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ABSTRACT today switch to standby mode when not in use [32]. Studies show

Advances in deep vision techniques and ubiquity of smart cameras
will drive the next generation of video analytics. However, video
analytics applications consume vast amounts of energy as both
deep learning techniques and cameras are power-hungry. In this
paper, we focus on a parking video analytics platform and propose
RL-CamSleep, a deep reinforcement learning-based technique, to
actuate the cameras to reduce the energy footprint while retaining
the system’s utility. Our key insight is that many video-analytics
applications do not always need to be operational, and we can
design policies to activate video analytics only when necessary.
Moreover, our work is complementary to existing work that focuses
on improving hardware and software efficiency. We evaluate our
approach on a city-scale parking dataset having 76 streets spread
across the city. Our analysis demonstrates how streets have various
parking patterns, highlighting the importance of an adaptive policy.
Our approach can learn such an adaptive policy that can reduce
the average energy consumption by 76.38% and achieve an average
accuracy of more than 98% in performing video analytics.
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1 INTRODUCTION

Video cameras are poised to play a pivotal role in providing ad-
vanced analytics in smart cities. Although cameras today are used
for surveillance purposes and are required to be in “always-on"
mode, video-based analytics go beyond surveillance and offer rich
analytics such as business intelligence, improved operations, envi-
ronment conservation, and infrastructure management [3]. Recent
estimates indicate that millions of cameras are deployed in very
diverse environments, and operating cameras in always-on mode
unnecessarily increase the energy footprint and cost (including
electricians to install power supply lines). Moreover, one-fourth
of the cameras are standalone battery-powered, where conserving
energy is critical [8]; the future trend is for standalone cameras to
be even more prevalent, given the ease of installation.

An approach to reducing energy footprint is to deploy low-
powered camera devices. However, such methods may still have a
high energy footprint as processing large videos is computationally
expensive. Another effective way to reduce energy consumption
is to operate in standby mode in conjunction with using energy-
efficient devices. In standby mode, the device suspends all opera-
tions and transitions into a low-power mode. This allows the device
to consume minimal energy, enough to respond to any wakeup
event. At the same time, this also reduces the amount of generated
data, reducing the overall computational burden. Many appliances

that these can lead to significant energy savings over time [12].
But, such systems require an external signal to switch it to standby
mode. As such, recent efforts have investigated techniques to re-
duce energy by switching to standby mode based on device usage
prediction [17].

We note that most cameras for video analytics need not necessar-
ily operate in a continuous-on mode, and thus, there is significant
potential in reducing energy use [12]. For example, a parking bay’s
video analysis can determine vacant spots, but such systems need
not always be on as long as it provides parking information in a
timely manner. If the parking lot is near full, a driver may need
assistance in locating a spot, as the average driver spends 17 hours
per year searching for vacant parking bays [20]. On the other hand,
if the parking lot is near empty, a vacant parking bay’s exact loca-
tion may be irrelevant since it should be easy to find a spot to park.
As such, if we turn off parking video-analytics when parking space
is ample, we can tradeoff utility for energy. This is the key idea we
study in our work.

Our focus is to develop a reinforcement learning (RL) technique
to learn a standby management policy that increases the overall
energy savings while retaining the utility of a parking-based video
analytics platform. We assume a parking management system that
identifies available parking bays using cameras [30]. Studies have
shown that deep learning algorithms can locate occupied and vacant
spots with high accuracy [2, 30]. However, prior work does not
consider the utility-energy tradeoff and assumes these systems to
be always operational. Our key insight is that we can relax this
notion of utility; that is, the exact location of parking spaces is less
important when there is ample parking, and parking analytics can
be turned off to save energy. On the other hand, if the parking is
full or near full, we expect the analytics to be operational to provide
parking occupancy information to users.

Rule-based standby policy exists that activates the system based
on some fixed time. For example, we can program the system to
operate only during the day time between 9 am to 5 pm. However,
as we show in our analysis, such a policy may not be optimal in
saving energy. In contrast, by formulating an RL problem, our pro-
posed approach learns the rules and adapts to the parking patterns
to operate the camera. Our approach can learn the parking lot’s
dynamics by (autonomously) interacting with the environment
through reward signals. In doing so, we develop a system that can
provide video analytics when needed but learns to conserve energy
at other times. Our contributions are as follows:

e Parking Data Characterization and Analysis. We ana-
lyze parking patterns on a city-scale through an actual park-
ing dataset from the city of Melbourne, Australia [29], con-
taining parking occupancy from 76 streets collected using



ground sensors. Our studies show streets have high occu-
pancy during weekdays, weekends, or uniformly distributed,
depicting variability. We also find most streets have high oc-
cupancy at midday or in the evening and can be clustered as
such. This analysis points to the need for an adaptive standby
policy that can adjust to the various parking patterns.

e RL Formulation. We formulate the parking video analytics
problem using RL and propose RL-CamSleep, a deep rein-
forcement learning approach, that can learn an adaptive
standby policy even when parking occupancy information
is unavailable. Moreover, our formulation provides control
knobs, an input parameter to the reward function, to balance
the tradeoff between utility and energy. Thus, it provides
the flexibility to choose between utility and energy savings.

e Design and Implementation. We design RL-CamSleep’s
system architecture and implement a simulation parking
environment. In particular, we built our environment using
the OpenAI Gym framework to simulate parking occupancy
for multiple streets in a city.

e Evaluation. We examine the performance of RL-CamSleep
on parking data from 10 streets and show that it adapted to
different parking situations. We also analyze the adaptability
of the learned policy on the unseen 66 streets spread across
the city. Our results show that our approach outperforms
other baseline techniques and attains 98.65% accuracy while
achieving a 76.38% energy savings on the city-scale dataset.

