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ABSTRACT
Motion tracklets are the basic fragments of the track followed by a
moving object and constitute various everydaymotion behavior. An
accurate estimation of motion tracklets in 3-D space can enable a
wide range of applications, ranging from human computer interac-
tion tomedical rehabilitation. This paper presents a novel dataset for
accurate 6-DoF motion tracklet estimation with the inertial sensors
on commodity smartphones. The dataset consists of around 100min-
utes of handheld motion with 3 predominant types of motion track-
lets and accurate ground truth using the Vicon systems. With the
presented dataset, we further benchmarked the trajectory estima-
tion using a lightweight neural odometry model, showcasing how
the dataset can be used while providing quantitative performance
for downstream tasks. Our dataset, toolkit and source code available
at https://github.com/MAPS-Lab/smartphone-tracking-dataset.

CCS CONCEPTS
•Computingmethodologies→Neural networks; •Hardware
→ Sensor applications and deployments; •Human-centered
computing→Ubiquitous andmobile computing systems and
tools.
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1 INTRODUCTION
Inertial tracking uses accelerometers and gyroscopes to calculate
the position and orientation changes of an object relative to a ref-
erence point. While it was originally proposed for high-precision
military purposes, today’s inertial tracking systems have been able
to leverage the low-cost MEMS sensors embedded on wearable
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Figure 1: Data recording setup. We choose a mid-range An-
droid smartphone, the Samsung Galaxy A31, as our inertial
data collector. Vicon tracking system provides millimeter-
level-accuracy ground truth trajectory. Xsens IMU provides
high-quality inertial data for comparison with smartphone
data. ArUco marker provides secondary ground truth that
allows dataset users to expand the dataset.

devices and find a spectrum of applications in everyday world -
ranging from medical rehabilitation to human-machine interaction.
Among these wearable devices, inertial tracking with commodity
smartphones receives the most attention in industry and academia
due to their prominent ubiquity and portability.

Unlike the conventional dead-reckoning approaches that largely
suffer from drifting with the low-cost MEMS sensors, neural inertial
odometry models recently emerge as a new approach to accurate in-
ertial tracking and have been demonstrated as an effective odometry
on smartphones [2, 5]. By modelling the noise and bias of low-cost
inertial sensors into a supervised learning framework, such neu-
ral methods are able to yield less long-term drift in contrast to
the filtering-based or double integration-based methods. Despite
their success in long-distance tracking, their promise on short-term
motion tracking (i.e., motion tracklets) remains unknown. Motion
tracklets serve as the basic fragments of a long track followed by
a moving platform. Different combination of tracklets is able to
constitute or synthesize a variety of useful movements without
going through every possible long-term trajectory and can be sub-
sequently employed by different downstream applications with the
minimal amount of data re-collection efforts. Unfortunately to date,
such an inertial tracklet dataset together with a benchmarked per-
formance for 6-DoF estimation (i.e., 3D position and 3D orientation)
are still lacking.
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(a) Arc-shaped tracklet, the smartphone rotates as it
faces away from the arc’s centre.

(b) Bulge-shaped tracklet, the smartphone faces up and
does not perform significant rotation.

(c) Line-shaped tracklet, the smartphone faces up and
does not perform significant rotation.

Figure 2: Three types of tracklets recorded by our dataset:
the arc-, bulge- and line-shaped tracklets. The smartphone
continuously moves back and forth along its width (x-axis).
Each tracklet spans around 50cm along the x-axis. Moving
speed is evenlymaintained so that each tracklet (left to right
or right to left) takes around 5 seconds.

In this paper, we present a new dataset for smartphone inertial
motion tracking with 100 minutes of handheld motion data, de-
signed for training neural models. The data collection setup can be
seen in Fig 1. In summary, we make the following contributions:

• We present a 6DoF inertial tracking dataset with smartphone
inertial data and Vicon ground truth.

