
Systematization of Password Manager
Use Cases and Design Paradigms

James Simmons
jsimmo58@vols.utk.edu

The University of Tennessee
Knoxville, Tennessee, USA

Oumar Diallo
osouleym@vols.utk.edu

The University of Tennessee
Knoxville, Tennessee, USA

Sean Oesch
toesch1@vols.utk.edu

The University of Tennessee
Knoxville, Tennessee, USA

Scott Ruoti
ruoti@utk.edu

The University of Tennessee
Knoxville, Tennessee, USA

ABSTRACT
Despite efforts to replace them, passwords remain the primary
form of authentication on the web. Password managers seek to
address many of the problems with passwords by helping users
generate, store, and fill strong and unique passwords. Even though
experts frequently recommend password managers, there is lim-
ited information regarding their usability. To aid in designing such
usability studies, we systematize password manager use cases, iden-
tifying ten essential use cases, three recommended use cases, and
four extended use cases. We also systematize the system designs
employed to satisfy these use cases, designs that should be exam-
ined in usability studies to understand their relative strengths and
weaknesses. Finally, we describe observations from 136 cognitive
walkthroughs exploring the identified essential use cases in eight
popular managers. Ultimately, we expect that this work will serve
as the foundation for an explosion of new research into the usability
of password managers.

CCS CONCEPTS
• Security and privacy → Authentication; Usability in secu-
rity and privacy.

KEYWORDS
password managers, systematization, expert review

ACM Reference Format:
James Simmons, Oumar Diallo, Sean Oesch, and Scott Ruoti. 2021. Sys-
tematization of Password Manager Use Cases and Design Paradigms. In
Annual Computer Security Applications Conference (ACSAC ’21), Decem-
ber 6–10, 2021, Virtual Event, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3485832.3485889

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC ’21, December 6–10, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8579-4/21/12. . . $15.00
https://doi.org/10.1145/3485832.3485889

1 INTRODUCTION
Despite efforts to replace password, they remain the primary form
of authentication on the Web [2]. Still, passwords have many limita-
tions: for example, users create easily guessed passwords [5, 23] and
reuse the same password across accounts [4, 10, 20, 33]. Password
managers seek to address these problems by helping users generate
strong passwords (avoiding weak passwords), storing those pass-
words (encouraging unique passwords at every website), and filling
those passwords (ensuring passwords are only sent to the correct
website).

There have been several studies examining the usability of pass-
word managers [3, 8, 13, 16, 17, 21, 22, 29, 31]. However, as we
will show in this work, they do not cover the full range of use
cases supported by modern managers. Furthermore, most of these
studies focus on high-level evaluations of password management,
with few [3, 31] specifically identifying and studying the high-level
designs (hereafter referred to as design paradigms) used to create
password managers. This gap in the research literature means that
design paradigms’ relative strengths and weaknesses are unclear,
preventing an informed approach to creating password managers.

To help guide the design of usability studies that address these
gaps in the research, we systematize the use cases and design
paradigms for passwordmanagement. This systematization is guided
by a review of password management documentation, examining
12 desktop and 12 mobile password managers, and reviewing the
literature. Our systematization identifies seventeen use cases, cate-
gorized into essential use cases supported by all passwordmanagers,
recommended use cases supported by a plurality of managers, and
extended use cases supported by a minority of users or represent
non-critical use cases. We also identified 77 design paradigms that
can facilitate these use cases, 65 of which are built into deployed
managers, three proposed in the research literature, and nine rec-
ommended based on our experiences evaluating managers.

While it is certainly possible that a different set of authors would
end up with a somewhat different taxonomy, this is true of nearly
all systematizations published at top security conferences. Regard-
less, this systematization is sufficient to help guide future usability
studies exploring the usability of use cases that have not been
previously studied. Similarly, we expect that our enumeration of
design paradigms will make it easier for researchers to identify de-
sign paradigms to study and compare against each other in future
studies.

528

https://doi.org/10.1145/3485832.3485889
https://doi.org/10.1145/3485832.3485889
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3485832.3485889&domain=pdf&date_stamp=2021-12-06

ACSAC ’21, December 6–10, 2021, Virtual Event, USA James Simmons, Oumar Diallo, Sean Oesch, and Scott Ruoti

As a first step in this direction, we used our systematization to
perform cognitive walkthroughs of eight popular desktopmanagers,
evaluating seventeen tasks covering the essential and recommended
uses cases identified in our systematization. While not a replace-
ment for user studies, these cognitive walkthroughs help identify
low-hanging usability issues in the studiedmanagers [14, 34]. Obser-
vations from these walkthroughs include significant issues entering
credentials when autofill is unavailable, confusing interface designs,
and challenges linking credentials to multiple websites.

In short, our contributions are,

(1) Identification of password management use cases (§2).
We identify seventeen different sets of tasks (i.e., use cases)
that passwordmanagers support.We further categorize these
use cases based on their importance to the password manage-
ment experience. These use cases and their categorizations
identify which functionality needs to be examined in user
studies of password managers and can help inform the de-
sign of scenarios to use in those studies. Furthermore, we
demonstrate that the majority of these use cases have not
been previously studied.

(2) Enumeration of design paradigms found in password
managers and the research literature (§3). For each use
case, we identify the system designs (i.e., design paradigms)
used to support that use case. These design paradigms in-
clude those used in existing password managers, those pro-
posed in the research literature, and several novel paradigms
we propose in this work. This list of design paradigms can
inform the creation of future user studies that compare these
paradigms, revealing information about their relative advan-
tages and disadvantages.

(3) Initial exploration of usability challenges in password
managers using cognitive walkthroughs (§4). In this pa-
per, we demonstrate that most use cases, and by extension
design paradigms, have not previously been studied. As a
first step, we performed cognitive walkthroughs of eight
desktop password managers, completing tasks related to
the majority of the use cases. Observations from these walk-
throughs help identify low-hanging usability issues that need
to be addressed.

2 USE CASES
Understanding how managers are intended to be used—i.e., their
use cases—is critical in identifying what tasks should be studied in
usability studies. While at a high level, the password manager life
cycle can be described as supporting password generation, storage,
and autofill [19], this list of activities is overly vague and does not
fully cover the myriad ways in which modern password managers
are used. In this section, we address this gap by providing a complete
taxonomy of password manager use cases.

To identify use cases, we considered three sources. First, we
read the documentation for password managers, identifying what
companies consider to be use cases for their products. Second, we
examined the most popular and downloaded publicly available
desktop and mobile password managers (see Tables 1 and 2, respec-
tively), identifying uses cases not described in the documentation.

Manager Version
1Password X 1.17.0
Bitwarden 1.38.0
Chrome 7.1.0
Dashlane 6.1908.3
Edge 42.17134
Firefox 64
KeePassX 2.0.3
KeePassXC 2.3.4
LastPass 4.24.0
Opera 58.0.3135
RoboForm 8.5.6.6
Safari 12.0

Table 1: Examined desktop managers

Manager
iOS
Version

Android
Version

1Password 7.47 7.4
Bitwarden 2.3.1 2.2.8
Dashlane 6.2013.0 2.2006.3
Enpass 6.4.2 6.4.0
iCloud Keychain 13.3.1 —
Keeper 14.9.1 14.5.20
LastPass 4.8.0 4.1..4
Norton 6.8.78 6.5.2
RoboForm 8.9.2 8.10.4
SafeInCloud 20.0.1 20.2.1
Smart Lock — 9.0
StrongBox 1.47.4 —
Table 2: Examined mobile managers

Third, we reviewed the research literature (though this did not
reveal any use cases not discovered in the previous two sources).

In total, we identify seventeen use cases. We group these use
cases into three categories: essential (10), recommended (3), and
extended (4). In the remainder of this section, we describe each use
case in more depth. We also provide example tasks that could be
leveraged in a usability study to examine these use cases.

2.1 Essential Use Cases
Essential use cases focus on the core password management lifecy-
cle, and each is supported in some fashion by all the managers we
examined.1

(E1) Setup manager: Users need to install and configure their
password manager for first-time use. Sometimes this involves in-
stalling new software (an app or a browser extension), but it can
also include enabling functionality built into the browser or operat-
ing system. For most managers, it also includes setting up an online
account to support credential syncing.

1The one exception to this rule is the Edge browser manager, which does not support
password generation.

529

Systematization of Password Manager Use Cases and Design Paradigms ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Tasks to explore this use case include setting up a new manager
for the first time and setting it up on secondary devices.

(E2) Register credential: Users need to register credentials
(username and password) and associated domain within their man-
ager for later retrieval. Users may also need to link a credential with
multiple apps or domains (e.g., bitbucket.com and atlassian.com
use the same backend authentication system).

Tasks include directly registering a credential in the manager,
logging in with credentials not stored in the manager (triggering
autodetect mechanisms), or linking an already registered credential
to additional domains or apps.

(E3) Update credential:After registering credentials, users need
the ability to update those credentials. Updates can occur due to
account recovery (e.g., needing to access the account when the
manager was unavailable) or mandatory password resets.

