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Abstract
Low-code application platforms enable citizen developers
to autonomously build complete applications, such as web
applications or mobile applications. Some of these platforms
also offer support for reuse to facilitate the development of
similar applications. The offered mechanisms are usually
elementary, they allow module reuse or building a new ap-
plication from a template. However, they are insufficient
to achieve the industrial level reuse necessary for software
product lines (SPL). In fact, these platforms were conceived
to help build standalone applications, not software fami-
lies and even fewer software product lines. In this paper,
we argue that the major limitation is that these platforms
seldom provide access to their metamodel, the access to ap-
plications’ models and code is also limited and, therefore,
makes it harder to analyze commonality and variability and
construct models based on it. An approach is proposed to
surpass these limitations: firstly, a metamodel of the appli-
cations built with the platform is obtained, and then, based
on the metamodel, a domain-specific language (DSL) that
can express the models of the applications, including vari-
ability, is constructed. With this DSL, users can combine
and reuse models from different applications to explore and
build similar applications. The solution is illustrated with an
industrial case study. A discussion of the results is presented
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as well as its limitations and related work. The authors hope
that this work provides inspiration and some ideas that the
community can explore to facilitate the adoption and imple-
mentation of SPLs in the context, and supported by, low-code
platforms.
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1 Introduction
Low-code application platforms are systems that do not re-
quire users to be professional developers to rapidly create
applications. These platforms can also be useful for highly
qualified professionals who do not need to spend a lot of
effort on easy, but time-consuming tasks, and can thus focus
their attention on other considerations that require expertise.
The Low-code application platform (LCAP) market has high
growth expectations [25]. Gartner estimates that by 2023
over 50% of medium to large enterprises will have adopted
an LCAP as one of their strategic application platforms [30].
As these types of software development platforms are more
and more used, either by citizen developers [14] or more
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technically qualified professionals, the applications devel-
oped will probably become more complex and aim to solve
more difficult problems.
The work presented in this paper is a side result of an

ongoing applied research project whose main goal is to add
support for a textual domain-specific language (DSL) in an
LCAP named OMNIA [31]. During this project, one of the
main issues identified by users is that they frequently need
to do repetitive tasks in their modeling activities, because
they often need to solve similar problems with the platform.
Therefore, the solutions for these problems are also very
similar, basically requiring models where most of their el-
ements are similar, with only small differences for specific
variants or features. In an LCAP, this may require repeating
manual tasks in a web modeling application of the LCAP.
And thus, one of the major advantages that these users see
in a textual DSL is the possibility of reusing parts of models
by copying and pasting them between solutions. Although
copy and paste are probably the most used techniques for
solving similar problems, it is rarely a good solution. A more
systematic and manageable approach is required, like the
one possible with software product lines (SPL).

This paper reports on the experience of adding support for
a software product line engineering approach for a low-code
application platform using domain-specific languages. For
that, a DSL capable of representing all the modeling con-
cepts of the LCAP is created (we will call it low-code DSL
or LC-DSL). The LC-DSL is then used to model groups of
applications of the LCAP that may be managed as an SPL,
i.e., the LC-DSL is a model that covers all the applications of
the LCAP that are treated as an SPL. To express variability,
a variability DSL is also required (we will call it Variabil-
ity DSL). The Variability DSL can be used to express the
variability of the product line as well as the configurations
used for each application of the SPL. With this approach,
users can model applications either by using the LCAP or
the LC-DSL, but variability is expressed only outside the
LCAP, by using annotations in the LC-DSL that reference
elements of the Variability DSL. Specific models of the LCAP
(and, therefore, applications) can be produced by removing
elements in the LC-DSL that are annotated with variabil-
ity elements of the Variability DSL that are not included
in a variability configuration model of the application, also
expressed in the Variability DSL. To integrate the existing
LCAP with the new LC-DSL, an import/export process was
implemented to obtain the LC-DSL from the models in the
LCAP and vice-versa.

This approach was experimentally tested by applying it in
a case study that is used as a tutorial to the OMNIA low-code
platform. The tutorial was expanded and adapted to include
variability requirements and, as such, became more suitable
for a solution based on SPL engineering.
Although LCAP adoption by the industry is growing, its

study by the academy as a research topic is still only starting.

There are, of course, recent exceptions, such as the European
Lowcomote research project, which, according to its pro-
ponents "aims to train a generation of professionals in the
design, development, and operation of new LCDPs" [24, 36].
However, these recent research publications usually focus on
other relevant aspects to allow building new LCAPs, with im-
proved architectures and features. As described previously,
our proposed approach is based on an almost orthogonal
solution regarding the LCAP, i.e., it does not require changes
in the LCAP, which usually would result in significant costs
for the LCAP author. Furthermore, according to our knowl-
edge, there is no published work that directly focuses on the
same problem. Therefore, we hope that this research may
bring the discussion of this topic to the community, and,
eventually, inspire the community to improve the solution
and propose and discuss alternatives.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the context and motivation for this work.
Section 3 presents the proposed approach and details all its
major components. Section 4 is dedicated to the case study. In
Section 5, a discussion of the results of the work is presented,
including lessons learned. Section 6 includes an analysis of
related work. The paper is concluded in Section 7, where
some near future work is also presented.