• We trained a lightweight LSTM [2, 6] model to estimate the
6DoF motion tracklets. The model is benchmarked with this
present dataset and is able to achieve an average Absolute
Trajectory Error (ATE) of 39mm over 600mm-long tracklets.
The source code and trained model are publicly released in
https://github.com/MAPS-Lab/smartphone-tracking-dataset.

• The dataset also includes the recorded video streams of a
set of ArUco markers by the smartphone camera that allows
the users to expand this inertial tracking dataset to accurate
visual-inertial tracking tasks.

2 RELATEDWORK
The Oxford Inertial Odometry Dataset (OxIOD) [3] is an inertial
odometry dataset that tracks 2D human/robotic motion along long
distances. It aims to estimate 2D 3DoF motion in comparison to our
3D 6DoF motion. Furthermore, due to OxIOD’s aim of estimating

Figure 3: Time Synchronization using signal spikes in accel-
eration created by 3 consecutive jumps.

long distances, its use cases and accuracy requirements are very
different from ours, making it a dataset of a very different nature.

To the best of our knowledge, there is no dataset for accurate
6DoF inertial tracking on smartphones. Related researches collect
their own data[1, 9, 10], and many of them do not have the Vicon
ground truth. Some use fixed trails for the smartphone’s motion[9,
10], like a toy train track or bicycle wheels. These methods can
only evaluate the model by checking trajectory consistency instead
of using quantitative metrics. The lack of random motion noise
like in handheld motion also means the data doesn’t have real-life
fidelity, making it unsuitable for learning-based models. Some use
advanced IMU sensors like Xsens MTx as ground truth[1], which
in itself is prone to drift.

3 DATA COLLECTION
3.1 Collection Platform
Inertial data was collected from a Samsung Galaxy A31 smartphone.
As investigated by previous literature[7], IMU sensor quality can
vary between different phones, with newer or higher-end models
usually providing higher-quality data. To make the dataset general-
izable to more devices on the market, a mid-range Android device
is specifically selected for data collection.

We collected 3 data sessions on our platform, as shown in Table
1. The third data session has an Xsens IMU, an advanced inertial
sensor that produces more accurate data than smartphones. It can
be used tomake comparisons between low-cost smartphone sensors
and industrial-grade sensors.

3.2 Tracklets
We carefully select three predominant types of hand motion track-
lets using smartphones, including the arc, bulge and line tracks (c.f.
Fig 2). As shown in Table 1, data session 1 and 2 are a mixture of all
3 types of tracklets, while session 3 is dedicated to the arc-shaped
tracklet. In each data session, the tracklets are recorded in loop.
The smartphone is continuously doing a back-and-forth "scanning"

https://github.com/MAPS-Lab/smartphone-tracking-dataset
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(a) Tracklet Arc, Example A,
ATE 14.4mm
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(b) Tracklet Arc, Example B,
ATE 35.7mm
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(c) Tracklet Arc, Example C,
ATE 52.8mm

0 2 4
Time(s)

0

20

40

60

Tr
aj

ec
to

ry
 E

rro
r(m

m
)

A
B
C

(d) Accumulated Error of Ex-
ample Tracklet Estimations

25 50 75 100 125
ATE (mm)

0

10

20

30

40

50

Tr
aj

ec
to

ry
 C

ou
nt

(e) ATE Histogram

Figure 4: Benchmark results. (a) to (d) showcases examples of our trained model estimating 6DoF tracklets using smartphone
inertial data. The shown tracklets have ATE values varying from better to average to worse. (a) to (c) are the estimated 3D 6DoF
tracklets compared to the ground truth, while (d) shows the accumulated drifting error of each example tracklet over motion
time. (e) is the histogram of ATE on all 188 testing tracklets.

Table 1: Meta Information of Data Sessions

Session Duration Sensors Tracklets
1 20min smartphone, Vicon arc, bulge, line
2 20min smartphone, Vicon arc, bulge, line
3 70min smartphone, Vicon, Xsens arc

motion along its width (left-to-right and right-to-left). Duration of
each single tracklet is around 5 seconds.

Completely motionless periods are included in the data sessions
as well. Including these periods in training will reduce zero-drifting
produced by themodel, meaning themodel will not produce drifting
predictions while the smartphone is in fact immobile.