Tasks include directly updating the credential in the manager
or logging in with credentials different than those stored in the
manager.

(E4) Remove credential: Users may wish to remove credentials
that they no longer wish to have stored by the manager. They may
also need to mass delete credentials if they are planning to migrate
away from the manager.

Tasks include manually removing an obsolete credential or hav-
ing the user migrate to a new manager.

(E5) Autofill credential:One key benefit of passwordmanagers
is that the manager can automatically enter and submit credentials,
obviating the need to enter credentials manually.

The primary task is to log in to a website/app. Furthermore,
tasks could explore situations where there are multiple credentials
associated with the website/app or multiple credentials for different
subdomains of a common parent domain.

(E6) Manually enter credential: Users need to enter creden-
tials on a range of devices, some of whichmay not have the manager
available—for example, entering Netflix credentials on a smart TV
or game console—or for which the user does not have a manager
installed—for example, a work computer or phone. In these cases,
they need to enter credentials stored in their manager manually.
Additionally, even if the manager is available, autofill can fail, ne-
cessitating the manual entry of credentials.

Tasks should include manually typing credentials as well as
copying and pasting credentials. The task of manually typing cre-
dentials can be conducted on a range of devices, with studies com-
paring the dynamics of entering different types of passwords—
i.e., human-generated, simple machine-generated, and complex
machine-generated—on these different devices.

(E7) Generate password: Generating credentials helps ensure
that users have strong and unique credentials. Credentials could
also be tailored to meet user needs, making them more memorable
or easy to enter on different devices.

Tasks that could prompt password generation include creat-
ing a new account updating an existing account, or creating a
PIN/password for a separate use case (e.g., generating a PIN for a
credit card).

(E8) Sync credentials: Users often have multiple devices where
they need to access stored credentials, such as desktops, laptops,
tablets, and phones. Managers support this by allowing users to
synchronize credentials between these devices.

Tasks include setting up a secondary device or creating/updating
a credential on one device then immediately using it on another
device.

(E8) Lock manage and (E9) Unlock manager: Users may need to
lock their manager to prevent other users of their computer from
accessing their credentials—for example, before letting a friend
borrow their laptop. They may also automatically set their manager
to deactivate after a set period or when some event occurs, such
as closing the browser. Eventually, they will need to reactivate the
manager before continuing to use it.

For each use case, there is a singular task to deactivate and
activate the manager, respectively. Studies could also explore what
situations would cause a user to feel the need to deactivate their
manager. Similarly, longitudinal studies could seek to understand
user perceptions of autolock by asking users about it during the
unlock process.

2.2 Recommended Use Cases
Recommended use cases identify use cases that we believe—based
on our review of the literature and personal experience—significantly
improve the usability and utility of managers. Unlike the essential
use cases, the uses cases are not supported by all managers.

(R1) Audit credentials: Auditing stored credentials can help
users identify reused passwords, weak passwords, or credentials
included in a password leak (commonly referred to as a “health
check”). This service is beneficial for passwords manually created
and stored by the user, as these are much more likely to be weak or
reused than generated passwords.

Tasks include asking users to periodically examine their creden-
tials or check credentials based on news of a password leak. When
exploring this use case, it is essential to consider the case where
the user stores primarily human-generated credentials [8, 16, 21],
causing the credential audits to return a large number of results.

(R2) Modify settings: Users modify settings to customize the
manager for themselves and to ensure secure behavior. For example,
Oesch and Ruoti [19] found that in some managers, users need to
manually require user interaction before autofill to prevent a range
of credential scraping and XSS attacks.

Tasks include updating settings as part of the initial setup or
disabling specific unsafe settings. Importantly, this latter should
also explore how users find relevant settings, understand what they
need to do, and ultimately change those settings.

(R3) Recover access: If users lose access to their password man-
ager (e.g., forget their master password), this represents a significant
challenge as they will lose access to all their accounts and need to
reset those passwords (where that is even possible). Managers can
provide options to help users recover access to their accounts in
these situations. Note, the password manager’s security will only
be as good as the security of the recovery mechanism.

530

ACSAC ’21, December 6–10, 2021, Virtual Event, USA James Simmons, Oumar Diallo, Sean Oesch, and Scott Ruoti

The singular task is to recover access when access has been lost.
In practice, it may be necessary to study this property in a longitu-
dinal study as many of the recovery mechanisms we observed do
not work in laboratory settings.

2.3 Extended Use Cases
Extended uses cases include situationally useful use cases, but for
which we find no evidence that they are widely used in practice.

(X1) Migrate manager: Over time, users may switch between
managers, such as moving from a browser-based manager to a
more feature-rich and secure extension-based manager. In this case,
they will need to export credentials from their old manager and
then import them into the new manager. They will also need to
discontinue the use of their old manager safely.

Tasks include migrating to a new tool or creating a backup of the
credential vault (effectively migrating from the current manager to
an offline store).

(X2) Share credentials: Users may need to share credentials
with each other—for example, family members that share access to
common video services like Netflix or Disney+. While this can be
done by manually sending credentials across secondary commu-
nication channels (e.g., email), this use case focuses on manager-
supported sharing.

Tasks include sharing a credential as well as updating, removing,
and using shared credentials.

(X3) Manage identities: Managers can allow credentials to be
segmented between multiple identities, only allowing access to
the credentials for the currently select identity. Segmentation can
include allowing a single user to separate credentials based on
context—for example, one identity for work and one for home. Al-
ternatively, multiple users could use this to share a single password
manager account—for example, a wife and husband who only want
to pay for one subscription to a password manager. Within this
use case, we include the creation and modification of identities and
switching between identities.

Tasks include creating initial identities to separate credentials,
adding/removing identities, moving credentials between identities,
and switching identities to log in to various websites/apps.

(X4) Store sensitive data: In addition to storing credentials,
users may need to store other sensitive information such as ad-
dresses and payment information. Storage could include unstruc-
tured data (i.e., storing arbitrary strings) or structured data (e.g.,
phone number, address).

Tasks include entering new sensitive information, updating that
information, viewing that information, and filling that information
into forms.

2.4 Coverage in Prior Work
We analyzed prior work to determine which use cases they had
considered in their studies. For the software security research, most
research has focused on the security of (E5) Autofill credential [9, 15,
18, 19, 30, 32], though some have also considered (X4) Store sensitive
data [11, 15, 19] and (E7) Generate password [19]. Interviews of
password manager users [8, 21, 22] touch on a wide variety of
topics, but the analysis of this data primarily focuses on three

uses cases: (E2) Register credential, (E5) Autofill credential, and (E7)
Generate password.

Finally, usability studies cover the broadest range of use cases,
with their coverage summarized in Table 3.While there is consistent
coverage of (E2) Register credential, (E3) Update credential, and (E5)
Autofill credential, coverage for the remaining use case is either
rare—three essential use cases are only covered by a single study—
or completely absent—including three essential use cases. This
lack of coverage clearly highlights a need for additional usability
studies exploring the understudied use cases. In particular, there is
a critical need for studies examining (E6) Manually enter credential,
(E7) Generate password, (E8) Sync credentials, (R1) Audit credentials,
and (R3) Recover access.

3 DESIGN PARADIGMS
In the last section, we established the need for additional studies of
password manager use cases. However, new studies will be most
impactful if they compare and contrast the ways—hereafter referred
to as design paradigms)—in which these use cases can be satisfied.
Comparing design paradigms makes it possible to identify their
relative strengths and weaknesses, forming the scientific basis for
designing and implementing modified and new password managers.
As an example of the importance of studying design paradigms, we
note that while the usability problems with secure email were long
known [27, 34], it was not until research focused on comparing
and contrasting design paradigms [1, 24, 25] that secure email was
finally made usable [26].

To help with the creation of such studies, we set out to system-
atize the design paradigms. This systematization was done by thor-
oughly analyzing the designs used in 12 popular desktop managers
and 12 popular mobile managers (see Tables 1 and 2, respectively).
We also reviewed the literature to identify any design paradigms
discussed there that might not be reflected in deployed managers.
When identifying design paradigms, we are primarily concerned
with the high-level design, not individual implementation details
for each manager.

Tables 4 and 5 summarized the design paradigms identified in
evaluation. It also includes a mapping showing which paradigms
are supported by the eight popular desktop managers evaluated
in our cognitive walkthroughs (see §4). This mapping helps to
demonstrate which paradigms are widely supported, which are
supported by a small number of managers, and which paradigms
often appear together. In the remainder of this section, we discuss
these paradigms in greater depth.

