last (first) memory write (read)
instruction in a computation interval. This may be affected by loops,
conditional statements, and function calls that alter the order of
instruction execution. Further, whenever the execution of state-save
operations depends on run-time information, for example, when a
checkpoint call lies in a loop, the span of computation intervals is
also undefined at compile time.

We describe next how we address these issues in the case of
loops; how we deal with all other cases is available elsewhere [41].
Example. Fig. 6(a) exemplifies the situation. Say we are to apply
the mapping of write operations, described in Sec. 3.2. Doing so
requires to identify the last memory write instruction 𝐼𝑤𝑛 before
the state-save operation. Depending on the value of 𝑖 compared to
𝑁 , the write operation in line 5 may or may not be the one that
makes the data final for variable sum. The same reasoning is valid
when we are to apply the mapping of read operations, described
in Sec. 3.3. Depending on the value of 𝑖 compared to 𝑁 , the read
operation in line 3 may or may not be the first for variable sum

after the state restore. As a matter of fact, 𝑖 and 𝑁 are in control of
what write (read) instruction is the 𝐼𝑤𝑛 (𝐼𝑟1).
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One may operate pessimistically and make both the LOAD on
line 3 and the STORE on line 5 target non-volatile memory. This
choice may be inefficient, because for all values of 𝑖 that are neither
0 nor 𝑁 − 1, the loop computes intermediate results that are going
to be overwritten anyways, so the cost of non-volatile memory
operations is unnecessary. To complicate matters, the value of 𝑁
itself may vary across different executions of the same fragment of
code, as it may depend on runtime state.
Normalization.We apply techniques of program normalization [4,
51] to resolve this uncertainty, as well as all others that possibly
arise when the order of instruction execution depends on run-time
information. Program normalization refers to a set of established
program transformations designed to facilitate program analysis
and automatic parallelization. Many compilers [18] for multi-core
processors, for example, include multiple normalization passes.

To resolve the uncertainty in Fig. 6(a), we need to be in the
position to persist the value of sum once we are sure the loop
is over and before the state-save operation. Fig. 6(b) shows one
way to achieve this. We add a dummy write consisting in a pair of
LOAD and STORE instructions for variable sum after the loop. These
instructions are inserted after code elimination steps and bear no
impact on program semantics, but fix where in the code the data
for sum is final, regardless of the value of 𝑖 and 𝑁 . We add a similar
instruction prior to the loop to fix where the first read for sum
occurs. We can now make both STORE on line 8 and the LOAD on
line 2 target non-volatile memory without unnecessary overhead.
All other operations now concern intermediate results that may
be stored on volatile memory. As a result, 𝑖 and 𝑁 are no longer
in control of what is the 𝐼𝑤𝑛 (𝐼𝑟1) write (read) instruction that the
transformation in Sec. 3.2 and Sec. 3.3 would consider.

The normalization step introduces an overhead. To reduce that,
whenever possible we leverage information cached in registers. For
example, in Fig. 6(b), the value for sum stored in a register in line 6
may be picked up later in line 8, instead of re-loading the value
from main memory. Applying this kind of optimization is, however,
not always possible, as the content of registers may be overwritten
by other instructions that execute in between. In Sec. 6 we prove
that, despite the overhead of normalization, ALFRED programs are
more energy-efficient than their regular counterparts.

We apply similar normalization passes to resolve the uncertainty
possibly arising with conditional statements, function calls, and
when the span of computation intervals is undefined at compile
time. Further optimizations to abate the overhead we generate are
also possible depending on the programming construct [41].

5 MEMORY HANDLING

Tomake the techniques of Sec. 3 and Sec. 4 work correctly, we devise
a custom memory layout that can be determined at compile-time
and a schema to address the possible intermittence anomalies.

