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ABSTRACT

Physical isolation, so called air-gapping, is an effective method for

protecting security-critical computers and networks. While it might

be possible to introduce malicious code through the supply chain,

insider attacks, or social engineering, communicating with the out-

side world is prevented. Different approaches to breach this essen-

tial line of defense have been developed based on electromagnetic,

acoustic, and optical communication channels. However, all of these

approaches are limited in either data rate or distance, and frequently

offer only exfiltration of data. We present a novel approach to infil-

trate data to and exfiltrate data from air-gapped systems without

any additional hardware on-site. By aiming lasers at already built-in

LEDs and recording their response, we are the first to enable a long-

distance (25m), bidirectional, and fast (18.2 kbps in & 100 kbps out)

covert communication channel. The approach can be used against

any office device that operates LEDs at the CPU’s GPIO interface.

CCS CONCEPTS

• Security and privacy→ Systems security.
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1 INTRODUCTION

Individual devices, computers, or entire networks in high-security

environments are often physically isolated to prevent external ac-

cess to sensitive information. Such air-gapped systems have neither
wired nor wireless network connectivity to the outside world and

enforce physical access control. While this effectively prevents dif-

ferent types of network-based attacks, in the past, we have seen

several security incidents where such systems have been success-

fully breached through attacks against the supply chain [4, 38]. The
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importance of trustworthy software and hardware supply is under-

lined by governmental restrictions on using foreign technology for

critical infrastructure in the US [42] and Europe [3].

Incidents at SolarWinds [9] and CodeCov [8] have recently

shown the feasibility of attacks against the software supply-chain
and the magnitude of the consequences. After a successful compro-

mise of an air-gapped system, however, an adversary faces the prob-

lem of interacting with the malicious code injected in the device. As

the isolation impedes regular communication, alternative means are

necessary for transmitting and receiving data. Moreover, an attacker

can only use hardware that is available on site—applying additional

equipment is not an option. Academic research has explored differ-

ent ways of attacking air-gapped systems through optical [19, 40],

acoustic [10, 14, 18], thermal [11, 15], or even electromagnetic [26]

and power-dependent [25] communication channels. Most of these

approaches only enable a unidirectional communication, that is,

either data infiltration or exfiltration. An authentic attack, how-

ever, requires bidirectional communication to establish a command

and control channel, update the malicious functionality, or retrieve

sensitive information. Despite the breath of prior work, existing

covert channels hardly address these practical constraints and fail

to provide bidirectional, efficient communication capabilities.

In this paper, we present LaserShark, a novel attack vector that

allows to breach air-gapped boundaries and overcome large dis-

tances at high data rates. Our covert channel leverages built-in LEDs

of office devices to establish a bidirectional communication, easily
bridging distances between buildings in industrial parks or em-

bassy districts. While LEDs are designed to emit light and can thus

unnoticeably encode information through high-frequency flicker-

ing, their ability to also perceive light is largely unknown in the

security community. In particular, by directing a laser on the LEDs

of office devices, we induce a measurable current in the hardware

that can be picked up by its firmware and used to receive incoming

data. In contrast to conventional visible light communication (VLC),

establishing this bidirectional communication is technically more

challenging: We cannot deploy any additional receiving equipment

at the device and need to operate the channel entirely from remote.

This bidirectional channel is applicable to devices where existing

LEDs are connected to a general purpose I/O (GPIO) interface and

hence information can be sent and received through the device’s

firmware.
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To demonstrate the efficacy of our attack, we systematically eval-

uate the sending and receiving capabilities of LEDs and characterize

the needed laser modules with respect to power capabilities, wave-

length, and modulation. We find that for most devices a blue/purple

engraving laser for merely 150e is sufficient to conduct the attack

against LEDs of different color. For the back-channel, we investi-

gate the suitability of cameras as found in modern smartphones as

well as specialized avalanche photodetectors. In our experiments,

we demonstrate infiltration and exfiltration of data over 25m at

effective data rates. While exfiltrating data using flashing LEDs has

been investigated before, we are the first to enable fast, bidirectional
covert communication in this setting.

In summary, we make the following contributions:

• Novel infiltration technique.We present a novel method

for sending data towards air-gapped devices by utilizing

built-in LEDs as receivers. Note, LEDs are designed to emit

light, rather than receiving it. By using high-intensity lasers,

we induce signals across tens of meters.

• Significantly faster communication. In comparison to

related work on covert channels, we are increasing the data

rate of communication by an order of magnitude. For exfil-

tration, we improve the data rate by a factor of 25 and realize
a speed-up factor of 110 for data infiltration.

• Practical implementation. We demonstrate the feasibil-

ity of our bidirectional communication channel in different

practical scenarios. We are able to bridge 25m at 18.2 kbps
for infiltrating and 100 kbps for exfiltrating data using LEDs
already build in office devices.

The rest of the paper is structured as follows: We start with a

discussion on related work in Section 2, before we present our attack

and the newly proposed covert channel in Section 3. In Sections 4

and 5, we then demonstrate data infiltration and exfiltration in

practice. Section 6 concludes the paper.

2 RELATEDWORK

There exist various hardware-based attacks [see 1] facilitated by

supply-chain compromise [4], which inevitably leave physical ev-

idence behind (the device itself). In this paper, we thus focus on

software supply-chain attacks [e.g., 8, 9] that use covert channels

without any additionally brought-in equipment. Our method en-

ables bidirectional communication into air-gapped systems using

optical transmission and, thus, operates on the intersection of two

different fields of research: a) Covert channels to exfiltrate and

infiltrate data, and b) visual light communication, that forms the

foundation of our attack. Subsequently, we discuss both in detail.

2.1 Covert Channels of Air-Gapped Systems

Academic research has investigated a variety of different approaches

to establish communication channels in and out of air-gapped sys-

tems. Table 1 summarizes the most important ones. Next to the

specific transmission channel one may categorize covert channels

in 1) methods that establish generic data transmission, and 2) ap-

proaches that retrieve or send a very specific kind of information.

2.1.1 Data Transmission. There are multiple ways that are suitable

for attacking air-gapped systems. Subsequently, we describe the

most prevalent ones that have proven to be actionable in the past:

Power consumption and magnetism. Recently, it has been shown that
it is possible to generate patterns in a system’s power consumption

by controlling the workload of the CPU. These patterns, in turn, can

be measured on the wire with an external probe [25]. Unfortunately,

the overall range is not well defined, but has been measured on a

straight power cord. Empirically, the authors have however been

able to reach a data rate of 200 bps. Moreover, similar techniques

may be used to produce magnetic fields to encode data signals [26]

that can be measured with magnetic sensors. Thereby it is even

possible to escape Faraday shields, although the range of 1.5m is

relatively short and the achievable data rate with 40 bps low. Both
techniques focus on unidirectional exfiltration of data.

Temperature. BitWhisper [15] allows two computers to bidirection-

ally transmit data to each other, encoded as temperature differences

caused by the system and measured with internal sensors. Sur-

prisingly, this transmission could be sensed in a distance of 9m,

but merely with a data rate of less than 1 bit per minute. This has

later been used to show a unidirectional channel with a customary

smartphone as receiver [11] over half a meter at 0.02 bps. Here,
transmission speed and distance has not been the focus, but the

fact that the attack is possible in a “walk-by” scenario.