2 Context and Motivation
This section presents the context and motivation for the
approach presented in the paper.

2.1 SPL Engineering
According to Paul Clements and Linda Northrop, "a software
product line is a set of software-intensive systems that share
a common, managed set of features satisfying the specific
needs of a particular market segment or mission and that
are developed from a common set of core assets in a pre-
scribed way" [6]. This definition is commonly accepted by
the community and it has set the conceptual foundation for
the field, as confirmed in other reference books, such as the
ones from Klaus Pohl et al. [34] and Frank J. van der Linden
et al. [23]. The software product line engineering approach
is thus composed of two integrated sub-processes: domain
engineering and application engineering, as illustrated in
Figure 1.
From the previous definition and illustrated process, it is

reasonable to assume that in a software product line engi-
neering approach: (1) it is required to capture the common
and variable features in the domain(s) of the product line;
(2) there are core assets that are the main, shared, building
blocks of the product line; (3) a process is required to be in
place to enforce the prescribed way of building the products
of the product line. Regarding (1), the capture of common and
variable features is commonly done using specific models,
such as feature models and domain-specific languages [37].
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Figure 1. The software product line engineering process
according to [34].

Regarding the core assets referenced in (2), that are (re)used
in building the products of the product line, these may have
diverse support and formats but, usually, take the form of
a software platform. As stated by Klaus Pohl et al., "the do-
main engineering process produces the platform including
the commonality of the applications and the variability to
support mass customisation" [34]. Finally, (3) is a reference
to a required process that needs to be followed to implement
a software product line engineering approach.
From this analysis, we may assume that there are three

main requirements for establishing a software product line:
a process; a supporting platform; and a variability model.
From this assumption, we explore, in the next section, the
possible relationships between SPL engineering and low-
code platforms.

2.2 Relating Low-Code and SPL
Low-code application platforms enable a fast time to market
by reducing the amount of hand-coding required for the
development of applications [5]. This is possible because the
development platform is based on visual programming with
a graphical interface as well as model-driven design [1]. The
mentioned gains in productivity and ease of use facilitate the
adoption of these platforms by non-professional developers
and domain experts [8]. Usually, these platforms are also
cloud-based and focused on a specific domain, commonly
the domain of business applications [18], e.g., Mendix [27],
Outsystems [33] and PowerApps [29].

If we compare the previous description of LCAPs with the
discussion of SPL engineering in Section 2.1, it becomes clear
that there are several common aspects. In fact, both LCAP
and SPLs are based on core domain artifacts that are (re)used
in the development of each product/application. The differ-
ence is that in SPL the development of these core artifacts is

included in the overall process, whereas in LCAP these core
artifacts are part of the LCAP and, usually, not possible to
update by the end user of the LCAP. Also, both are used in
the context of a specific domain or set of domains. In the case
of LCAPs, there is usually a narrower context, since they are
usually constrained to specific technical domains, such as
web or mobile business applications. Regarding the process
of SPL engineering, or the "prescribed way", as stated by Paul
Clements and Linda Northrop [6], this is also a characteristic
of LCAPs, since they usually support the overall life cycle
of applications, including their deployment, monitoring and
update in cloud-based contexts. We argue that the major fea-
ture missing in LCAPs is the explicit support for variability
modeling, which is fundamental in a software product line.

An LCAP will usually provide a cloud-based environment
that its developers use to build applications. LCAPs are also
based on models. Developers use one or more models to
develop the applications. The editors of such models are
usually graphical and based on simple construction blocks
that can be combined by drag and drop actions. While the
execution platform may differ for each LCAP, if the solution
is based onmodel interpretation, then the execution platform
is the runtime required to execute the models. Yet, if there
is a code generation approach, then the execution platform
may be much more simple or even non-existent.

When building applications, the platform is used, as well
as the generated code or produced models. This process
has similarities to those used in SPL, where core assets are
(re)used. In LCAPs, these core assets that can be reused are
the platform and models, or part of them.

Although low-code platforms have some support for reuse,
they lack support for variability realization and modeling at
a similar level as SPLs. Regarding the similarities between
LCAPs and SPLs, we explore an approach to assist the de-
velopment of SPLs with LCAPs based on domain-specific
languages to express both the models of the applications and
the variability. We believe this approach can provide insights
and lessons on possible integrations between LCAPs and
SPLs that could maximize the best of both. Our approach is
presented in the next section.

3 Proposed Approach
The approach taken to support SPLs in low-code platforms
is orthogonal to the LCAP, not requiring any modification
in the LCAP. The only requirement in the LCAP is for it to
provide a mechanism that allows importing and exporting
models of the applications. Figure 2 illustrates this approach
with some detail, in a manner like the one used to represent
SPL engineering (see Figure 1). In this way, similarities be-
tween LCAP and SPL, as discussed in Section 2.2, become
more evident. In Figure 2, the set of DSLs required to sup-
port the approach is identified (LC Model DSL; LC DSL;
Variability DSL), inside a component identified as SPL IDE

18



GPCE ’21, October 17–18, 2021, Chicago, IL, USA A. Bragança, I. Azevedo, N. Bettencourt, C. Morais, D. Teixeira and D. Caetano

(Integrated Development Environment). The import/export
model mechanism of the LCAP is required to communicate
models between the LCAP and the SPL IDE.

One major goal of our work was to provide a fast solution
to tackle the reuse problems faced by the end users of the
project. As such, we selected a model-driven development
(MDD) solution. To rapidly produce a proof-of-concept both
for stakeholders and end users, the envisaged solution is
based on models and model transformations. With this in
mind, and because using textual DSLs was a strong require-
ment for the end users, the Xtext [13] framework for building
DSLs was selected. Since Xtext is based on the Eclipse Mod-
eling Framework (EMF) [11] this choice also allowed us the
integration with more MDD tools, such as the ATL Trans-
formation Language (ATL) [10] for model transformations.
Because our team had previous experience with all the men-
tioned tools, the development of a proof-of-concept solution
was rapidly achieved.