5.1 Memory Layout

Despite virtual memory tags ensure we can correctly group in-
structions, we still need to identify the addresses of the volatile or
non-volatile versions of the same memory location. We address
this problem by placing the volatile and non-volatile versions of a

1. save state();
2. tmp = a
3. tmp = tmp+ 1;
4. a = tmp;
5. y = f(a);

6. save state();

Power failure

LOAD anv, R0

STORE R1, anv

LOAD anv, R2

NVM

a: 0

NVM

a: 1

1. save state();
2. tmp = a
3. tmp = tmp+ 1;
4. a = tmp;
5. y = f(a);
6. save state();

NVM

a: 1

NVM

a: 2

✗ Result differs from equivalent continuous execution

(a) Example of an intermittence anomaly.

1. save state();
2. tmp = a
3. tmp = tmp+ 1;
4. a = tmp;
5. y = f(a);

6. save state();

Power failure

LOAD ar, R0

STORE R1, arw

LOAD arw, R2

NVM

ar: 0

arw: ...

NVM

ar: 0

arw: 1

1. save state();
2. tmp = a
3. tmp = tmp+ 1;
4. a = tmp;
5. y = f(a);
6. save state();

NVM

ar: 0

arw: 1

✔ Result equivalent to continuous execution

(b) Example of how to avoid the intermittence anomaly with memory versioning.

Figure 7: Example of an intermittence anomaly.

memory location at the same offset with respect to the correspond-
ing base address. Note that the compiler treats the two segments as
separate memory sections and makes them start at a fixed offset.
This ensures that the volatile and non-volatile versions of the same
memory location are at a fixed offset, too.

We can then express the address of the non-volatile version of a
memory location as a function of the address of its volatile version,
and vice versa. This allows us to allocate memory operations to
either memory segment with ease, even in the presence of indirect
accesses through pointers. To make an instruction that originally
operates on volatile memory now target the non-volatile one, we
add the offset between volatile and non-volatile segments to its
target address. We operate the other way around when we make
an instruction target volatile memory from the non-volatile one.
When the instruction executes, it retrieves the address information
that are unknown at compile-time and calculates the actual target.

5.2 Dealing with Intermittence Anomalies

Usingmixed-volatile platforms, the re-executions of non-idempotent
portions of code may cause intermittence anomalies [34, 42, 43, 45,
49], consisting in behaviors unattainable in a continuous execution.
The problem possibly arises regardless of whether the code is writ-
ten directly by programmers [34, 42, 43, 49] or is the result of the
program transformations of Sec. 3.
Example. Consider the program of Fig. 7(a). Variable 𝑎 is non-
volatile. Following the state-save operation on line 1, the current
value of variable 𝑎, that is 0, is initially retrieved from non-volatile
memory. The execution continues and line 4 updates the value of
variable 𝑎 on non-volatile memory to 1. This is how a continuous
execution would normally unfold.

Imagine a power failure happens right after the execution of
line 4. When the device resumes as energy is back, the program
restores the program state from non-volatile memory, which in-
cludes the program counter. The program then resumes from line 2,
which is re-executed. As variable 𝑎 on non-volatile memory retains
the effects of the operations executed before the power failure, the
value read by line 2 is now 1, that is, the value written in line 4
before the power failure in the previous power cycle. This causes
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line 4 to produce a result that is unattainable in any continuous
execution, as it updates the value of variable 𝑎 to 2, instead of 1.

Many such situations exist that possibly cause erratic behaviors,
including memory operations on the stack and heap [42, 43, 49].
Memory versioning. Intermittence anomalies happen whenever
a power failure introduces a Write-After-Read (WAR) hazard [34,
42, 49] on a non-volatile memory location. In Fig. 7(a), the memory
read of line 2 and the memory write of line 4 represent a WAR
hazard for variable 𝑎. Several techniques exist to avoid the occur-
rence of intermittence anomalies [26, 34–36, 42, 43, 49]. In general,
it is sufficient to break the sequences of instructions involved in
WAR hazards [34, 42, 43, 49] so the involved instructions neces-
sarily execute in different power cycles. Existing solutions place
additional checkpoints [49] or enforce transactional semantics to
specific portions of code [26, 34–36].

