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ABSTRACT

City-scale spatiotemporal mobile network traffic data can support
numerous applications in and beyond networking. However, op-
erators are very reluctant to share their data, which is curbing
innovation and research reproducibility. To remedy this status quo,
we propose SpectraGAN, a novel deep generative model that, upon
trainingwith real-world network trafficmeasurements, can produce
high-fidelity synthetic mobile traffic data for new, arbitrary sized
geographical regions over long periods. To this end, the model only
requires publicly available context information about the target
region, such as population census data. SpectraGAN is an original
conditional GAN design with the defining feature of generating
spectra of mobile traffic at all locations of the target region based on
their contextual features. Evaluations with mobile traffic measure-
ment datasets collected by different operators in 13 cities across two
European countries demonstrate that SpectraGAN can synthesize
more dependable traffic than a range of representative baselines
from the literature. We also show that synthetic data generated
with SpectraGAN yield similar results to that with real data when
used in applications like radio access network infrastructure power
savings and resource allocation, or dynamic population mapping.
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1 INTRODUCTION

Data-driven analysis and optimization enable rich insights to design
efficient automated systems and to create new value-added services,
and the availability of large datasets is a key contributor to these
developments [34, 35]. In the networking context, spatiotemporal
mobile traffic is arguably a highly valuable form of data. It consists
of information about the time-varying traffic load observed at all
locations in a target geographical region. A data sample is illustrated
in Figure 1: plot (a) shows the (time averaged) spatial distribution
of mobile traffic across a city, whereas plot (c) portrays the (space
averaged) temporal fluctuations of the same traffic over one week.
Additional time series in plot (c) highlight the diversity of traffic
volumes and patterns at different locations.

Information on city-scale mobile traffic has numerous appli-
cations within and beyond networking. Prominent examples of
network problems that benefit from mobile traffic data include
resource management [9, 13, 20, 48, 56], mobile network infrastruc-
ture planning [26], network energy efficiency optimization [57, 70],
or network monitoring [52]. Beyond networking, usages for spa-
tiotemporal mobile traffic emerge, e.g., in urban sensing and com-
puting [18, 51, 85], inference of commuting patterns and segrega-
tion [19, 27, 43, 67], monitoring of demographic patterns [25, 28,
31, 42, 80], detection of land use and its dynamics [33], transporta-
tion engineering and urban planning [58], or road traffic surveil-
lance [39, 59].

Limited access to mobile traffic data. All aforementioned ap-
plications are enabled by mobile traffic data that is inherently de-
personalized: as shown in Figure 1, the data is aggregated over space
(e.g., across all users associated to a same base station or within
a same spatial area) and time (e.g., during intervals of minutes to
hours). Although its nature poses reduced privacy risks (e.g., as
corroborated by the European Union’s General Data Protection
Regulation), spatiotemporal mobile traffic data is deemed sensitive
by network operators, in terms of industrial and commercial se-
crecy. Hence, access to this data is not uniform and generally scant
in the research community, and often occurs behind restrictive Non-
Disclosure Agreements (NDAs). The result is that (𝑖) the potential
of mobile traffic data to feed innovation is curbed, and (𝑖𝑖) current
research based on mobile traffic is not reproducible or verifiable.

Synthesis as a solution to data access.Motivated by the above
and to overcome the mobile traffic data access barrier, we aim at
generating dependable synthetic city-scale spatiotemporal mobile
traffic data. Our goal is to design a model trained on a limited
amount of real-world measurement data, which can then be used
to generate large amounts of high-fidelity synthetic traffic from
publicly available data about arbitrary geographical regions.

Such amodel primarily benefits researchers, but also data holders
such as network operators. By using the trained model, researchers

https://doi.org/10.1145/3485983.3494844
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would be finally able to independently generate dependable mobile
traffic data to support their studies. Ideally, this could lead to the
adoption of a reference ensemble of synthetic datasets of spatiotem-
poral mobile traffic by the community, ensuring the comparability
of results across works based on such type of data. In addition, data
holders can leverage the model to synthesize and share realistic mo-
bile traffic data from their measurements with third parties, without
concerns on leakage of commercially sensitive information.

Challenges of mobile traffic generation. However, meeting
the goal above entails a number of significant and unique challenges.
Firstly, generation requires synthesizing spatiotemporal data like
that in Figure 1 without prior knowledge of the historical traffic
in the target area; it is thus a different and more complex problem
than, e.g., mobile traffic prediction. Secondly, ours is a controllable
generation problem: the model is required to capture non-trivial
correlations between the urban context and the corresponding mo-
bile traffic, so as to generate traffic for a previously unseen urban
region solely based on its local contextual conditions. Thirdly, as
cities have diverse geographical span, the model should be capable
of generating traffic over arbitrary spatial dimensions. Fourthly,
mobile traffic information must cover long time periods to be useful
in many applications; therefore, the model should allow generating
traffic time series of any specified (and potentially long) duration,
without compromising dependability. Meeting these last two re-
quirements entails capturing complex spatiotemporal dynamics
seen in real-world mobile traffic [47, 64, 65], so as to preserve, e.g.,
traffic peaks and flows across space and time that are rooted in
mobile user movements and digital usages.

Our contributions. To attain the goal outlined above and ad-
dress the associated challenges, we propose SpectraGAN, a novel
generative model based on a tailored deep neural network architec-
ture. In essence, SpectraGAN is a conditional neural sampler with
two main components: an encoder and a generator. The role of the
encoder is to transform contextual information that is readily avail-
able via public repositories (broadly falling into three categories,
i.e., census, land use, and Points of Interest (PoIs)) so that it can be
used to control of the generation process. An example of context
used by our approach is the inhabitant density from population
census, portrayed in Figure 1b for the same city of Figure 1a.

The generator receives the hidden representation of the context
produced by the encoder and outputs spatiotemporal synthetic traf-
fic. To this end, it leverages the insight that mobile traffic at any
given location exhibits repeating variations over time, as observed
in the literature [21, 52, 72] and in Figure 1c; this manifests in the
form of small number of dominant components when traffic is
viewed in the frequency domain, as illustrated in Figure 1d. Our
generator directly generates the significant frequency components
based on the input context, then turns them into a time series via an
inverse Fourier transform: as shown in Figure 1e, this already well
approximates the actual traffic variations. Finally, the generator
adds a separately produced context-driven residual temporal signal,
to model smaller fluctuations in traffic, as in Figure 1f. The pro-
cess above is run concurrently and independently on small spatial
patches, which are then sewed together to obtain traffic data over
the whole target region. SpectraGAN is adversarially trained (à la
GAN). The key contributions of our work are as follows:

(a) Averaged traffic map. (b) Census context.

(c) Weekly traffic, averaged over space (grey), and at two loca-

tions with maximum (blue) and median (red) loads, whose po-

sition is annotated in Figure 1a and Figure 1b.

(d) Frequency domain representation of themobile traffic in all

cities in our study. Orange spectra refer to single locations, and

gray spectra to their average per city. Significant frequencies

are labelled along the x-axis.

(e) Data and reconstruction

(lines are almost overlaid).

(f) Residual signal (data minus

reconstruction).

Figure 1: Data for City A (see §3.1 for details).

• We introduce SpectraGAN, a novel conditional GAN model that
leverages a frequency representation of localized traffic to gener-
ate mobile traffic for any desired region and temporal duration,
given the relevant contextual data (§2). This is the first solution to
the important and hard problem of synthesizing spatiotemporal
mobile traffic from only publicly available information (§7).

• We evaluate SpectraGAN with multi-city mobile traffic mea-
surement datasets collected in two European countries (§3). Our
results not only justify the design choices for the different com-
ponents of SpectraGAN, but also show its superior ability in
generating high-fidelity, long-term traffic for previously unseen
cities, relative to representative baseline approaches (§4).

• We further evaluate SpectraGAN with practical use cases in
networking and beyond, and show that using synthetic traffic
data generated with our model yields results comparable to those
obtained with real traffic data (§5).

Upon publication of this work, we will make a synthetic spatiotem-
poral mobile traffic dataset generated using SpectraGAN available
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to the research community. Specifically, this dataset will consist of
traffic data for five diverse sized cities in Germany, obtained with
context data for those cities (retrieved from public sources) as input
to a pre-trained SpectraGAN model.

2 SPECTRAGAN

We first formalize the problem of synthesizing city-scale spatiotem-
poral mobile traffic data, then outline our SpectraGAN approach
before presenting the detailed design of its generative model.

2.1 Overview

We start by elaborating on the requirements and challenges that
the target model needs to meet and address.