3.1 Essential Use Case Paradigms
(E1) Setup manager: There are three types of password managers,
each of which use a different setup paradigm: extension-based—(P2)
install an extension, thick client—(P1) install an app, and browser-
based—(P3) built into the browser. The most common setup para-
digm for extension-based and thick client managers is installing an
extension; however, this switches to installing an app on mobile
devices. Some desktop managers support installing both an app
and extension, providing additional features and security if both
setup paradigms are used. In some cases, the password manager
is (P4) built into the operating system, with a browser serving as

531

Systematization of Password Manager Use Cases and Design Paradigms ACSAC ’21, December 6–10, 2021, Virtual Event, USASystematization of Password Manager Use Cases and Design Paradigms ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Authors Year Ci
ta
tio

n
(E
1)

Se
tu
p
m
an
ag
er

(E
2)

Re
gi
st
er

cr
ed
en
tia

l
(E
3)

Up
da
te

cr
ed
en
tia

l
(E
4)

Re
m
ov
e
cr
ed
en
tia

l
(E
5)

Au
to
fil
lc
re
de
nt
ia
l

(E
6)

M
an
ua
lly

en
te
rc

re
de
nt
ia
l

(E
7)

Ge
ne
ra
te

pa
ss
w
or
d

(E
8)

Sy
nc

cr
ed
en
tia

ls
(E
9)

Lo
ck

m
an
ag
er

(E
10
)U

nl
oc
k
m
an
ag
er

(R
1)

Au
di
tc
re
de
nt
ia
ls

(R
2)

M
od

ify
se
tti
ng

s
(R
3)

Re
co
ve
ra

cc
es
s

(X
1)

M
ig
ra
te

m
an
ag
er

(X
2)

Sh
ar
e
cr
ed
en
tia

ls
(X
3)

M
an
ag
e
id
en
tit
ie
s

(X
4)

St
or
e
se
ns
iti
ve

da
ta

Se
cu
rit
y

Gasti and Rasmussen 2012 [11] ✔

Fahl et al. 2013 [9] ✔

Li et al. 2014 [15] ✔ ✔

Silver et al. 2014 [30] ✔

Stock and Johns 2014 [32] ✔

Oesch and Ruoti 2020 [19] ✔ ✔ ✔

Oesch et al. 2021 [18] ✔

In
te
rv
ie
w Fagan et al. 2017 [8] ✔ ✔ ✔

Pearman et al. 2019 [21] ✔ ✔ ✔

Ray et al. 2021 [22] ✔ ✔ ✔ ✔

Us
ab
ili
ty

Lyastani et al. 2017 [16] ✔ ✔ ✔ ✔

Seiler-Hwang et al. 2019 [29] ✔ ✔ ✔ ✔ ✔

Huaman et al. 2021 [13] ✔ ✔ ✔

Chiasson et al. 2006 [3] ✔ ✔ ✔ ✔

McCarney et al. 2012 [17] ✔ ✔ ✔

Stobert et al. 2020 [31] ✔ ✔ ✔ ✔

Table 3: Use cases examined in prior usability studies

managers is installing an extension; however, this switches to
installing an app on mobile devices. Some desktop managers
support installing both an app and extension, providing additional
features and security if both setup paradigms are used. In some
cases, the password manager is (P4) built into the operating system,
with a browser serving as an interface for that password manager
(e.g., macOS Keychain and Safari).

Finally, a manager often (P5) requires a cloud account to be created
and used to access the password manager or sync passwords. In
browsers, this is done using the same account used to log in to the
browser. While browsers do support using the password manager
without a linked account, this will prevent credential syncing and
may disable other features.

(E2) Register credential: All managers support (P1) manual
registration of credentials within the manager’s UI, with most also
able to (P2) auto-detect registration and offer to save the detected
credential. On desktop, this detection is primarily limited to use
with websites in a browser, whereas on mobile, detection works in
both browsers and apps. Stobert et al. [31] proposed and tested a
design paradigm where an (P3) internal registration tool can create
online accounts, though this has not been implemented in any
deployed manager. Finally, some managers allow users to (P4) link
additional domains or apps to a credential, addressing the case where
the same authentication backend is used bymultiple domains/apps—
for example, LAN websites using a common LDAP backend. This

linking is helpful to avoid credentials being marked as reused in a
credential audit.

(E3) Update credential: As with registering credentials,
managers support (P1) manual update and may be able to
(P2) auto-detect update as well. Some managers also provide an
(P3) internal update tool that provides a one-click method for a user
to update their credentials, both changing the credential in the
manager and at the website/app.

(E4) Remove credential: All managers support (P1) manual
removal of credentials. Unlike registration and updating
credentials, managers do not support (E4) Remove credential,
though it is easy to imagine how such a feature could be
implemented. Stobert et al. [31] proposed and tested a design
paradigm where an (P3) internal registration tool can delete online
accounts, though this has not been implemented in any deployed
manager. Some managers also allow users to entirely (P4) wipe the
credential vault, allowing them to discontinue usage of the
manager quickly.

(E5) Autofill credential: One key benefit of password
managers is that they allow the manager to fill the credentials,
with all managers supporting (P1) autofill w/ interaction with many
also supporting the less secure (P2) autofill w/o
interaction [15, 18, 19, 32]. Some managers also provide an
(P3) internal login tool that will open the appropriate website and

Table 3: Use cases examined in prior usability studies

an interface for that password manager (e.g., macOS Keychain and
Safari).

Finally, amanager often (P5) requires a cloud account to be created
and used to access the password manager or sync passwords. In
browsers, this is done using the same account used to log in to the
browser. While browsers do support using the password manager
without a linked account, this will prevent credential syncing and
may disable other features.

(E2) Register credential: All managers support (P1) manual
registration of credentials within the manager’s UI, with most also
able to (P2) auto-detect registration and offer to save the detected
credential. On desktop, this detection is primarily limited to use
with websites in a browser, whereas on mobile, detection works in
both browsers and apps. Stobert et al. [31] proposed and tested a
design paradigm where an (P3) internal registration tool can create
online accounts, though this has not been implemented in any
deployed manager. Finally, some managers allow users to (P4) link
additional domains or apps to a credential, addressing the case where
the same authentication backend is used bymultiple domains/apps—
for example, LAN websites using a common LDAP backend. This
linking is helpful to avoid credentials being marked as reused in a
credential audit.

(E3) Update credential: As with registering credentials, man-
agers support (P1) manual update andmay be able to (P2) auto-detect
update as well. Some managers also provide an (P3) internal update
tool that provides a one-click method for a user to update their

credentials, both changing the credential in the manager and at the
website/app.

(E4) Remove credential: All managers support (P1) manual re-
moval of credentials. Unlike registration and updating credentials,
managers do not support (E4) Remove credential, though it is easy
to imagine how such a feature could be implemented. Stobert et
al. [31] proposed and tested a design paradigm where an (P3) inter-
nal registration tool can delete online accounts, though this has not
been implemented in any deployed manager. Some managers also
allow users to entirely (P4) wipe the credential vault, allowing them
to discontinue usage of the manager quickly.

(E5) Autofill credential: One key benefit of password man-
agers is that they allow the manager to fill the credentials, with
all managers supporting (P1) autofill w/ interaction with many also
supporting the less secure (P2) autofill w/o interaction [15, 18, 19, 32].
Some managers also provide an (P3) internal login tool that will
open the appropriate website and complete the login operation. On
mobile managers, this commonly happens within a custom browser
built into the manager.

When multiple credentials are shown are linked to a given do-
main/app, the manager shows a selection dialog for users to select
which credentials to use. When matching domains with credentials,
some managers (P4) separate subdomains from each other, where
others (P5) group subdomains together as a single domain.

Ruoti and Seamons [28] propose using a trusted pathway to
improve the security of filled credentials. While these types of

532

ACSAC ’21, December 6–10, 2021, Virtual Event, USA James Simmons, Oumar Diallo, Sean Oesch, and Scott RuotiACSAC ’21, December 6–10, 2021, Virtual Event, USA James Simmons, Oumar Diallo, Sean Oesch, and Scott Ruoti

Desktop Mobile
Use Case Paradigm Count Percent Count Percent

(E1-P1) Install an app 6 50% 10 83%
(E1-P2) Install an extension 6 50% 0 0%
(E1-P3) Built into the browser 4 33% 0 0%
(E1-P4) Built into the operating system 1 8% 2 17%

(E1) Setup manager

(E1-P5) Requires a cloud account 7 58% 11 92%
(E2-P1) Manual registration 9 75% 11 92%
(E2-P2) Auto-detect registration 11 92% 10 83%
(E2-P3) Internal registration tool † 0 0% 0 0%(E2) Register credential

(E2-P4) Link additional domains or apps 3 25% 2 17%
(E3-P1) Manual update 12 100% 11 92%
(E3-P2) Auto-detect update 11 92% 1 8%(E3) Update credential
(E3-P3) Internal update tool 3 25% 0 0%
(E4-P1) Manual removal 12 100% 11 92%
(E4-P2) Auto-detect removal ∗ 0 0% 0 0%
(E4-P3) Internal removal tool † 0 0% 0 0%(E4) Remove credential

(E4-P4) Wipe the credential vault 4 33% 0 0%
(E5-P1) Autofill w/ interaction 11 92% 11 92%
(E5-P2) Autofill w/o interaction 6 50% 1 8%
(E5-P3) Internal login tool 5 42% 11 92%
(E5-P4) Separate subdomains 5 42% 3 25%
(E5-P5) Group subdomains 7 58% 0 0%