3.1 Process Overview
From a users’ viewpoint, the process starts by using the LCAP
to create a model that expresses the domain of the SPL, i.e.,
all the possible applications of the SPL. This is because, as
we will discuss later, our solution is based on what is known
as negative variability, where elements from a whole (i.e.,
the domain model) are removed based on presence conditions
that annotate these variable elements. Therefore, we need to
start with a model of a complete SPL. This domain model –
which is identified as LC Model SPL in Figure 2 – is automat-
ically generated (by the user action) from the LCAP export
mechanism. This will usually result in a file, or set of files, in
popular data formats, such as JSON or XML. Despite being
popular data formats, these files, and their support in IDEs,
are not adequate or understandable enough for being edited
by end users. We require a full language support in the IDE,
such as the ones provided by the Xtext framework. There-
fore, the domain model is converted into a new low-code
DSL (LC DSL). This full language must support variability
annotations and, thus, users can mark language elements
with the presence conditions mentioned previously. Hence,
a language for expressing the variability of the SPL is also
required. We call this language Variability DSL. By using the
Variability DSL, the user can nowmodel the variability of the
SPL as well as use it to annotate the LC DSL with presence
conditions that represent all the possible applications of the
domain. To complete the process, the users can use the Vari-
ability DSL to create application configurations. These will
include only elements that satisfy the presence condition for
a specific application of the SPL. Then, the App Generation
process in Figure 2 is used to generate models of applica-
tions by removing elements from the domain model that are
not present in the configuration. The resulting DSL is then
converted to the LCAP model format and imported into the

LCAP. In the LCAP, the user can then use the features of the
platform to generate and deploy the application.

3.2 LC-Model DSL
The approach proposed in this paper has two main charac-
teristics: it is orthogonal to the LCAP and it is based on MDD.
By being orthogonal, it does not require any modifications
in the LCAP. It only requires that the LCAP has some sort of
import/export mechanism for the application models. LCAPs
usually provide such mechanisms and use popular data file
formats, such as JSON and XML. In Figure 2, we identify
these files as LC Model (either LC Model SPL or LC Model
App).

However, since our approach is MDD, we want to use, as
much as possible, models and transformations. As previously
mentioned, we use Xtext and the modeling framework it is
based upon, EMF. These are integrated at a very deep level.
Xtext uses EMF models as the underlying semantic models
for its DSLs and, automatically, provides the DSLs represen-
tations as persistence formats for EMF models. Therefore,
all the tools that use EMF models can also use Xtext DSLs as
EMF Models. As such, by using Xtext DSLs we could also use
any of the model transformation tools compatible with EMF.
For its declarative capabilities, we selected ATL as the model-
to-model transformation tool used in the implementation of
the approach.
As a result of these options, we produced an Xtext DSL

to support the grammar of the LC Model. We call it the LC
Model DSL. In this way, it is possible to directly use the data
files that compose the LC Model, in model transformations
that convert them into/from instances of the new LC DSL.

3.3 Variability Metamodel and DSL
To model variability and express it in a DSL our choice was
to design a specific metamodel for variability using EMF
and use Xtext to automatically generate the grammar for
the DSL. Therefore, the metamodel is specific to the mod-
eled SPL. This comes with some limitations because every
single SPL requires a specific metamodel and will result in
a specific variability DSL. However, this also enables some
interesting advantages: (1) a very user-friendly syntax can be
used for the variability DSL, simplifying users’ work; (2) the
expressiveness of the language is not limited as some more
conventional variability metamodels, such as feature models.
Regarding (2), we have followed an approach to variability
as discussed in [37].

Figure 3 illustrates the variability metamodel for our case
study. EMF metamodels are treated as class models, and we
use their features to express variability. For instance, in Fig-
ure 3, we see how a mandatory feature Orders was modeled
as an abstract class that has two child features (subclasses):
Sales and Purchases. Since the cardinality of the containment
relationship to Orders is 1..2, this means that the SPL can
have one or both subfeatures. This metamodeling approach
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Figure 2. Approach to integrate low-code platforms and SPL engineering.

allows more interesting possibilities, such as using attributes
to enrich the variability model. One example presented also
in Figure 3 is the teamManagerLimit attribute that is used
to express the purchase monetary limit that the role of team
manager of the application is allowed to approve. Also, using
metamodels allows the use of constraints in the metamodel
using, for instance, the OCL language [12] that is supported
by EMF.

Figure 3. A simplified variability metamodel for an order
management SPL.

3.4 Deducing the Low-Code Metamodel
One of the main tasks of the approach is the creation of the
DSL for the LCAP. This DSL must be able to express all the
elements of all possible exported models of the LCAP. The
problem with this task is that LCAPs usually do not give
access to their metamodel. They usually provide export and
import functionalities, but only for models of applications,
not for their metamodels. To circumvent this limitation, we
try, as much as possible, to infer, or deduce, the metamodel
by inspecting the contents of exemplary models of the LCAP.
Finding the structure of the composition of elements may be
simple, as they are explicit in the structure of the models (i.e.,

the structure of the JSON or XML file). Even the identifica-
tion of primitive data types may be achieved automatically.
However, things will become more complex as we try to
identify references between elements, hierarchy relation-
ships, or even deduce the cardinality of a relationship. This
problem has been discussed and several approaches have
been proposed [19, 20, 39]. However, to our knowledge, there
is no complete automatic solution for the problem. A semi-
automatic solution was devised in line with that already used
by other authors, such as Izquierdo and Cabot [19]. Figure 4
illustrates our approach to deducing the metamodel of the
LCAP and, from that, generating a DSL.