2 BACKGROUND

In this section, we provide background on smart cameras and park-
ing guidance systems.

2.1 Smart Cameras

Smart cameras play an essential role in any video analytics system.
A smart camera typically has remote-control capabilities, is con-
nected to the Internet over a wireless interface, and streams the
video data over the IP-network to a centralized (Cloud) system (e.g.,
Google Nest Cam [13]). These types of cameras rely on a two-tier
cloud-based architecture, where the video is transmitted over the
Internet for analytics processing in the cloud. The two-tier architec-
ture also enables remote access to the cameras over the Internet [5].
This is the basic architecture assumed in our work (see Figurel).

Modern smart cameras are equipped with limited processing
capabilities that allow for additional functionality such as video
encoding (e.g., H.264 [35]). This convenient increase in connectivity
and functionality increases the overall energy consumption. To
reduce energy consumption, smart cameras have a standby mode,
wherein image sensors and other computing hardware is put to
sleep but ready to "wake up" when it receives an input signal. Since
image sensors constitute a large proportion of energy consumption
in a video camera, standby mode can save significant energy — as
much as 95% reduction in energy [18].

2.2 Parking Systems and Energy-Efficiency

Parking Guidance Systems (PGS) that provide drivers with the ex-
act location of vacant spaces can save significant time and costs.
Studies show that people often cruise on average 7.8 minutes for
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Figure 1: Illustrative example of a parking detection analyt-
ics platform.

a parking spot, which increases traffic congestion in cities [4, 26].
Thus, existing PGS mainly adopt either sensor-based or camera-
based to identify the exact vacant spot. In a sensor-based approach,
ground sensors are installed in each parking bay, which relay occu-
pancy status in a real-time manner. However, such sensor-based
solutions have high installation and maintenance costs, making
them cost-ineffective in open areas such as on-street parking areas.
As such, camera-based PGS has gained traction, as they are cheaper
to install and also provide high accuracy in identifying the location
of vacant spaces.

With the advancement in deep learning, most camera-based PGS
uses deep learning-based techniques to detect parking information.
As shown in Figure 1, smart cameras relay parking information as a
series of individual images or as short video segments (i.e., a batch
of consecutive images) to the classification neural network, which
then uses inference to extract relevant aspects from the data. We
assume a similar setup in our approach. However, deep learning-
based techniques tend to be computationally intensive and consume
much power [25]. Typically, it requires server-class platforms with
GPUs, consuming hundreds of watts. Recent studies have focused
on making deep learning networks less power-hungry by designing
lightweight architectures [38], or specialized hardware accelera-
tors [23]. There have also been studies on modifying the inputs
(e.g., reducing video frame sampling rate, resizing, resolution) to
the neural network to reduce the computing demand [14]. However,
since many of these analyses are expected to run continuously, it
can result in high costs and energy.

3 PROBLEM AND PARKING PROFILES

We begin by describing our problem, and then analyze our city-
scale parking dataset to show the spatial and temporal diversity in
parking patterns.

3.1 Problem

Our use case consists of a parking video analytics platform that
identifies available parking locations for users. This involves a cam-
era transmitting a parking lot’s video to a Cloud system, which
analyzes the video frames to identify empty parking bays. Our pri-
mary goal is to design a policy that activates the camera only when
the parking area nears full capacity. Fine-grained analytics can pro-
vide the exact locations of empty parking bays or the number of
spots available when it is at near capacity by continuously monitor-
ing the lot. However, we can tradeoff fine-grained analytics with
high overhead for coarse-grained analytics with lower overhead
when the parking lot is near empty. The analytics platform can
report to users about parking bays’ availability without providing
the exact numbers. This can be achieved by temporarily turning
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Figure 2: Spatial distribution of the streets. The red mark-
ers indicate streets in our training dataset, while the purple
markers indicate the rest of the city-scale parking dataset.

off video analytics during periods of high availability (i.e., there
are many empty parking spaces). Thus, we seek to create a policy
that estimates high and low occupancy periods in parking areas
and activates the cameras and video analytics only during high
occupancy periods to save energy.

3.2 Dataset and Characterization

We use the parking dataset from the central business district in
Melbourne, Australia [29], which consists of the arrival and depar-
ture of vehicles across 106 streets for 365 days in 2014. Since data
from other years was not available or complete, we limit our analy-
sis to 2014. However, we believe that our technique and analysis
should remain broadly applicable to other periods, given the traffic
characteristics shown below. For our analysis, we consider streets
with ten or more parking bays — a total of 76 out of the 106 streets.
This is because streets with a lower number of parking bays mostly
had high occupancy, with few available parking bays at most times,
making it necessary for the camera to be turned on at all times. We
discuss this issue in Section 7.