2.1.1 Requirements and Challenges.

Generation versus prediction. Note that traffic generation
task is different from traffic prediction; the latter is an active re-
search direction in the context of mobile traffic on its own, see,
e.g., [73, 77, 82]. Given a sequence of city-level traffic data snap-
shots x1, . . . , x𝑇 over 𝑇 time-steps and the corresponding context
information c (e.g., population, PoIs) as input training data, the
goal of generation is to model the joint conditional probability
𝑝 (x1, . . . , x𝑇 | c), whereas the goal of prediction is to model the con-
ditional probability 𝑝 (x𝑡 | x𝑡−1, c).1 While seemingly similar, the
former is relatively a much harder task as the distribution is more
complex, as apparent when factorizing the joint distribution as
𝑝 (x1, . . . , x𝑇 | c) = 𝑝 (x1 | c)𝑝 (x2 | x1, c) . . . 𝑝 (x𝑇 | x1, . . . , x𝑇−1, c).
Compared to 𝑝 (x𝑡 | x𝑡−1, c), the joint modeling requires to estimate
multiple such conditional probabilities and an extra term 𝑝 (x1 | c),
which is complex as it is. In other words, while the prediction in-
volves only estimating the local changes from 𝑡 − 1 to 𝑡 , generation
demands synthesizing the first point x1 for a given context c, and
also estimating multiple consecutive changes towards x𝑇 .

Controllability. An ideal generation method should let users
modify the output synthetic data by specifying certain properties
of the target urban region as context input, such as cartography
of urbanization levels and layout of the different city infrastruc-
tures. Such a controllable generation calls for conditional generative
models, rather than just the more common free-form generation
approaches such as those based on vanilla generative adversarial
networks (GANs).

Modeling arbitrary spatial sizes. In order to work with dif-
ferent cities, the model should be able to condition generation on
context with arbitrary spatial size. This is a known non-trivial task
in machine learning, as popular multilayer perceptron (MLP) or
convolutional neural network (CNN) architectures only operate on
input with fixed dimensions. Recent works try to tackle the problem
in a principled way [10, 41], yet no ultimate solution is available.

Modeling temporal correlations. Mobile network traffic ex-
hibits a consistent long-term behavior that the generated data should
faithfully reproduce. Learning long-term correlations is challeng-
ing for recurrent neural networks (RNNs), where gradients tend
to either vanish or explode in the long term during training [55].

1Although we mention a one-step prediction with a first-order Markov property here,
the argument can be generalized to any horizon and order.

Figure 2: Trafficflow illustrated: the peak traffic area (shown

in the red circle) shifts from one region to a neighboring re-

gion over a 2-hour period.

While long short-term memory (LSTM) [36] can alleviate this is-
sue, solving it fully via a pure recurrent model requires additional
constraints on the model resulting in a higher complexity [11, 79].

Modeling spatiotemporal correlations. Mobile network traf-
fic correlations are not only spatial and temporal, but also spa-
tiotemporal. Specifically, mobile network traffic features significant
activity peaks that occur at different times in different locations.
These traffic flows are due to the mobility and activity of users, and
are illustrated in Figure 2, where the traffic peak shifts from one
location to another nearby within a two-hour period. Therefore, the
spatial and temporal dimensions of the generation problem cannot
be addressed in isolation, but complex spatiotemporal correlations
must be fully captured.

2.1.2 Problem Statement. The task of conditional spatiotemporal
mobile network traffic generation is to synthesize traffic data x, con-
ditioned on context c. Formally, let us consider a city𝑚 whose geo-
graphical surface is tessellated according to a regular spatial grid;
we term each grid element a pixel, and assume that𝑚 is covered by
𝐻𝑚 ×𝑊𝑚 pixels. The city-scale traffic over 𝑇 time-steps, denoted
as x𝑚1:𝑇 = [x𝑚1 , . . . , x

𝑚
𝑇
], is a 3-dimensional tensor in R𝑇×𝐻

𝑚×𝑊𝑚
.

The generation of x𝑚1:𝑇 is conditioned on (i.e., controlled by) the
context for that city, denoted as c𝑚 ∈ R𝐶×𝐻𝑚×𝑊𝑚

, where 𝐶 is the
number of different types of contextual attributes; note that c𝑚 is a
pure spatial context2. The conditional generation task is to draw
samples x̃𝑚1:𝑇 ′ for a given length of time 𝑇 ′ from the conditional
distribution 𝑝 (x1, . . . , x𝑇 ′ | c𝑚).

Although the true conditional distribution for city 𝑚 is not
accessible, we can leverage available data from other urban ar-
eas. Accordingly, we take a data-driven approach, and design a
parametric probabilistic model with parameters 𝜃 , representing
𝑝𝜃 (x1, . . . , x𝑇 | c), and fit the model on training data. In par-
ticular, given ground-truth traffic and context data for 𝑁 cities
D = {(x11:𝑇 , c

1), . . . , (x𝑁1:𝑇 , c
𝑁 )}, we fit 𝜃 on D by finding 𝜃∗ that

minimizes the divergence D between data distribution 𝑝D and
model 𝑝𝜃 , i.e., 𝜃∗ = argmin𝜃 D(𝑝D , 𝑝𝜃 ). Depending on the specific
training methods, different divergence criteria (D) can be consid-
ered. Once trained, the model can draw samples based on city𝑚
context c𝑚 to synthesize x̃𝑚1:𝑇 ′ .

Implicit to this formulation is the assumption that the conditional
distribution 𝑝 (x1, . . . , x𝑇 | c), relating spatiotemporal traffic pat-
terns with context information, holds across the 𝑁 cities employed

2The contextual attributes we consider (i.e., census, land use, PoIs) vary over timescales
of months or years, which are much longer than those of traffic variations, in the
order of minutes. In that sense, the contextual attributes in our problem setting can be
viewed as static in time.
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for training and the target city𝑚 for which mobile traffic needs to
be generated. This assumption is key to the ability of the model
to generalize to unseen cities, and is common to most conditional
generation tasks (e.g., [40, 49]). We verify that the assumption holds
in our mobile traffic datasets through evaluations in §4. Also note
that the above problem and our proposed model (outlined below)
are general enough that they can support arbitrary units and types
of mobile network traffic. These are determined by the nature of
the training data, which the synthetic data inherently mimics.

2.1.3 Outline of Proposed Solution. At a high level, our proposed
solution is to represent 𝑝𝜃 as a conditional neural sampler, i.e., model
𝑝𝜃 as a deep neural network. Specifically, our conditional neural
sampler consists of two major components: an encoder EG

𝜃
that

processes c into a hidden representation and a generator G𝜃 that
takes the output of the encoder, along with a noise vector z, to
output samples x̃1:𝑇 ′ . We follow the common approach to train
such generative models in an adversarial manner, following the
framework of generative adversarial networks (GANs) [32]. GANs
essentially provide a practical way to match the data and model
distribution, as per the Jensen-Shannon divergence [32], and have
been found to be empirically successful for this purpose.

Our proposed design of 𝑝𝜃 is guided by the specific requirements
of spatiotemporal mobile traffic data generation, as set out in §2.1.1.
Specifically, the neural network model we devise, named Spectra-
GAN, takes the spatial context for a target city and noise as inputs,
and directly outputs the frequency components of the signal rep-
resenting traffic across the target city over time, along with the
residual time-series signal. The rationale for this approach is best
explained by means of an example, illustrated in Figure 1, which
refers to the mobile traffic observed over one week in a represen-
tative city from our dataset. The temporal patterns in the mobile
network traffic, in Figure 1c stand out because of the regularity
in the underlying network usage, reflecting weekday-weekend di-
chotomies, circadian rhythms, and routines at work, commuting or
other daily activities.

Such periodicities make a frequency-domain representation via
Fourier transformation a compact yet effective way to capture
the usage-dependent temporal dynamics. Indeed, Figure 1d, which
shows the traffic time-series data from each pixel in all cities of
our dataset in the frequency domain, highlights how only a few
frequency components appear to be significant across the whole
dataset, consistent with observations in prior work (e.g., [21, 52, 72]).
The effectiveness of a spectrum based design is further proven by
Figure 1e, which portrays the mean traffic reconstructed from the
5 significant frequency components: the overlap with the original
traffic confirms that the time variation in traffic can be well ap-
proximated by considering the significant frequency components.
The residual traffic in Figure 1f shows the small part of difference
between original and generated traffic, which is separately modeled
in SpectraGAN in the time domain.

In the light of these considerations, a neural sampler that outputs
frequency components can be expected to be especially effective at
modeling mobile traffic dynamics. Moreover, there are two impor-
tant additional advantages with a spectrum based generation. First,
the approach lends itself to learning relation between context and
traffic data on a per-pixel basis: this allows capturing the differences

in significance of various frequency components at the pixel level,
shown in orange in Figure 1d). Second, decomposing traffic into
periodic and non-periodic parts, and modeling the former in the
frequency domain and the latter in the temporal domain, allows
overcoming the limitations of RNNs mentioned earlier in §2.1.1:
indeed, a spectrum representation naturally adds patterns with
identical periodicity in the same bin, and enables a more effective
learning of traffic time series over long time periods. The follow-
ing subsection details the SpectraGAN architecture while also
explaining how it addresses the other challenges from §2.1.1 such
as handling arbitrary spatial sizes.

2.2 Detailed Design

2.2.1 Input Specification. As directly working on data for arbi-
trary city sizes poses challenges to neural network design, instead
of modeling the entire city traffic map and its dynamics as a whole,
our model operates on smaller sized fixed dimensional sub-regions
of the map, which we call traffic patches, for every time step. Specif-
ically, each traffic patch x has the spatial dimensions of 𝐻𝑡 ×𝑊𝑡

and each context patch c has the spatial dimensions of 𝐻𝑐 ×𝑊𝑐 . We
specifically choose 𝐻𝑐 > 𝐻𝑡 and𝑊𝑐 > 𝑊𝑡 , as we experimentally
found that not only the contextwithin the target patch, but also that
surrounding the patch correlates with (hence allows conditioning)
its mobile traffic dynamics.