Acoustic. As one of the first, Deshotels [7] demonstrates the pos-

sibility of acoustic side-channels. In particular ultra-sonic sound

has been used to unidirectionally transfer data from ordinary loud

speakers to a microphone. More recently, Mosqito [20, 23] has

even turned loudspeakers into microphones and enables bidirec-

tional communication this way. Unfortunately, the data rate is

bound to 10 bps at 9m only. Moreover, it has been shown, that it

is possible to generate sound in the audible frequency spectrum

using hard disks [18] as well as fans [24]. These, however, again

are used for exfiltration only at merely 1–3 bps.
AirHopper [13, 17] and GSMem [14] follow a similar route, but

use radio signals on different bands for the covert channel. While

the first demonstrates a video card’s ability to send FM signals for

data transmission up to 80 bps, the latter uses memory controllers

to generate radio signals in the GSM band that can be received using

customary smartphones.While themethod is argued to bridge 30m,

data rates could only be successfully measured at a tenth of the

distance at 1,000 bps. Subsequently, the same authors investigate

how USB ports may be used to produce RF signals in combination

with dedicated hardware as receiver [16]. Consequently, this and

the methods above rely on unidirectional communication.

Optical.More closely related to our findings, several authors experi-

ment with light-emitting diodes in various manifestations. Modula-

tion is achieved either directly by switching the LEDs of routers [21]

or keyboards [22] on and off, or indirectly, for instance, by writing

to the hard disk to make the status LED flicker [19]. With 120 bps,
xLED [21] is the fastest in this setting. The specific value, how-

ever, has been derived from the Nyquist–Shannon sampling theo-

rem [see 31] and resembles a theoretical upper limit for high-speed

cameras at 240 fps. In Section 5.2, we verify this bound empirically.

Additionally, the authors present data rates that may be yield with
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Table 1: Overview of different covert channels. The first column indicates whether exfiltration (↼), infiltration (⇁), or both (⇋)

is supported. The last column indicates whether increased privileges are necessary ( ), beneficial ( ), or not required ( ).

Method Channel Sender Receiver Distance Data rate BER Mode User

o
t
h
e
r

↼ PowerHammer [25] power PC External probe “negligible”
a 200 bps 0 % B-FSK

↼ ODINI [26] magnetic PC External sensor 1.5m 40 bps 10 % OOK

↼ HOTSPOT [11] temperature PC External sensor 0.5m < 1 bps N/A OOK

⇋ BitWhisper [15] temperature PC PC 9 m < 1 bps N/A TIS

a
c
o
u
s
t
i
c

↼ Deshotels [7] ultra-sound Speaker Microphone 25 m 8 bps 10 % FSK

0 m 345 bps 0 % FSK

⇋ Mosqito [20, 23] ultra-sound Speaker Speaker 3 m 166 bps 1 % B-FSK

9 m 10 bps 1 % B-FSK

↼ DiskFiltration [18] sound HDD Microphone 2 m 3 bps 0 % OOK

↼ Fansmitter [24] sound Fan Microphone 8 m 1 bps 10 % B-FSK

↼ AirHopper [13, 17] radio Std Video FM receiver 7 m 80 bps 2 % DTMF

radio Ext Video FM receiver 22 m 80 bps 1 % DTMF

↼ GSMem [14] radio RAM bus GSM Phone 1.1m 2 bps 6 % B-ASK

radio RAM bus HW receiver 3 m 1,000 bps 0.1% FSK

radio RAM bus HW receiver 30 m N/A
1

N/A N/A

↼ USBee [16] radio USB HW receiver “short” 640 bps N/A B-FSK

o
p
t
i
c
a
l

⇋ aIR-Jumper [12] light IR-LED camera “line of sight”
a 20 bps N/A OOK

IR-LED camera “line of sight”
a 40 bps N/A ASK

↼ xLED [21] light LED camera N/A 120 bps N/A OOK

LED PD N/A 3,555 bps a 5 % OOK

↼ LED-it-GO [19] light HDD LED camera 8 m 120 bps N/A OOK

HDD LED PD 5 m 4,000 bps N/A OOK

↼ CTRL-ALT-LED [22] light Keyboard camera 10 m 30 bps 1 % OOK

Keyboard PD N/A 2,697 bps 8 % OOK

⇋ LaserShark light Laser LED 30 m 18,200 bps 0 % PWM

light LED APD 25 m 100,000 bps 0.1% OOK

Covert channel, but no data transmission:

Method Channel Sender Receiver Distance User

↼ Synesthesia [10] sound Screen camera *

⇁ Light Commands [40] light Laser Microphone 110 m

a
Determined theoretically or derived from unrepresentative settings (e.g., power cord w/o branches, extraplotated from a few bits, . . . ).

photodetectors, that have been extrapolated from the maximum

blinking frequency the router has been able to reach.

In contrast to the above, which only support data exfiltration,

Guri and Zadov [12] demonstrate that security cameras that are

equipped with infrared LEDs can also be used to establish a bidirec-

tional covert channel. aIR-Jumper allows for 20–40 bps as long as

a direct line of sight is given. Measurements on the exact distance

have not been conducted. Our approach extends this line of research

by describing a novel infiltration technique and demonstrating the

practicability of bidirectional communication at significantly higher

data rates and across large distances in a realistic environment.

2.1.2 Inducing and Extracting Specific Signals. A second line of

research, addresses the exfiltration and infiltration of application-

specific signals. For instance, Genkin et al. [10] investigate the

unintentional emission of acoustic waves of electrical devices, such

as computer monitors. With Synesthesia, the authors present tech-

niques to extract screen contents by recording sound with built-in

or external microphones—for instance during a video call. More

recently, Sugawara et al. [40] prove that photo-acoustic effects

on MEMS microphone diaphragms and photo-electric effects on

the microphone’s ASIC may be used to induce sound via light. A

modulated laser light thereby appears as ordinary sound to the
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➊ Laser→ LED (18kbps)

➋ Photodetector← LED (100kbps)

Adversary with laser and
photodetector

>20m distance

LED

Air-gapped environment

Compromised
office device

Isolated network
infrastructure

Figure 1: Schematic depiction of a bidirectional covert channel using an device’s LED. ➊ Inbound communication (data infiltra-

tion) is established through a laser. ➋ Outbound communication (data exfiltration) is received by an avalanche photodetector.

microphone. This has been used to issue so-called “light commands”

in speech assistants. While extremely impressive, the method does

not provide a back-channel, meaning, it is possible to ask Alexa

a question, but not to hear her answer. The attacker model and

requirements for the attack, however, are similar to our work.

2.2 Visible Light Communication (VLC)

The communication with light is a well explored field of appli-

cation in photonics. Data is transmitted by modulating light in

the visible spectrum from 380 nm to 750 nm [28, 35]. There exist

several similar technologies, such as optical wireless communica-

tion (OWC) [43], free-space optical communication (FSO) [5], and

light fidelity (Li-Fi) [27]. For a discussion on the similarities and

differences of these types of communication systems, we refer the

interested reader to the survey by Matheus et al. [34].

The transmitter in visible light communication (VLC) systems

usually is an light-emitting diode (LED), while two different types

of receivers may be used to capture the transmitted signal: First,

a photodetector also referred to as photodiode or non-imaging

receiver, and second, a camera or imaging sensor [35]. Both have

been considered in our evaluation of the presented covert channel.

Visible light communication comes with certain limitations, for

instance, the obvious need for a direct line of sight and the fact that

the achievable data rate falls abruptly with increasing distance [29].

Nevertheless, state-of-the-art systems with a single dedicated LED

and on-off-keying can reach transmission speeds of up to 10Gbps
in a distance of 1.6m [32].

For this, however, VLC systems make use of elaborate optical

equipment at the receiving end (in our case the targeted device)

to bundle, stabilize, and focus the communication signal. This of

course is not possible for the attack scenario considered in this

paper, as we breach unmodified, air-gapped consumer devices using
their already built-in LEDs. Consequently, we face a more difficult

application that is off the usually studied techniques in visual light

communication.