We process the data as follows. We first determine the occupancy
state (as a percentage of the total) for each street at a one-minute
resolution using the arrival and departure information. Next, we
divide the occupancy state into three categories (high, medium,
and low) based on a given threshold to indicate the parking lot
availability level. The categories indicate the conditions to activate
(or deactivate) the analytics. A high occupancy state means there
are few parking spots available, and cameras should be turned on
to track which parking spots are available. A medium and low oc-
cupancy state depicts higher parking spot availability, and thus,
cameras could be turned off to save energy and network transmis-
sions. Although, in our analysis, we use 80% and 60% thresholds
for high and medium, these input parameters can be varied by the
user. Table 1 summarizes the key characteristics of the dataset and
the thresholds used.

Figure 2 shows the location of the streets in our dataset. As
shown, the dataset depicts spatial diversity with streets spread
across shopping areas, a university, and other points of interest.

!Each street may consist of multiple blocks.

Attribute Value
Number of streets with 10+ parking spots 76

Total parking bays 5,070

Avg. number of parking bays per street 66.71
High occupancy threshold >0.8
Medium occupancy threshold 0.8>x > 0.6
Low occupancy threshold < 0.6

Min. #High occupancy events for any street | 0

Max. #High occupancy events for any street | 100,787
Avg. #High occupancy events per street 11,901
Total #events per street 525,600
Avg. % of High occupancy events per street 2.26%

Table 1: Key characteristics of the parking dataset.

Hourly Distribution
Bimodal | Bimodal
(Noon) (7 pm)

Daily Distribution

Weekday | Weekend | Uniform

Number of
Streets

Table 2: Parking profile clusters using k-means.

44 32 32 21 23

Next, we analyze the temporal characteristics of high occupancy
periods to understand when to activate video analytics (i.e., when
parking spots are less likely to be available). To do so, we first aggre-
gate the high occupancy periods hourly (and daily), and normalize
to range between 0 and 1. Next, we cluster the parking profile using
the k-means clustering [16]. From our analysis, when clustered on
the hourly distribution, two clusters of parking profiles emerged
(Figures 3a and 3b) and three clusters for the daily distribution.
Figure 3 shows the hourly and daily high occupancy distribution of
all 5 clusters. The black line indicates the average of all the streets,
and the grey dashed lines are the individual streets within the clus-
ter. As shown in Figures 3a and 3b, the parking spaces are usually
“crowded" during the daytime — likely due to streets located in the
business district. We observe a bimodal distribution with lower
parking space availability around 11 am (see Figure 3b). However,
some streets depict a bimodal distribution (Figure 3a), with a small
peak at 1 pm and a large peak at 7 pm — likely due to proximity to
shopping areas and restaurants.

Figures 3c, 3d, and 3e show the daily distribution of high occu-
pancy periods showing weekday, weekend, and uniform clusters,
respectively. The weekday cluster (Figure 3c) is likely from streets
located within commercial areas, while weekend clusters (Figure 3d)
could be due to restaurants and tourist spots. These 2 clusters ac-
count for a majority of the streets — 42.10% and 27.63%, respectively.
Finally, the uniform cluster (Figure 3e) accounts for 30.26% of the
streets.

Key Takeaway: The parking profiles depict both spatial and
temporal diversity. Some streets are busy during the weekdays,
others during the weekends. The parking profile also shows hourly
variations and indicates that the control algorithm for the cameras
must accommodate these variations to achieve both high accuracy
and energy savings.

4 RL-CAMSLEEP DESIGN

The problem of actuating the cameras in an energy-efficient manner
can be mapped to making sequential decisions, where the objective
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Figure 4: Key components in RL-CamSleep system design.

is to operate the camera in a manner that achieves high energy
savings without sacrificing parking analytics. As we discuss, this
problem is well suited for the RL framework used for representing
sequential decision-making. In this section, we present the key
components of RL-CamSleep and present our RL formulation to
actuate smart cameras to standby mode in low occupancy periods.

4.1 Overview

RL-CamSleep approach relies on the observation that the ability
to transition between fine-grained and coarse-grained analytics
provides the opportunity for gains in energy efficiency. Figure 4
illustrates our approach and highlights how different components
work together in decision making. RL-CamSleep has three main
components:

Controller receives the video frames from cameras and is responsi-
ble for actuating cameras. It also coordinates with other components
to enable the decision making process.

Parking detector detects available parking spots through object
detection algorithms, which can be trained to identify empty park-
ing lots. Prior work has proposed deep learning based solutions to
detect parking bay’s occupancy [2]. Our work assumes the avail-
ability of parking occupancy information.

RL model receives parking bays information for each street, if
available, and decides, for each street, whether to turn on the cam-
era or transition into standby mode.

The controller coordinates with the smart camera and other
components as follows. At each time ¢, the controller receives the
video frame from cameras that are on, and associates it to the
camera identifier. For each received frame, the controller invokes
the parking detector to determine the number of parking bays that
are occupied in each lot. For cameras that are in standby mode,
the controller assumes zero as its occupancy. Next, the RL model

is invoked with the parking occupancy information to determine
the state of the camera. Finally, on receiving the action from the
RL model, the controller actuates the appropriate camera state
remotely. We describe each component in detail below.