We use a different approach that tightly integrates with the
compile-time operation of ALFRED. First, to reduce the number of
instructions possibly re-executed, every call to a state-save oper-
ation in ALFRED systematically dumps the state on non-volatile
memory, regardless of the current energy level. This is different
than in many checkpoint systems, where the decision to take a
checkpoint is subject to current energy levels [7, 8, 11, 46]. The
overhead we impose by doing this is very limited, as state-save
operations are limited to register file and program counter after
applying the transformations of Sec. 3.

For each computation interval, we then create two versions of
each non-volatile memory location possibly involved in a WAR
hazard. One version is a read-only copy and contains the result
produced by previous computation intervals; the other version is a
read-and-write copy and contains the result of the considered com-
putation interval. We direct the memory read (write) instructions
to the read-only (read-and-write) copy. This ensures that in case
of a re-execution, the read operations access the values produced
by the previous computation interval, as the (partial) results of the
current computation interval remain invisible in the read-and-write
copies. When transitioning to the next computation interval, the
read-only and read-and-write copies are swapped to allow the next
computation interval to access the (now, read-only) data of the
computation interval just concluded.

Fig. 7(b) shows how this solves the intermittence anomaly of
Fig. 7(a). Line 2 reads variable 𝑎’s read-only copy, whereas line 4
writes variable 𝑎’s read-and-write copy. Line 4 accordingly reads
variable 𝑎’s read-and-write copy, as it needs the data that line 4 pro-
duces. If a power failure happens after line 4 and line 2 is eventually
re-executed, that read operation still targets𝑎 read-only copy, which
correctly reports 0. Instead, after swapping the two copies, the next
computation interval correctly accesses the copy of variable 𝑎 that
reports value 1, equivalently to a continuous execution.

We apply this technique as a further code processing step, as
shown in stage ⟨5⟩ of Fig. 1. First, we identify the WAR hazards.
For each memory write instruction 𝐼𝑤 on a non-volatile memory
location with tag 𝑥 , we check if there exists a memory read instruc-
tion 𝐼𝑟 such that i) 𝐼𝑟 targets a non-volatile memory location with
the same memory tag 𝑥 , and ii) 𝐼𝑟 may execute before 𝐼𝑤 , that is, 𝐼𝑟
happens before 𝐼𝑤 in the control-flow graph. If such 𝐼𝑟 exists, the
pair (𝐼𝑤 , 𝐼𝑟 ) represents a WAR hazard.

Next, we create the read-only and read-and-write copies by dou-
bling the space that the compiler normally reserves to the data
structure 𝑥 refers to. As we allocate the two copies in contiguous
memory cells, their relative offset is fixed and may be used at com-
pile time to direct the memory operation to either copy. We then
make 𝐼𝑟 target the read-only copy, together with every memory
read instruction that operate on 𝑥 and executes before 𝐼𝑤 . In con-
trast, we make 𝐼𝑤 target the read-and-write copy of 𝑥 , together
with all corresponding memory read instructions that happen af-
ter 𝐼𝑤 . As this processing occurs after program normalization, the
compile-time uncertainty in the order of instruction execution or in
the span of computation intervals is already resolved at this stage.

6 EVALUATION

Our evaluation of ALFRED considers multiple dimensions. We
describe next the experimental setup and the corresponding results.

6.1 Setting

We opt for system emulation over hardware-based experimentation,
as it enables better control on experiment parameters and allows
us to carefully reproduce program execution and energy patterns
across ALFRED and the baselines we consider. Because of the highly
non-deterministic behavior of energy sources, achieving perfect
reproducibility is extremely challenging using real devices [22].
Tool and implementation. We use ScEpTIC [38, 43], an open-
source extensible emulation tool for intermittent programs. ScEp-
TIC emulates the execution of the LLVM Intermediate Representa-
tion (IR) [33] of a source code and provides bindings for implement-
ing custom extensions to i) apply program transformations and ii)

map specific performance metrics of the IR to those of machine-
specific code, for example, to measure energy consumption.