(E5) Autofill credential

(E5-P6) Relies on trusted path † 0 0% 0 0%
(E6-P1) Show stored credentials 11 92% 11 92%
(E6-P2) Obfuscate password characters 11 92% 10 83%(E6) Manually enter credential
(E6-P3) Distinguish password characters 2 17% 7 58%
(E7-P1) Manual generation 8 67% 10 83%
(E7-P2) Auto-detect and generate 8 67% 1 8%
(E7-P3) Manually set the PCP 7 58% 10 83%
(E7-P4) Auto-detect the PCP 1 8% 0 0%

(E7) Generate password

(E7-P5) Download the PCP ∗ 0 0% 0 0%
(E8-P1) Fully automated sync 10 83% 10 83%
(E8-P2) Manually copy the vault file 2 17% 0 0%(E8) Sync credentials
(E8-P3) Partially automated sync ∗ 0 0% 0 0%
(E9-P1) Manual lock 8 67% 10 83%
(E9-P2) Timed auto-lock 8 67% 10 83%(E9) Lock manager
(E9-P3) Logout of the browser to lock 6 50% 11 92%
(E10-P1) Unlock with master password 7 58% 10 83%
(E10-P2) Unlock with biometric 2 17% 10 83%
(E10-P3) Unlock with 2FA 9 75% 5 42%
(E10-P4) Log into browser to unlock 4 33% 0 0%

(E10) Unlock manager

(E10-P5) Log into OS to unlock 1 8% 1 8%

∗—Novel paradigm introduced in this paper †—Paradigm proposed in the research literature
Counts are of the number of managers that we evaluated which implement these design paradigms.

Table 4: Password Manager Design Paradigms—Essential Use Cases

complete the login operation. On mobile managers, this commonly
happens within a custom browser built into the manager.

When multiple credentials are shown are linked to a given
domain/app, the manager shows a selection dialog for users to
select which credentials to use. When matching domains with
credentials, some managers (P4) separate subdomains from each

other, where others (P5) group subdomains together as a single
domain.

Ruoti and Seamons [28] propose using a trusted pathway to
improve the security of filled credentials. While these types of
pathways have been explored for browser-based authentication [6,
7], they have never been integrated with a password manager.

Table 4: Password Manager Design Paradigms—Essential Use Cases

pathways have been explored for browser-based authentication [6,
7], they have never been integrated with a password manager.

(E6) Manually enter credential: To be able to enter credentials
manually, it is critical that managers (P1) show stored credentials to
users, allowing them to type those credentials elsewhere as well
as copy and paste the credentials. Many managers (P2) obfuscate

password characters displayed credentials, requiring users to click
a button to reveal the plaintext credential. A more helpful design
paradigm is to (P3) distinguish password characters when displaying
the password—for example, highlight digits one color and characters
another to help distinguish between 0 and O or 1 and l—making it
easier to enter complex passwords correctly.

533

Systematization of Password Manager Use Cases and Design Paradigms ACSAC ’21, December 6–10, 2021, Virtual Event, USA

(E7) Generate password: Most managers support (P1) manual
generation of passwords, though some also (P2) auto-detect and
generate and fill passwords when needed during account creation.
In terms of identifying the password composition policy (PCP),
most managers allow users to (P3) manually set the PCP. Uniquely,
Chrome attempts to (P4) auto-detect the PCP, though success is
limited.While not supported by anymanagers, a paradigm allowing
managers to (P5) download the PCP for websites/apps would help
ensure that generators only create compliant passwords, improving
their usability.

(E8) Sync credentials: Most managers provide (P1) fully auto-
mated sync of the password vault (i.e., credential store). For security
reasons, several managers eschew the use of cloud-stored vaults,
instead require users to (P2) manually copy the vault file between
devices to sync the managers. For these security-conscious users,
we propose a new paradigm providing a (P3) partially automated
sync, wherein (a) the credential vault is encrypted with a key gener-
ated on the source device, (b) the encrypted vault is upload online
(temporarily), (c) the destination device downloads the encrypted
vault, and (d) the user enters the encryption key on the new device
(e.g., scanning a QR code). We believe that the proposed paradigm
satisfies the security requirements of non-cloud-based managers
while being significantly more usable than relying on exporting
and importing the vault file (even when that process is aided by
other sync software such as Dropbox).

(E9) Lock manager: All non-browser-based managers require
users to perform a (P1) manual lock of the password vault, prevent-
ing access to the credentials stored there until it is unlocked. These
managers commonly also supported a (P2) timed auto-lock that
triggers after some period of inactivity. Browser-based managers
do not provide manual or timed lockouts, instead requiring users
to (P3) logout of the browser to lock the vault.

(E10) Unlock manager: Users have a variety of methods for
unlocking their password vault. Most commonly, users (P1) unlock
with master password—a single, strong password or passphrase
chosen by the user. Some managers also allow the user to (P2)
unlock with biometric in place of themaster password. For additional
security, managers call also require users to (P3) unlock with 2FA.
For browser-based and OS-based managers (i.e., KeyChain), users
need only (P4) log into browser to unlock the vault or (P5) log into
OS to unlock the vault, respectively.

3.2 Recommended Use Case Paradigms
(R1) Audit credentials: Credential audits (i.e., health checks) are
intended to help users monitor the security of their stored creden-
tials. They can (P1) identify weak passwords, (P2) identify reused
passwords, (P3) identify old passwords,2 and (P4) identify compro-
mised passwords, helping users address the most significant issues
with their passwords. We also propose a design paradigm to (P5)
identify unused passwords, helping users identify online accounts

2Old and weak credentials are more likely to be compromised and changing old
credentials can remove access to an attacker if the credential had been previously
compromised. Still, the importance of flagging old credentials is unclear and seems to
run counter to updated NIST guidelines on password expiration. As such, we believe
more research is needed on this topic.

that they no longer use and which could be deleted to reduce the
user’s online footprint and help protect their privacy.

Managers can require users to manually trigger the credential
audit and (P6) display a summary of audit results when the audit is
finished. Alternatively, managers can be continually running audit
and (P7) prompt with audit results with results as they are identified,
though currently, this is only done for compromised credentials
in Chrome. As some users may be overwhelmed with the number
of results in an audit—for example, a user that just adopted the
manager and uploaded all their human-generated passwords to the
vault—and so we propose a design paradigm to (P8) prioritize audit
recommendations, preventing users from being overwhelmed and
helping them focus on the most important items.

(R2) Modify settings: To increase the usability and correct us-
age of settings [25], many managers provide (P1) inline setting
documentation, including details on how they work and the se-
curity implications of changing them.3 Managers may also pro-
vide (P2) searchable settings allowing users to find relevant settings
quickly. We suggest an additional paradigm that would (P3) au-
dit settings, helping users identify ways they could further secure
their manager (e.g., disabling password autofill without user inter-
action [15, 18, 19, 30, 32]).

(R3) Recover access: For many managers, if they have forgotten
or lost access to their master password or other authentication
factors, they cannot regain access to their vault. This sacrifices us-
ability (people do forget and lose important things) to significantly
improve the security of stored credentials. One way to address this
problem is to allow users to print or otherwise store in a safe place
a cryptographically secure (P1) recovery code that can be used to
unlock the vault and allow users to reset their master password.
Alternatively, as browser-based managers are tied to the browser’s
online account, they can use the browser’s online account recovery
mechanisms to restore access to the manager: (P2) email/Phone-
based recovery and (P3) customer service-based recovery.

3.3 Extended Use Case Paradigms
(X1) Migrate manager: When migrating between managers, it is
helpful if users can bring over their old credentials. This migration
can be done by first performing a (P1) manual export of credentials
in one manager and then a (P2) manual import of credentials in
the second manager. Users can also leverage manual export and
import of credentials to allow them to create offline backups of their
vault. To automate this process, the destination manager detects the
source manager and executes an (P3) automatic import of credentials
from the source manager. We also propose a paradigm where the
new manager would (P4) disable the prior manager, preventing it
from interfering with the new manager.

(X2) Share credentials: Users can share their credentials using
various standard channels (e.g., email, texting, verbally). However,
managers can also support sharing by allowing users to (P1) share
credentials with other users of the samemanager.While not currently
supported, it is easy to imagine a design paradigm where users

3Managers also provide traditional, external documentation. Still, as this documenta-
tion is frequently ignored by users [25] and because it is not a part of the manager, we
choose not to include it as a design paradigm.