4.2 RL Model

The RL formulation is appropriate because it can learn that a deci-
sion at the current time step can have an impact on future results
(i.e., if the model decides to put the camera on standby mode, for the
next time step it won’t have access to occupancy information). Ad-
ditionally, as described in Section 3, streets exhibit different parking
profiles, and special events (e.g., a parade or a big sale) can cause a
decrease in parking availability. RL approaches are adept at making
sequential decisions in such uncertain environments [28]. More-
over, turning on parking video analytics during high occupancy
offers itself as a straightforward RL problem, where smart camera
actuation represents RL actions and reduced energy footprint and
turning on analytics at the right time represents RL rewards.

In RL, the agent learns to choose an action from its action space
that maximizes the sum of discounted future rewards within an
environment [28]. The agent interacts with the environment by
selecting an action a; = n(s;) from a policy 7 and receives a re-
ward r;, where s; is the state of the environment at time t. The
goal of the RL is to find a policy that makes the most rewarding
decisions. We implement our RL approach as a dueling Double
Deep Q-Network (D3QN) [31, 33, 36], a deep learning variant of
Q-learning that estimates the action-value function Q(s, a) to learn
a policy that maximizes the total reward. The action-value function
is also known as Q-value function, where the Q-value represents
how useful the action is in gaining some future reward. Below, we
define the state space S, action space A, and reward function R of
our RL environment.

4.2.1 State space. The state s; € S characterizes the environment
in each time step t. The RL model uses the state s; as input to
determine the action a; for maximizing future rewards. In our
work, we characterize the state as follows.

Observation features (O): is a vector of current and historical
observations of a parking area and is represented as a tuple (c, 0),
where c represents the state of the camera (i.e., standby or on)
and o represents the occupancy percentage of parking bays. The
camera state is represented as boolean value (i.e.,c; € {0,1}) and
the parking occupancy o; ranges between [0, 1]. When the camera
is on standby mode, the parking occupancy is set to zero for that
time period; when the camera is operating, o; is calculated using the



parking detector algorithm. The RL environment keeps track of the
current and previous n historical observations, which forms a part of
the state space Or = {(ct-n, 0t-n), (Cs—(n=1)> Ot (n=1))s - (¢t 0¢) }.
Temporal features (7): We also include the time of day, and the
day of the week as part of RL-CamSleep’s state space, given the
insights from Section 3 that show that the streets exhibit tempo-
ral characteristics. We encode our temporal values using cyclical
representations as we found these techniques to be more robust in
our experimentation. We use sine and cosine transformations of
the data. The final state space s; is a combination of observations
and the temporal features and represented as s; = {O;, 74 }.

4.2.2  Action space. Our action space is simple and consists of two
actions: turning the camera on and putting the camera on standby
mode (i.e., a; = 0 and a; = 1}, respectively). The action also affects
the video analytics pipeline, as it may reduce the frequency of
invoking of the resource-intensive parking detection algorithm.

4.2.3 Reward function. The reward r; captures the immediate re-
ward an agent receives for an action a; in state s;. The reward
function incorporates two components: the energy consumption
and the parking analytics. The energy component captures the
energy consumed for operating the camera and executing the park-
ing detection model to determine parking occupancy. Let e; and
ey represent the average energy consumed by the camera and the
system executing the parking detection model for a duration d.
Then, the penalty for the energy consumption is represented as a
combination of both of the components, i.e., —(e; + e2)d. Similarly,
we also capture the penalty for not operating video analytics during
high occupancy periods. Recall that parking video analytics should
be operational during high occupancy periods to provide accurate
available parking spots. Let M represent the missed instances when
the camera was on standby during high occupancy periods. Then,
the reward function is.

re=—[(é1+é)-d+w-M] 1)

where é1, é; represents the normalized penalty for energy consump-
tion, and w is the normalized penalty for missing activating the
camera during high occupancy periods. We normalize ey, ez, and w
to transform the components to the same scale. It should be noted
that the parameter w controls the tradeoff between energy and
utility (i.e., higher the w, the less important is energy). We explore
the sensitivity of this parameter in our evaluation. For simplicity,
we do not include communication and other operational costs in
our reward function. However, they can be easily incorporated into
the reward function as fixed energy costs.

4.3 Putting it all together

From our analysis, we find that a key challenge is that high occu-
pancy periods, times when video analytics should be active, are
rare, at about 2.26%, which indicates a highly imbalanced dataset. A
vanilla deep Q-network overestimates the action value, leading to a
suboptimal policy [31]. Thus, RL-CamSleep uses a dueling Double
Deep Q-network (D3QN) to prevent overestimation of Q-value and
learn the state-value efficiently. For more details on the architecture,
refer to [31, 33].