ScEpTIC organizes the LLVM IR into a set of Abstract Syntax
Trees (ASTs), one for each function in source code. Each of these
ASTs is generated by augmenting the original LLVM AST with
dedicated ScEpTIC elements, which represent information on the
emulated instructions and architectural elements, such as I/O op-
erations and registers. We implement the pipeline of Fig. 1 from
stage ⟨3⟩ onwards as a set of further transformations of these ASTs.
A detailed description of this implementation is available [41], along
with an open-source prototype release of our ScEpTIC extension
implementing ALFRED transformations [39].

We also implement a machine-specific ScEpTIC extension to
map the execution of the IR to the energy consumption of the
MSP430-FR5969 [28], a low-power MCU that features an inter-
nal and directly-addressable FRAM as non-volatile memory. The
MSP430-FR5969 is often employed for intermittent computing [8,
34, 35, 46, 49]. Our extension takes as configuration parameters the
energy consumption per clock cycle of various operating modes of
the MSP430-FR5969 [28], such as regular computation, (non-)vo-
latile memory read/write operations, and peripheral accesses.

Dimension Possible instances

Memory configuration Volatile, NonVolatile
Checkpoint call placement Loop-Latch, Function-Return,

IdempotentBoundaries
Checkpoint execution Probe, Execute

Figure 8: Design dimensions for baselines.
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Baseline computation

ALFRED computation

Baseline trigger calls

ALFRED checkpoints
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Figure 9: Energy consumption and number of clock cycles

comparing ALFREDwith a baseline using Volatile, Probe,

and either Loop-Latch or Function-Return. For a baseline,

’ll’ or ’fr’ indicate Loop-Latch or Function-Return.

Baselines and benchmarks. We compare ALFRED with check-
point mechanisms that instrument programs automatically [11, 36,
46, 49] by placing calls to a checkpoint library at specific places
in the code. We do not consider, instead, checkpoints mechanisms
that use interrupts to trigger the execution of checkpoints [7, 8, 29–
31], including TICS [31] and the work of Jayakumar et. al [30], as
checkpoints do not execute at pre-defined places in the code and
thus boundaries of computation intervals cannot be identified. The
latter is required for ALFRED to apply the transformations of Sec. 3.

Due to the variety of existing compile-time checkpoint systems,
we abstract the key design dimensions in a framework that allows
us to instantiate baselines that correspond to existing works, while
retaining the ability to explore configurations not strictly corre-
sponding to available systems. Fig. 8 summarizes these dimensions.

On such design dimension is the memory configuration. We con-
sider two possible instances, Volatile and NonVolatile. Volatile
allocates the entire main memory onto volatile memory. To ensure
forward progress, each checkpoint must therefore save the content
of mainmemory, register file, and special registers onto non-volatile
memory. This is the case, for example, in Mementos [46] and Har-
vOS [11]. Instead, the NonVolatile instance allocates the entire
main memory onto non-volatile memory. Here checkpoints may
be limited to saving the content of the register file and program
counter onto non-volatile memory, as main memory is already
non-volatile. This is the case of Ratchet [49].

A givenmemory configuration is typically coupled to a dedicated
strategy for placing checkpoint calls in the code. Systems that only
use volatile main memory, as in Volatile, may place checkpoints
using the Loop-Latch or Function-Return placement strategies
of Mementos [46]. Systems that only use non-volatile main mem-
ory, as in NonVolatile, place checkpoints using the strategy of
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Figure 10: Memory accesses comparing ALFRED with a

baseline using Volatile, Probe, and either Loop-Latch or

Function-Return.