534

ACSAC ’21, December 6–10, 2021, Virtual Event, USA James Simmons, Oumar Diallo, Sean Oesch, and Scott RuotiACSAC ’21, December 6–10, 2021, Virtual Event, USA James Simmons, Oumar Diallo, Sean Oesch, and Scott Ruoti

Desktop Mobile
Use Case Paradigm Count Percent Count Percent

(R1-P1) Identify weak passwords 6 50% 7 58%
(R1-P2) Identify reused passwords 5 42% 8 67%
(R1-P3) Identify old passwords 2 17% 0 0%
(R1-P4) Identify compromised passwords 6 50% 8 67%
(R1-P5) Identify unused passwords ∗ 0 0% 0 0%
(R1-P6) Display a summary of audit results 6 50% 8 67%
(R1-P7) Prompt with audit results 2 17% 0 0%

(R1) Audit credentials

(R1-P8) Prioritize audit recommendations ∗ 0 0% 0 0%
(R2-P1) Inline setting documentation 7 58% 8 67%
(R2-P2) Searchable settings 4 33% 1 8%(R2) Modify settings
(R2-P3) Audit settings ∗ 0 0% 3 25%
(R3-P1) Recovery code 2 17% 0 0%
(R3-P2) Email/Phone-based recovery 4 33% 2 17%(R3) Recover access
(R3-P3) Customer service-based recovery 4 33% 0 0%

(X1-P1) Manual export of credentials 11 92% 2 17%
(X1-P2) Manual import of credentials 11 92% 4 33%
(X1-P3) Automatic import of credentials 6 50% 0 0%(X1) Migrate manager

(X1-P4) Disable the prior manager ∗ 0 0% 0 0%
(X2-P1) Share credentials with other users 5 42% 6 50%
(X2-P2) Share credentials with non-users ∗ 0 0% 2 17%(X2) Share credentials
(X2-P3) Apply access control 5 42% 6 50%
(X3-P1) Manage identities 3 25% 2 17%(X3) Manage identities (X3-P2) Protect an identity with a PIN ∗ 0 0% 0 0%
(X4-P1) Store unstructured data 8 67% 10 83%
(X4-P2) Store structured data 11 92% 11 92%(X4) Store sensitive data
(X4-P3) Autofill for structured data 9 75% 11 92%

∗—Novel paradigm introduced in this paper †—Paradigm proposed in the research literature
Counts are of the number of managers that we evaluated which implement these design paradigms.

Table 5: Password Manager Design Paradigms—Recommended and Extended Use Cases

the second manager. Users can also leverage manual export and
import of credentials to allow them to create offline backups of their
vault. To automate this process, the destination manager detects the
source manager and executes an (P3) automatic import of credentials
from the source manager. We also propose a paradigm where the
new manager would (P4) disable the prior manager, preventing it
from interfering with the new manager.

(X2) Share credentials: Users can share their credentials using
various standard channels (e.g., email, texting, verbally). However,
managers can also support sharing by allowing users to (P1) share
credentials with other users of the samemanager.While not currently
supported, it is easy to imagine a design paradigm where users
(P2) share credentials with non-users—for example, by sending non-
users a link that lets them access a cloud portal with the stored
credentials. If the recipient uses a password manager, it could also
be designed to ingest these URLs and make them directly accessible
in the recipient’s vault, even though the two users have different
managers. The benefit of sharing credentials using the manager is
that it allows users to (P3) apply access control to shared credentials.

(X3) Manage identities: Managers can allow users to
(P1) manage identities, named groupings of credentials with only
credentials from the currently selected identity being accessible in
the manager’s interface. To help increase the security of
credentials stored associated with identities, we propose a design
paradigm that would allow users to (P2) protect an identity with a
PIN. For example, this could be used on a family password
manager account to segment and protect credentials related to
shopping from accounts kids can access.

(X4) Store sensitive data: In addition to credentials, managers
can allow the users to (P1) store unstructured data (e.g., text blobs)
or (P2) store structured data (e.g., phone numbers, addresses). For
structured data, managers can also support (P3) autofill for
structured data for websites and apps.

3.4 Discussion
In this subsection, we identified a large number of design paradigms
(77) that have either been used in deployed managers (65), detailed
in the research literature (3), or which we recommended based
on our analysis of the existing paradigms (9). While we believe

Table 5: Password Manager Design Paradigms—Recommended and Extended Use Cases

(P2) share credentials with non-users—for example, by sending non-
users a link that lets them access a cloud portal with the stored
credentials. If the recipient uses a password manager, it could also
be designed to ingest these URLs and make them directly accessible
in the recipient’s vault, even though the two users have different
managers. The benefit of sharing credentials using the manager is
that it allows users to (P3) apply access control to shared credentials.

(X3) Manage identities:Managers can allow users to (P1) man-
age identities, named groupings of credentials with only credentials
from the currently selected identity being accessible in the man-
ager’s interface. To help increase the security of credentials stored
associated with identities, we propose a design paradigm that would
allow users to (P2) protect an identity with a PIN. For example, this
could be used on a family password manager account to segment
and protect credentials related to shopping from accounts kids can
access.

(X4) Store sensitive data: In addition to credentials, managers
can allow the users to (P1) store unstructured data (e.g., text blobs) or

(P2) store structured data (e.g., phone numbers, addresses). For struc-
tured data, managers can also support (P3) autofill for structured
data for websites and apps.

3.4 Discussion
In this subsection, we identified a large number of design paradigms
(77) that have either been used in deployed managers (65), detailed
in the research literature (3), or which we recommended based
on our analysis of the existing paradigms (9). While we believe
this list of paradigms to be complete, we recognize that it will
not necessarily stay that way as researchers study these existing
paradigms and then develop and study new paradigms. We do
not view this as a flaw with this research artifact but rather as its
intended purpose (i.e., to spur new research into paradigms).

Critically, we note that while there have been usability studies
of password managers exploring a handful of these paradigms,
the majority of paradigms have not been critically examined in
the research. Even when paradigms have been studied, they have
not been studied comparatively, leaving their relative strengths
and weaknesses unclear. For all these reasons, we expect that this

535

Systematization of Password Manager Use Cases and Design Paradigms ACSAC ’21, December 6–10, 2021, Virtual Event, USA

paradigm list can spur a substantial body of impact research into
the usability and utility of password managers.

There are no mutually exclusive paradigms, though it might not
be possible to use both simultaneously in some cases. For exam-
ple, it is not possible to (P4) separate subdomains and (P5) group
subdomains, though a manager could allow users to select which
they prefer. However, if a manager supported too many paradigms
simultaneously, this would likely lead to confusion. Similarly, some
paradigms might have unexpected interactions. More research is
needed to identify the ideal set of default paradigms, select the
paradigms that should be offered as options, and determine which
should not be used together.

Comparing the percentage of managers that implement a para-
digm on mobile and desktop, we find that differences are primarily
attributable to the types of managers examined on each. For ex-
ample, we do not examine the built-in managers for any mobile
browsers. Still, we observed a couple of interesting points when
comparing paradigm usage between desktop and mobile implemen-
tations for the same manager. First, we find that mobile managers
often have fewer features than their desktop counterparts. Second,
when both the desktop and mobile managers share a design par-
adigm, the implementation is usually identical, with little to no
customization made to address mobile devices’ unique constraints
and abilities. We hypothesize that these two issues help explain
the poor usability of mobile password managers found by Seilew-
Hwang et al. [29]. Future research is needed to investigate how
existing paradigms can be better tailored to support mobile apps or
whether new, mobile-specific paradigms are needed.

4 COGNITIVE WALKTHROUGHS
As part of our systematization of password manager use cases and
design paradigms, we conduct an initial assessment of the strengths
and weaknesses of the identified paradigms. We do this using by
conducting cognitive walkthroughs [14], a form of expert review,
for eight popular desktop managers: browser-based (Chrome, Edge,
Firefox, Safari), extension-based (1PasswordX, Dashlane, LastPass),
and app-based (KeePass). We evaluate these managers across 17
different tasks (a total of 8 ∗ 17 = 136 evaluations), covering all the
essential and recommended use cases identified in our systematiza-
tion. Full descriptions of each task and its associated use cases are
given in Appendix A.

We choose to investigate desktop managers as there have not
been prior usability studies of the user interface for desktop man-
agers. We decided to conduct cognitive walkthroughs for two rea-
sons. First, cognitive walkthroughs are highly effective at identi-
fying low-hanging usability issues [34]. Second, cognitive walk-
throughs allow for exploring a much larger collection of tools and
use cases than would be feasible in most user studies—for example,
we evaluated eight managers across 17 tasks, far exceeding the
number of systems and tasks tested in most user studies.

In the remainder of this section, we detail our methodology,
share observations and lessons learned from the walkthroughs, and
identify topics needing further research.

4.1 Methodology
Cognitive walkthroughs are a form of expert review in which a
usability expert completes a given task with an assigned tool. While

completing this task, the evaluator will role-play, responding to
the tool’s interface and taking actions only as the role-played user
would [14]. As they complete the tasks, the evaluators apply a
think-aloud protocol, describing what they see, identifying how
they discover features, and describing any confusion they encounter
as they complete the task. Finally, the expert evaluators would be
debriefed periodically during this process by the entire research
team, allowing for further probing of their experiences.

In this work, two members of our research team (the first two
authors) conducted these reviews. Both had received training on
conducting cognitive walkthroughs, and all walkthroughs were
reviewed by the research team, ensuring their quality. While com-
pleting tasks, the evaluators were instructed to role-play mildly
technical users (roughly what could be expected of a college grad-
uate). While this role is far from representative of all users, we
believe it roughly represents the demographic targeted by most
managers.