Figure 4. The process of deducing the low-code metamodel
and generating the low-code DSL.

The process starts by exporting the model of the SPL from
the LCAP. As stated previously, the model is exported in a
common data file format, such as a JSON document (or a
set of JSON documents). As described in Section 3.2, this
document format is treated as an EMF model by handling it
as an instance of the LC-Model DSL (developed with Xtext).
This allows for a first model-to-model transformation (i.e.,
LCModel2Metamodel identified in Figure 4) that takes as
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input the LC-Model and produces the first version of a low-
code metamodel.

3.4.1 LCModel2Metamodel. LCModel2Metamodel is a
model-to-model transformation that uses ATL. The goal of
this transformation is to create the first version of a meta-
model for the LCAP. The transformation is based on the
following main rules:

• Each object or array of objects becomes an EClass in
the resulting metamodel;

• Each containment in the origin model results in a con-
tainment relationship in the resulting metamodel (i.e.,
an EReference). The process tries to deduce the cardi-
nality of the relationship by the number of instances
in the input model;

• For elements of simple data types, the result is a com-
patible EAttribute.

These rules automatically produce a valid metamodel. It
is valid since it can be used as the base for constructing a
DSL with Xtext, and this DSL could be used for expressing
the models of the SPL. However, the metamodel is probably
incomplete, since the process is not capable of automatically
identifying specifics such as the correct cardinality of the re-
lationships, and the hierarchy between EClasses or elements
that are wrongly identified as strings or arrays of strings,
not references.

3.4.2 MetamodelCustomization. For solving the previ-
ously identified issues, the process includes a semi-automatic
task called MetamodelCustomization. This is also a task sup-
ported by ATL. The idea for the task is to have an expert
on the LCAP to verify and correct the resulting metamodel.
This needs to be done, at the moment, with the help of some-
one familiar with the ATL language. The process is based
on a refining transformation, that applies refactoring rules
to the resulting metamodel to remove the issues identified
by the LCAP expert. By using this refining model, it is only
required to specify the rules for the refactoring since the
untouched model elements remain in the resulting model.
Some examples of common refactoring rules are:

• Correct non-identified class hierarchies;
• Adding new missing classes (for instance, abstract
classes in hierarchies);

• Correcting wrong cardinalities;
• Correct wrongly identified data types.

We call this task semi-automatic because it may also in-
clude automatic rules that do not require user intervention
to edit them. For instance, we included in the task the refac-
toring of the metamodel so that all the elements can have
annotations regarding variability (e.g., presence conditions).
For that, the resulting metamodel must have a reference
to the variability metamodel (see Section 3.3). Also, some
new elements are created, and existing elements need to be

updated to include the referred annotations. After the meta-
model is verified and corrected it can be used as input to the
creation of the Xtext DSL for the LCAP: LC DSL.

3.5 Low-Code DSL
One of the many advantages of using Xtext is that it provides
a series of defaults for language engineering. One of them
provides the ability to generate the grammar definition for
a metamodel. Given the metamodel that results from the
previous task of MetamodelCustomization, it is very simple
to generate the low-code DSL. The result of the Xtext wiz-
ard should provide a functional implementation of the DSL
suitable for working with the Eclipse IDE and, with some
additional work, with other IDEs and editors using the Xtext
implementation of the language server protocol [28].

For this specific task, we have found a few common issues
that may require manual intervention, such as:

• Customization of terminal rules. The default im-
plementation of terminal rules may not be suitable for
the DSL. For instance, we had to customize the rule
that is used to recognize numeric values.

• Identification of elements. Xtext assumes a property
with name as a default to identify elements and support
cross-references as well as scope. If this property is
missing, it may generate problems with the DSL. The
workaround may require customizing the solution to
use another property.

• Order of parsing. Xtext will generate a grammar that
parses the elements of an EClass following a static
order, which may not be suitable, but can be fixed by
manual editing the parser rules.

• Variability Annotations. Since the metamodel of the
DSL has references to the variability metamodel, these
are also automatically translated to references between
the two DSLs. However, some customizations may be
justified, for instance, to provide specific graphical
highlights in the IDE for the variability annotations
that will appear along with the DSL.

One possible approach to avoid the previous issues is
to customize the Xtext wizard so that it may follow other
conventions when generating the grammar file from a meta-
model. However, at the moment, we have not yet explored
this possibility, and it remains future work.