Benchmark

Baseline VM

(bytes)

Baseline NVM

(bytes)

ALFRED VM

(bytes)

ALFRED NVM

(bytes)

CRC (ll) 8Mhz 812 1688 6 850
CRC (ll) 16Mhz 812 1688 26 850
CRC (fr) 8Mhz 812 1636 26 810
CRC (fr) 16Mhz 812 1636 30 810
FFT (ll) 8Mhz 16708 33514 64 29082
FFT (ll) 16Mhz 16708 33514 2188 29082
AES (ll) 8Mhz 1276 2614 40 1334
AES (ll) 16Mhz 1276 2614 42 1334
AES (fr) 8Mhz 1276 2614 58 1338
AES (fr) 16Mhz 1276 2614 62 1338

Figure 11: Volatile memory (VM) and non-volatile mem-

ory (NVM) in ALFRED against a baseline using Volatile,

Probe, and either Loop-Latch or Function-Return.

Ratchet [49]. This entails identifying idempotent sections of the
code and placing checkpoint calls at their boundaries. We accord-
ingly call this strategy IdempotentBoundaries. This ensures that
intermittence anomalies are solved by construction, as re-execution
of code only occurs across idempotent sections of code.

Once checkpoint calls are placed in the code, the checkpoint ex-
ecution policy dictates the conditions that possibly determine the
actual execution of a checkpoint. Indeed, a checkpoint call may
systematically cause a checkpoint to be written on non-volatile
memory, or rather probe the current energy levels first, for ex-
ample, through an ADC query, and postpone the execution of a
checkpoint if energy is deemed sufficient to continue without it.
The former kind of behavior, which we call Execute, is the case of
Ratchet [49], Chinchilla [36], and TICS [31] when it relies on check-
points manually placed by developers; the latter kind of behavior
we call Probe and reflects HarvOS [11] and Mementos [46].

A combination of memory configuration, strategy for placing
checkpoint calls, and checkpoint execution policy represents the
single baseline. Note that not all combinations of these dimensions
are necessarily meaningful. For instance a NonVolatile memory
configuration necessarily requires checkpoints to behave in an Ex-
ecute manner, or the risk of intermittence anomalies would be too
high and the overhead to address them correspondingly prohibi-
tive [45]. As ALFRED requires as input a placement of state-saving
operations, when comparing with a certain baseline we use the
same such placement. Moreover, being the FRAM performance and
energy consumption affected by the MCU operating frequency [28],
we consider both 8𝑀ℎ𝑧 and 16𝑀ℎ𝑧 clock configurations.

Applications deployed onto battery-less devices typically consist
in a sense-process-transmit loop [1, 13, 27]. Checkpoint techniques
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Figure 12: Energy consumption and number of clock cycles

comparingALFREDwith a baseline usingNonVolatile, Ex-

ecute, and either Loop-Latch or Function-Return.

and memory configurations mainly affect processing, whereas sens-
ing and transmissions impose the same overhead regardless of the
former. For this reason, similar to related literature, we focus on pro-
cessing functionality and consider a diverse set of benchmarks com-
monly used in intermittent computing [7, 8, 26, 29, 43, 46, 49]: Cyclic
Redundancy Check (CRC) for data integrity, Advanced Encryption
Standard (AES) for data encryption, and Fast Fourier Transform
(FFT) for signal analysis. We use Clang version 7.1.0 to compile their
open-source implementations, as available in the MiBench2 [25]
suite, using the default compiler settings. The binaries output by
the compiler never exceed 30𝑘𝐵.
Metrics and energy patterns. We focus on energy consumption

and number of clock cycles necessary to complete a fixed workload.
Being harvested energy scarce, the former captures how battery-
less devices perform when deployed and represents an indication
of the perceived end-user performance [1, 13, 27]. The latter al-
lows us to identify how the overhead of ALFRED affects perfor-
mance, as it mainly consists in the additional instructions required
to address the compile-time uncertainties, as described in Sec. 4.
Note that the two metrics are not necessarily proportional, because
non-volatile memory accesses may require extra clock cycles and
consume more energy than accesses to volatile memory [28]. AL-
FRED may also introduce an overhead in the form of additional
memory occupation, as the same data may need space in both
volatile and non-volatile memory. To measure this, we keep track
of the use of volatile/non-volatile memory spaces during the execu-
tion. To gain a deeper insight into the performance trends we also
record volatile/non-volatile memory accesses, and the execution of
checkpoint and restore operations.