The agent estimates the Q-value function by optimizing a loss
function iteratively [21]. During this training process, the network

Algorithm 1: RL-CamSleep controller

Input: Parking detector model, ej, ez, w
Output: Actions ac, for each camera c at step ¢
1 for each decision period t do

2 for each camera c do

3 Initialize of and on§ with zero; if ¢ is on then
4 onf = True;

5 ff = get_frame(c, t);

6 of = parking_detection(f});

7 end

8 ai = rl_model(of, ong, c);

9 sendﬁaction(af, c);
10 end
11 end

is trained by sampling mini-batches of experience e; = (s¢, a, ¢, St+1),
which the agent accumulates during the training episodes. This
technique is called experience replay and allows the agent to re-use
past experiences to train the network. Instead of uniformly sam-
pling the accumulated experience, RL-CamSleep uses a prioritized
experience replay (PER) [24] that considers more frequently the ex-
periences with a higher difference between the actual and expected
reward. PER helps the RL model with the unbalanced experiences
and results in faster convergence.

The RL-CamSleep controller uses the RL model and the parking
detector for its decision-making process. Algorithm 1 presents the
pseudo-code of the controller. The controller uses video frames
from cameras that are turned on to determine the occupancy in
each parking street. Cameras in standby mode do not transmit
video frames, and thus, the occupancy state is unknown. The con-
troller then invokes the RL model along with the occupancy state,
if known, to determine the state (on or standby) for each camera.
We note that the controller and RL model are not computationally
intensive. The RL-CamSleep employs a fully connected neural net-
work with two hidden layers, with 32 and 16 neurons in the first
and second layers. One of our strategies for energy saving is to
invoke (computationally intensive) parking detectors only for ON
cameras.

We implemented our RL-CamSleep environment using the Ope-
nAI Gym framework [6] and the controller using python. The RL
environment simulates the energy consumption of the camera and
invokes the object detection model. Further, we use the Keras library
for D3QN implementation [7]. Since year-long (or month-long)
parking lot videos were unavailable for training the RL model, we
used the numerical parking dataset as a proxy for the parking detec-
tor module. Alternatively, we could use prior work on determining
parking occupancy [2] as input to our controller. The parking detec-
tor module is implemented to replay the parking occupancy for time
t and returns the occupancy of the parking lot. Our code and dataset
are publicly available at https://github.com/pittcps/rl-parking/.

5 EVALUATION METHODOLOGY

In this section, we briefly describe our training setup, baseline
approaches, and metrics for evaluation.


https://github.com/pittcps/rl-parking/

Training: We split our parking dataset with 76 streets into two
parts — 10 streets and 66 streets. We use the data from the 10
streets spread across the city for training and testing purposes (see
Figure 2). To do so, we split this dataset into three disjoint datasets
as follows: training (50%), validation (25%), and testing (25%). We
use the rest of the 66 streets for our city-scale validation to analyze
the effectiveness of our approach to unseen areas within the city.

During the training phase, the agent interacts with the envi-
ronment in episodes, which is the length of the simulation period.
We train the model on the data with a one-minute resolution. Fur-
ther, we train the model for 3200 episodes, where each episode is
two weeks long, and the data is randomly selected from a street
in the training dataset. We use the validation dataset to select a
model with the best average reward. We report our result on the
test dataset and the rest of the city-scale dataset.

Baselines: We compare RL-CamsSleep to four methods. We as-
sume all of the following methods send only one frame per second
to the analytics service to detect parking spots.

e Optimal: The optimal method has perfect future knowledge
and thus achieves maximum accuracy and energy savings.
This cannot be realized in practice and gives an upper bound
on the results.

e Naive: The naive approach simulates a manual configuration
approach. This approach assumes the camera is operating
for a fixed duration during the day/week and configured
accordingly. To calculate the start time and end time for
operating the camera, we find the earliest and latest time
when the parking lot crossed the high occupancy threshold
a in the training dataset for each day and take the minimum
and maximum time, respectively. This policy ensures that
the camera is always operational during high occupancy
periods but switched off during medium and low occupancy.

e Support vector machine (SVM): The SVM approach sim-
ulates a prediction-based approach that uses predicted occu-
pancy to determine actuation. We formulate the problem as a
binary classification problem and model the SVM algorithm
to predict the camera state using temporal input features
(e.g., the time of the day, the day of the week). Each time
frame in the dataset is assigned to one of the classes based
on whether its occupancy crosses the occupancy threshold o
or not. The goal is to actuate the camera during time frames
with higher occupancy than a. We do not use parking occu-
pancy as an input feature to SVM because that information
is only available when the camera is ON. We used histori-
cal known occupancy information but it resulted in poorer
performance.

e RL-CamSleep-Individual: This approach simulates a cus-
tom RL-CamSleep model for each street. In this approach,
we train the model report the results from the same street
used in training. This baseline allows us to evaluate whether
having custom models for each street gives better results
than a global model.