3.6 Conversion between LC-Model and the
Low-Code DSL

One essential part of the proposed solution is the conversion
between the low-code model and the low-code DSL (i.e.,
Model/DSL SPL Conversion in Figure 2). This task provides
the conversion of the model of the SPL that comes from
the LCAP into the format of the new textual low-code DSL.
After that, the user may edit the low-code DSL that models
the SPL, for instance, adding variability annotations or any
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other type of modification. As depicted in Figure 2, after
generating a model for an application of the SPL, the user
will want to use this conversion task to make the reverse
conversion, from the low-code DSL to the low-code model
(in the format expected by the LCAP) and import the new
application into the LCAP.
For this task, the goal was to build a generic solution,

that depended neither on the format of the data model of
the LCAP nor on the specific produced low-code DSL. So,
we wanted a model transformation that was independent
of both the input and the output models and metamodels.
The solution was based on the use of the reflection features
of the EMF API. Since, in our approach, there is a direct
mapping between elements in the metamodel of the LC-
Model and elements in the low-code metamodel of the LC
DSL, this approach is feasible. Also, the names used in the
elements of both metamodels are identical, which facilitates
the transformation.
It should be noted that in the conversion from low-code

DSL to LC-Model all the elements regarding variability (i.e.,
the possible variability annotations) are ignored by the trans-
formation. This is a choice made by design since the config-
uration process (i.e., the process that generates the model
of one application of the SPL) will always result in a model
of an application with all variability annotations removed.
Besides, even in the situation that the user has edited the
LC DSL and wishes to update the SPL model in the LCAP, it
makes no sense to convert the variability annotations since
the context for this work is that the LCAP has no support
for SPL engineering, particularly for variability modeling.

3.7 Configuration Process
The configuration process is a key part of generating an ap-
plication in the SPL. As depicted in Figure 2, to generate an
application in the SPL it is necessary to have the LC DSL an-
notated with variability annotations (i.e., presence conditions)
and have an instance of the variability DSL that represents
the configuration for the specific application. The Figure 5
shows a concrete example. In the central window of the SPL
IDE, the LC DSL is annotated with a presence condition (i.e.,
inc keyword in green) stating that the SaleOrderForm will
only be included in the generated model of the application
if the SPLOrderMan.Sale element exists in the configuration
model. The configuration model is presented in the Figure
at the bottom window of the SPL IDE.
To implement this process, an approach like the one de-

scribed for DSL metamodel customization was used (see
Section 3.4.2). The process is based on the refining mode of
ATL. Since in this mode ATL only applies rules to matched
elements of the models and leaves the remaining elements
untouched, it was used to only deal with elements that have
variability annotations and leave all the other elements un-
touched. The simple rules for the transformation are:

• Remove Element. This rule only applies to elements
that have variability annotations. It will verify if the
variability elements referred to in the annotation are
present in the configuration model and, if not, will
remove the element from the resulting model.

• Remove Annotations. For all the elements with vari-
ability annotations for which the include condition is
false (i.e., that are not included in the previous rule) the
variability annotation is also removed. In this way, the
resulting DSL is free from all variability annotations
and can the imported into the LCAP.

If required by the variability metamodel, the actual pro-
cess can also support attributes in the features of a variability
model. These attributes usually express values that can be
used to customize behavior in SPL, such as in workflows or
processes modeled in the LCAP. In the example of Figure
3, the attribute teamManagerLimit can the used to model
the purchase limit of the team manager in the purchase ap-
proval process. At the present moment of our research, these
kinds of behaviors are usually expressed using a general pro-
gramming language (e.g., C#) and codified inside a string in
the model exported from the LCAP. Therefore, our process
supports a macro string substitution in the model, that will
replace referenced attributes inside the strings, such as team-
ManagerLimit, by their specific values in the configuration
model. Similar to macros in languages such as C and C++,
this macro substitution process is executed before the ATL
transformation.

4 Case Study
The incentive for our proposal started from a project whose
main goal is to develop a web-based textual DSL for the
OMNIA low-code application platform. In the context of
such work, it was identified that some (intermediate and
advanced) users of the LCAP regularly exported their models
to JSON format and, using a regular text editor, modified
those models to rapidly obtain similar models, for similar
applications. They then imported the edited JSON files into
the LCAP to generate the new, similar applications. When
this process came to our attention, we searched for a more
convenient approach to deal with that kind of issue and
reuse technique and the result is what is shared in this paper.
The case study presented in this section is the first applied
experiment of our approach1.
This case study is based on a common use case scenario,

also used as a tutorial by the OMNIA LCAP, that implements
an application for order management, and it is easy to under-
stand. This application may include functionalities such as
client management, supplier management, product manage-
ment, salesperson management, purchasing management

1The artifacts are available in https://github.com/BAMoL-ISEP/low-code-
sple
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Figure 5. Integration of the low-code platform and the SPL IDE.

from suppliers, customer sales management, and VAT man-
agement. However, quite often, the modeled application only
includes parts of these functionalities. For instance, an appli-
cation for sales management will not include functionalities
regarding suppliers. Also, behavior such as the workflow for
purchase approval may vary according to specific rules of
the organization that will use the application. Therefore, this
seemed a good case to apply SPL engineering

Figure 5 illustrates the result of the case study implementa-
tion. On the left side of the Figure, we see the LCAP platform,
that users normally use, without any kind of change. The
process does not require changes in the LCAP. Users can
use the LCAP to model individual applications and create
models that model completely or partially an SPL, without
modeling variability, since the LCAP, as is, does not support
it. Variability can be modeled with the created SPL IDE, as
depicted on the right side of the figure. Within the SPL IDE
users may edit the model of the SPL as well as create and
edit variability models and application configuration mod-
els. Within the low-code DSL, the user may add variability
annotations that reference elements in the variability DSL.
The user may export the generated application models to
the LCAP to verify if they are correct and, eventually, use
the LCAP to deploy them.
Table 1 presents some data and measures regarding the

main tasks of the case study. Its duration was around 2
months and the longer tasks were the ones fundamentally
performed by researchers. These tasks mainly refer to the
setup of the core tools that support the SPL engineering
process and can be significantly reused for other SPL cases
with the same LCAP. Although in this case these tasks were
performed by researchers, those essentially require users
with knowledge and experience with Xtext and EMF-related
tools.