2.2.2 Generator. As illustrated in Figure 3a, our conditional neu-
ral sampler 𝑝𝜃 has three components: an encoder EG

𝜃
, a spectrum

generator G𝑠
𝜃
and a time-series generator G𝑡

𝜃
, all of which operate

at the patch level:
• EG

𝜃
: R𝐶×𝐻𝑐×𝑊𝑐 → R𝐶ℎ×𝐻ℎ×𝑊ℎ is a CNN that takes the context

(conditions) c as input and and outputs a hidden representation
of the context h, where𝐶ℎ is the number of channels and 𝐻ℎ,𝑊ℎ

are height and width of each channel.
• G𝑠

𝜃
: R𝐶ℎ×𝐻ℎ×𝑊ℎ ,R𝑍×𝐻ℎ×𝑊ℎ → R𝐹×𝐻𝑡×𝑊𝑡 is also a CNN that

takes h and noise z as inputs, and outputs the traffic in the fre-
quency domain, denoted as ỹ𝑠 . Here 𝑍 is the dimension of the
noise vector z and 𝐹 is the dimension of frequency components.
Here ỹ𝑠 is further passed to an inverse Fourier transformation
to convert it to the time domain x̃𝑠 ; specifically the inverse fast
Fourier transformation (IFFT). Note that IFFT is differentiable
so is the overall generator, making gradient-based optimization
possible.

• G𝑡
𝜃
: R𝐶ℎ×𝐻ℎ×𝑊ℎ ,R𝑍×𝐻ℎ×𝑊ℎ → R𝑇×𝐻𝑡×𝑊𝑡 is a batched LSTM.

It takes h and z as inputs and outputs the (residual) traffic in the
time domain, x̃𝑡 .

Finally the outputs of two generators are summed to obtain the
generated traffic patch, i.e., x̃ = x̃𝑠 + x̃𝑡 .

2.2.3 Training. Following standard GAN formulations [32], we
train the model by minimizing the Jensen-Shannon divergence, i.e.,
𝜃∗ = argmin𝜃 JS [𝑝D ∥𝑝𝜃 ], and with the aid of discriminators as in
the GAN framework; we denote such discriminators as R due to
their role as density ratio estimators [68]. Specifically, the corre-
sponding adversarial loss between the data 𝑝D (x | c) distribution
and the model 𝑝𝜃 (x | c) distribution is defined as:

LR
JS (𝑝D , 𝑝𝜃 ) = E𝑝D [log R(x, c)] + E𝑝𝜃 [log(1 − R(x̃, c))] .
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c EG
𝜃

G𝑠
𝜃z

hG G𝑡
𝜃

ỹ

x̃𝑡

x̃𝑠

⊕ x̃

(a) The conditional neural sampler 𝑝𝜃

c ER
𝜃

R𝑠
𝜃

hR

x

y

R𝑡
𝜃

ỹ

x̃

(b) Discriminators for adversarial training

Figure 3: Schematic of SpectraGAN model architecture,

where variables in ⃝ are shared nodes between two figures.

Note that we use separate encoders in top and bottom.

In our case, as illustrated in Figure 3b, the adversarial training
contains one encoder ER

𝜃
and two discriminators: R𝑠

𝜃
acting on the

(intermediate) spectrum output ỹ𝑠 and R𝑡
𝜃
acting on the (final) time-

series output x̃. The discriminator R𝑠
𝜃
for the spectrum patch is a

MLP; the discriminator R𝑡
𝜃
for the time domain is a batched LSTM.

Besides, we found the addition of extra explicit loss helpful, in
particular 𝐿1 loss as in [38]. We thus add a 𝐿1 loss to ỹ𝑠 and x̃. The
target of x̃ is the real traffic x whereas the target of ỹ𝑠 is the real
masked Fourier transformed traffic y𝑞 , defined as:

y𝑞 := M𝑞 (y) = m ⊙ FFT(x), m = I
(
FFT(x) > 𝑦𝑞

)
,

where I is the (element-wise) indicator function, ⊙ is the element-
wise multiplication and𝑦𝑞 is the 𝑞-percent quantile of FFT(x). Such
masking operationM on the target encourages the spectrum gen-
erator to only attain significant components, as motivated in §2.1.3.
Denoting the data distribution in the frequency domain as 𝑝 ′D and
the distribution by the spectrum generator as 𝑝 ′

𝜃
, the 𝐿1 loss is:

L𝑞

1 (𝑝D , 𝑝𝜃 , 𝑝
′
D , 𝑝 ′

𝜃
) = Ec

{


Ex∼𝑝D [x],Ex̃∼𝑝𝜃 [x̃])




1

}
+ Ec

{


Ey∼𝑝′D [M𝑞 (y)],Eỹ𝑠∼𝑝′
𝜃
[ỹ𝑠 ])





1

}
Jointly with GAN components, the overall loss to fit 𝜃 is:

L = LR𝑡
𝜃

JS (𝑝D , 𝑝𝜃 ) + LR𝑠
𝜃

JS (𝑝 ′D , 𝑝 ′
𝜃
) + 𝜆L𝑞

1 (𝑝D , 𝑝𝜃 , 𝑝
′
D , 𝑝 ′

𝜃
) (1)

where 𝜆 is a tuning parameter to balance the contribution of the
explicit loss and 𝑞 controls the extent to which G𝑠

𝜃
has direct su-

pervision of significant frequencies. We use 𝜆 = 0.5, 𝑞 = 0.75 by
default. The final loss L is then used to update the discriminator
and the generator in turn.

2.2.4 Spatiotemporal Mobile Traffic Data Generation. Our goal is
to generate city-level mobile traffic data of arbitrary length 𝑇 ′ for
a target city given its context. We now fill the gap between the
patched fixed-length training and this goal.

Traffic maps of variable spatial sizes. At each time-step3, we out-
put a set of patches that cover the whole city map and sew them
into a complete map. Generating a non-overlapping set of patches
3Note that we omit the time index in the notation throughout this paragraph, as the
discussion refers to the procedure for a single time-step.

f

f ′

𝑓0 𝑓1 𝑓2 𝑓3 𝑓4

2𝑓0 0 2𝑓1 0 2𝑓2 0 2𝑓3 0 2𝑓4

Figure 4: Example of 2-multiple approximation.

to make up the city map has the downside of leaving undesirable
artifacts at the edge of each patch. So we instead take a sliding win-
dow approach over space to generate partially overlapping patches
for each time-step. As such, each pixel in the target city map for a
time-step is generated multiple times as part of different patches.
The final value of a pixel is taken as the average over all values
generated for it. More formally, for the pixel x̃(𝑖, 𝑗) at location (𝑖, 𝑗)
that appears in a set of patches P = {x̃𝑝 }𝑃𝑝=1 with 𝑃 patches, the
selected traffic value is:

x̃(𝑖, 𝑗) = 1
𝑃

∑
x̃𝑝 ∈P

x̃𝑝 (𝑖
′
𝑝 , 𝑗

′
𝑝 ), (2)

where (𝑖 ′𝑝 , 𝑗 ′𝑝 ) is the corresponding local index of the pixel in each
patch. Investigation of more sophisticated methods for aggregating
different estimates for each pixel (beyond the average) is left for
future work. Note that the above averaging step in SpectraGAN
is very different from that in kriging [1]. The core task in kriging
is spatial interpolation, i.e., estimating the value of a pixel from its
neighbors for which there are measurement observations. In con-
trast, we have multiple values generated for each pixel in different
patches where it is part of.

In addition, it is worth emphasizing that the randomness should
be shared across spatial dimension when generating patches. Oth-
erwise, the randomness together with the averaging operation in
Equation 2 essentially outputs the expected traffic per pixel, lead-
ing to over-smoothed traffic maps. So we use same noise vector
(which models stochasticity and also represents unobserved context
attributes) across all patches for the target city.

Traffic patch time-series beyond the training length. We can easily
generate arbitrary length signal using G𝑡

𝜃
by recurrently running a

RNN for the desired number of time-steps within each patch4. Do-
ing the same is not as straightforward for G𝑠

𝜃
, which outputs fixed-

length frequency components. These components are essentially a
discretization of the underlying continuous frequency distribution;
the latter is needed to generate time series of any given length. We
therefore perform an approximation in the frequency domain in
order to generate longer time series. More concretely, since the
duration of the time signal obtained via IFFT is linearly propor-
tional to the number of frequency components 𝐹 , we can act on the
latter to obtain a time series with target duration 𝑇 ′. Specifically,
for a frequency vector f of length 𝐹 , we first expand f to a desired
length 𝐹 ′ = 𝑇 ′/2 + 1. If 𝐹 ′ is a 𝑘-multiple of 𝐹 , our approximation
initializes the newly expanded vector, f ′, with zeroes and then fills
every 𝑘𝑡ℎ location in this vector using values from the old one (f),
scaled by 𝑘 (so that the total energy is 𝑘 times); see Figure 4 for
an example with 𝑘 = 2. This procedure gives f ′ with the desired
length 𝐹 ′ and ensures the total energy is also correctly multiplied;

4We omit the spatial index in this paragraph as it refers to a single patch.
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this produces an approximation of the signal in the time domain
as IFFT(f ′) ≈ IFFT(f∗) where f∗ is the ground truth discretized
frequency domain representation of the targeted length (see Ap-
pendix C for a justification). Such a procedure can be more involved
if 𝐹 ′ is not a multiple of 𝐹 as it would require careful smoothing
to avoid potential aliasing with total energy preservation. We do
not explore a general approximation in this paper as we are mainly
interested in outputting traffic for multiple weeks.