3 BRIDGING THE AIR-GAP

As the name light-emitting diode suggests, LEDs are designed and

built to send out light. In office devices they are primarily used

to indicate a device’s state or realizing small displays. The fact

that LEDs may also be used as a receiver [39], however, is widely

unknown. We make use of this property to establish a bidirectional

communication channel between an attacker and the compromised

software of an air-gapped device using its built-in LEDs.

Figure 1 depicts the main principle of our attack: ➊ Using a

strongly focused laser beam, current is induced in the LED of a

device. If the device operates the LED at a general-purpose I/O in-

terface, the corresponding voltage can be measured by the firmware

and used to transmit and thus infiltrate data. ➋ To exfiltrate data

the device flashes the LED, such that the attacker is able to observe

the light with a telescope similar to the one used to focus the laser.

While a direct line of sight is necessary, glass windows do not ob-

struct the light to an extent that would counteract the attack. Also,

it is important to note that the device’s LEDs are still functioning

properly for their primary purpose (e.g., signaling device state)

before and after transmission.

In Section 3.1, we proceed to specify the considered attacker

model, before we outline the necessary equipment of the adversary

in Sections 3.2 and 3.3, for infiltrating and exfiltrating data, respec-

tively. In Section 3.4, we detail the class of devices that are attackable

and derive a suitable communication protocol in Section 3.5.

Example. To assist the subsequent description of the attack, we

use the Yealink SIP-T21P E2 telephone as a reoccurring example

throughout the paper. For visually indicating the device’s state, this

telephone makes use of two paired green and red SMD
1
LEDs, and

another individual SMD LED that emits red light. We refer to the

paired diodes as green and red-1, and the individual one as red-2.

These LEDs do not only differ in the emitted light’s wavelength, but

also to which wavelength they react, when hit by a high-intensity

light beam. As an example, Figure 2 (top) shows the sensitivity

of the first red and the green diodes of the Yealink telephone to

incoming light of different wavelength. A thorough characterization

of a wide range of LEDs is provided in Sections 4.1 and 5.1 when

discussing data infiltration and exfiltration in practice.

3.1 Attacker Model

For our attacker model, we assume that an initial compromise has

happened on the target device through the software supply-chain

similar to the incidents at SolarWinds [9] and CodeCov [8]. For

example, a regular update of the device’s firmware might unno-

ticeably add the necessary code for sending and receiving data

through a built-in LED. While many office devices, such as desk

telephones and printers, expose a vast attack surface to the outside

world, we assume adequate isolation, that in further consequence,

poses the necessity for bridging the air gap. Moreover, we assume

that device characteristics, such as built-in LEDs and circuit details,

1
Surface-mounted device (SMD)
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are known to the attacker. This, however, is information that can

be derived from identically constructed devices and device drivers.

Finally, for the attack to succeed, a direct line of sight is neces-

sary to observe and actuate the LED. Note, that for reading and

writing the general-purpose IO (GPIO) interface usually system

privileges are required. The adversary, however, neither needs phys-

ical access to the device, nor requires the owner of the hardware

to accidentally or intentionally interact with the device. Moreover,

we do not assume any upfront hardware modifications of the device.

Remark.While the transmission of data using the LaserShark

attack only takes a split second, the operation of high-intensity

laser modules raises safety issues. We assume that the adversary

a) operates the laser with great care to avoid endangering people

in the vicinity and b) is willing to accept the remaining risk. We,
however, conducted all experiments under strict safety precautions.

3.2 Infiltrating Data (➊)

In contrast to the targeted device, the adversary is entirely free to

choose the hardware necessary to establish a stable communication

on the attacker’s end of the covert channel. While there are virtually

no upper limits with respect to expense and size of the equipment,

we implement the attack with mobile consumer components that

are easily available and use household power. Our setup is shown

in Figure 3.

The wavelength of the laser beam is crucial for the success of

the attack and needs to match the absorption range of the targeted

LED. In the bottom part of Figure 2, we show the wavelength of

four different lasers that emit blue/purple (two spikes to the left),

green (middle spike) and red light (right most spike). This clearly

shows that not all lasers can be used for inducing current into any

diode. While the blue and purple lasers work well for the green,

but not for the red LED of the Yealink telephone, for the green laser

it is the other way around. Interestingly, the red laser does merely

scratch the range of the red diode and is also far off the green one.

The four laser modules vary greatly in power but all are commer-

cially available without restrictions in a range from 5–150e. Reg-
ular laser modules with less than 5mW are considered class 1–3R
and are available across rather broad light spectra in the range

of 405–980 nm. More powerful devices emit up to 100mW and

fall into class 3B. In common usage, such lasers are only available

for fixed wavelengths, such as 405 nm (purple), 532 nm (green)

and 650 nm (red). Engraving lasers, finally, reach multiple Watts of

energy and fall into class 4. These lasers typically use a wavelength
of ~450 nm.

The distance that can be bridged using such lasers depends on

the ability to focus the laser beam and the resulting optical power

raised at the LED. The better the used telescope, the larger the

distance. As part of our evaluation on data infiltration in practice,

we provide measurements for the exact optical power of different

lasers considered in our experiments and describe the used optics

that are necessary in Section 4.2.

3.3 Exfiltrating Data (➋)

In contrast to producing light beams with high precision, the re-

quirements at the attacker’s end for recording light signals sent out

300 350 400 450 500 550 600 650 700
Wavelength (nm)

0

1

2

Vo
lta

ge
 (V

)

red-1

green

300 350 400 450 500 550 600 650 700
Wavelength (nm)

60

40

20

0

Po
we

r (
dB

m
)

Figure 2: Absorption spectra of the Yealink SIP-T21P E2’s

LEDs at 25mW (top) and the emission spectra of two

blue/purple, one green, and one red laser module (bottom).

by the target device are less specialized. In the most simple case, a

modern smartphone with a consumer high-speed camera, such as

the iPhone since version 6 [2], is sufficient. These cameras capture

light at 240 fps and thus enable a moderate transmission rate. Fur-

thermore, the bridgeable distance is constraint by the sensitivity of

the camera. Both aspects can be improved upon by using specialized

optics, such as a telescope similar to the one used to focus the laser

beam, and a dedicated light sensor, such as a photodetector (PD).

In Sections 5.2 and 5.3, we evaluate both scenarios in practice.

Conventional photodetectors have a response time of a few

nanoseconds only and a broad spectral response. However, they

are limited in sensitivity and have a small active area, which makes

their use for capturing light signals over large distances difficult [see

19, 22]. For measuring very small amounts of light, we thus make

use of so-called avalanche photodetectors (APD). These detectors
create a strong electric field to increase the sensitivity to incoming

light. When a photon hits the sensor, this electric field acceler-

ates the electrons leading to the production of secondary electrons

through impact ionization. The resulting avalanche of electrons

produces a gain factor in the hundreds. This amplification limits the

usable bandwidth of the detector to 100 kHz. Still, this rate signifi-
cantly surpasses high-speed cameras and enables us to outperform

(a) Infiltration (b) Exfiltration

Figure 3: Telescopes, laser module, and oscilloscope used for

a) data infiltration and b) data exfiltration.
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GPIO0

GND

TL-MR3020v1.9
AR9331

R85

270 Ω

LED4 (WiFi)

R4 10 kΩ

(a)

GPIO5

GND

TL-WR1043NDv1.8
AR9132

R373

330 Ω

D10 (QSS)

(b)

GPIO112

GND

T21P-E2
DVF-9918

R1

470 Ω

LED1

C1 10 nF

(c)

Figure 4: Schematics of three attackable devices: a) TP-Link TL-MR3020mobile router, b) TP-Link TL-WR1043ND office router,

c) Yealink SIP-T21P E2 telephone. Each device uses a different circuit for connecting the LED to the GPIO interface.

existing covert channels. As part of our evaluation on data exfiltra-

tion in practice, in Section 5.3.1, we characterize the sensitivity of

APDs in more detail.