Baseline volatile access
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ALFRED non-volatile access
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Figure 13: Memory accesses comparing ALFREDwith a base-

line using NonVolatile, Execute, and either Loop-Latch

or Function-Return.

Patterns of ambient energy harvesting may be simulated using
IV surfaces [21, 22] or by repetitively simulating power failures
after a pre-determined number of executed clock cycles [40, 49].
The former makes simulated power failures happen at arbitrary
points in times and provides little control on experiment executions,
making it difficult to sweep the parameter space. The latter may be
tuned according to statistical models, and offers better control on
experiment executions by properly tuning model parameters. The
behavior of ALFRED is largely independent of the specific number
of executed clock cycles between consecutive power failures; we
therefore opt for the second option.

We model an RF energy source. To determine the number of
executed clock cycles between two power failures, we rely on the
existing measurements from ten real RF energy sources used for
the evaluation of Mementos [46], which features a MCU configu-
ration compatible with our setup. To evaluate multiple scenarios,
including the worst and best possible ones, we execute each bench-
mark considering the minimum, average, and maximum number
of executed clock cycles between power failures, modeled after
the aforementioned real measurements. We report on the results
obtained in the average scenario, as there is no sensible difference
among the three scenarios. Note that, when using the Probe strat-
egy, we make sure that the last checkpoint call before a power
failure is the one that does save a checkpoint, as this represents the
same behavior of real scenarios.

6.2 Results

We consider three combinations of the design dimensions of Fig. 8.
Checkpointing from volatile memory. We begin comparing
with a baseline configuration using Volatile, Probe, and either
Loop-Latch or Function-Return. This configuration represents
Mementos [46] and solutions inspired by its design [11, 36].

Fig. 9 shows the results we obtain. Fig. 9(a) shows how, depending
on the benchmark, ALFRED provides up to several-fold improve-
ments in energy consumption to complete the fixed workload. CRC
computation is the simplest benchmark and has little state to make
persistent. The improvements are marginal here, especially when
using Function-Return as the checkpoint placement strategy,
which is unsuited to the structure of the code in the first place.
The improvements grow as the complexity of the code increases.
Computing FFTs is the most complex benchmark we consider, and
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Figure 14: Energy consumption and number of clock cycles

comparingALFREDwith a baseline usingNonVolatile, Ex-

ecute, and IdempotentBoundaries.

the improvements are largest in this case. These observations are
confirmed by the measurements of clock cycles, shown in Fig. 9(b).

Fig. 10 provides a finer-grained view on the results in this specific
setting. The small state in CRC corresponds to the fewest number
of memory accesses, especially in volatile memory, as little data
is to be made persistent to cross power failures. In both AES and
FFT, ALFRED greatly reduces the number of memory accesses.
Checkpoint operations in these benchmarks must load a significant
amount of data from volatile memory and copy it to non-volatile
memory for creating the necessary persistent state. These accesses
are not necessary in ALFRED, as data is made persistent as soon as
it becomes final; therefore, checkpoint operations do not process
main memory, but only register file and program counter. As for the
nature of memory accesses, ALFRED can promote, on average, 65%
of the accesses the baseline executes on non-volatile memory to
volatile memory instead, with a minimum of 20% in 𝐶𝑅𝐶 at 8𝑀ℎ𝑧

with a Loop-Latch configuration and a maximum of 95% in 𝐶𝑅𝐶
with a Function-Return configuration. This is a key factor that
grants ALFRED better energy performance.