3 EVALUATION METHODOLOGY

We evaluate SpectraGAN in §4 using a wide range of fidelity met-
rics in comparison with multiple alternative baseline approaches
that reflect the state of the art. In §5, we also evaluate the effec-
tiveness of synthetic traffic data generated with SpectraGAN to
support diverse application use cases. In the rest of this section, we
elaborate on the reference datasets, metrics and baselines.

3.1 Reference Datasets

In order to assess the performance of SpectraGAN and baselines,
we employ real-world mobile traffic data measured in the networks
of operators in two European countries. We also gather a variety
of contextual data for the same regions from public sources.

Mobile traffic data. As our interest is with the generation of
synthetic traffic at urban scale, we focus on 13 major cities, and
refer to them as City A–City I (9 cities) and City 1–City 4 (4
cities), in the two countries respectively. The data was collected
by the operators using passive measurement probes deployed in
their infrastructure under the control of the local Data Protection
Officers (DPOs), and in compliance with applicable regulations. The
data was aggregated in secure servers at the operators’ premises,
and we only had access to the de-personalized aggregates.

The aggregates report the total mobile data traffic generated
by the whole subscriber base of the operators in the target cities,
which accounts for around 30% of the mobile user population in
both countries. The data have a homogeneous format across all
cities, as the traffic load is represented over a regular grid tessella-
tion of space, with each grid element (i.e., pixel) covering 250 × 250
m2; in all cities, the data covers a continuous period of 6 weeks with
a temporal granularity of 15 minutes. These settings are aligned
with those of the most popular mobile traffic dataset that is cur-
rently publicly available [12]. Clearly, as the target cities have a
dissimilar geographical extent, the size of their grids is uneven, and
spans from 33 × 33 to 50 × 48 pixels. Traffic volumes in each city
are expressed in bit/s per pixel, and refers to the total (uplink plus
downlink) demand. They are anonymized via normalization by the
pixel-level peak traffic observed in that city. Details on character-
istics of mobile traffic datasets are presented in Appendix A.

Context data. Our conditional generation model takes advantage
of contextual attributes to produce credible synthetic traffic. We
gather a wide range of context data from easily accessible open
sources, so that the method is applicable as widely as possible. All
attributes are mapped via spatial interpolation or counting to the
regular grid tessellation employed by the mobile traffic data.

Census. The number of inhabitants residing in each grid ele-
ment, as reported in the relevant national census.
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Figure 5: Sample

context data.

Table 1: Context attributes and the

mean and standard deviation (std) of

their PCCswith traffic across all cities.

Contextual Attribute Mean Std

Census 0.597 0.0600
Continuous Urban 0.533 0.0810
High Dense Urban 0.106 0.0800
Medium Dense Urban -0.0250 0.0510
Low Dense Urban -0.0370 0.0270
Very-Low Dense Urban -0.0330 0.0230
Isolated Structures -0.0600 0.0250
Green Urban 0.099 0.0610
Industrial/Commercial 0.129 0.0730
Air/Sea Ports 0.00400 0.0380
Leisure Facilities 0.0290 0.0400
Barren Lands -0.281 0.0950
Sea -0.192 0.110
Tourism 0.396 0.0770
Cafe 0.480 0.132
Parking 0.187 0.0560
Restaurant 0.509 0.115
Post/Police 0.188 0.0620
Traffic Signals 0.370 0.0780
Office 0.389 0.135
Public Transport 0.315 0.111
Shop 0.506 0.123
Secondary Roads 0.193 0.0650
Primary Roads 0.164 0.0810
Motorways 0.0300 0.0750
Railway Stations 0.141 0.0810
Tram Stops 0.236 0.122

Land use. The different utilization of the territory in each grid
element, obtained from the Copernicus Urban Atlas repository [7].
We only retain land uses that yield non-near-zero Pearson’s correla-
tion coefficient (PCC) with respect to the mobile traffic. Ultimately,
12 land use attributes are considered, as listed in Table 1.

Points of Interest (PoIs). The number of landmarks of a spe-
cific class within each grid element, extracted from the Open-
StreetMap (OSM) repository [4]. We filter out a large fraction of
insignificant PoI categories using a correlation analysis with traffic,
and retain 14 PoI categories in Table 1.

In summary, we use 27 different context conditions, a subset of
which are exemplified in Figure 5 for one of the cities in our dataset.
It is worth noting that no single attribute is strongly correlated
with the mobile traffic, as shown in Table 1. This suggests that a
naive univariate statistical model based on any attribute would not
be effective, and motivates considering them together as we do in
SpectraGAN. As a final consideration, we stress that additional
relevant context, such as base station locations or radio-frequency
signal propagation maps, is not considered since it is typically not
publicly available and difficult to access – which would impair our
intended design of relying solely on easily retrieved context.
3.2 Metrics

We use a combination of qualitative and quantitative metrics to
assess fidelity of SpectraGAN relative to the baselines. Qualita-
tive metrics allow visual inspection of the generated data to check
its (un)acceptability hence complementing quantitative metrics.
Specifically, we consider three forms of qualitative assessments: (𝑖)
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time-averaged city traffic maps; (𝑖𝑖) time-series of average city-wide
traffic; and (𝑖𝑖𝑖) traffic videos showing spatiotemporal variations.

We also consider five different quantitative metrics, outlined
below, that cover a wide range of aspects of interest.

Marginal by total variation (M-TV). This metric quantifies
how well the traffic distribution of generated data matches that of
the real data. To compute it, we first obtain the empirical marginal
distributions of traffic volume, across all locations (pixels) and time
steps, for both real and synthetic data. Then the metric is calculated
as the total variation (TV) distance [6] between the two marginal
distributions – lower the value of this metric better is the match
between real and synthetic data.

SSIM on average traffic (SSIM). SSIM [78] is a standard image
fidelity metric, which compares two images as a function of their
respective mean and variance across pixels as well as covariance
between the images. SSIM lies between 0 and 1, closer to the latter
is desirable. We use this metric to quantify the spatial fidelity of the
generated data by a model, and compute it using the time-averaged
traffic maps for real and synthetic data.

Auto-correlation by 𝐿1 (AC-𝐿1). This metric, also considered
in previous work [46], is aimed at quantifying the temporal fidelity
of the synthetic data with respect to the real data. We compute it
by taking the 𝐿1 norm between the corresponding points of the
auto-correlations of real and synthetic time-series data, at the pixel
level. Lower values imply better performance as per this metric.

Train-synthetic-test-real (TSTR). This metric aims to capture
the quality of generated data through the lens of a generic down-
stream use case, as done in previous works [30]. We use synthesized
city-wide traffic time-series to train a linear regression model to
predict city traffic snapshot for a future time-step. The performance
of the trained model is then evaluated on real data in terms of 𝑅2.

Fréchet video distance (FVD) [69]. This metric, originally de-
signed for video data, aims at evaluating the quality of spatiotempo-
ral data generation. By treating city-scale mobile traffic over time
as video data, we obtain embeddings of real and synthetic videos,
and then compute the Fréchet distance between these embeddings
– lower this distance, better the quality. In the video generation set-
ting, the embeddings are obtained via a pre-trained neural network.
However, using a neural network in our case entails a risk to intro-
duce a bias that may artificially favor our model. Instead, we devise
a strategy tailored to our spatiotemporal mobile traffic generation
setting. Specifically, we first spatially flatten the spatiotemporal
traffic data into a multivariate time-series. We then use a signature
transformation [15, 53] to convert the multi-variate time-series into
a vector, which we use as the embedding, and employ vectors of
the real and synthetic traffic data to compute FVD.

3.3 Baselines

To evaluate SpectraGAN, we consider the following baselines that
represent the state-of-the-art on mobile traffic generation, as well
as generic spatial, temporal and spatiotemporal data generation.

Fit Distribution and Sample (FDaS). As later discussed in §7,
the current state-of-the-art on mobile traffic generation essentially
involve fitting an empirical distribution to model the traffic data
using maximum likelihood estimation of parameters and then sam-
ple it afterwards to generate synthetic data. While previous works
focus on just the peak hour [26], or peak and off-peak hours [54],

(a) Weekly traffic generated with FDaS for City A, averaged
across the city (grey), and at two locations with maximum

(blue) and median (red) traffic volume, as per Figure 1c.

(b) City C (c) City D (d) City H

Figure 6: Qualitative results for FDaS synthetic data.

we fit a separate distribution to the fit the pixel-level traffic for
every hour of the day and sample from those different distributions
to generate city-wide spatiotemporal mobile traffic data. Like in
[26], we find log-normal distribution best fits the data but with
different parameters across distributions, as expected.