3.4 Attackable Devices

A few prerequisites need to hold on a hardware level, such that a

device can be targeted using our attack. For detecting laser pulses

an already built-in LED needs to be connected to and directly driven

by the processor via a GPIO interface. Whether the LED is con-

figured as active high or active low is not relevant, as long as it is

not permanently carrying electric current (constantly glowing).

Also, while the presence of pull-up/down resistors or any addition-

ally used series-connected resistors affect the GPIO levels, they do

not impede the attack. To determined the prevalence of devices

with built-in LEDs usable for the LaserShark attack, we have ana-

lyzed the device tree specifications of the Linux kernel. 48% (679)
of 1,394 investigated boards use LEDs at the GPIO interface, from

which the majority (522) is operated in an active high configuration.
Some devices additionally use a capacitor between GPIO and

ground, in order to filter the signal. This does not impede the com-

munications channel either, but requires alternative sampling strate-

gies at the target device when receiving data to be infiltrated. In the

following experiments, presented in Sections 4 and 5, we thus con-

sider three representative office devices: a) TP-Link TL-MR3020 mo-

bile router, b) TP-Link TL-WR1043ND office router, and c) Yealink

SIP-T21P E2 telephone. Each of these devices uses a different cir-

cuit for connecting their built-in LEDs to the general-purpose I/O

interface of the CPU. Further details on these devices are listed

in Table 3.

Figure 4 shows simplified schematics for all three. For both

routers the processor and LEDs are directly linked via a series-

connected resistor, while an additional capacitor is used in Yealink’s

device to avoid interference. The additional resistor R4 of the TP-Link
TL-MR3020 needs to be present in case there is no internal pull-

down. The CPU of the TP-Link TL-WR1043ND, in turn, does imple-

ment a pull-down resistor internally and, thus, can be used directly.

The design of the different circuits requires the use of two different

sampling strategies that we detail in the following.

3.4.1 Immediate sampling. In the case of a series-connected resis-

tor between LED and the processor’s GPIO, the firmware’s GPIO

API can be directly used to get the current state of the pin. Toggling

the state by pointing the laser at the LED requires injecting a suffi-

cient amount of energy to the circuit, such that the voltage at the

pull-down resistor reaches the minimal switching threshold. For

instance, for the TP-Link TL-MR3020 an induced current of 200 µA
is needed to reach a voltage of 2V due to the built-in 10 kΩ resistor.

3.4.2 Delayed sampling. Immediate sampling is not possible if

there is an additional capacitor between GPIO and ground (irre-

spective of being pulled up or down), because the injected energy is

first stored in the capacitor without toggling the GPIO. Therefore, it

is necessary to charge the capacitor until its voltage is high enough

to retrieve a sample by reading the state of the GPIO as shown in

Figure 5. The sampling method consists of three phases: First, the

capacitor is charged up to the desired voltage. Second, the logical

GPIO value is retrieved. After that it is necessary to unload the ca-

pacitor in the third phase. This process takes a constant amount of

time and, thus, leads to a lower sampling rate than the theoretically

possible bandwidth of the LED.

Technically, the time 𝑡 required to charge the unit is defined by

its electrical capacitance𝐶 and is computed as follows: 𝑡𝑐 = 𝐶
𝐼
·𝑈𝑐 ,

where 𝐼 represents the induced current and 𝑈𝑐 the voltage level

at the capacitor in the target device. An exemplary capacitor with

10 nF, an applied voltage of 2V, and an laser-induced current of

20 µA thus requires 𝑡 = 1ms to charge, meaning, the communica-

tion protocol is delayed by that duration. The advantage of such

delayed sampling, however, is that less energy has to be injected

to the LED, as it is possible to wait until the capacitor is charged.

For the same reason, transmission is more robust in this setting as

charging may be subject to discontinuity as caused by vibrations

(cf. Section 4.2) without impeding the attack.

0 1 0 1

t

t

t

t
Signal Voltage

Capacitor Charge

Discharge Phases

Sample Points

Figure 5: Exemplary transmission in presence of a capacitor.
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3.5 Communication Protocol

Infiltrating data into devices without real-time capable proces-

sors requires the use of an easy and robust modulation technique.

For our attack, we hence use a variant of pulse-width modula-

tion (PWM) [see 31]: Transmitting a zero bit corresponds to a short

pulse while transmitting a one bit is achieved by a long pulse as

indicated in Figure 5 (top). This scheme is owed to the sampling

strategy described above. A high value indicates that the laser is

active, while a low value indicates that it is off. The slots where

the laser is not active are used to tell individual bits apart. The

achievable data rate consequently depends on the ratio of zero and

one bits. For subsequent experiments, we consider the worst-case

(only 1-pulses are sent) to report a lower bound of the data rate.

For exfiltrating data, however, we are not restricted to a particu-

lar sampling strategy as the attacker may choose his/her hardware

at will at the receiving end. On the office device, we thus use clas-

sical on-off-keying (OOK) for sending data, that is, a high value

encodes a one bit, while a low value represents a zero bit. The

duration of transmitting each is identical t
1-bit

= t
0-bit

. Separat-

ing bits as described above is not necessary: t
off

= 0. To further

increase the data rate other encodings, such as amplitude-shift key-

ing (ASK) [see 31, Chp. 3] or (binary) frequency-shift keying (FSK,

B-FSK) [see 31, Chp. 5] are possible. Exploring this, however, is left

to future work.

4 INFILTRATING DATA

After outlining the attack setting and describing the underlying

channel for covert communication, we now demonstrate the attack

in practice and begin with infiltrating data into remote devices. By

directing a high-intensity laser beam onto a office device’s LED it

is possible to induce a measurable current that allows to establish

data communication. The experimental setup is detailed in Figure 6.

Laser

Telescope

Driver Controller

Target

Distance (m)

Figure 6: Experimental setup for infiltrating data.

In particular, in Section 4.1, we systematically evaluate the light

absorption characteristics of different LEDs that can be used as a

receiver and thus contrary to its intended purpose. In Section 4.2, we

then describe the laser modules necessary to actuate the LEDs and

address peculiarities of the used hardware, the necessary optics, and

issues with vibrations. Based on these characterizations, we conduct

two experiments in Section 4.3.We first establish an empirical upper

limit for infiltrating data based on the described target devices over

a rather short distance, before we conduct measurements in an

realistic setting with distances of up to 40m.

4.1 LEDs as Receiver

For the attack to succeed, the wavelength of the used laser needs

to align with the absorption spectrum of the LEDs to establish

a reliable communication channel for infiltrating data. We thus

inspect the light absorption of common LEDs, that enables us to

put the measurements of the device-specific LEDs as presented in

Figure 2 for the Yealink telephone into perspective. Details and

specifications of the specific LEDs are provided in Appendix A.

In principle, any reversely biased LED can act as a poorly de-

signed photodetector for which the flow of electricity is caused

in the entire active layer and the junction itself. Therefore, the

absorption spectrum of an LED equals the spectrum of the emit-

ted wavelength. Hence, we begin with determining the absorption

spectra of the diodes in question. This is commonly done using a

white-light source (e.g., a LOT Quantum Design, LSH 302) and a

monochromator (e.g., MC Pherson 2035) to continuously adjust the

wavelength. To better focus the light on the LED, additional optics

is used. Figure 7 shows the absorption curves for seven diodes,

for which we measure the induced voltage in dependence on the

illuminated light for different wavelengths with a resolution of

5 nm.
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Figure 7: Absorption curves of seven LEDs of different color.