Metrics: We use two metrics to evaluate our approach.

e Accuracy captures whether the camera and video analyt-

ics are operational during high occupancy periods. We de-
tot_high_ ONx100

tot_high_occ where

fine accuracy as follows: acc =
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Figure 5: RL-CamSleep actions as parking occupancy varies
over the day. The figure shows the agent learns an adaptive
policy that checks intermittently during low/medium occu-
pancy and activates camera during high occupancy periods.

tot_high_ON is the number of high occupancy periods that
the camera was on during high occupancy periods (in our
case, at one-minute interval) and tot_high_occ is the num-
ber of periods of high occupancy. Thus, an accuracy of 100%
means that the camera was always operational during high
occupancy.

e Energy Savings: is the percentage of the total duration
tot_OFFx100
tot_duration’
where tot_OFF is the amount of time the analytics was

non-operational (camera on standby) and tot_duration is
the total duration of the simulation. We note that putting
camera analytics on standby reduces both the energy con-
sumed by the camera and the energy consumed by running
the parking detection algorithm. Moreover, streets may have
multiple cameras; thus, we use percentages to compare their
performance.

the camera was in standby mode: sav =

6 EXPERIMENTAL RESULTS

In this section, we analyze the performance of RL-CamSleep and
compare it to the baseline methods discussed above.

6.1 Performance comparison

We first compare the accuracy of RL-CamSleep with other baseline
methods (see Table 3). Our results show that both Naive and SVM al-
gorithms achieve an average accuracy of 95% and 90%, respectively.
However, RL-CamSleep outperforms both Naive and SVM methods,
achieving an accuracy of 99%. This shows that the RL-CamSleep
successfully learns an adaptive policy to turn on the camera during
high occupancy periods. We note that the Naive policy does not per-
form as well because it is not adaptive. In our evaluation, we fixed
the operational time of the camera based on the training dataset.
For streets with no change in parking profiles, the Naive method
achieves 100% accuracy. However, our results show that parking
profiles change over time, indicating that a fixed policy may not be
ideal. It is worth noting that the standard deviation of RI-CamSleep
is 15 times lower than the SVM and Naive approaches. This indi-
cates that the RL-CamSleep performance is consistent across the



Model Accuracy(%) Energy Savings(%)
Average | Min | Max | Std. Dev. | Average | Min | Max | Std. Dev.
SVM 90.66 79.12 | 98.71 7.6 67.59 54.83 | 88.48 9.7
Naive 95.74 78.64 100 7.6 52.91 37.49 | 66.66 8.3
RL-CamSleep-Indi 98.95 98 99.85 0.6 76.38 62.76 90 8.1
RL-CamSleep 99.08 97.82 | 99.60 0.5 73.99 63.76 | 87.61 6.4
Optimal 100 100 100 0 96.93 89.94 | 99.13 2.9

Table 3: Comparison of RL-CamSleep with other baseline methods on test data.
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Figure 6: Average accuracy on the adaptability dataset.

streets. Finally, the RL-CamSleep model achieves similar accuracy
to RL-CamSleep-Individual models (trained for each street).

For energy savings, RL-CamSleep performs significantly better
than Naive and SVM, achieving 74% accuracy compared to 53% and
68% energy savings, respectively. Furthermore, we observe that
both Naive and SVM methods turned on the camera even during
low and moderate occupancy periods, resulting in much lower
energy savings. This indicates the ability of RL-CamSleep learns a
policy that can make decisions to actuate the camera in an energy-
efficient manner. We observe a marginal increase in energy savings
(2%) when using a custom model for each street (as shown in RL-
CamSleep-Indi). However, RL-CamSleep-Indi’s standard deviation
is higher than RL-CamSeep, indication higher variation in energy
savings across different streets.

To better understand the performance of RL-CamsSleep, we plot
the decisions made by the RL agent for a single street over a day. Fig-
ure 5 illustrates the agent’s behavior. As shown, the agent learns to
switch on the analytics when the occupancy is above the threshold.
Observe also that the agent learns to actuate the camera for brief
periods to get ground truth videos during low occupancy periods.
However, this behavior is less frequent at night than during the
day resulting in higher energy savings. As we show, this behavior
allows the agent to adapt to different scenarios, especially situations
where the parking distribution is distinctly different from those in
the dataset.

Summary: Our results show RL-CamSleep outperforms all base-
line models in terms of accuracy and achieves high energy savings.
In particular, RL-CamSleep achieves an average accuracy of 99% and
energy savings of 74%. Our analysis of the agent behavior shows
RL-CamSleep learns an adaptive policy that actuates the camera
periodically.
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Figure 7: Energy savings on the adaptability dataset.

6.2 Model adaptability

We now evaluate the adaptability of our RL approach to new parking
profiles. Such changes in parking profiles may occur due to daylight
savings, special events, or change in parking regulations. To do so,
we modify our testing dataset by shifting the parking distribution
by x hours in either direction (or both). For example, a “-2 hour"
(or “+2 hour") shift indicates that we subtract (or add) two hours
from all the points, thereby shifting the occupancy periods. We
also extend the distribution in both directions and assume the
parking activities start at 5 AM and end at 11 PM. We achieve this
by subtracting 2 hours from all data points before midday and by
adding 2 hours to all data points after midday and filling the gap
by using the occupancy from the previous time window. We report
the performance of RL-CamSleep on this synthetically modified
dataset below.