Pix2Pix. From a spatial data generation perspective, the Pix2Pix
model [38] from the computer vision domain is a representative
prior work. It uses a U-net [60] based conditional GAN architecture
for image-to-image translation. We adapt Pix2Pix to mobile traffic
generation by conditioning it on spatial context attributes, as in
SpectraGAN. Note that Pix2Pix does not have a notion of time.

DoppelGANger [46]. This is a state-of-the-art work on con-
ditional time-series data generation, and is based on an RNN-based
conditional GAN architecture. As DoppelGANger itself does not
have a spatial dimension, we use an independent instance of Dop-
pelGANger for each pixel, conditioning it on the context attributes
corresponding to that pixel.

Conv{3D+LSTM}. As a representative of the start of the art on
spatiotemporal data generation, we use a conditional GAN model
combining 3D convolution (Conv3D) with convolutional LSTM
(ConvLSTM) [63]. This combination is seen to be an effective choice
for spatiotemporal data generation in the literature [63, 83] for tasks
like road traffic flows with Conv3D capturing local spatial dynamics
and ConvLSTM for long-term correlations. To realize this model
for our mobile traffic generation task, we use the same encoder as
in SpectraGAN to transform the context data to an intermediate
representation that is then fed to the generator.

In addition to the above baselines, we also consider an ideal case
for reference, which we refer to as Data. Metrics for this case are
computed by comparing two distinct 3-week periods of real data
against each other, and as such is an approximation of the best
achievable values for the different quantitative metrics.

4 EVALUATION RESULTS

In this section, we first evaluate the fidelity and generalizability of
city-wide spatiotemporal traffic data generated with SpectraGAN
relative to baselines (§3.3); then we examine the effect of design
choices underlying our approach through an ablation study.
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4.1 Overall Generation Quality

We first present the results considering Country 1 dataset and
then for Country 2 dataset. Note that the two datasets used are not
mixed in our evaluations, rather they are explored in isolation since
they are collected by different operators in different countries.

Aswe are concernedwith city-scale spatiotemporal mobile traffic
data generation, we adopt a leave-one-city-out evaluation approach.
Essentially, we choose one city as a test city each time and train
each model (SpectraGAN and baselines) with traffic and associ-
ated context data for the remaining cities, and repeat this process
with a different test city, for all cities. We conduct this evaluation
separately for Country 1 dataset with 9 cities, and Country 2
dataset with 4 cities. This not only allows us to study the relative
fidelity of different models with respect to the metrics described
in §3.2, but also lets us assess the generalization ability of different
models to synthesizing mobile traffic for unseen cities. This testing
approach is also well aligned with the intended use of SpectraGAN
to generate traffic data for new regions solely from publicly avail-
able context for those regions. Finally, it is worth recalling that the
considered cities have various sizes ranging from 33× 33 to 50× 48
pixels: therefore, the leave-one-city-out strategy allows assessing
the capability of the model to generate traffic for arbitrarily sized
areas, since the dimension of the training cities and test city may
not be the same.

Unless otherwise specified, in the following the traffic data is
generated at an hourly granularity to be consistent across all the
methods compared. But we remark that SpectraGAN is by de-
sign potentially capable of generating more granular traffic data, if
equivalently accurate data is available for training, as we show later
in Appendix B. Concerning the temporal duration of the synthetic
data, all models are trained on 1-week long data and then made
to generate data for 3-weeks (different from that in training data).
This lets us evaluate the capability of different models to generate
data for a long period.

4.1.1 Country 1. We start with discussing the fidelity perfor-
mance of FDaS baseline. Recall that the FDaS method relies on
sampling empirically fitted traffic data distributions at every time
step. Figure 6a shows city-wide average temporal traffic pattern
generated by FDaS for City A as test city. Data generated for two
representative pixels (reflecting the maximum and median traffic
pixels in the ground truth) are also shown. The corresponding real
time-series traffic pattern is shown in Figure 1c. The FDaS gen-
erated data fails to preserve the diurnal pattern seen in the real
data; it is also unable to capture the absolute differences in traffic
volumes across different locations.

We can make the same observation about spatial traffic patterns
with FDaS. The time-averaged traffic maps for City C, City D
and City H generated with FDaS are respectively shown in Fig-
ures 6b, 6c 6d, which are in stark contrast to the corresponding
real traffic maps shown in Figure 7 in the row labeled ‘Data’. The
seemingly random traffic time-series and maps generated by FDaS
can be attributed to the inherent limitation with this approach to
treat spatial locations and time steps independently, thus unable
to capture strong correlations that exist across these dimensions.
While we find that FDaS can capture the overall city-wide traffic
data distributions well as reflected by its M-TV results (not shown)

Table 2: Average testing performance in Country 1.

Method M-TV ↓ SSIM ↑ AC-𝐿1 ↓ TSTR ↑ FVD ↓
SpectraGAN 0.0362 0.787 46.8 0.893 205

Pix2Pix 0.0522 0.800 84.4 0.557 214
DoppelGANger 0.0498 0.744 54.8 0.890 247
Conv{3D+LSTM} 0.0460 0.750 60.2 0.895 281

Data 0.00359 0.999 25.2 0.903 128

and expected given its nature, the spatiotemporal data generated
is clearly unacceptable from its qualitative results, so we do not
consider this method further in our evaluations. The above results
with FDaS also support mobile traffic data generation via machine
learning models generally and deep generative models in particular
as we do with SpectraGAN.

We now consider the quality of generated data with the rest of
the methods including SpectraGAN, starting with a visual inspec-
tion of the time-averaged traffic map results in Figure 7 for the
same subset of cities highlighted above. We observe that Spectra-
GAN shows a good match with real data in capturing the spatial
traffic patterns. Pix2Pix captures traffic hotspot areas well but also
shows a strong blur effect, highlighting that the image generation
approach is not readily applicable for the mobile traffic generation
case, calling for a tailored approach for the latter setting. Doppel-
GANger shows clear artifacts due to independently generating
traffic time-series per pixel without regard to correlations among
nearby pixels. Conv{3D+LSTM} tends to also generate traffic where
there should be none, leading to unsatisfactory spatial quality.

We now switch our attention to examine the temporal aspect
of generated data with the different methods. Here we only high-
light the generated city-wide traffic time-series results for one city
(City B) in Figure 8 for a 3-week long period5. SpectraGAN yields
temporal traffic pattern that is in close alignment with the real
data for the whole period (Figure 8a) while Pix2Pix, as expected,
completely fails to model any temporal aspects (Figure 8b). The
traffic time-series generated with both DoppelGANger (Figure 8c)
and Conv{3D+LSTM} (Figure 8d) exhibit deviations from real data
to different degrees. We discuss the potential root causes below.

Table 2 summarizes the fidelity performance of different methods
in terms of quantitative metrics, when considering each city in
Country 1 as a test city and averaging the resulting metric values,
across all test cities. Here we mark the best (worst) performing
methods for each metric with green (red) colors. We make the
following observations: SpectraGAN yields the best performance
in almost all metrics. Even for TSTR, it is almost similar to the best
performing method (Conv{3D+LSTM}) and best possible (Data)
case. These results also demonstrate the generalization ability of
SpectraGAN to new unseen cities. Pix2Pix performs the worst
among metrics involving temporal aspects, hence also in the traffic
data distribution (quantified by M-TV). But it does well on the
spatial fidelity metric SSIM, which is expected.

Both DoppelGANger and Conv{3D+LSTM} yield intermedi-
ate results with DoppelGANger performing particularly worse in
terms of spatial fidelity (SSIM) metric. The independent pixel-level
time-series generation approach of DoppelGANger also limits its
ability to accurately capture traffic peak behaviors or flow phenom-
ena (a key spatiotemporal mobile traffic aspect). This is highlighted
5We make the full set of results including the traffic videos generated with different
methods accessible via an anonymous repository at https://bit.ly/2PteN9K.

https://bit.ly/2PteN9K
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Figure 7: Time-averaged traffic maps (all models).

0 100 200 300 400 500

0.01

0.02

0.03

0.04

0.05

0.06
model data

(a) SpectraGAN

0 100 200 300 400 500

0.01

0.02

0.03

0.04

0.05

0.06
model data

(b) Pix2Pix

0 100 200 300 400 500

0.01

0.02

0.03

0.04

0.05

0.06
model data

(c) DoppelGANger

0 100 200 300 400 500

0.01

0.02

0.03

0.04

0.05

0.06
model data

(d) Conv{3D+LSTM}

Figure 8: Mean city-wide traffic time-series for City B.

in Figure 9a for City B where distribution of the hour of day when
the traffic peak occurs in the generated data with DoppelGANger
deviates markedly from the real data. The distribution with Spec-
traGAN, on the other hand, matches better the real data (Figure 9b);
note the difference in y-axis scale between the two sub-figures.

Relatively, Conv{3D+LSTM} exhibits slightly better spatial qual-
ity (SSIM) but with suboptimal temporal patterns (AC-𝐿1) and also
poorly captures spatiotemporal correlations, e.g., the flow phenom-
ena, clearer in the videos. This ultimately results in its overall inter-
mediate performance. All of these can be attributed to its black-box
architecture in which all computation is correlated, agnostic to
the data characteristics. SpectraGAN overcomes the issues with
Conv{3D+LSTM} through its traffic generation via spectra-time
decomposition, while accounting for spatiotemporal correlations.