Usually, the absorption curve is shifted towards the lower end of

the emitted spectra of wavelengths, as the LED is not able to detect

photons of lower energy than its band gap [39]. This is in line with

our measurements, where the absorption of most diodes ranges

broadly around the original color. Interestingly, this is not the case

for the green SMD LED that the Yealink telephone uses (cf. Figure 2

top), where the absorption spectrum does not fit the emitting color

at all, but leans towards white and blue color. Here, apparently,

a white LED with a green colored cover has been built-in rather

than a diode that actually emits green light. Of course, the diode

may still be used for establishing a covert channel, but needs to be

illuminated with a blue laser instead.

4.2 Laser Modules

The wavelength of the used laser beam is crucial for establishing a

communication channel with a particular LED. To provide further

insight into these relations, we determine the emission wavelengths

and laser spectra of different laser modules in Section 4.2.1. Next

to a matching (and powerful) laser, it is crucial for a successful

attack to precisely focus the laser beam onto the targeted LED.

In Section 4.2.2, we present the optical equipment used in our

experiment and discuss how to handle vibrations to stabilize the

laser beam.

4.2.1 Laser spectra. We measure the light of four different lasers

using the free space input of an optical spectrum analyzer (An-

ritsu MS9701C) within a span of 20 nm and a resolution of 0.04 nm.

The corresponding wavelengths are shown in the bottom part of
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Figure 2. As an example, to actuate the LEDs the Yealink telephone

uses, the peak in optical power needs to reside in the absorption

range of the diodes (top part of the figure). For bridging large dis-

tances, in turn, the optical power of the laser is crucial. In Figure 8,

we characterize the green class 3B laser pointer and the purple/blue

class 4 engraving laser out of the four laser modules mentioned

above. For both, we measure the optical output power in depen-

dence of the driving current. While the green laser pointer reaches

an output of up to 60mW for the maximum current, much higher

power is reached with the engraving laser. In order to avoid damage

of the optical sensor the measurement has been limited to 100mW.

According to the specification, the laser may achieve up to 6W.
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Figure 8: (Optical) laser output power over the input current.

Moreover, to establish a communication protocol and transmit

data, the laser is directly modulated, that is, the optical power of the

laser is changed by varying the input current. It is important to note,

that direct modulation also changes the output wavelength, which

may cause signal loss at the edge of the absorption curve. Moreover,

the modulation bandwidth of lasers crucially depends on the speed

of the driver controlling the current.While integrated driver circuits

for off-the-shelf laser pointers are limited to a few kHz in speed,

much higher bandwidths can be achieved with external current

controllers. In general, a directly modulated laser module can reach

bandwidths of up to 30GHz [see 41].

Choice of laser module. In order to transmit the highest possible

optical power over a long distance, subsequently, we make use

of the strong class 4 engraving laser, which has been purchased

for merely 150e on Ebay. To guard against any damage in the

surroundings, we operate the laser module in a strictly marked out

area using protective gear. The laser is driven by a separate current

source (ILX Lightwave LDC3744C) that provides stable output with

redundant current limiters. In this setting the laser current may

reach up to 4A and a compliance voltage of 10V. We run the driver

in constant current mode with external modulation such that the

laser is switched on and off during modulation. The modulation

signal itself is provided by an external controller.

4.2.2 Stabilizing laser beams across distance. The mentioned class 4

engraving laser comes with a small lens applied, such that the light

beam diverges after a few meters. To counteract this, we use a

telescope at the attacker’s side to focus the beam in distance. We use

the Navitar Zoom 7000 telescope, which is a close-focusing macro

video lens with a working distance from 5 inch to (theoretically)

infinity and is parfocal over the entire zoom range. However, in

practice the beam of course shows some broadening over particular

long distances above 40m. With a price of 300e the used telescope

is on the lower end of the scale for professional optical equipment.

Higher investments for better optics likely enable to extend the

practical parfocal range significantly.

To overcome long distances it additionally is crucial to handle

vibrations and stabilize the laser beam. With increasing distances,

small vibrations lead to significant movement of the light spot. Mi-

nor movements of the building, for instance due to outside traffic,

people, and elevators, may thus impede the attack, although un-

noticeable as a person. To stabilize the setup, we mount the laser

and the telescope on an optical plate with shock absorbing feet

(Thorlabs AV4) made out of Sorbothane, a synthetic viscoelastic

urethane polymer. For the given load, the absorption efficiency is

80–100% for frequencies above 49Hz, which is sufficient for our

experiments. To further compensate for vibrations one may also use

fast steering, Piezo-activated mirrorsthat counteract movements

in (near) real-time. Another significant source of distortions are

movable parts of the sending equipment itself, such as fans. For our

experiments, we hence detach the fan from the laser’s heat sink.

Once appropriate measures against vibrations have been estab-

lished, the focal point of the telescope is adjusted on the target—the

device’s LED—for the respective distance and appliedwith ultra-fine

adjustment screws.

4.3 Data rate

To assess the achievable data rate of our attack, we measure trans-

mission in two different settings:We first experiment in a laboratory

setting to optimize our setup over a short distance and second, in a

realistic setting across long distances to demonstrate the feasibility

of the attack in practice.

4.3.1 Short-distance transmission. In the first experiment, we mea-

sure the transmission per target device over a distance of 30 cm.

This is too short for a practical instantiation of the attack, but en-

ables us to optimize our setup for subsequent long-distance trans-

missions. Moreover, by narrowing down the external influence, we

are able to establish an empirical upper limit that may be achieved

with the particular hardware of the attacked devices. The used

components (LEDs, GPIOs specifications, processor, etc.) and the

achievable data rate are summarized in Table 3. The specified times

indicate the configuration for the pulse-width modulation (PWM).

In addition to the three target devices, we also include a Raspberry Pi

as a reference device.

A few things stand out: First, for the TP-Link TL-MR3020, we

make use of a green laser rather than the more powerful engraving

laser. This was necessary, as the device’s LED emits green light, in

contrast to the others that emit white light but carry a green cap.

The green laser, however, is slower than the purple one such that we

yield a lower data rate. Second, both devices are 5.5× slower than

the Raspberry Pi, which underlines a certain dependency of the

data rate on the CPU speed and, thus, the possible sampling rates.

Third, the Yealink telephone is significantly slower than all the

above. As mentioned earlier, for this device an additional capacitor

is built-in such that the sampling rate is limited by the charge time

of the capacitor. Equipping the Raspberry Pi with the very same

capacitor and the same LEDs enables twice the data rate, due to the

higher sampling rate.

To expand on these results and stretch the limits of the at-

tack, subsequently, we focus on the LEDs of the Yealink telephone

in combination with the Raspberry Pi that is equipped with a

1.4GHz CPU.
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Table 2: Data rates for infiltrating data into the target device by inducing current into LEDs using high-intensity laser beams.