For all managers but Safari, tasks were completed on a virtual
machine runningWindows 10. The virtual machines used snapshots
to ensure a consistent starting state for evaluating each manager
and task. For Safari, we used a MacBook Air running macOS 10.15,
taking care to reset its state between each set of tests. Walkthroughs
were recorded (audio and video) and used as part of the analysis of
results.

4.2 Observations
Below we discuss observations and lessons learned from the cogni-
tive walkthroughs.

4.2.1 Using Credentials on Secondary Devices. In one task, evalua-
tors needed to enter a generated password stored in their desktop
manager into a website on a mobile device ((E6) Manually enter
credential). Due to the difficulty of reading and entering these pass-
words, they noted that this was the most difficult and annoying of
all the tasks they completed. Only 1Password X aided this process,
highlighting characters based on character class ((E6-P3) Distinguish
password characters), making it easier to read the password to be
entered on the mobile device. Even in this case, entering generated
passwords was still challenging due to the use of symbols, which
require additional effort to enter on mobile keyboards.

At first glance, it might seem possible to address these challenges
by having the user install their manager on the mobile device.While
this approach works in that situation, it is impossible to install a
password manager on the myriad of users of smart devices and
IoT devices where users need to enter credentials. Similarly, users
also need to enter passwords on shared computers where it is not
feasible to install the manager.

As such, there is a need for more research to address this use case.
Research could explore why more devices do not provide password-
alternative authentication mechanisms, such as providing users
with a login URL that they can visit on their phone (which does
support a manager) to log in to the device. Also, research could
investigate password generation that factors in the devices where
the password will be entered, making it easier to enter generated
passwords. This research could be modeled after and extend the
work of Greene et al. [12], which examined generating passwords
that were easier to enter on mobile keyboards.

536

ACSAC ’21, December 6–10, 2021, Virtual Event, USA James Simmons, Oumar Diallo, Sean Oesch, and Scott Ruoti

4.2.2 Fatiguing Setup. When setting up the managers, evaluators
found the extension-based managers to have the most complicated
setup process ((E1) Setup manager). In addition to downloading an
extension or desktop app ((E1-P1) Install an app or (E1-P2) Install
an extension), the evaluators also need to register an online account
((E1-P5) Requires a cloud account) and create their initial credential
store. This process can take an extended period, with the evaluators
noting fatigue during this process. Such fatigue could turn some
users away from completing the setup of extension-based managers.
This dropout would be problematic, as extension-based managers
are more secure than browser-based managers [19], with anything
that inhibits migration from browser-based managers to extension-
based managers being problematic. While it is unclear exactly how
to solve this problem, it deserves more attention in future usability
studies.

4.2.3 Credential Linking Challenges. When evaluators completed
a credential audit ((R1) Audit credentials), several passwords were
marked as reused. However, some of these passwords were not
reused, it was just the case that websites at different domains used
the same authentication backend (e.g., atlassian.com and bitbucket.
org) and thus had the same stored password. Such false positives
in an audit are disadvantageous, as not only were they frustrating
to the evaluators, but they could also cause users to not trust audit
results and overlook actual issues. This issue could be resolved in the
two managers that supported the (E2-P4) Link additional domains
or apps paradigm, though finding this functionality was difficult
and it was hard to use. This paradigm needs to be implemented
more widely and surfaced to users more effectively.

4.2.4 Interface Designs. While completing tasks, evaluators were
consistently disappointed with various aspects of the managers’
interfaces. Most commonly, problems arose due to confusion when
attempting to locate features or settings ((R2) Modify settings). This
difficulty was often caused by a combination of those features
and settings being deeply nested in menus or named using non-
obvious vernacular. For example, Chrome groups manager features
under the label “autofill”, which may not be a meaningful term to
many users (as it was not initially to our evaluators), as opposed
to “privacy and security”, where many users might expect it. Issues
such as these caused our evaluators to spend considerable time
locating these items, and for some users may prevent them from
realizing the feature or setting exists. This problem was somewhat
alleviated in managers that supported (R2-P2) Searchable settings,
but even in this case, non-obvious wording could make it difficult
for users to find relevant settings.

Another point of confusion in some managers was an over-
reliance on icons in place of text. While this saves screen real estate,
it was not always obvious what icons meant. Together, these results
demonstrate that more research is needed to explore how best to
communicate the manager’s features to the user.

On a positive note, the evaluators noted that several managers
used password strength meters within their password generators
((E7) Generate password). These meters included visual indicators
and colors to describe the strength of the password. The evaluators
noted that this gave them confidence that their selected genera-
tion settings were secure. Ideally, managers could find ways to
incorporate more of these simple, easy-to-understand indicators

through the manager to help users identify when they are using
the managers correctly.

4.2.5 Operating System-Based Manager. Of the tested managers,
only Safari uses a manager provided by the operating system: Key-
chain Access. Passwords can be managed directly in Keychain Ac-
cess or indirectly through Safari, with both programs exposing
slightly different functionality. This is an example of the paradigm
((E1-P4) Built into the operating system). Our cognitive walkthroughs
revealed that MacOS’ and Safari’s implementation of this paradigm
is flawed. The primary issue is that when using KeyChain Access
through Safari, dialog messages consistently refer to keychains, but
never describe what a keychain is, what role it plays in password
management, or how to access it. While this is unlikely to cause
an issue for technical users already aware of KeyChain Access, less
technical users could be confused by these messages and are more
likely to build incorrect mental models of how password storage
works, potentially leading to security issues in some edge cases.
For example, users may not realize that even if they log out Safari,
the usernames and domains associated with stored credentials can
still be viewed through KeyChain Access. While the passwords are
not visible in KeyChain Access without the account password, this
might reveal more information that the user intends (e.g., if they
share their computer with a friend).

4.2.6 Browser-BasedManagers. Through the cognitivewalkthroughs,
evaluators noticed that the browser-based managers had the most
limited functionality—i.e., implementing the smallest number of
design paradigms. Even when they did support a given design par-
adigm, they often did so in a less feature-rich fashion. While the
evaluators were happy with the browser-based managers overall,
they felt they were especially weak compared to the other managers
tested. These results regarding limited functionality mirror prior
results that show that modern browser-based managers are often
less secure than other managers [19]. Considering these results,
we believe that while browser-based managers serve as an easy
transition into password management, users should be steered to
more feature-rich and secure managers over time.

4.2.7 Browser-Based Manager Vulnerability. To lock the credential
vault for browser-based managers ((E9) Lock manager), it is neces-
sary to log out of the browser itself ((E9-P3) Logout of the browser to
lock). When doing so, the evaluators noticed an edge case in which a
user’s credentials would remain accessible in the browser even after
logging out of the browser. First, users would need to begin using
the browser’s manager without logging into the browser. Doing so
creates a local credential store for the user’s credentials. Next, the
user would need to log into the browser, causing the local store to
be synced with the cloud store. Surprisingly, the local store is not
removed, only hidden; moreover, the local store is kept in sync with
the cloud store. Lastly, if a user logs out of their browser, access to
the cloud store will be revoked, but the local store (which contains
credentials synced from the cloud store) will become unhidden and
accessible to anyone that opens the browser. While it is unclear
how often this edge case would be encountered in real-world usage,
it is still something that browser-based managers should address.

537

atlassian.com
bitbucket.org
bitbucket.org

Systematization of Password Manager Use Cases and Design Paradigms ACSAC ’21, December 6–10, 2021, Virtual Event, USA

4.3 Limitations
Our cognitive walkthroughs suffer the same challenge to ecological
validity faced by all forms of expert review: the evaluators are not
the users that they role-play. There will always exist differences
between how the evaluators think and use tools as compared to
actual users. Additionally, as evaluators complete more tasks with
additional tools, it becomes harder to think and act like new users.
As our cognitive walkthroughs intend to provide an initial, non-
definitive evaluation of design paradigm usability, we think this is
an acceptable limitation. Indeed, future research should replicate
and expand upon our evaluation, making liberal use of user testing.
We hope that this paper serves as a basis to encourage and promote
such research.

5 RELATEDWORK
We are unaware of other efforts to systematize password man-
agement use cases or design paradigms. Instead, in this section,
we summarize efforts to measure human perceptions and motiva-
tions regarding password management as well ass discuss usability
studies of password managers. We also describe how this type of
research could benefit from our systematization.

5.1 User Perceptions and Motivations
There has been a line of research examining users’ perceptions and
behaviors related to password management [8, 21, 22]. First, Fagan
et al. [8] surveyed both users and non-users of managers, trying
to understand why they had or had not adopted it. They found
that adopters primarily focused on usability benefits, and those
that did not adopt managers had security concerns. Similarly, Pear-
man et al. [21] interviewed both users and non-users of password
managers. They found that adopters of browser-based managers fa-
vored convenience, whereas adopters of extension-based managers
were driven more by security. Ray et al. [22] replicated the work of
Pearman et al. but changed the study population to focus on adults
at least 60 years. These older adults indicate that fear of a single
point of failure, desire to retain control of personal information,
and concern about not having the manager available when needed
impeded their adoption of password managers. In contrast, recom-
mendations from family members were often crucial to adoption
by these older users.

