
Poster: The Case for Network Functions Decomposition
Farbod Shahinfar

Sharif University of Technology
fshahinfar@ce.sharif.edu

Sebastiano Miano
Queen Mary University of London

s.miano@qmul.ac.uk

Alireza Sanaee
Queen Mary University of London

a.sanaee@qmul.ac.uk

Giuseppe Siracusano
NEC Laboratories Europe

giuseppe.siracusano@neclab.eu

Roberto Bifulco
NEC Laboratories Europe
roberto.bifulco@neclab.eu

Gianni Antichi
Queen Mary University of London

g.antichi@qmul.ac.uk

ABSTRACT
This paper makes a case for writing unrestricted eBPF network
functionswhich then get automatically decomposed between kernel
and user-space.

KEYWORDS
Network Functions, Program Decomposition, eBPF

1 INTRODUCTION
eBPF, a new technology for programming end-host systems, has re-
cently attracted lot of attention from academia and industry [1, 3, 5].
This is because it allows running programs within the Linux kernel
context without changing kernel source code or loading kernel
modules. eBPF programs can be attached at various hook points,
being the eXpress Data Path (XDP) the earliest in the packet receiv-
ing path. This is located in the NIC driver just after the interrupt
processing and before any operations performed by the network
stack, which are expensive [2]. Recognizing this opportunity, the
research community has shown how it is possible to offload packet
processing functionalities to XDP, thus removing the need for ker-
nel processing and improving performance [3, 5].

Unfortunately, it is not possible to run any packet processing
function in eBPF. This is because a program must be checked by
the eBPF verifier before being loaded into the kernel so to ensure
its behavior does not conflict with the kernel. Specifically, there
are a number of restrictions that a programmer must take into ac-
count (see Table 1). Consequently, developers have so far resorted
to specific workarounds to have their program accepted by the
verifier. For example, BMC [3], a recently proposed XDP module
for Key-Value store applications, can only accelerate small requests
with key and value size less than 250 Bytes and 1000 Bytes, respec-
tively. Also, BMC’s functional logic has been manually separated
into five smaller eBPF programs chained together to support a
higher number of branches and instructions, since each of them
are independently checked for safety.

In this poster, we advocate that a programmer should not worry
about eBPF limitations and write the program logic without specific
restrictions. We propose a compiler that takes as input unrestricted
eBPF code and split it into two parts: one that can be accepted by
the verifier and one that cannot. Our idea is to attach the former at
the XDP hook point and run the latter at user space. The linking
between the two is possible with AF_XDP, a new Linux socket type
that allow XDP programs to redirect packets to a memory buffer in
a user space application. Recent proposals have partially explored
the idea of split-processing [7], in this poster, we propose that this

Table 1: List of eBPF restrictions.
Criterion Consequence

Complexity
(# of Branches &
Instructions)

Parsing complex protocols increases the number of states
that the verifier has to check. When this number becomes
too large, the program is rejected.

Loops Bounded loops are possible in newer kernels (i.e., v5.3+) but
their verification is subjected to the complexity of the entire
program (see point above). For example, BMC [3] and bpf-
iptables [5] limit the data they process (e.g., key-value size or
number of supported rules) to pass the verifier checks.

Restricted func-
tions & libraries

Only a limited number of kernel functions and C libraries can
be used. Some network applications (e.g., IDS) may require
complex operations on packets’ content (e.g., regex matching)
or custom data structures that are not available in eBPF.

Packet-driven pro-
cessing

eBPF programs are only triggered on a per-packet basis. How-
ever, important data plane operations do not naturally fit into
this programming model as network algorithms are naturally
event-driven [4]. For example, this is the case when comput-
ing periodic tasks (i.e., measuring flow rates, resetting data
structures).

shall be done automatically at program compile time. This approach
brings two main benefits:
Expressiveness. As a first example, consider the case of a Mem-
cached application where a loop over variable length data is re-
quired. If written naively, the program would be rejected by the
verifier as the loop might result too large and exceed the maximum
number of branches that the verifier can analyze. Here, instead of
forcing the programmer to limit the key/value sizes to a specific
value [3], the compiler shall automatically split the logic into two
parts: one to be attached at the XDP layer with the maximum loop
size supported, and the rest managed at user space to handle re-
maining cases. We call this vertical function splitting. As a second
example, consider an Intrusion Detection System (IDS) that has to
work on the entire packet. Here, the program might be rejected
by the verifier for an excessive amount of branching. In this case,
the compiler shall split the program logic into small pieces that
alone could pass the verifier. Then, it shall chain them together
automatically. We call this horizontal function splitting.
Performance. We performed a number of tests to better under-
stand what are the performance implications when logic is split
between XDP and user space. We connected two servers (2x10-core
Intel Xeon Silver 4210R @2.40GHz) back-to-back, and we used one
server to generate high-throughput 64B traffic, while in the other
we evaluated the split program. We set up the server to consume
a constant amount of CPU cycles per packet, representative for
different applications. Figure 1 shows the achievable throughput
of the server when its processing is split between XDP and user
space (AF_XDP). As a baseline, we tested the cases where the pro-
cessing is either entirely in XDP or at user space with AF_XDP.



CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany F. Shahinfar, S. Miano, A. Sanaee, G. Siracusano, R. Bifulco, and G. Antichi

(0%, 100%) (50%, 50%) (100%, 0%)
(XDP%, AF_XDP%)

2

33

4

M
pp

s

Memcached Like (1000 cycles)

(0%, 100%) (50%, 50%) (100%, 0%)
(XDP%, AF_XDP%)

4

5

6

7

M
pp

s

NAT Like (500 cycles)

(0%, 100%) (50%, 50%) (100%, 0%)
(XDP%, AF_XDP%)

7

8

9

10

M
pp

s

DDoS Mitigator Like (250 cycles)

(0%, 100%) (50%, 50%) (100%, 0%)
(XDP%, AF_XDP%)

11
13

16
18

M
pp

s

Checksum Validator (100 cycles)

Figure 1: Throughput for different applications when the
work is split between XDP and AF_XDP.

Code

Runtime

AF_XDP

eBPF
Engine

Compiler

Driver

K
e
rn

e
l-

S
p

a
ce

U
se

r-
S

p
a
ce

Static Analysis

Program Synthesis

V
e
ri
fi
e
r

eBPF Engine

XDP
1

XDP
2

XDP
3

Figure 2: The compiler splits unrestricted eBPF code in a
chain of XDP modules and a user space program.

Generally, splitting the logic leads to better performance. This is
because AF_XDP requires XDP to run; offloading work to the latter
can improve the performance until XDP does not become the bot-
tleneck, which is the case of the right part of the figures. For small
tasks (~100 cycles), the cost of running the program at XDP level is
higher, and AF_XDP only represents the best alternative.

2 OVERVIEW OF THE SOLUTION
In Figure 2, we show an overview of our solution. Unrestricted
eBPF code is taken as input by our compiler which first performs
a set of analysis passes (Static Analysis box in the Figure). This
helps for building an understanding of the input code that will be
used to split its logic in multiple mini-programs (Program Synthesis
box). Here, we can use similar techniques that already proved to
be successful for P4 targets [6, 8]. As discussed above, the splitting
can happen either horizontally (by chaining together multiple XDP
programs) or vertically (by disaggregating the function between
kernel and user space). In some cases, only one option is possible:
an unbounded loop cannot be represented with a set of bounded
loops within multiple mini XDP programs. In others, both splitting
mechanisms might be adopted. For example, in the presence of a big
input program, dividing its functionality in smaller XDP modules
might allow each of them to separately pass the eBPF verifier. In
the next points we discuss opportunities and challenges in relation
to network function decomposition.
Overheads.Decomposing a packet processing program in multiple
mini-functions does not come for free. Naively, if the first function
is in charge of parsing packets, the others in the chain should not
redo this operation. This implies mini programs shall exchange
also some metadata. As a consequence, function splitting increases
data movement and this might impact the overall performance. In

addition, the basic operation of jumping between programs (i.e.,
tail call in eBPF dialect) is expensive per se. A challenge is to find
the sweet spot between number of mini programs that pass the
verifier and overall packet-processing performance.
Metrics for splitting. Splitting the original code in what can be
done at the XDP layer and what cannot is not the only option.
There might be multiple metrics that can dictate this. For example,
having early access to the packet with XDP might help with latency
sensitive workloads. In contrast, using Single Instruction Multiple
Data (SIMD) operations at user space can help for throughput
intensive workloads. A challenge will be to define different type of
splitting based on inputmetrics, which can be achieved by designing
a performance predictionmechanism that would give the right hints
on when the splitting is helpful and when it is not.
The need for network stack. The input program might require
kernel intervention. The compiler shall be able to recognize this
and avoid any type of vertical splitting as it might trigger multi-
ple round-trips between kernel and user space. Only horizontal
splitting shall be allowed and if not possible, the compiler shall
reject the program. A challenge is designing new eBPF verbs that
allow the user to provide hints to the compiler on the program’s be-
havior. The compiler will then enhance the original program with
additional instructions that will help distinguishing the packets
requiring kernel intervention.
Acknowledgments. We thank the anonymous reviewers. This
work is sponsored in part by the UK EPSRC project EP/T007206/1
and Facebook Networking System Award 2020.
REFERENCES
[1] 2021. Cilium. https://cilium.io/. (2021).
[2] Cai et al. 2021. Understanding host network stack overheads. In SIGCOMM. ACM.
[3] Ghigoff et al. 2021. BMC: Accelerating Memcached using Safe In-kernel Caching

and Pre-stack Processing.. In NSDI. USENIX.
[4] Ibanez et al. 2019. Event-Driven Packet Processing. In HotNets. ACM.
[5] Miano et al. 2019. Securing Linux with a Faster and Scalable Iptables. ACM

SIGCOMM Computer Communication Review (2019).
[6] Soni et al. 2020. Composing Dataplane Programs with µP4. In SIGCOMM. ACM.
[7] Tu et al. 2021. revisiting the open vSwitch dataplane ten years later. In SIGCOMM.

ACM.
[8] Zhang et al. 2020. Gallium: Automated Software Middlebox Offloading to Pro-

grammable Switches. In SIGCOMM. ACM.

https://cilium.io/

	Abstract
	1 Introduction
	2 Overview of The Solution
	References