Distance Target Circuit Laser At the Target Configuration Data rate

Resistor Capacitor Input Current Optical Power Current t
1-bit

t
0-bit

t
off

10m  1A 12mW 37 µA 40 µs 15 µs 15 µs 18.2 kbps
20m  2A 58mW 43 µA 40 µs 15 µs 15 µs 18.2 kbps
25m  2A 37mW 20 µA 40 µs 15 µs 15 µs 18.2 kbps
30m  4A 50mW 32 µA 40 µs 15 µs 15 µs 18.2 kbps
35m  4A 45mW 35 µA 50 µs 15 µs 25 µs 13.3 kbps
40m  4A 35mW 20 µA – – – ✗

35m  4A 45mW 35 µA 3,800 µs 2,100 µs 1,200 µs 200 bps
40m  4A 35mW 20 µA 3,800 µs 2,100 µs 1,200 µs 200 bps

4.3.2 Long-distance transmission. For our long-distance experi-

ment, we consider both predominate circuit types that either use a

series-connected resistor, as used by the TP-Link TL-WR1043ND

router, or an additional capacitor, as it is the case for the Yealink

SIP-T21P E2 telephone. The setup remains as depicted in Figure 6.

We transmit data packets of 1,000B in size and record them on

the other end. The recorded data is then compared with the trans-

mitted one to verify error-free communication. These transmissions

are evaluated for different circuits and with increasing distances

for 10, 20, 30, 35, and 40m. Table 2 summarizes the results. All
measurements have been conducted indoors, due to safety reasons.

Over 10 consecutive repetitions of each experiment, data trans-

mission succeeds without a single bit error (BER = 0%). For cir-

cuits with a series-connected resistor (TP-Link TL-WR1043ND and

TP-Link TL-MR3020 routers), we achieve a remarkable data rate of

18.2 kbps across 30m. Beyond this, the rate declines to 13.3 kbps
for 35m and transmission comes to a halt at 40m. Similarly to

the short-distance measurements before, we however also see a

significant difference in the achievable data rate for targets that

use a capacitor, which are slower by a factor of 100. Nevertheless,
even 200 bps are sufficient to establish a command-and-control

channel to air-gapped systems and enable orchestrating different

malicious activities. Moreover, the capacitor enable to operate on

lower levels of induced current at the target and, thus, allows to

overcome larger distances.

To better highlight these relations, we also measure the optical

power that reaches the target with a Thorlabs PME320E optical

power meter and the corresponding Thorlabs S120VC power sensor.

To match the size of an SMD LED and its effective area, we cover

large portions of the sensor such that only about 1mm2
remains

sensitive. Even with a laser input current of 4A the induced current

only reaches 20 µA in 40m distance, while for shorter ranges at

least 30 µA are reached. In this setting, 20 µA is a tipping point,

where a reliable, error-free communication channel can still be

established for circuits with series-connected resistors. For large

distances, however, vibrations are the limiting factor that impair

the attack. This may be counteracted using fast steering mirrors

to level the laser beam as described in Section 4.2.2. Targets that

incorporate circuits with capacitors can even be communicated

with across 40m. This is equivalent to the width of a highway with

eight lanes including median and shoulders on each side. Charging

the capacitor is largely unaffected by vibration, but slightly slowed

down. This, however, is easily compensated by the communication

protocol (cf. Section 3.5).

Summary.Wedemonstrate data transmission to built-in LEDswith

data rates of 18.2 kbps and up to 30m if no capacitor is used in the

circuit. Consequently, infiltrating data into air-gapped devices, such

as the two TP-Link routers, becomes possible at speeds comparable

to regular modems.

5 EXFILTRATING DATA

We continue to show how data can be exfiltrated from the tar-

geted devices. By flashing built-in LEDs, it is possible to establish

arbitrary communication protocols and transmit data. Reaching

Table 3: Achievable data rates of different target devices (WLAN router, telephone, micro computer) at 30 cm distance.

Target device Processor Laser LED GPIO t
1-bit

t
0-bit

t
off

Data rate

TP-Link TL-MR3020 Atheros AR-9331 (400MHz) green green 0 (WiFi LED) 200 µs 100 µs 100 µs 3,333 bps
TP-Link TL-WR1043ND Atheros AR-9132 (400MHz) violet green 5 (QSS LED) 150 µs 75 µs 100 µs 4,000 bps

Raspberry Pi BCM2837B0 ( 1.4GHz) violet green
b

26 (Pin Header) 30 µs 15 µs 15 µs 22,222 bps

Yealink SIP-T21P E2 DSPG DVF-9918 (400MHz) violet green 112 (green/red button) 700 µs 350 µs 300 µs 1,000 bps

Raspberry Pi BCM2837B0 ( 1.4GHz) violet green
b

26 (Pin Header) 320 µs 180 µs 180 µs 2,000 bps
(with 10 nF capacitor)

b
Using the LEDs of the Yealink SIP-T21P E2 telephone.
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Figure 9: Frequency response of a) low-bandwidth and b) high-bandwidth conventional SMD
1
diodes, and c) of those used in

the Yealink SIP-T21P E2. The response of the photodetector itself has been subtracted.

realistic attack distances, however, requires efficient optical equip-

ment. In contrast to prior work, we show that it is perfectly feasible

to overcome large distances and achieve high data rates without

modifications of the targeted hardware.

We begin with a systematic evaluation of the sending capabilities

of LEDs in Section 5.1. Subsequently, in Sections 5.2 and 5.3, we

demonstrate data exfiltration in two different scenarios, where we

use a) consumer high-speed cameras as available in modern smart-

phones, and b) more advanced, but equally affordable avalanche

photodetectors. With the latter it is possible to push the limits of

the communication and significantly outperform existing covert

channels that use LEDs.

5.1 LEDs as Sender

For data exfiltration the emitted light has to be powerful enough to

be observable by the adversary. Subsequently, we thus determine

the characteristics of different LEDs and measure their bandwidth,

that is, the theoretically achievable data rate, as well as the optical

power of the emitted light in Sections 5.1.1 and 5.1.2, respectively.

Details and specifications of the LEDs are provided in Appendix A.

5.1.1 Bandwidth. For evaluating the theoretically achievable data

rates that can be transmitted with consumer LEDs, we proceed

to measure the modulation bandwidth. The setup is as follows:

The LEDs are actuated by a radio frequency generator (RFG) that

generates a sweep frequency from 100Hz up to 50MHz with an

effective output voltage of 3.4V. The light emitted by the LED is

then measured with a photodetector (PD), a Thorlabs PDA8A, in

a distance of 0.5 cm. This silicon-based detector exhibits a spec-

tral response of 320–1,000 nm on an active area of 0.8mm2
. The

wavelengths of the previously characterized LEDs thus are entirely

in range. The actual response of the diodes is finally recorded with

an electrical spectrum analyzer (ESA) in maximum hold mode.

Figure 9 shows the frequency response for a) low-bandwidth and

b) high-bandwidth conventional SMDLEDs, and c) for those used by

the Yealink telephone. The conventional SMD diodes show widely

different behavior concerning the possible modulation bandwidth,

which is founded in the used materials and construction scheme of

the devices. Usually, AlGaInP and InGaN are used in commercially

available LEDs for red, amber and yellow as well as green and blue

colors, respectively [30, 37]. Moreover, InGaN diodes typically are

constructed as Multiple Quantum Well (MQW) structures, whereas

AlGaInP devices are build as Double Heterojunctions (DH). Due to
the different materials and layer structures, there are diverse charge

carrier lifetimes, which in turn results in the different modulation

bandwidths [36].

The maximum theoretical modulation bandwidth of LEDs is

limited to 2GHz [6, 33]. In our experiments, the red and orange

LEDs can reach data rates of 7 to 9MHz for on-off modulation. The

LEDs from the Yealink telephone show even higher modulation

bandwidths with rates of up to 11.2MHz. An overview of the exact

bandwidth characteristics is given in Table 4. Values are specified

as the full width at half maximum (FWHM) bandwidth, that is, the

frequency where the transmitted power has decreased by the half

or 3 dB.