4.1.2 Country 2. As a data-driven approach, SpectraGAN is ag-
nostic to the target country or mobile operator. To demonstrate
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Figure 9: Peak distributions with DoppelGANger (Fig-

ure 9a) and SpectraGAN (Figure 9b) for City B.

Table 3: Average testing performance in Country 2.

Method M-TV ↓ SSIM ↑ AC-𝐿1 ↓ TSTR ↑
SpectraGAN 0.0607 0.686 34.8 0.977

Pix2Pix 0.121 0.564 117 0.653
DoppelGANger 0.0521 0.472 40.9 0.964
Conv{3D+LSTM} 0.0514 0.613 99.5 0.946

Data 0.0076 0.996 22.8 0.978

Table 4: Importance of wider spatial contexts. SpectraGAN-

is a variant that only uses pixel-level contexts.

Method M-TV ↓ SSIM ↑ AC-𝐿1 ↓ TSTR ↑ FVD ↓
SpectraGAN 0.0362 0.787 46.8 0.893 205
SpectraGAN- 0.0465 0.745 48.9 0.894 183

such a wide applicability, we conduct similar leave-one-city-out
evaluation experiments as above on Country 2. Table 3 summa-
rizes the testing performance of different methods in terms of the
quantitative metrics, averaged over the 4 cities in Country 2. Note
that we omit FVD in the table due to relatively less amount of
data in Country 2 dataset to get a reliable embedding. We also
do not include qualitative results for Country 2 due to space con-
straints. The relative performance among the methods is broadly
consistent with what is observed with Country 1 dataset. Spec-
traGAN still emerges as the most reliable model while Pix2Pix is
the least performing one. The performance of DoppelGANger and
Conv{3D+LSTM} is in between, as before.

4.2 Ablation Study

Here we perform ablation study on some key components of Spec-
traGAN to justify their choice.

Importance of rich contexts. We study the importance of using
a wider context scope to generate each traffic pixel via comparing
SpectraGAN to a variant with only pixel-level context (as is the
case naturally for DoppelGANger when applied to spatiotemporal
data generation). Table 4 shows the average performance in terms
of quantitative metrics for Country 1 dataset. Results show that
not conditioning on a wide context worsens performance on several
of the metrics with the effect more pronounced for spatial fidelity
(SSIM) metric. Overall these results confirm our choice to use a
wider context to condition spatiotemporal traffic generation.

Importance of spectrum generator. We study the relevance of spec-
trum generation by comparing three SpectraGAN variants:
• Spec-only: without (residual) time-series generator.
• Time-only: without spectrum generator.
• Time-only+: Time-only with an extra minmax generator.
Table 5 shows quantitative metrics for these alternatives. Results
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Table 5: Importance of spectrum generator.

Method M-TV ↓ SSIM ↑ AC-𝐿1 ↓ TSTR ↑ FVD ↓
SpectraGAN 0.0362 0.787 46.8 0.893 205
Spec-only 0.0427 0.759 53.0 0.885 229
Time-only 0.0557 0.769 46.1 0.899 230
Time-only+ 0.0445 0.763 38.0 0.898 255

show that SpectraGAN needs both the spectrum generator and
the residual time-series generator in order to perform well across
all metrics, especially reflected by the degraded FVD for all variants.
The noticeably degraded performance of Time-only+, which is
essentially DoppelGANger with a wider context and explicit loss
in time domain, in 3 of the 5 metrics highlights the benefit of our
hybrid spectra-time-series traffic generation.

5 APPLICATION USE CASES

To complement the previous evaluation, we assess the utility of
SpectraGAN through multiple downstream application use cases
for spatiotemporal mobile traffic. Specifically, we employ synthetic
data generated by SpectraGAN to feed models for (𝑖) energy-
efficient micro Base Station (BS) sleeping (§5.1), and (𝑖𝑖) resource
allocation in virtualized RANs (vRANs) (§5.2). We also demonstrate
the benefits of SpectraGAN beyond mobile networking via (𝑖𝑖𝑖)
traffic-driven dynamic urban population tracking (§5.3).

It is worth noting that problems (𝑖), (𝑖𝑖) and (𝑖𝑖𝑖) above can all
be solved effectively only using spatiotemporal mobile traffic data,
as shown by recent methods proposed in the literature [42, 48,
70]. They are thus clear examples of situations where researchers
could benefit from the SpectraGAN-generated data to evaluate
models and algorithms that build on such (typically hard-to-access)
data. While these three use cases cannot cover the full spectrum of
possible problems where mobile traffic data may support a technical
solution, they offer a reasonable set of cases that span different
research domains and aspects of mobile network operation.

5.1 Data-Driven Micro BS Sleeping

The substantial operating expense (OPEX) due to energy consump-
tion at BSs has led to the proposal of a number of solutions for saving
power in the RAN. We consider a recent approach for traffic-aware
BS on/off-switching [70], and examine how it performs when in-
formed with synthetic data generated by SpectraGAN as opposed
to real data. We assume a heterogeneous RAN deployment where
each pixel of our spatial tessellation is served by a separate micro
BS, whereas macro BSs provide umbrella coverage to a larger area
of 5×5 grid cells. Micro BS provide localized high capacity at added
energy cost, and are dynamically switched on and off according to
traffic fluctuations in their associated grid cell.

The power needed for the operation of a BS at time 𝑡 is [70]

𝑃 (𝑡) = 𝑁trx
(
𝑃0 + Δ𝑝𝑃max𝜌 (𝑡)

)
, 0 ≤ 𝜌 (𝑡) ≤ 1,

where 𝑁trx is the number of radio transceivers, 𝑃0 is the static
power consumption at zero traffic load, Δ𝑝 is the scaling of power
consumption per traffic unit, 𝜌 (𝑡) is the relative traffic load at the
considered time 𝑡 , and 𝑃max is the power consumed at the maximum
traffic load. The parameter values for micro andmacro BSs are those
provided in the original study, in Table 6. Then, if 𝜌 (𝑡) ≤ 𝜌min the
micro BS offloads its local traffic to the macro BS and goes into sleep
mode, where it consumes negligible power. We set 𝜌min to 0.37 as

Table 6: Settings of the BS power consumption model.

BS type 𝑁trx 𝑃max 𝑃0 Δ𝑝
Macro 6 20 84 2.8

BS type 𝑁trx 𝑃max 𝑃0 Δ𝑝
Micro 2 6.3 56 2.6

Figure 10: Average power consumption per unit area in cities

of Country 1 when micro BSs are always active, and when

a cell sleeping strategy is used based on real-world traffic or

synthetic traffic generated by SpectraGAN.

recommended by previous works [23]. Figure 10 shows that a micro
BS sleeping strategy based on SpectraGAN-generated traffic yields
equivalent energy savings as a model fed with real-world traffic:
in both cases, power consumption reductions due to sleeping are
in the 47–62% range, with similar variations across the test cities.

5.2 Resource Allocation in vRANs

Emerging vRAN paradigms foster the creation of edge datacenters
where Central Units (CUs) execute software part of the function-
alities traditionally performed by BSs, which are then replaced
by simpler Radio Units (RUs). The RU-to-CU association can be
adapted to the fluctuations of the traffic load at RUs, so as to best
use CU resources. We investigate the effectiveness of the synthetic
data produced by SpectraGAN in driving a RU-to-CU association
model that ensures load balancing across a given set of CUs [48].

We assume that each grid cell (pixel) is covered by one RU, and
that all RUs in a city are served by a single edge datacenter hosting
a set of CUs 𝑐 ∈ C. The model employs a graph representation
(R, E) of the radio network deployment, where each node 𝑟 ∈ R
maps to one RU, and each edge 𝑒𝑟,𝑟 ′ ∈ E only exists if RUs 𝑟 and 𝑟 ′
serve spatially adjacent pixels. It then formulates the time-varying
RU-to-CU deployment as the following optimization problem:

min
∑

𝑒𝑟,𝑟 ′ ∈E
𝑥 (𝑒𝑟,𝑟 ′, 𝑡) subject to (3)

1 − 𝜖 ≤
∑
𝑟 ∈R

𝑦 (𝑟, 𝑐, 𝑡)ℓ𝑟 (𝑡)
/ ∑
𝑟 ∈R

ℓ𝑟 (𝑡)
|C| ≤ 1 + 𝜖, ∀𝑐 ∈ C (4)∑

𝑐∈C𝑦 (𝑟, 𝑐, 𝑡) = 1, ∀𝑟 ∈ R (5)

𝑥 (𝑒𝑟,𝑟 ′, 𝑡) ≥ 𝑦 (𝑟 ′, 𝑐, 𝑡) − 𝑦 (𝑟, 𝑐, 𝑡), ∀𝑒𝑟,𝑟 ′ ∈ E, ∀𝑐 ∈ C (6)
𝑥 (𝑒𝑟,𝑟 ′, 𝑡) ≥ 𝑦 (𝑟, 𝑐, 𝑡) − 𝑦 (𝑟 ′, 𝑐, 𝑡), ∀𝑒𝑟,𝑟 ′ ∈ E, ∀𝑐 ∈ C (7)

The solution of the problem in (3) yields a partitioning of the
graph at time 𝑡 into |C| subsets of RUs, each associated to one CU.
As the sum of the RU traffic loads ℓ𝑟 (𝑡) within a same partition is
equivalent (by a tolerance margin 𝜖), the RU-to-CU association is
load balanced; in addition, it exhibits desirable features in terms of
spatial adjacency and comparable latency across all RUs served by
the same CU [48]. Formally,𝑦 (𝑟, 𝑐, 𝑡) are decision variables that take
a value one if RU 𝑟 is associated with CU 𝑐 at time 𝑡 , and zero oth-
erwise. They constrain in (6) and (7) the variables 𝑥 (𝑒𝑟,𝑟 ′, 𝑡), which
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Table 7: Performance of load balancing in RU-to-CU associations informed by synthetic data generated by SpectraGAN com-

pared against real-world data. Mean and standard deviation of Jain’s fairness index on CU loads over time.