Figures 6 and 7 shows the average accuracy and energy sav-
ings of different approaches on the modified datasets. We observe
that Naive and SVM methods’ accuracy drops significantly (by
47% and 56%, respectively, for the +6 hours case), indicating that
these approaches are unable to adapt to dynamic changes in park-
ing distribution. Interestingly, RL-CamSleep dynamically adapts to
different parking distributions as it learns to operate the camera
for ground truth observations even during low occupancy periods.
However, RL-CampSleep-Individual accuracy drops when there is a
significant shift in the distribution (e.g., -6 hours). Since it is trained
on one street, it doesn’t generalize well, resulting in lower adapt-
ability compared to RL-CamSleep. RL-CamSleep achieves 96.81%
accuracy — even when the dataset is modified significantly. Figure 7
shows that RL-CamSleep achieves higher energy savings compared
to Naive, and SVM methods.
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Figure 8: Performance on city-scale parking dataset.

Summary: RL-CamSleep performs better than other baseline meth-
ods and can adapt to different situations even when the parking dis-
tribution changes. For example, even when the parking distribution is
shifted by more than 6 hours, it achieves an accuracy of 97%.

6.3 City-scale analysis

We now evaluate RL-CamSleep’s on the rest of the city-scale parking
dataset to show that our approach is scalable to other parts of the
city. The city-scale dataset consists of 66 additional streets, not part
of the training or validation dataset. This dataset consists of streets
with different high occupancy densities, which means some streets
have a high number of high occupancy periods, some streets have
a low number and a few streets do not have any high occupancy
periods at all. We also compare RL-CamSleep’s performance to RL-
CamsSleep-Individual. To do so, we run each of the ten individual
models in RL-CamSleep-Individual on the parking data for the
entire year and report the average results.

Figure 8 shows the average accuracy and energy savings of
RL-CamSleep and RL-CamSleep-Individual. The figure shows that
RL-CamsSleep performs well even on unseen parking distribution
with 98.65% average accuracy. We also note that RL-CamSleep out-
performs RL-CamSleep-Individual by 9.66%, indicating that training
using data from multiple streets helps in generalization while retain-
ing high accuracy. We also observe that RL-CamSleep has a small
standard deviation (2.4%) compared to RL-CamSleep-Individual,
indicating consistent performance. RL-CamSleep also achieves an
average energy savings of 87.89% (see Figure 8b). Although RL-
CamSleep-Individual delivers an additional average energy savings
of 0.92%, this gain comes at the cost of reduced accuracy. The high
energy savings from RL-CamSleep on this dataset shows that RL-
CamSleep can perform well on different parking distribution and
save a substantial amount of energy.

Recall that the city-scale dataset depicts more variation in park-
ing distribution than the streets used in the training dataset. It also
includes streets with uniform occupancy distribution and they do
not conform to weekday/weekend patterns. We ran RL-CamSleep
on streets that belong to the uniform distribution cluster and found
that RL-CamSleep performs well even in these unseen streets. In
particular, RL-CamSleep shows a 99.79% average accuracy and 91%
energy savings in this uniform distribution cluster.

Summary: Our results indicate that RL-CamSleep achieves an
accuracy of 99% and 88% in energy savings on city-scale dataset.
This shows that RL-CamSleep approach is scalable and can adapt to
different occupancy patterns across the city.
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Figure 10: Impact of prediction error on performance.

6.4 Sensitivity analysis

To understand how we can balance the accuracy and energy trade-
off, we vary the parameter w that controls the preference between
energy and accuracy, with a higher value indicating a higher pref-
erence for accuracy and vice-versa. Figure 9 depicts the tradeoff
between energy and accuracy as we vary the parameter, normalized
to the maximum value used in our evaluation. Expectedly, as we in-
crease the value of w, the overall accuracy increases and decreases
the overall energy savings. This verifies that the agent interacts
with the environment using the reward function and learns to bal-
ance the two objectives. In particular, we can adjust the w where
the results vary between 82.75% accuracy and 86.76% energy saving
for an energy conservative setting to 99.03% accuracy and 73.99%
energy saving for a high utility setting.

Summary: Our results show RL-CamSleep can leverage the utility-
energy tradeoff. We can use the control parameter to guide the agent
to learn energy conservative or high accuracy policies.

6.5 End-to-end performance

So far, we have assumed the parking detector accurately deter-
mines the occupancy of a parking area. However, parking detection
models may not be accurate, and errors in object detection models
(“occupancy sensor” error) may impact the overall performance.
To study how this error propagates, we evaluate the impact of
error on the system’s overall performance. To do so, we perturb
the original dataset by introducing noise § in the parking occu-
pancy value o. We introduce 6% noise by randomly selecting a
value x from range [-§, +J] and adding it to the occupancy value
(14+x) -0;

ie., 0; = max(min( o 1),0).



Figure 10 shows the impact on accuracy and energy savings as
we vary the noise in the testing dataset. The figure reveals that
we see a modest decrease in accuracy (of 1.8%) as we increase the
noise from 0% to 10%. Prior study has shown that parking detection
accuracy range between 96% and 99.7%[1]. This indicates that RL-
CamSleep can achieve high accuracy even if the parking detector
has a large prediction error. We also observe that energy savings
stay mostly flat with only a marginal increase of 2.76% when we
increase the noise from 0% to 30%.