5.1.2 Optical power. Finally, we measure the maximally emitted

optical power for each LED to assess how well consumer diodes

are visible in distance. To this end, we replace the photodetector

with an optical power meter (Thorlabs PME320E) and a power

sensor (Thorlabs S120VC), and measure the emitted power in three

different settings: First, we determine themaximum bias voltage that

Table 4:Modulation bandwidth and optical output power for

different consumer LEDs.

LED Bandwidth Optical Power

[3 dB] Bias Sine Burst

E
x
e
m
p
l
a
r
y
s
e
l
e
c
t
i
o
n yellow 0.42MHz 44 µW 29 µW 17 µW

gr/ye 0.41MHz 12 µW 7 µW 5 µW
green 0.33MHz 55 µW 29 µW 16 µW
orange 9.55MHz 629 µW 786 µW 186 µW
red 6.73MHz 1,690 µW 1,290 µW 212 µW
blue 2.06MHz 5,580 µW 2,780 µW 1,470 µW
white 1.75MHz 5,800 µW 3,930 µW 1,580 µW

Y
e
a
l
i
n
k green 7.22MHz 258 µW 311 µW 119 µW

red-1 6.04MHz 551 µW 640 µW 152 µW
red-2 11.22MHz 257 µW 646 µW 131 µW
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may be applied. Second, we modulate a sine wave with a frequency

of 30 kHz with a voltage of 5V. Finally, we apply a burst of 16 bit
large data blocks at a rate of 30 kbps and repeat it with 500Hz,
which allows us to estimate the power for data transmission. The

results are shown in Table 4.

In particular, the blue and white LEDs show the highest output

powers under the given conditions. However, the average output

power is decreased if modulation is applied, as we turn off the

LED for transmitting a digital zero. This, of course, needs to be

considered for determining the maximum distance and data rate in

subsequent experiemnts. Generally speaking, the higher the output

power the better we are able to bridge large distances. Much of the

restrictions imposed at this point, however, can be overcome by

hardware for effectively capturing light as detailed in Section 5.3.

5.2 Exfiltration using high-speed cameras

Modern smartphones often have the ability to capture slow-motion

videos. This boils down to an increased frame rate of the recorded

video, that is, high-speed camera functionality. These cameras are

very sensitive to small and dark light sources, such that they are

perfectly suited for our attack.

In the first experiment, we thus use an iPhone 11 that comes with

a 240 fps 1080p camera to exfiltrate data from three target devices:

TP-Link TL-WR1043ND, TP-Link TL-MR3020, and the Yealink SIP-

T21P E2 telephone. The procedure is as easy as capturing a video

of the target device while it is transmitting. Analyzing the video

stream, in turn, is done offline on more performant hardware. In a

more specialized setting, as for instance demonstrated in Section 5.3,

this can however be equally conducted online. Moreover, here the

attacker is not limited to a specific sampling strategy, such that we

can use on-off-keying (OOK) for modulation (cf. Section 3.5). Due to

the camera’s limited frame rate and the Nyquist–Shannon sampling

theorem [see 31] the achievable data rate is limited to 120 bps. To
empirically verify this, we transmit three randomly generated data

chunks of 500B in size using each target device, while filming it

with the iPhone. The size of transmitted data is reduced in compar-

ison to the previous experiment as the iPhone’s internal storage

quickly runs full given the large size of the recorded video.

Table 5: Data rates using a 240 fps high-speed camera as re-

ceiver in two settings: 2m indoors and 40m outdoors.

Target device Distance Data rate

TP-Link TL-MR3020 2 – 40m 119.05 bps
TP-Link TL-WR1043ND 2 – 40m 119.05 bps
Yealink SIP-T21P E2 2 – 40m 119.05 bps

We conduct two different sets of experiments, that are sum-

marized in Table 5. At first, we measure transmission on a short

range of 2m indoors, and proceed to long-range measurements

across 40m outdoors (the maximum distance possible at our test-

ing grounds). In line with the “consumer setting” of using non-

specialized hardware, for the second experiment, we use regular

binoculars (Minox BL 10x44 HD) to zoom in on the LEDs of the

target devices. In all cases, we nearly yield the theoretical maximum.

In contrast to transmitting data using laser beams, here a distance

of 40m does not affect the data rate. Larger distances could not be

investigated due to the boundaries of our testing grounds. However,

reception is possible as long as at least a single pixel that represents

the LED is visible.

5.3 Exfiltration using photodetectors

While high-speed cameras are very sensitive to light, they have a

clear limit imposed by their frame rate. Photodetectors, in turn, al-

low to improve upon this limitation at the expense of sensitivity. To

yield the highest possible signal-to-noise ratio at rather low optical

input power levels, we use an avalanche photodetector (APD) that

we characterized in Section 5.3.1. To compensate for large distances

and improve reception, an attacker may use more efficient optical

equipment. In subsequent experiments, we thus employ the tele-

scope, that has also been used for focusing the laser beam on the

target (the Navitar Zoom 7000) rather than ordinary binoculars. In

Section 5.3.2, we again direct our attention to the Yealink telephone

with its green and red SMD LEDs to inspect a) the raw observability

in distance, and b) the data rate in a realistic setting.

5.3.1 Sensitivity of Photodetectors. For recording the data send out
by an LED of a compromised device over large distances, we require

highly sensitive and fast hardware to capture light. Photodetectors

are made from element semiconductors such as silicon, germanium,

or compound semiconductors such as indium gallium arsenide.

For visible light (380nm–780 nm) mainly detectors made of silicon

(190–1,100 nm) and germanium (400–1,700 nm) are used. Due to

the larger band gap of silicon it is possible to also achieve com-

parable low noise. Conventional photodetectors, however, have

limited sensitivity and no internal gain, such that additional tran-

simpedance amplifiers are necessary for operation, which again

reduces the overall signal-to-noise ratio. For measuring the small-

est amounts of light so-called avalanche photodetectors (APDs)

may be used, which produce a gain factor in the hundreds using a

photoelectric effect based on impact ionization.

To characterize the receiving capabilities of an attacker, we hence

evaluate the sensitivity of a silicon-based APD. In particular, we

make use of the Thorlabs APD440A2, which promises a low signal-

to-noise ratio at rather low optical input power levels. It operates

on a range from 200–1,000 nm with a maximum responsivity of

25AW−1 at a noise-equivalent power of 2.5 fW. As we attempt

to measure a wide-range of light-emitting diodes with different

wavelengths, we break down the responsivity of the APD by color in

Figure 10. Especially the green and red LEDs exhibit almost optimal
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Figure 10: Responsivity of the APD440A2 photodetector at a

gain factor of𝑀 = 50.
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output levels, making the avalanche photodetector a well-suited

receiver for exfiltrating data from consumer devices. For subsequent

experiments, we use the photodetector with a gain or multiplication

factor of𝑀 = 50. More information on this configuration and the

exact frequency response is provided in Appendix B.

5.3.2 Data rate. Finally, we measure the data rate when exfiltrat-

ing data using LEDs. For this, we implement the experimental setup

depicted in Figure 11 and conduct two different measurements.

First, we gauge the electrical response of the photodetector to LEDs

in distance to explore the limits of the communication channel. For

this, we modulate the LEDs using an arbitrary waveform genera-

tor (AWG) such that the diodes emit a burst of rectangular signals.

Second, we replace the AWG with the malicious implant at the

target and transmit large data chunks to determine the bit error

rate of the communication channel.

APDRTO

Telescope

Distance (m) AWG

Device

LED

Figure 11: Experimental setup for exfiltrating data in two

different setting: First, driven by an arbitrarywaveform gen-

erator (AWG) and second, operated by the targeted device.