Fig. 11 reports on the use of volatile/non-volatile memory. In the
baseline, the state to be preserved across power failures includes
the entire volatile memory, the register file, and special registers.
Requiring to double-buffer the state saved to non-volatile mem-
ory, its use in the baseline amounts to more than double the use
of volatile memory. In both CRC and AES, ALFRED requires to
double buffer less than 4% of the program state to avoid intermit-
tence anomalies, resulting in a drastically lower use of non-volatile
memory. Interestingly, despite a significant improvement in energy
consumption, ALFRED promotes very few memory locations to
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ALFRED volatile access
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Figure 15: Memory accesses comparing ALFRED with a

baseline using NonVolatile, Execute, and Idempotent-

Boundaries.

Benchmark

Baseline VM

Size (Bytes)

Baseline NVM

Size (Bytes)

ALFRED VM

Size (Bytes)

ALFRED NVM

Size (Bytes)

CRC 8Mhz 0 826 6 854
CRC 16Mhz 0 826 16 854
FFT 8Mhz 0 16730 40 29074
FFT 16Mhz 0 16730 1116 29074
AES 8Mhz 0 1294 24 1342
AES 16Mhz 0 1294 40 1342

Figure 16: Volatile memory (VM) and non-volatile memory

(NVM) in ALFRED against a baseline using NonVolatile,

Execute, and IdempotentBoundaries

volatile memory. These correspond to the memory locations that
are most frequently accessed, as shown in Fig. 10.
Moving to non-volatile memory. Fig. 12 shows the results we
obtain comparingwith configuration using NonVolatile, Execute,
and either Loop-Latch or Function-Return. This combination
represents a hybrid solution combining features of several existing
systems [11, 36, 46]. As Loop-Latch and Function-Return do not
necessarily guarantee that intermittence anomalies cannot occur,
we lend our versioning technique, described in Sec. 5, to the baseline.
The major difference between ALFRED and the baseline, therefore,
is in the use of volatile or non-volatile memory.

Fig. 12(a) shows that the program transformations we devise
are effective at improving the energy performance of intermittent
programs. Significant improvements are visible across all bench-
marks. Configurations exist where the baseline cannot complete
the workload using the energy patterns we consider, as in the case
of the CRC benchmark when using Function-Return to place
checkpoints. In contrast, ALFRED reduces energy consumption to
an extent that allows the workload to successfully complete.

The corresponding results in the number of executed clock cycles,
shown in Fig. 12(b), enables a further observation. When running
at 16𝑀ℎ𝑧, the baseline shows a significant increase of clock cycles,
at least 20% with respect to the same benchmark running at 8𝑀ℎ𝑧.
The cause of this increase is in the extra clock cycles required
to access the FRAM when the MCU is clocked at 16𝑀ℎ𝑧. In the
same scenarios, ALFRED shows a lower increase of clock cycles
when comparing the 8𝑀ℎ𝑧 and 16𝑀ℎ𝑧 configurations, especially
in the AES benchmark. Rather than massively employing non-
volatile memory, ALFRED switches to volatile memory whenever
possible within a computation interval. This not only reduces the
clock cycles spent waiting for non-volatile memory access, but also
enables energy savings in the operations that involve temporary
data or intermediate results that do not need persistency.
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Figure 17: Restore operations to complete the fixed workload in ALFRED compared to the three baselines.

Fig. 13 confirms this reasoning, showing that ALFRED promotes
an average of 65% of the non-volatile memory accesses in the base-
line to the more energy-efficient volatile memory. This functionality
grants ALFRED the completion of the CRC benchmark when us-
ing the Function-Return configuration. As the baseline directs
all memory accesses to non-volatile memory, the resulting energy
consumption causes CRC to be stuck in a livelock, as energy is in-
sufficient to reach a checkpoint that would enable forward progress.
This situation is called “non-termination” bug [17]. Instead, in the
case of CRC, ALFRED promotes more than 95% of the non-volatile
memory accesses in the baseline to volatile memory. This signifi-
cantly reduces the energy consumption of memory accesses to an
extent that allows ALFRED to complete the workload.