Next, we present the details of the case study implementa-
tion. The description is divided into domain engineering and

application engineering, although the boundaries between
these two contexts can be blurred. For example, there is an
initial task that results in the creation of a complete domain
model containing all possible applications for this case study.
But this was not mandatory, the applications could be added
to the model later, in the context of application engineering,
using the LCAP or the produced DSL.

4.1 Domain Engineering
This section presents the main tasks of the case study that
we consider as being part of the domain engineering process.
However, some tasks are more generic and can be reused for
other SPLs. These include, for instance, a significant set of
Eclipse plugins, that can be easily reused to support other
SPLs. This set of plugins – used as a whole – is what we call
the SPL IDE. As stated earlier, for constructing the DSLs we
used Xtext. ATL was used extensively for model-to-model
transformations, also EMF as it is the base modeling frame-
work for Eclipse. Some customizations in Xtext and the ATL
projects required the use of the Java programming language.

4.1.1 LCAP Domain Model. Based on the previous be-
havior of the LCAP users, i.e., using JSON representations
of LCAP models as a foundation to build new similar appli-
cation models, a request was made to the OMNIA team to
provide a model that was illustrative of the described situ-
ation. The idea was that the OMNIA team produced some
kind of domain model in the LCAP, i.e., a model that sup-
ported several similar applications. They had to create a
model of the domain and model the variability of the domain.
A meeting of approximately 2 hours was scheduled to ex-
plain the goal of this task and to explain the fundamentals
of SPL engineering and provide some references to the OM-
NIA team. The OMNIA technical team was able to provide
an illustrative model for a simple order management SPL,
only one week after the request. The team also described
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Table 1. Some measures about the tasks performed during the case study

Task User Duration Manual code
LCAP Domain Model LCAP staff 1 week NA (modeled in the LCAP)

Variability DSL Researcher 2 days NA (ecore metamodel)
Low-Code DSL Researcher 1 month ˜400 LOC ATL + ˜80 LOC Java
Conversions Researcher 3 weeks ˜1000 LOC Java
Configuration Researcher 1 week ˜30 LOC ATL + ˜50 LOC Java

Application Generation End User minutes ˜10 LOC Variability DSL
Notes: The symbol ˜ means "approximately". LOC stands for "Lines of Code".

NA stands for "Not Applicable".

the variability related to that model in a natural language
format.

4.1.2 Variability DSL. From the natural language descrip-
tion of the variability associated with the domain model,
a metamodel was achieved and, after that, a textual DSL
to model that kind of variability. This was easily done in
about 2 days. An EMF modeling project was used to create
the variability metamodel by creating and editing the ecore
metamodel (i.e., the metamodel format used in EMF). After
that, the variability DSL was built using Xtext. Xtext was able
to generate a functional DSL based on the previous meta-
model and we did not need to customize any code generated
with Xtext.

4.1.3 Low-Code DSL. For the approach of an SPL IDE
to be successful, a DSL that models what is possible with
the LCAP was needed, but also its integration with the vari-
ability DSL. Thus, users were able to annotate the models
with variability presence conditions (as discussed in Sections
3.6 and 3.7). A semi-automatic process was devised to de-
duce a metamodel from the JSON models of the LCAP, such
as discussed in Section 3.4. To use ATL to transform the
JSON models into the metamodel of the new DSL we also
needed to create an Xtext DSL for JSON (as described in Sec-
tion 3.2). As discussed in Section 3.4.2, the process to create
the new low-code DSL is not fully automatic. We required
the help of the LCAP staff to gather metadata that was not
available in the JSON models, such as identification of class
hierarchies and some date data types (namely references).
We called this activity metamodel customization and we also
used it to include in the LC DSL metamodel references to the
variability metamodel. The model-to-model transformations
(i.e., LCModel2Metamodel and MetamodelCustomization, as
depicted in Figure 4) were developed using ATL. With the
resulting metamodel, Xtext was used to implement the low-
code DSL. Here, some customization of the Xtext generated
code was necessary, for instance, to customize the format
used for the presence conditions. The duration for all these
activities was, approximately, 1 month.

Note that the produced DSL can be used for any SPL based
on the LCAP since its syntax should support all the modeling
capabilities of the LCAP. However, the variability DSL can
only express variability for the SPL of the case study.

4.1.4 Conversions. This project required some conver-
sions between files and models. Particularly, the LCAP was
only able to export and import models of applications using
JSON. Therefore, two processes were required: one to con-
vert from JSON to the low-code DSL and another to do the
reverse. Details of these processes are included in Section 3.6.
In this case, the implementation was based on the EMF reflec-
tion API that enabled us to convert dynamically between the
two DSLs, using the metamodels as guidance. The language
used was Java and the activity took, approximately, 3 weeks.
These processes also included some minor activities, such
as converting to and from the specific JSON multiple file
organization that the LCAP requires.

4.1.5 Configuration. The configuration process supports
the activity of generating one single application of the SPL.
Basically, given a model of the domain of the SPL that in-
cludes variability annotations and a specific variability con-
figuration model for one application, it can generate the
resulting model for that specific application. The process
is based on a refining ATL transformation, as described in
Section 3.7. The ATL transformation depends also on some
Java code that implements the verification of the presence
conditions as well as deals with the substitution of feature
attributes. At least for this use case, the process was very
simple to implement using ATL and required little Java code.
The process took roughly 1 week.