Signals are captured with an avalanche photodetector (APD)

and processed with a real-time oscilloscope (RTO).

We begin bymodulating bursts of 16 rectangular signals at a data
rate of 30 kbps and repeat this at 500Hz with an effective output

voltage of 3.3V. The signals captured by the APD are recorded

with a real time oscilloscope resulting in high/low voltage patterns

that can be interpreted as the corresponding data pattern. The

measured voltage levels are reported in Table 6. We characterize

the measured response a) with and b) without an additional series-

connected resistor of 470Ω as used by the Yealink telephone. For

both measurements, it is clearly visible that the observed levels

and thus the response decays with increasing distance. With the

resistor in place, we are able to bridge a distance of 25m with the

Table 6: Voltage levels of data streams captured using an

avalanche photodetector a) with and b) without resistor.

(a) with resistor

LED 5m 10m 15m 20m 25m 30m

green 0.23V 0.11V 0.06V 0.03V 0.02V ✗

red-1 0.11V 0.07V 0.03V 0.01V ✗ ✗

red-2 0.06V 0.02V ✗ ✗ ✗ ✗

(b) without resistor

LED 5m 10m 15m 20m 25m 30m

green 2.26V 0.83V 0.41V 0.20V 0.14V 0.10V
red-1 0.89V 0.30V 0.13V 0.09V 0.07V 0.02V
red-2 0.13V 0.03V ✗ ✗ ✗ ✗

green LED and 20m with the first red LED (red-1). The second red

diode (red-2) is less bright and thus reaches less far, which matches

the intuition one has of the setting. Subsequently, we thus use

the telephone’s green LED for our experiments on the data rate

in practice.

We transmit 1,000B large data chunks at an output voltage of

3.3V, digitize the measured high/low levels, and calculate the bit

error rate (BER) between sent and received bit streams. The results

are presented in Table 7. For up to 25m and data rates of 100 kbps,
transmission is possible with minimal bit errors (BER = 0.1%).

Due to the limited bandwidth of the APD, however, the measured bit

error increases significantly for data rates of 200 kbps and distances
above 25m, such that transmission abruptly becomes impossible.

With a more sensitive detector and improved optics, however, this

can likely be enhanced even further.

Moreover, one may even modulate the background light of the

telephone’s display to transmit data. In comparison to the rather

small LEDs, the LCD display constitutes a large and bright light

source that promises a better reception at the photodetector. We

extend on this idea in Appendix C.

Table 7: Bit Error Rates (BER) of transmissions from the tar-

get to the attacker at different data rates using the green LED

of the Yealink telephone.

Distance Data rate

1 kbps 50 kbps 100 kbps 200 kbps

5m 0.0% 0.0% 0.0% 0.1%
10m 0.0% 0.0% 0.0% 0.9%
15m 0.0% 0.0% 0.0% 2.2%
20m 0.0% 0.0% 0.1% ✗

25m 0.0% 0.0% 0.1% ✗

30m ✗ ✗ ✗ ✗

Summary.We demonstrate that LEDs used in office devices can be

used for high-speed exfiltration of data. We achieve a throughput of

100 kbps up to a distance of 25m. This data rate enables to transfer

megabytes of data within minutes and thus poses a serious threat

to air-gapped environments.

6 CONCLUSION

An air-gapped system is unreachable from the outside by definition.

The research community, however, has shown that this is not nec-

essarily true, and has demonstrated multiple ways of bridging the

gap in the past. While these methods feature various very creative

covert channels, their practical utility often remains questionable

due to low data rates, short distances, or only unidirectional com-

munication. We are the first to demonstrate the exfiltration of data

at 100 kbps over 25m and allow for infiltrating data to an unmod-

ified device in 30m distance at 18.2 kbps. With this, we show that

covert channels are not bound to obscure and rare settings, but are

a real threat in practice.

Network operators of high-security facilities and industries that

are at risk of cooperate espionage must not settle for merely air-

gapping a system, but also need to prevent targeted attacks that
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make use of a physical component—for instance, using optical chan-

nels that require a direct line of sight. Obvious countermeasures

for this particular attack are optically opaque rooms. However, as

demonstrated by related approaches, this threat extends to other

variations using electromagnetic, acoustic, or power-dependent

aspects.
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Table 8: Details and specification of the LEDs characterized in Sections 4.1 and 5.1.

Color Type Manufacturer Part No. Brightness Angle of Radiation Current Voltage

Yellow SMD-LED 0603 Würth Elektronik 150060YS75000 120mcd 140 ° 30mA 2.0V
Green/Yellow SMD-LED 0603 Broadcom HSME-C191 50mcd 170 ° 20mA 2.1V
Green SMD-LED 0603 Kingbright KPHCM-2012CGCK 50mcd 110 ° 20mA 2.1V
Blue SMD-LED 0603 TRU Components 1573646 120mcd 120 ° 25mA 3.2V
White SMD-LED 0603 TRU Components 1573647 400mcd 120 ° 25mA 3.2V
Orange SMD-LED 0603 Kingbright KP-1608SECK 180mcd 120 ° 20mA 2.1V
Red SMD-LED 0603 Würth Elektronik 150060RS75000 250mcd 140 ° 30mA 2.0V

A SELECTION OF LEDS

For evaluating the characteristics of light-emitting diodes and the

suitability of these to be used for a covert channel, we have used a

selection of SMD LEDs in Sections 4.1 and 5.1. To allow for easy

reproducibility of our experiments, Table 8 list manufacturers, part

numbers, and basic properties of these.

B PHOTODETECTOR GAIN

A photodetector’s gain or multiplication factor𝑀 is dependent on

the reverse bias voltage, that is used to create the electric field for

triggering the avalanche effect, but also the temperature. While

the multiplication factor increases and decreases with the reverse

bias voltage, it is inversely proportional to the temperature, mean-

ing, the gain increases at low temperatures, but decreases if the

temperature rises. However, the amplification limits the FWHM

bandwidth of the detector to 100 kHz, which in turn bounds the

maximally transmittable data rate. For the experiments presented

in Section 5.3, we use a gain factor of 𝑀 = 50 which exhibits the

frequency response shown in Figure 12.
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Figure 12: Frequency response of the APD440A2 photodetec-

tor with a gain factor𝑀 = 50, operated at room temperature.

C TRANSMITTING DATAWITH

LCD DISPLAYS

Similar to LEDs, the background light of an (LCD) display can be

used to transmit data. The display constitutes a large and rather

bright light source that promises a better reception at the APD.

However, next to brightness itself, also the wavelength of light

is crucial for the sensitivity of the (avalanche) photodetector. In

case of the Yealink SIP-T21P E2, the background light mainly emits

blue light, which is not covered well by the detector as shown in

Figure 10. As the APD responds less to blue than green light, this

also reflects in the distance that can be overcome.

Although the detector is not very well suited for the white/blue

light of the telephone’s display, it still is possible to also exfiltrate

data using the background light. As shown in Table 9, for a distance

of up to 15m, we achieve a data rate of 100 kbps without any bit

error when modulated with traditional on-off keying. Even at a

distance of 20m transmission is possible with up to 1 kbps and
a BER of 26%. Beyond this, however, no noteworthy output and

thus data rate can be measured.

Table 9: Bit Error Rates (BER) when exfiltrating data using

the display of the Yealink telephone.

Distance Data rate

1 kbps 50 kbps 100 kbps 200 kbps

5m 0.0% 0.0% 0.0% ✗

10m 0.0% 0.0% 0.0% ✗

15m 0.0% 0.0% 0.0% ✗

20m 26.0% ✗ ✗ ✗

25m ✗ ✗ ✗ ✗
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