Relationship to our work: While these works lightly touch
on many use cases, they primarily focus on three: (E2) Register cre-
dential, (E5) Autofill credential, and (E7) Generate password. We find
no evidence that these studies ask users about the recommended or
extended uses cases identified in our systematization. Future studies
on user perceptions and behaviors could use our list of use cases to
help increase the coverage of password management-related topics
discussed in the interviews, helping better understand how users
view and engage with the full range of functionality provided by
modern managers.

5.2 Usability Studies
There are three usability studies of password managers deployed
in the wild. Lyastani et al. [16] instrumented a manager to measure
usage in the wild, gathering data about registering, updating, aut-
ofilling credentials, as well as generating passwords. Their results

demonstrated positive security outcomes for adopting a password
manager, but that many users eschewed using the password gen-
erator. Huaman et al. [13] investigated usability issues reported
on GitHub. They found that password managers sometimes do a
poor job of identifying password fields and that many websites
implement non-standard interfaces making this process even more
challenging. Seiler-Hwang et al. [29] conducted a laboratory user
study exploring the usability of four smartphone password man-
agers. They found significant usability issues, particularly regarding
poor integration of the manager with apps and browsers, with users
rating the apps as barely acceptable.

There are also three usability studies of password manager re-
search prototypes. In 2006, Chiasson et al. [3] evaluated the usability
of two password manager prototypes, prototypes that had little to
no resemblance to modern managers. Their study found that while
users reported tasks as being “very easy” to complete, users also
failed to complete tasks correctly, suggesting an inaccurate mental
model of the design paradigms used in these prototypes. McCar-
ney et al. [17] proposed the design of a password manager that
secures the credential vault using a mobile device. They conducted
a usability study of this manager, finding that users preferred it
to the Firefox password manager. Stobert et al. [31] proposed the
design of a password manager that moved all account management
tasks into the browser—e.g., users could create, updated, and even
delete their online accounts from within the manager. An initial
user study of this manager found that users viewed this approach
favorably and believed it could help them more securely manage
their accounts. Design paradigms (E2-P3) Internal registration tool
and (E4-P3) Internal removal tool are derived from this research.

Relationship to our work: As shown previously in Table 3,
these studies only consider a minority of the use cases in our sys-
tematization. This indicates a substantial need for additional studies
of password manager usability covering these use cases. Addition-
ally, our systematization of design paradigms identifies fruitful
possibilities for conducting studies that compare and contrast the
strengths and weaknesses of these paradigms.

6 CONCLUSION
In this paper, we described a systematization of password manager
use cases and design paradigms. As a result of this effort, we dis-
covered that most use cases had not been previously examined in a
usability study. Moreover, we are unaware of any research compar-
ing design paradigms or multiple implementation approaches for a
single paradigm, meaning that these design’s relative strengths and
weaknesses and the best way to implement them remain unknown.
In making this observation, we are not denigrating the excellent
existing research into password manager usability but instead not-
ing that this is an area rife with research opportunities. Within this
environment, our systematization serves as an invaluable reference
for constructing future usability studies.

Based on our systematization, we conducted cognitive walk-
throughs of eight different managers, covering all essential and
recommended use cases. Observations from these walkthroughs
include significant issues typing credentials when autofill is unavail-
able, confusing interface designs, and challenges linking credentials
to multiple websites.

538

ACSAC ’21, December 6–10, 2021, Virtual Event, USA James Simmons, Oumar Diallo, Sean Oesch, and Scott Ruoti

We conclude with an observation taken from considering both
our systematization and our cognitive walkthroughs. We find that
browser-based managers have limited feature sets, failing to imple-
ment many of the design paradigms provided by extension-based
paradigms, limiting the usability and security of browser-based
managers. However, browser-based managers are more trivial to
set up and begin using than the more feature-rich extension-based
managers. This situation could explain why convenience-oriented
users are more likely to adopt and continue using browser-based
managers [8, 21].

Still, this situation is problematic as the lackluster security of
browser-based managers leaves user credentials at risk [19]. While
one approach focuses on making browser-based managers more
secure or extension-based managers easier to set up (both of which
are admirable goals), we instead recommend that browser- and
extension-based managers work together to help users adopt and
transition to secure password managers. In this approach, browser-
based managers would continue to provide a seamless onboarding
process, maximizing the number of users who adopt password
managers. After users become accustomed to using a password
manager, the browser-based managers would begin nudging users
to adopt more functional and secure extension-based browsers. The
extension-based browsers would automate the transition from the
browser-based manager to the extension-based manager, helping
users recognize and leverage the increased utility and security of
the extension-based managers. Ultimately, we hypothesize that
such a two-step process would be more successful than having
any single manager optimize for both adoption and long-term use
simultaneously.

REFERENCES
[1] Wei Bai, Moses Namara, Yichen Qian, Patrick Gage Kelley, Michelle L Mazurek,

and Doowon Kim. 2016. An inconvenient trust: User attitudes toward security and
usability tradeoffs for key-directory encryption systems. In Twelfth Symposium
on Usable Privacy and Security (SOUPS 2016). 113–130.

[2] Joseph Bonneau. 2012. The science of guessing: analyzing an anonymized corpus
of 70 million passwords. In 2012 IEEE Symposium on Security and Privacy. IEEE,
538–552.

[3] Sonia Chiasson, Paul C van Oorschot, and Robert Biddle. 2006. A Usability Study
and Critique of Two Password Managers. In USENIX Security Symposium, Vol. 15.
1–16.

[4] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and XiaoFeng
Wang. 2014. The Tangled Web of Password Reuse. In NDSS, Vol. 14. 23–26.

[5] Matteo Dell’Amico, Pietro Michiardi, and Yves Roudier. 2010. Password strength:
An empirical analysis. In 2010 Proceedings IEEE INFOCOM. IEEE, 1–9.

[6] Rachna Dhamija and J Doug Tygar. 2005. The battle against phishing: Dynamic
security skins. In Proceedings of the 2005 symposium on Usable privacy and security.
77–88.

[7] Saba Eskandarian, Jonathan Cogan, Sawyer Birnbaum, Peh Chang Wei Brandon,
Dillon Franke, Forest Fraser, Gaspar Garcia, Eric Gong, Hung T Nguyen, Taresh K
Sethi, et al. 2019. Fidelius: Protecting user secrets from compromised browsers.
In 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 264–280.

[8] Michael Fagan, Yusuf Albayram, Mohammad Maifi Hasan Khan, and Ross Buck.
2017. An investigation into users’ considerations towards using password man-
agers. Human-centric Computing and Information Sciences 7, 1 (2017), 12.

[9] Sascha Fahl, Marian Harbach, Marten Oltrogge, Thomas Muders, and Matthew
Smith. 2013. Hey, you, get off of my clipboard. In International Conference on
Financial Cryptography and Data Security. Springer, 144–161.

[10] Dinei Florencio and Cormac Herley. 2007. A large-scale study of web password
habits. In Proceedings of the 16th international conference on World Wide Web.
ACM, 657–666.

[11] Paolo Gasti and Kasper B Rasmussen. 2012. On the security of password manager
database formats. In European Symposium on Research in Computer Security.
Springer, 770–787.

[12] Kristen K Greene, John Michael Kelsey, and Joshua M Franklin. 2016. Measur-
ing the usability and security of permuted passwords on mobile platforms. US

Department of Commerce, National Institute of Standards and Technology.
[13] N. Huaman, S. Amft, M. Oltrogge, Y. Acar, and S. Fahl. 2021. They Would do

Better if They Worked Together: The Case of Interaction Problems Between
Password Managers and Websites. In 2021 2021 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 1626–1640.
https://doi.org/10.1109/SP40001.2021.00094

[14] Jonathan Lazar, JinjuanHeidi Feng, andHarryHochheiser. 2017. Researchmethods
in human-computer interaction. Morgan Kaufmann.

[15] Zhiwei Li, Warren He, Devdatta Akhawe, and Dawn Song. 2014. The Emperor’s
New Password Manager: Security Analysis of Web-based Password Managers.
In USENIX Security Symposium. 465–479.

[16] Sanam Ghorbani Lyastani, Michael Schilling, Sascha Fahl, Michael Backes, and
Sven Bugiel. 2018. Better managed than memorized? Studying the Impact of
Managers on Password Strength and Reuse. In 27th USENIX Security Symposium.
203–220.

[17] Daniel McCarney, David Barrera, Jeremy Clark, Sonia Chiasson, and Paul C
Van Oorschot. 2012. Tapas: design, implementation, and usability evaluation
of a password manager. In Proceedings of the 28th Annual Computer Security
Applications Conference. 89–98.