4.2 Application Engineering
This section refers to tasks during the case study that we
deem related to application engineering. Since, to prepare
for the case study, the OMNIA staff produced a complete
domainmodel for all the SPL, there was only one specific task
exclusively related to application engineering, the task of
application generation. In another scenario, for another case
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study, users usually would also update the domain model
because of requirements for new applications.

4.2.1 Application Generation. Application generation is
the process that automatically generates one application of
the SPL by applying a variability configuration model to the
SPL domain model. Given the existing SPL domain model
with variability annotations, users must create a variability
configuration model (using the variability DSL) containing
the specific variability configuration for the application they
wish to generate. Then, the configuration process is invoked
(see Sections 3.7 and 4.1.5) to generate the application. This
process takes as input the SPL domain model and one vari-
ability configuration model and results in a model for the
specific application. This model can then be imported into
the LCAP for verification and, possibly, deployment. For this
case study, the editing of the variability configuration model
was done by the users in few minutes.

5 Discussion
When applying the approach to the case study, important
issues were found, and some lessons were learned. In Section
5.1, the evaluation of the approach is discussed, referring to
its main contributions as well as possible issues and limita-
tions to its application. These are further analyzed in Section
5.2, where specific issues and lessons learned are presented.

5.1 Evaluation
The main goal of the approach presented in this paper was
to provide an SPL IDE that could be used to implement SPL
engineering based on LCAPs. As presented earlier, this was
achieved for the case study. The users that were using very
simple mechanisms before, such as copy and paste in JSON
files, are now using the created SPL IDE to build similar
applications, using an approach based on SPL engineering.
These users are now able to edit their models either in the
LCAP or using the low-code DSL in the SPL IDE. This DSL
provides much more support, hints, and verifications when
compared to editing a JSON file (e.g., propose referenced
elements or type validation). Also, users can model variabil-
ity, annotate the domain models with presence conditions,
and automatically generate applications of the SPL that are
conformant with configuration models, all this without any
change in the LCAP.
Another promising measure is the total time required to

apply the approach, as presented in Table 1. We are aware
that the case study is simple and, as such, its implementation
may be, naturally faster. However, the tasks that took more
time (such as the process to build the low-code DSL or the
process to make model/file conversions), are tasks with the
potential to be reused, almost as they are, in other contexts,
with other LCAPs. So, we consider this as an advantage of
our approach. However, for the time being, we have not

done any other complete experiences with other LCAPs to
validate this claim but, this is in our short-term plans.

5.2 Lessons Learned
In this section, some of the most important lessons learned
from the case study are presented.

5.2.1 LCAP Independency. One of the main characteris-
tics of the approach is that it does not require any change in
the LCAP, i.e., it is orthogonal to the LCAP. This option is by
design since we aim at exploring a solution that can be used
with as many LCAPs as possible. Also, our research project
with OMNIA - to build a web-based textual DSL - required
that the DSL could be used outside the LCAP, in as many
IDEs as possible (with a focus on Visual Studio Code). This
brings some advantages, such as being possible to apply the
approach to many LCAPs, most of them being closed source
projects. Nevertheless, this also limits the way the solution
can be integrated with the LCAP. For instance, at the mo-
ment, we integrate only via import and export mechanisms
of the LCAP. If the LCAP provides other types of integration,
such as REST APIs that enable a more granular edition of
LCAP application models, then it is possible to provide more
integration, for instance, updating the LCAP model as the
user edits fragments of the low-code DSL in the SPL IDE.
But there is a limit to what it is possible to integrate when
we cannot change the LCAP, as in our proposed approach.

5.2.2 Target Users. LCAPs are usually targeted at citizen
developers, especially those platforms that are classified as
no-code. Since our approach is based on textual DSLs and
the use of an IDE, this is arguably the best context for those
kinds of users. However, LCAPs are also in evolution, and
some are offering more powerful features focusing on more
professional developers [22]. Eventually, at a certain point,
LCAP applications evolve to more complex solutions that
will also require more advanced tools and professional users.
We only had one case study to evaluate our solution. In
this case study, the users were senior consultants at an ERP
(Enterprise Resource Planning) software company. Although
they are not professional developers, they are users with
several years of experience working with tools such as ERPs
and LCAPs. They were able to explore and use our solution
without any major problems. Nonetheless, it is doubtful that
citizen developers could have done the same, at least without
specific training.

5.2.3 Solution Replication. The proposed solution may
only be replicated if the LCAP supports an import/export
mechanism for the applicationmodels. This is the only strong
requirement. To our knowledge, several LCAP solutions offer
such a mechanism. Some minor requirements may impact
the replication of this solution. For instance, the approach re-
quires the construction of textual DSLs and their IDE plugins.
This was done using Xtext, but other language workbenches
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could be used. In all cases, strong expertise in such work-
benches is required. This may be minimized by applying
automatic transformations, such as the ones presented in the
paper for deducing metamodels or generating the grammar
of the DSLs. These will require specific expertise to be built
but after that could be reused by less specialized users.

A global and ready-to-use solution applicable to any LCAP
can be achieved with the approach described in this article,
when standards that make possible to address interoper-
ability between multiple platforms became available. Our
proposal could even facilitate platforms’ interoperability,
something that currently is hardly possible [35].