Summary: Our end-to-end performance shows RL-CamSleep agent
is robust to error in parking detection and can even tolerate a 10%
noise without significant loss in performance.

7 DISCUSSION AND FUTURE WORK

The benefit of RL-CamSleep lies in the fact that it can dynamically
adapt to various parking scenarios, even when it is different from
the distribution seen in the training dataset. As we show, the RL-
CamSleep performs well even when some streets have completely
different parking patterns. Our approach is adaptable, as reflected
in our results of the city-scale simulation. Interestingly, we found
that RL-CamSleep learned to check for ground-truth intermittently,
even at night, when there is not much activity. This policy makes
it more adaptive to dynamic scenarios and we plan to explore the
effectiveness of this behavior on other parking datasets.

A key challenge in applying our technique to real-world use
cases is balancing the tradeoff between utility and energy savings.
For example, in our analysis, we find that some streets with few
available parking spaces always have high occupancy. In such cases,
the cameras tend to be on all the time. This is especially true for
streets with low overall parking bays, where the total number
of parking is limited (e.g., less than ten). As such, there is little
opportunity for energy savings in such streets if utility is prioritized.

There are also several design considerations and benefits to realiz-
ing such energy savings mechanisms in practice. First, RL-CamSleep
can be integrated into parking video analytics and detection sys-
tems [30], providing both energy savings and cost benefits. Second,
although we do not analyze network bandwidth or other Cloud
costs, RL-CamSleep significantly reduces the network’s traffic and
computation (e.g., parking detection) at the cloud server. This is
because, in standby mode, the camera stops streaming videos, re-
ducing data and increasing energy savings. We note that this cloud-
related cost can easily be incorporated in our analysis if we assume
these services are operational only when the camera is operational.
Such services can be realized using serverless computing that bill
based on a per-request basis. Future work can incorporate such
costs as part of the analysis.

8 RELATED WORK

The computational cost of executing deep learning models has
increased 300,000X in the past six years [25]. This has led to a
significant increase in energy consumed and will continue and is
expected to double every few years [25]. With future applications
relying on such models, it is essential to focus on methods that can
reduce their energy footprint. Video analytics is one such appli-
cation that will heavily rely on large neural network models for
analysis [3]. These architectures often become the building blocks

for a video analytics application. As such, there have been several
studies on video analytics processing to improve the overall energy
efficiency of the system [3, 15]. However, most studies have focused
on reducing the latency to enable real-time inference [15]. Further,
since bandwidth is a scarce resource in such live video applications,
there have also been efforts to save bandwidth by streaming video at
a lower resolution and rate [3]. In contrast, our proposed approach
is complementary to prior works as we mainly focus on leveraging
the tradeoff between utility and energy. Our work showcases how
we can save energy, but unlike prior work, we show how RL can
be used to learn past events to perform periodic sensing without
loss in utility.

Efficient power management schemes can reduce the amount of
energy used by using a combination of lower and high power subsys-
tems [27]. These systems wake up the more power-hungry resource
only when required. Prior works have proposed solutions that use
dynamic duty cycling based on predicted energy use [22]. How-
ever, recent work shows that RL can make better energy-efficiency
decisions by learning an optimal policy that maximizes the long-
term reward [10, 11]. In [17], authors use device usage and user
behavior to manage the standby power consumption automatically.
Separately, there have been efforts to use reinforcement learning
to improve energy-efficiency [9, 19]. However, prior works do not
focus on analyzing energy savings within a parking analytics plat-
form without compromising its utility. Moreover, as we show in
our evaluation, our work performs better than the prediction-based
technique (SVM) in maximizing energy savings and utility.

RL approaches have also been used for planning purposes and
adaptively manage available energy [34, 37]. In [37], the authors
propose a query service for IoT systems that operate within an
energy budget. However, the proposed algorithm was evaluated on
a 2-week long dataset to provide a counting service. In contrast, our
work focus on minimizing the energy consumption while sensing
periodically to meet application needs. We evaluated our approach
on a year-long city-scale data consisting of 76 streets having over
5000 parking spots. Further, we showed how our approach could be
easily transferred to the real world by analyzing the 66 streets not
part of the training and testing dataset. To the best of our knowledge,
our work is the first to characterize the parking patterns and show
potential in energy savings in parking analytics. We note that there
have been studies on parking management systems using neural
networks to improve parking spot detection [2, 30]. Our work is
complementary and benefits from advancements in this area.

9 CONCLUSION

Video analytics is gaining traction in many non-surveillance ap-
plications. Although prior studies have focused on improving the
analytics pipeline, there has been little work on enhancing the
platform’s overall energy efficiency. In this paper, we considered
a parking video analytics platform and proposed RL-CamSleep, a
deep reinforcement learning-based technique that can improve the
system’s overall energy savings while retaining its utility (in the
form of accuracy). Our approach is orthogonal to existing work
that focuses on improving hardware and software efficiency. We
evaluated our approach on a city-scale parking dataset with diverse
parking profile patterns. Our city-scale results showed that our



RL approach learns a dynamic policy that reduces average energy
consumption by 76.38% and achieves 98% average accuracy.
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