Note that the use non-volatile memory in the baseline is the
same as ALFRED, shown in Fig. 11, as they employ the same tech-
nique to avoid intermittence anomalies. The difference in memory
occupation consists in the data that ALFRED allocates onto volatile
memory, which ultimately yields lower energy consumption.
Ruling out intermittence anomalies. We compare the perfor-
mance of ALFRED with a configuration using NonVolatile, Exe-
cute, and IdempotentBoundaries, as in Ratchet [49]. Because of
the specific placement of checkpoint calls and the Execute policy,
intermittence anomalies cannot occur by construction. ALFRED
and the baseline here only differ in memory management.

Fig. 14 shows the results. Fig. 14(a) illustrates the performance in
energy consumption; this time, the improvements of ALFRED are
generally less marked than those seen when using Loop-Latch or
Function-Return to place checkpoints. The results in the number
of executed clock cycles are coherent with these trends, as illus-
trated in Fig. 14(b). This is because IdempotentBoundaries tends
to create much shorter computation intervals, sometimes solely
worth a few instructions; therefore, ALFRED has fewer opportuni-
ties to operate on the energy-efficient volatile memory. ALFRED
still improves the energy efficiency overall, especially for the AES
benchmark and the configurations running at 16𝑀ℎ𝑧. At this clock
frequency, non-volatile memory operations induce higher overhead
due to the necessary wait cycles. Sparing operations on non-volatile
memory allows the system not to pay this overhead.

Fig. 15 and Fig. 16 provide an assessment on ALFRED’s ability to
employ volatile memory whenever convenient. ALFRED promotes
the use of volatile memory from the non-volatile use in the baseline
in up to 30% of the cases. The impact of this, however, is more limited
here because of the shorter computation intervals, as discussed
above. In this plot, it also becomes apparent that sometimes, the

total number of memory accesses in ALFRED is higher than in the
baseline. This is a combined effect of the program transformation
techniques of Sec. 3 and of the normalization passes in Sec. 4. The
increase in the total number of memory accesses, however, does
not yield a penalty in energy consumption, as a significant fraction
of these added accesses operate on volatile memory.

These results are confirmed in Fig. 16. Despite being the program
partitioned in non-idempotent code sections, our techniques to ad-
dress compile-time uncertainties introduce intermittence anomalies
that require ALFRED to double-buffer a portion of the program
state. This situation is particularly evident with FFT. Fig. 16 pro-
vides additional evidence of how ALFRED employs volatile memory
for frequently-accessed data, which ultimately yields lower energy
consumption across all benchmarks executed at 16𝑀ℎ𝑧.
Restore operations. We complete the discussion by showing in
Fig. 17 the number of restore operations executed in ALFRED com-
pared to those in the three baseline configurations we consider.

The plots demonstrate that the better energy efficiency provided
by ALFRED allows the system to restore the state less times. This
trend is especially visible in Fig. 17(a) and Fig. 17(b). As a result,
ALFRED shifts the available energy budget to useful application
processing, leading to workloads that finish sooner compared to
the performance offered by the baselines.

7 CONCLUSION

ALFRED is a virtual memory abstraction for intermittent comput-
ing that spares programmers the need to manage application state
across memory facilities, and efficiently employ volatile and non-
volatile memory to improve energy consumption, while ensuring
forward progress. The mapping from virtual to volatile or non-
volatile memory is decided at compile time to use volatile memory
whenever possible because of the lower energy consumption, resort-
ing to non-volatile memory to ensure forward progress. In contrast
to existing works, the memory mapping is not fixed at variable
level, but is adjusted at different places in the code, based on read-
/write patterns and program structure. Our evaluation indicates
that, depending on the workload, ALFRED provides several-fold
improvements in energy consumption compared to the multiple
baselines we consider, leading to a similar improvement in the num-
ber of restore operations required to complete a fixed workload.
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