6 Related Work
LCAPs are just now starting to capture the attention of the
scientific community [24, 36]. Low-code can be seen as a syn-
onym of model-driven development [5]. In fact, LCAPs use
models and model transformations to generate applications.
This is like MDD. One could argue that the major difference
is that in LCAPs the metamodels, languages, and transforma-
tions used are not exposed and remain static, whereas in a
more conventional MDD solution it is possible to access and
change them. Although, to our knowledge, there are no ap-
proaches that directly integrate LCAPs and SPL engineering,
we will address related work that refers to SPL engineering
and MDD since, as stated before, LCAPs can be seen as a
specific MDD solution.

The development of software product lines with a model-
driven approach is not new [2, 7, 21]. Gomaa authored one of
the first books on designing SPLs with the Unified Modeling
Language (UML) [15]. Since then, several works on the theme
have been published. SPLs rely on modeling variability, espe-
cially by using featuremodels, and its integrationwith design
models, such as UML, has been explored [2, 3, 9, 16, 32]. In
our proposal, domain-specific languages were used to model
variability, as opposed to using feature models.

Markus Voelter and Eelco Visser explore the use of domain-
specific languages to model variability [38]. They argue that
feature models, because of their strict metamodel, provide
a particular advantage, since they can be mapped to logic,
and SAT solvers can be used to check valid configurations
or provide automatic completion for partial configurations.
In contrast, the use of DSLs to express variability provides
support for general variability, repetition, nesting, references
between elements of the variability model, and modeling
variability related to the behavior of the system. The authors
conclude that DSLs fill the gap between feature models and
programming languages. In our approach, we use DSLs to
model variability, similarly. We also find that one of the main
advantages of this approach is the possibility to specify the
concrete syntax of the variability language, providing a way
to adapt it to the user of the LCAP.

MDD approaches to SPL engineering rely on using stan-
dard modeling languages, such as UML, or domain-specific
models (or languages) for which the metamodel is known.
This is a requirement to achieve traceability between models
and to implement model transformations [2]. Since LCAPs
do not provide access to their metamodels, we explore an ap-
proach to help deduce the metamodels from existing models
exported from the LCAP. The idea is to construct a meta-
model by inspecting models and try to deduce metadata,
such as datatypes, cardinalities, or references. Similar ap-
proaches were presented earlier by other authors, such as
[4, 19, 20, 39]. One problem with deducing metamodels from
data models, such as JSON, is that some metadata is almost
impossible to deduce, such as class hierarchies (not repre-
sented in JSON) or references between classes (usually, the
reference is represented as a string value or array). In our
approach, a manual step for metamodel customization was
used so that, with the help of LCAP experts, such metadata
could be added (if required).

Medeiros et al. propose an approach to apply MDD to SPLs
[26]. The toolchain is like ours, but the approach is based
on using architecture description languages to model the
base architecture of the domain. They use feature models to
express variability and generate product models and source
code. In their work, they do not have to deduce the meta-
model of the domain (as we do). Their solution is mainly
forward-only engineering, while our is more a combination
of forward and reverse engineering. Horcas et al. presented
a solution for the development of web-based SPLs that is
focused on support for variability annotations in several file
artifacts used in web applications [17]. Our approach differs
from theirs since our focus is on annotating the new DSL of
the LCAP. They use variability annotations inside comments
in the diverse artifacts (e.g., HTML or JavaScript) while we
extend the DSL of the LCAP with variability elements. As
such, while dealing with models, variability elements are
treated in the same way as regular elements of the models
(we do not use comments to incorporate variability). After
the configuration of an application, all variability elements
are removed from the model. As a result, application models
imported to the LCAP do not contain variability.

7 Conclusion
This paper presents an approach that provides support for
SPL engineering in low-code application platforms. The ap-
proach does not impose any change in the LCAP and only
requires that the LCAP has some mechanism to import and
export application models.

The solution is based on a set of DSLs and respective plu-
gins to be used in, what we call, an SPL IDE. One DSL is
required to model the low-code platform. This DSL is pro-
duced semi-automatically, deducing part of its metamodel
by inspecting models exported from the LCAP. This DSL is

26



GPCE ’21, October 17–18, 2021, Chicago, IL, USA A. Bragança, I. Azevedo, N. Bettencourt, C. Morais, D. Teixeira and D. Caetano

also manually customized to incorporate metadata that is
not automatically identified and to integrate with a second
DSL that deals with variability. The variability DSL is used to
express the variability of the SPL as well as express configu-
ration models specific to particular applications, or products,
of the SPL. There may be also supporting DSLs, such as DSLs
to manipulate the data that is exported and imported from
the LCAP (e.g., JSON files). Once all these tools are available,
the LCAP users may model the domain and applications of
the SPL using either the LCAP or the SPL IDE. Variability
modeling and application configuration are available only
in the SPL IDE.
A case study is presented and discussed. It addresses the

application of the approach to OMNIA, an LCAP of a startup
company, and its results are very promising. The duration
of the case study was about 2 months, including the time
to develop all the supporting tools. The users were able to
implement an SPL for a scenario that before was only roughly
addressed by elementary reuse mechanisms.
There are, however, topics that will be addressed as near

future work, such as validating the approach with more case
studies that include other low-code application platforms
and user types. We also plan on evolving the metamodel
deduction mechanism, for instance, by providing hints to
possible reference relationships as well as improve the user
interface in the customization of metamodels. Supporting
some form of customization for the syntax of the DSLs is
planned to make the process more independent from the
capabilities offered by the language workbench.
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