3.3 Ground Truth
We use the Vicon tracking system as the trajectory ground truth. It
provides millimeter-level position accuracy at a rate of 100Hz.

Inertial data is high-frequency and temporally sensitive, which
means the Vicon ground truth and smartphone IMU need to be
well-synchronized. To sync between Vicon and IMU, before and
after each data session, we hold the collection rig and jump up and
down 3 times. The jumps create sharp spikes in both Vicon and
acceleration data. We use 3 spikes at the beginning and 3 spikes at
the end of each session to temporally align IMU and Vicon signals.
The finding of the spikes is done with numpy and scipy toolkits.
The exact code is provided alongside the dataset.

3.4 Video Data
Other than inertial data and Vicon data, we also provide the video
stream from the smartphone’s rear camera during dataset collection.
The implication in this decision is two-fold:

• Wealways point the camera towards a set of ArUcomarkers[4,
8]. The markers could be used to generate pose estimation
of the smartphone. This will enable the dataset users to
generate their own ground truth, giving them the ability to

expand the dataset themselves without having access to a
Vicon system.

• The video stream could potentially be used alongside inertial
data to make visual-inertial odometry (VIO) systems, making
it more versatile in the hands of dataset users.

4 BENCHMARK
We try to estimate the tracklets using neural inertial odometry:
calculate the 6DoF displacement between fixed intervals and ac-
cumulate the displacement together to form a tracklet. We only
train and evaluate the model on data session 3, where no mixture
of different types of tracklets is present.

We use a simple LTSM model with 2 recurrent layers and 96
features in hidden state. Being only 1.2MB in size, the model is
lightweight enough to be deployed on smartphone platforms. 50
consecutive IMU data frames are fed into the model, and are used
to predict the relative 6DoF motion of the smartphone during these
50 frames. With IMU data frequency at 200Hz, the model predicts
the smartphone’s motion at 4Hz.

For data collection Session 3, we have a total of 820,000 usable
frames (68.3 minues at 200Hz) of IMU data after time synchro-
nization. If we predict relative 6DoF motion every 50 frames, we
have 16,400 non-overlapping data samples. To further boost up
the amount of trainable data, we make the starting frame of each
sample increment by 10 instead of 50, overlapping each other by 40
frames. This way, IMU frame indexes of the samples are [[0, 49], [10,
59], [20, 69], ...] instead of [[0, 49], [50, 99], [100, 149], ...], increasing
the data samples by 5 times. In the end, we have 81,995 overlapping
data samples out of the 820,000 frames of IMU data. Next, we split
the data samples, making the first 65,000 out of 81,995 data samples
the training set, and the last 16,995 the testing set.

The testing set is split into independent tracklets for quantitative
evaluation of the estimation quality. A total of 188 separate tracklets
are made from the testing set, several examples of which can be
seen in Fig 4 (a)-(d). To evaluate our best model, Absolute Trajectory
Error (ATE) is calculated on each tracklet, and we show a histogram
of the 188 ATE results in Fig 4 (e). The mean ATE over the testing
samples is 38.6mm, with a 15.3mm standard deviation.
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We provide our data pre-processing, training and evaluation
code as well as our best saved model alongside our dataset.

5 CONCLUSION
Our presented dataset provides the testing ground and metrics
for smartphone inertial motion tracking that results in accurate
6DoF tracklet estimations.With neural engines and TPUs appearing
on mobile platforms, the development of neural inertial tracking
on smartphones can bring novel interactions and functionalities
accessible to wider applications.

Meanwhile, we acknowledge someweaknesses in our dataset.We
did not include high speed or sudden changes in motions, which lim-
its the dataset to be used in a predefined range of movements. The
data collection device is not diverse enough, which might caused
the trained models to deteriorate on smartphones with different
sensor characteristics. When the dataset is to be used in commercial
rather than research purposes, the developers might need to take
upon themselves to expand the data to other smartphone models
and other motion tracklet sets using our ArUco marker method.
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