CUs Method City A City B City C City D City E City F City G City H City I

4 SpectraGAN 0.96 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.95 ± 0.01 0.95 ± 0.02 0.96 ± 0.01 0.93 ± 0.03 0.99 ± 0.02 0.94 ± 0.01
Real Data 0.97 ± 0.02 1.0 ± 0.00 1.0 ± 0.00 0.99 ± 0.01 1.0 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 1.0 ± 0.00 0.99 ± 0.01

6 SpectraGAN 0.92 ± 0.03 0.96 ± 0.01 0.97 ± 0.01 0.85 ± 0.05 0.87 ± 0.05 0.88 ± 0.03 0.89 ± 0.03 0.94 ± 0.02 0.96 ± 0.02
Real Data 0.96 ± 0.03 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 0.97 ± 0.01 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.01

8 SpectraGAN 0.88 ± 0.03 0.95 ± 0.02 0.97 ± 0.01 0.80 ± 0.05 0.88 ± 0.03 0.90 ± 0.03 0.88 ± 0.04 0.94 ± 0.01 0.94 ± 0.04
Real Data 0.95 ± 0.04 0.99 ± 0.00 0.99 ± 0.00 0.98 ± 0.01 0.99 ± 0.00 0.97 ± 0.00 0.99 ± 0.03 0.99 ± 0.01 0.99 ± 0.03

indicate whether an edge 𝑒𝑟,𝑟 ′ is cut by the partitioning, and ensure
that each RU is associated to a single CU in (5). The expressions in
(4) enforce the load balancing policy.

We solve the above problem via an efficient heuristic [62], using
synthetic or real-world traffic for a day.We then assess the quality of
associations by computing Jain’s fairness index on the time-varying
load experienced by CUs during a different day. Table 7 reports
the mean and standard deviation of the index at different times,
for each city in Country 1 and a different number of CUs. The
SpectraGAN-generated traffic allows for comparable performance
relative to real data, with average difference in fairness of 0.059.

5.3 Dynamic Urban Population Tracking

The tracking of population density in real-time is a key functional-
ity to support adaptive urban and transport planning, and mobile
networks are an effective data source for that purpose. We stress
that such tracking is completely different from surveying dwelling
units as done in the population census: tracking aims at follow-
ing order-of-minute population density variations, whereas census
data only captures home locations. Therefore, there is no direct
link between the static population data we use as a condition for
generation, and the dynamic density we aim at estimating here.

We consider a recent multivariate regression model for the track-
ing of population presence 𝑝𝑖 (𝑡) at grid cell 𝑖 and time 𝑡 from the
mobile network traffic 𝑥𝑖 (𝑡) measured at 𝑖 in 𝑡 [42]. Formally,

𝑝𝑖 (𝑡) = e
𝑘1𝜆𝑖 (𝑡 )+𝑘2𝑥𝑖 (𝑡)𝑘3𝜆𝑖 (𝑡 )+𝑘4 (8)

where 𝜆𝑖 (𝑡) is an activity level computed as the mean number of
network events (e.g., established data sessions) per subscriber, while
𝑘1, 𝑘2, 𝑘3, and 𝑘4 are constant model parameters. We set the time-
varying 𝜆𝑖 (𝑡) according to the empirical values in Figure 8 of the
original paper, and parametrize the constants as per Table 4 in
that same study. We generate hourly cartographies of the people
presence in all cities of Country 1, by separately applying (8) to
(𝑖) the synthetic traffic generated by SpectraGAN on previously
unseen cities, and (𝑖𝑖) the actual traffic recorded by the operator
in these cities. We then compare the resulting dynamic population
tracking maps in terms of Peak Signal-to-Noise Ratio (PSNR) [29],
which is a standard metric for image fidelity. Table 8 summarizes
the results, which highlight the dependability of the synthetic data
for the task at hand, across all cities: indeed, values of PSNR above
20 are considered acceptable for quality loss [66].

Figure 11 shows the dynamic people presence estimated at five
different times of the day by using SpectraGAN output and orig-
inal traffic. A visual inspection of the plots reveals the closeness of
the population dynamics in the two cases.
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Figure 11: Dynamic people presence estimated at five differ-

ent times of the day for a sample city (City H).

5.4 Summary

Minimum discrepancy is observed between models informed with
real-world or SpectraGAN-generated traffic in all three use cases
above. In otherwords, evaluations of themethods based on Spectra-
GAN-generated data are as dependable as similar assessments with
actual measurement data. This proves our point that researchers
could use synthetic data generated by our model to demonstrate
the performance of the solutions considered in Sections 5.1-5.3 in
a way that is both credible (due to the similar performance just
mentioned) and reproducible (as synthetic data can be more easily
shared than real-world data). These results pave the way for fur-
ther studies considering additional application use cases, towards a
complete assessment of the suitability of SpectraGAN as a tool for
the creation of dependable, reference spatiotemporal mobile traffic
datasets for the research community.
6 DISCUSSION

As the first model of its kind, SpectraGAN has limitations that
we deem important to discuss, so as to also foster further studies
towards open data synthesis for networking research.

First, there is no universal spatiotemporal granularity of the
mobile traffic data that is relevant and appropriate for all down-
stream applications. Some studies have indicated that analyses
of several digital human activities are adequately supported by
data with a spatiotemporal resolution of 2 km [22] and 30 min-
utes [37], which is largely satisfied in our case. Also, many previous
works (e.g., [17, 20, 24, 82]) have designed and evaluated solutions
based on mobile network traffic using datasets with resolutions of
235 × 235 square meters in space and 10 minutes in time, which
are comparable to granularity of real and synthetic data in our
work. Examples such as those above or in Section 5 show that
SpectraGAN-data can support studies on such concrete use cases.
However, the suitability of SpectraGAN data for additional applica-
tions needs to be assessed case by case, and remains a shortcoming
of our study and in the literature in general.

A setting where the synthetic data currently generated by Spec-
traGAN would clearly be ill-suited is for studies requiring a higher
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Table 8: Fidelity of estimated hourly population tracking maps using a model informed by synthetic data generated by Spec-

traGAN relative to real-world data. Mean and standard deviation of PSNR over time.

Method City A City B City C City D City E City F City G City H City I
SpectraGAN 27.2 ± 5.51 25.1 ± 5.40 31.6 ± 5.35 27.0 ± 5.45 28.8 ± 5.51 28.4 ± 4.75 29.3 ± 6.45 27.8 ± 4.85 31.2 ± 5.96

spatial or temporal resolution than that considered in this paper.
This may be the case of, e.g., network resource management tasks
that operate at fast timescales in the order of seconds. In theory,
SpectraGAN could also generate synthetic data at higher spatial
and temporal resolutions, which may meet more stringent require-
ments such as those above. However, we do not presently have
ground-truth data that can be used to verify this hypothesis.

As another limitation, we would like to clarify that it is not the
purpose of SpectraGAN to model the deeper causes that under-
pin the spatiotemporal fluctuations of mobile network traffic, such
as the activity or mobility of the users. While these phenomena
obviously play a big role in determining the spatial and temporal
dynamics of mobile traffic in the network, explicitly including them
in the generative process is not needed to attain our data synthesis
objective. Indeed, the SpectraGAN deep neural network architec-
ture learns a complex function that translates static context into
realistic spatiotemporal traffic, by abstracting various causal pro-
cesses in a non-observable way. Therefore, if the explicit generation
of the underlying user activity or mobility is required, our model
is not an appropriate tool.

7 RELATEDWORK

Network traffic modeling has received substantial attention in the
literature but largely focused on packet level traffic generation (via
packet sizes, inter-packet arrival times). Number of traffic gener-
ation tools exist for this purpose (e.g., iPerf [8], D-ITG [16], Os-
tinato [5]) and such traffic generation capability is embedded in
network simulators like ns-3 [2] and OMNeT++ [3]. Some of these
tools merely focus on the capability to generate arbitrary packet-
level workloads with no constraint on realism (e.g., iPerf [8]) while
others such as D-ITG include statistical models for packet-based
traffic generation with empirically derived parameters. This ap-
proach has also been applied to flow-level traffic generation for
network intrusion detection type applications (see [50] for a good
survey) and for social network traffic generation (based on session
durations, inter-session times, etc.) [14].