[18] Sean Oesch, Anuj Gautam, and Scott Ruoti. 2021. The Emperor’s New Aut-
ofill Framework: A Security Analysis of Autofill on iOS and Android. CoRR
abs/2104.10017 (2021). arXiv:2104.10017 https://arxiv.org/abs/2104.10017

[19] Sean Oesch and Scott Ruoti. 2020. That Was Then, This Is Now: A Security Eval-
uation of Password Generation, Storage, and Autofill in Browser-Based Password
Managers. In 29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Boston, MA. https://www.usenix.org/conference/usenixsecurity20/
presentation/oesch

[20] Sarah Pearman, Jeremy Thomas, Pardis Emami Naeini, Hana Habib, Lujo Bauer,
Nicolas Christin, Lorrie Faith Cranor, Serge Egelman, and Alain Forget. 2017.
Let’s Go in for a Closer Look: Observing Passwords in Their Natural Habitat. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 295–310.

[21] Sarah Pearman, Shikun Aerin Zhang, Lujo Bauer, Nicolas Christin, and Lor-
rie Faith Cranor. 2019. Why people (don’t) use password managers effectively.
In Fifteenth Symposium On Usable Privacy and Security (SOUPS 2019). USENIX
Association, Santa Clara, CA. 319–338.

[22] Hirak Ray, Flynn Wolf, Ravi Kuber, and Adam J. Aviv. 2021. Why Older
Adults (Don’t) Use Password Managers. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association. https://www.usenix.org/conference/
usenixsecurity21/presentation/ray

[23] Shannon Riley. 2006. Password security: What users know and what they actually
do. Usability News 8, 1 (2006), 2833–2836.

[24] Scott Ruoti, Jeff Andersen, Scott Heidbrink, Mark O’Neill, Elham Vaziripour,
Justin Wu, Daniel Zappala, and Kent Seamons. 2016. " We’re on the Same Page"
A Usability Study of Secure Email Using Pairs of Novice Users. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems. 4298–4308.

[25] Scott Ruoti, Jeff Andersen, Travis Hendershot, Daniel Zappala, and Kent Seamons.
2016. Private Webmail 2.0: Simple and easy-to-use secure email. In Proceedings of
the 29th Annual Symposium on User Interface Software and Technology. 461–472.

[26] Scott Ruoti, Jeff Andersen, Tyler Monson, Daniel Zappala, and Kent Seamons.
2018. A comparative usability study of key management in secure email. In
Fourteenth Symposium on Usable Privacy and Security ({SOUPS} 2018). 375–394.

[27] Scott Ruoti, Jeff Andersen, Daniel Zappala, and Kent Seamons. 2015. Why Johnny
still, still can’t encrypt: Evaluating the usability of a modern PGP client. arXiv
preprint arXiv:1510.08555 (2015).

[28] Scott Ruoti and Kent Seamons. 2017. End-to-end passwords. In Proceedings of the
2017 New Security Paradigms Workshop. ACM, 107–121.

[29] Sunyoung Seiler-Hwang, Patricia Arias-Cabarcos, Andrés Marín, Florina Al-
menares, Daniel Díaz-Sánchez, and Christian Becker. 2019. “I don’t see why I
would ever want to use it:” Analyzing the Usability of Popular Smartphone Pass-
word Managers. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 1937–1953.

[30] David Silver, Suman Jana, Dan Boneh, Eric Yawei Chen, and Collin Jackson.
2014. Password Managers: Attacks and Defenses. In USENIX Security Symposium.
449–464.

[31] Elizabeth Stobert, Tina Safaie, Heather Molyneaux, Mohammad Mannan, and
Amr Youssef. 2020. ByPass: Reconsidering the Usability of Password Managers.
In International Conference on Security and Privacy in Communication Systems.
Springer, 446–466.

[32] Ben Stock and Martin Johns. 2014. Protecting users against XSS-based password
manager abuse. In Proceedings of the 9th ACM symposium on Information, computer
and communications security. ACM, 183–194.

[33] Ke Coby Wang and Michael K Reiter. 2018. How to end password reuse on the
web. arXiv preprint arXiv:1805.00566 (2018).

[34] Alma Whitten and J Doug Tygar. 1999. Why Johnny Can’t Encrypt: A Usability
Evaluation of PGP 5.0. In USENIX Security Symposium, Vol. 348. 169–184.

539

https://doi.org/10.1109/SP40001.2021.00094
https://arxiv.org/abs/2104.10017
https://arxiv.org/abs/2104.10017
https://www.usenix.org/conference/usenixsecurity20/presentation/oesch
https://www.usenix.org/conference/usenixsecurity20/presentation/oesch
https://www.usenix.org/conference/usenixsecurity21/presentation/ray
https://www.usenix.org/conference/usenixsecurity21/presentation/ray

Systematization of Password Manager Use Cases and Design Paradigms ACSAC ’21, December 6–10, 2021, Virtual Event, USA

A COGNITIVE WALKTHROUGH TASKS
Below are the tasks used in our cognitive walkthroughs:

(1) First time setup (E1): The evaluator was required to set up
the password manager. This included downloading the man-
ager (if applicable), installing it, creating an online account,
and finishing any remaining setup tasks. Evaluators avoided
using external documentation, focusing instead on how the
manager’s UI supported this use case. This task was always
the first task completed for each manager.

(2) Registering a credential in the manager (E2): The eval-
uator needed to register a credential (an account name and
password) in the manager. They were free to complete this
task in any way they wanted so long as they did not leave
the manager’s interface. This task explores design paradigm
(E2-P1) Manual registration.

(3) Log in with an unstored credential (E2): The evaluator
would log into a test website we created with credentials
not already stored in the manager. This would trigger the
manager to suggest saving the credentials. The task was
complete once the credentials were saved. This task explores
design paradigm (E2-P2) Auto-detect registration.

(4) Updating a credential in the manager (E3): The evalua-
tor needed to update a credential previously stored in the
manager. They were free to complete this task in any way
they wanted so long as they did not leave the manager’s in-
terface. This task explores design paradigm (E3-P1) Manual
update.

(5) Loginwithupdated credentials (E3):The evaluatorwould
log into a test website with credentials different than those
stored in the manager. This would trigger the manager to
suggest saving the updated credentials. The task was com-
plete once the updated credentials were saved. This task
explores design paradigm (E3-P2) Auto-detect update.

(6) Removing a credential stored in themanager (E4): The
evaluator would use the manager to remove a target creden-
tial.

(7) Log inwith credentials stored in themanager (E5): The
evaluator would log into a test website that has associated
credentials stored in the manager. This would trigger the
autofill process ((E5-P1) Autofill w/ interaction or (E5-P2)
Autofill w/o interaction). The task was complete once the
evaluator finished the autofill process and was logged into
the website.

(8) Log in from multiple subdomains (E5): The evaluator
would sequentially log into two test websites we had created.

These websites shared the same parent domain. The task
was completed once both websites were logged in. This task
compares design paradigms (E5-P4) Separate subdomains and
(E5-P5) Group subdomains.

(9) Log in from a mobile device (E6): The evaluator would
log into a test website using their mobile device. This device
did not have a manager installed, and the evaluator was not
allowed to install one. Instead, they would need to view the
credential in the desktop manager then manually enter it
into the mobile device.

(10) Create an account (E7): The evaluator would need to cre-
ate a new online account, making sure to use a generated
password. What approach they took in generating the pass-
word was left up to the evaluator, though they did examine
the default settings and modified them if they wished to.

(11) Set up and sync on a secondary device (E1, E8): The eval-
uator was tasked with setting up the manager again on a
second device. After setting up the manager, the evaluator
would ensure that their credentials were synchronized be-
tween the two managers, and if not, they needed to figure
out how to resolve the situation.

(12) Lock manager (E9): The evaluator would need to lock the
manager.

(13) Unlock manager (E10): The evaluator would need to un-
lock the manager.

(14) Complete a credential audit (R1): The evaluator would
need to find the credential audit tool, execute the audit, and
respond to any warnings presented. The vault was filled with
several problematic credentials to ensure that results would
be returned from the audit.

(15) Ensure safe settings (R2): The evaluator would need to
ensure that user interaction was required before credentials
would be autofilled. This included identifying the appropriate
setting and changing it if necessary.

(16) Recover access to the manager (R3): Evaluators would
act as if they had lost their credentials and try to determine
if they could regain access to their vault. If it were possible,
they would take the necessary steps to do so.

(17) Store non-credential data in manager (X4): The eval-
uator would be tasked with storing a phone number and
address in the manager. They would then be asked to en-
ter this information into a website. They were free to enter
the information using autofill ((X4-P3) Autofill for structured
data) if supported.

540

	Abstract
	1 Introduction
	2 Use Cases
	2.1 Essential Use Cases
	2.2 Recommended Use Cases
	2.3 Extended Use Cases
	2.4 Coverage in Prior Work

	3 Design Paradigms
	3.1 Essential Use Case Paradigms
	3.2 Recommended Use Case Paradigms
	3.3 Extended Use Case Paradigms
	3.4 Discussion

	4 Cognitive Walkthroughs
	4.1 Methodology
	4.2 Observations
	4.3 Limitations

	5 Related Work
	5.1 User Perceptions and Motivations
	5.2 Usability Studies

	6 Conclusion
	References
	A Cognitive Walkthrough Tasks