Our focus is on spatiotemporal mobile network traffic generation,
which is an entirely different problem from the ones above. Closest
works from the literature to ours by domain are Di Francesco et al.
[26], Oliveira et al. [54] which consider the synthesis of mobile
network traffic at macroscopic (i.e., urban) scales. The approach in
Di Francesco et al. [26] requires information on BS locations and
on the distribution of traffic on a per-user basis, which are typically
very difficult to obtain and the latter also poses privacy concerns.
Even so, the essence of synthetic mobile traffic generation in Di
Francesco et al. [26] and also that in Oliveira et al. [54] can be
described as fitting the traffic statistics to an empirical probability
distribution and then sampling from it, broadly similar to that from
earlier works in the general networking context (e.g., Vishwanath
and Vahdat [71]). We consider this approach in our evaluations
and show that it fails to capture traffic correlations in space and
time, as also acknowledged in Di Francesco et al. [26]. Unlike these

prior works, our SpectraGAN is a conditional deep generative
model that is designed to account for these correlations, only needs
publicly available contextual data to generate traffic in previously
unseen urban regions and is validated extensively with real-world
mobile traffic measurement datasets.

More recently, Lin et al. [46], with a similar overall motivation to
ours, have proposed DoppelGANger, a conditional deep generative
model aimed at network time-series data which relies on batched
RNN for capturing long-term temporal correlations in data. As
DoppelGANger does not have a spatial dimension, applying it our
city-scale spatiotemporal mobile network traffic data generation
leads to treating each spatial location independently. As a result,
DoppelGANger is unable to capture spatial and spatiotemporal
correlations well, as we demonstrate in our evaluations.

Beyond the networking domain, neural networks have been
extensively used for modeling spatiotemporal data. Existing archi-
tectures focus on next frame prediction in videos by condition-
ing them on an image or text sample [74], video-to-video synthe-
sis [75, 76] and text-to-video generation [44], in-flow and out-flow
crowd forecasting [45, 81, 84], or learning spatiotemporal feature
representations for prediction problems [63]. While these meth-
ods share a similar high-level goal we target, they are not well
suited for mobile network traffic generation. Reasons include that
such previous approaches are limited to the estimation of a few
future frames [74], are conditioned on previous frames [61], cap-
ture only short-term temporal correlations [44, 75, 76], and can
be only conditioned on non-spatial contexts such as weather or
weekdays/weekends [45, 81, 84]. In contrast, SpectraGAN is de-
signed to model spatiotemporal relations over long periods of time,
and to condition the generated data on spatial contexts. We also
show through our evaluations that a representative model from
this body of literature is not effective for our traffic generation
task, highlighting the need for domain appropriate data generation
methods like SpectraGAN.
8 CONCLUSIONS

We have presented SpectraGAN, a new conditional GAN model.
SpectraGAN is the first synthetic generation method for city-scale
spatiotemporal mobile network traffic data. It embeds a number of
innovative aspects, including the defining approach to generate the
significant frequency components of the traffic spectrum for each
spatial location based on local contextual attributes. Importantly,
the SpectraGAN generation process is conditioned on context data
that is typically publicly available for a city of interest, so as to fos-
ter its usability. We evaluate SpectraGAN using multi-city mobile
traffic datasets for two European countries, augmented with con-
textual data for each city. Our results show that SpectraGAN not
only significantly outperforms existing approaches that could be
used for spatiotemporal data generation, but is also able to generate
high-fidelity long-term mobile traffic data for completely unseen
cities, solely based on contextual input. We also demonstrate the
efficacy of SpectraGAN through multiple application use cases in
mobile networking and beyond.
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(a) Country 1

(b) Country 2

Figure 12: Spatiotemporal CDF of traffic per grid cell across

all time intervals for various cities of Country 1 and Coun-

try 2

APPENDIX

A TRAFFIC DATASET CHARACTERISTICS

Our mobile traffic dataset encompasses a range of cities exhibiting
diverse traffic characteristics. To show this, we present results of
basic analysis on the traffic datasets from both the countries. Table 9
and 10 shows the mean as well as median of traffic observed in each
city of Country 1 and Country 2, respectively. Note that each
city’s traffic is normalized to [0,1] using its peak traffic. Moreover,
we show the CDF of spatiotemporal traffic observed in each city in
Figure 12.

B PERFORMANCE FOR FINER TIME

GRANULARITY

SpectraGAN can generate mobile traffic data with finer granularity
if such training data is available. To demonstrate such capability,
we repeat the same leave-one-out experiment for SpectraGAN in
Country 1 as before but train and test the model at 30-min and

15-min time granularity. The result is shown in Table 11.6 As the
granularity becomes finer, the modeling task is more challenging,
implying performance on some metrics can be time-granularity
dependent. This is reflected by the ground truth reference – there is
a clear degradation in terms of AC-𝐿1 and FVD going from 60-min to
15-min. Yet, SpectraGAN performance for generating temporally
finer data is still good: by comparing with Table 2, our solution
generates traffic at 15-min and 30-min granularity with comparable
or higher accuracy in terms of multiple metrics than that attained by
baselines for the less challenging task of synthesizing hourly traffic.

C JUSTIFICATION FOR THE

APPROXIMATION PROCEDURE

In the end of § 2.2.4, we describe an approximate way to obtain a
frequency vector f ′ that can be used to generate data with longer-
than-training-time lengths, exemplified in Figure 4. Denote f∗ as
the ground-truth discretized frequency domain representation of
the targeted length. We claim that:

(1) f ′ and f∗ have the length;
(2) f ′ and f∗ have approximately the same total energy;
(3) After IFFT, f ′ and f∗ give approximately the same signal in

time domain, i.e., IFFT(f ′) ≈ IFFT(f∗).
We now give justification of each of these statements using 𝑘 = 2
as an example.

(1) This is easy to see as we start with f ′ vector to be of the
target length;

(2) Assume the ground-truth continuous frequency vector is
locally smooth. We can make use of the local approxima-
tion f𝑖 = 1

2 f
′
2𝑖−1 ≈ (f∗2𝑖−1 + f∗2𝑖 )/2, where the subscript indi-

cates the entry index of the vector. Equivalently, 2
∑𝐹
𝑖=1 f𝑖 =∑𝐹 ′

𝑖=1 f
′
𝑖
≈ ∑𝐹 ′

𝑖=1 f
∗
𝑖
, meaning the total energy would remain

the same with the approximation.
(3) The same local smoothness argument can be made to IFFT to

show the transformed signal in time domain is approximately
the same. Denote the signal in time domain as t. Specifically,
we have t∗𝑛 = 1

𝐹 ′
∑𝐹 ′−1
𝑘=0 𝑒2𝜋 𝑗

𝑘𝑛
𝐹 ′ f∗

𝑘+1 ≈ 1
𝐹 ′

∑𝐹 ′−1
𝑘=0 𝑒2𝜋 𝑗 𝑘𝑛

𝐹 ′ f ′
𝑘+1

where we use the local smoothness assumption together with
the smoothness of exponential function to make the approx-
imation 𝑒2𝜋 𝑗

𝑘 (2𝑖−1)
𝐹 ′ f ′2𝑖−1 + 0 ≈ (𝑒2𝜋 𝑗

𝑘 (2𝑖−1)
𝐹 ′ f∗2𝑖−1 + 𝑒

2𝜋 𝑗 𝑘2𝑖
𝐹 ′ f∗2𝑖 ).

A more involved but principled way would be to perform interpo-
lation directly on the frequency domain so as to avoid any poten-
tial repeating patterns due to our above approximation procedure.
However, we find that simple, standard interpolation methods can
introduce aliasing once the signal is transformed back to the time
domain. As our approximation method, together with the time
generator, is already able to generate non-repeating longer length
patterns, we do not further explore this direction.

6As the main point of this experiment is to demonstrate that SpectraGAN can be
easily applied for generating data at different time granularities, we only modify the
output layer of the network architecture to account for a different time granularity
but use the same parameters and training procedure as before.
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Table 9: Mean and median of traffic over all grid cells of the city for Country 1

City A City B City C City D City E City F City G City H City I
Mean 0.00610 0.03543 0.01327 0.02161 0.01820 0.01740 0.02299 0.01449 0.01889
Median 0.00186 0.01800 0.00612 0.00376 0.00954 0.00904 0.01258 0.00822 0.01053

Table 10: Mean and median of traffic over all grid cells of the city for Country 2

City 1 City 2 City 3 City 4
Mean 0.07915 0.09681 0.03451 0.06964
Median 0.06191 0.08050 0.02100 0.05680

Table 11: SpectraGAN performance at finer time granularity

Method M-TV ↓ SSIM ↑ AC-𝐿1 ↓ TSTR ↑ FVD ↓
60-min 0.0362 0.787 46.8 0.893 205
30-min 0.113 0.758 101 0.908 241
15-min 0.114 0.786 175 0.905 318

60-min Data 0.00359 0.999 25.2 0.903 128
30-min Data 0.00325 0.999 44.5 0.912 161
15-min Data 0.00295 0.999 78.0 0.908 206
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