
Query Relaxation for Portable Brick-Based Applications
Imane Lahmam Bennani

ETH Zurich
limane@ethz.ch

Anand Krishnan Prakash
Lawrence Berkeley National

Laboratory
akprakash@lbl.gov

Marina Zafiris
Lawrence Berkeley National

Laboratory
mzafiris@lbl.gov

Lazlo Paul
Lawrence Berkeley National

Laboratory
lpaul@lbl.gov

Carlos Duarte Roa
University of California Berkeley

cduarte@berkeley.edu

Paul Raftery
University of California Berkeley

p.raftery@berkeley.edu

Marco Pritoni
Lawrence Berkeley National

Laboratory
mpritoni@lbl.gov

Gabe Fierro
Colorado School of Mines
National Renewable Energy

Laboratory
gtfierro@mines.edu

ABSTRACT
Semantic metadata standards pave the way for interoperability
by providing building operators and application developers with
common schemes to describe building resources. Applications can
query building metadata models to retrieve the set of entities and re-
lationships they need to operate, instead of hard-coding references
to specific points and objects from the underlying data sources.

Currently, querying such models requires the developer to be
very specific when formulating queries in order to obtain meaning-
ful answers (or any answer). The developer is inevitably expected to
be familiar with the systems and components of the buildings being
queried, as well as the schema used to represent them. The variety
of buildings — both in the composition of their subsystems and in
how they happen to be modeled — means that the developer will
need to use multiple queries in order to retrieve necessary results.
This is complex, time-consuming and error-prone.

To address this limitation, we investigate query relaxation as a
technique to facilitate discovery of meaningful building resources in
a collection of ontology-based buildings data.We evaluate our query
relaxation approach over a set of Brick models and demonstrate its
use in the context of real-world building applications.

CCS CONCEPTS
• Information systems→Ontologies; Data encoding and canon-
icalization; Information extraction.

KEYWORDS
RDF, Brick, SPARQL, Query Relaxation, Smart applications

BuildSys ’21, November 17–18, 2021, Coimbra, Portugal
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9114-6/21/11.
https://doi.org/10.1145/3486611.3486671

ACM Reference Format:
Imane Lahmam Bennani, Anand Krishnan Prakash, Marina Zafiris, Lazlo
Paul, Carlos Duarte Roa, Paul Raftery, Marco Pritoni, and Gabe Fierro. 2021.
Query Relaxation for Portable Brick-Based Applications. In The 8th ACM
International Conference on Systems for Energy-Efficient Buildings, Cities, and
Transportation (BuildSys ’21), November 17–18, 2021, Coimbra, Portugal.ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3486611.3486671

1 INTRODUCTION
There has been a growing body of literature devoted to the de-
velopment of advanced building analytics applications in recent
years [10]. These applications have the potential to significantly re-
duce energy use, enhance occupant satisfaction, comfort, safety, and
facilitate a proactive approach to building operations and mainte-
nance [26]. Until a few years ago, these applications were developed
on a one-off basis with limited portability across buildings [12]. The
lack of semantic interoperability between digital representations
of buildings and their data inhibits the goal of portable applica-
tions [29]. To address this issue, recent efforts have leveraged Se-
mantic Web Technologies such as Resource Description Framework
(RDF) [30], Web Ontology Language (OWL) [1] and SPARQL [2]
to define standardized, machine-readable representations of build-
ing metadata. Examples of such endeavors include emerging se-
mantic metadata schemas and standards such as Brick [7], Project
Haystack [5], and ASHRAE Standard 223P [20]. These metadata
schemas strive to provide uniform descriptions of building assets
and subsystems and consequently reduce the effort required to
author data-driven applications for buildings. However, this early
body of work has been mostly concerned with capturing the com-
plexity and heterogeneity of buildings and has not yet developed
comprehensive tools that address the usability of these abstractions
from the developer’s perspective.

Without usable abstractions, the portability of applications will
suffer. Currently, making effective use of these metadata schemas
for portable applications requires the developer to have 1) a deep
understanding of buildings and their subsystems 2) precise knowl-
edge of the different concepts, relations and taxonomies defined by

150

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3486611.3486671&domain=pdf&date_stamp=2021-11-17

BuildSys ’21, November 17–18, 2021, Coimbra, Portugal Bennani, et al.

the schema to describe those assets, 3) experience with a supported
query language. This knowledge enables a developer to express
queries against the metadata schema which return the information
necessary to bootstrap or configure an application. However, it is
difficult to make queries portable across many buildings. Differ-
ences in the structure and composition of building subsystems and
differences in how modelers approach describing a building result
in queries being successful for some buildings but failing for others.
Hence, to foster the development of portable data-driven build-
ing applications, we need to transparently increase the portability
of metadata queries so that they return relevant results on many
different buildings.

1.1 Motivating Example
Metadata schemas like Brick define best practices and provide vali-
dation techniques to standardize representations of buildings using
the schema. However, valid models for identical buildings may still
vary due to design decisions made by modelers, motivated by differ-
ing target use cases, time constraints, and the modeler’s experience
and general interpretation of the structure of the building. This
variability interferes with application portability.

Consider a “Rogue Zone Detection" (RZD) Application which
identifies abnormal deviations between zone air temperature sen-
sor measurements and their corresponding setpoints (control tar-
get) [27]. This deviation may result in excess energy consumption
and compromise occupant thermal comfort. The RZD Application
must first find the air temperature sensors and corresponding set-
points associated with a specific zone. These sensors and setpoints
may be directly associated with the zone itself, a particular room,
the terminal unit equipment which supplies heating/cooling to the
zone, or indirectly associated through intermediate equipment such
as a thermostat. These points may even have different type anno-
tations within the digital model. This complicates the task of the
application developer because they must be aware of the different
possible arrangements to author a portable query.

The proposed method of query relaxation eliminates this com-
plexity by automatically generalizing that query to execute onmany
different models. Figure 1 illustrates two alternative Brick models
of the same HVAC system in a building: an air handling unit (AHU)
supplying air to a variable air volume box (VAV) which serves an
HVAC zone consisting of a room. While Model A was represented
with a “zone” temperature sensor and setpoint associated with the
VAV, Model B shows a generic air temperature sensor and setpoint
associated to the zone directly. We will refer consistently back to
this example and provide more details later in the paper. In other
scenarios, the building systems themselves may be physically dif-
ferent, but a well formed query may still return usable results for
some applications. For example, a naturally ventilated building with
baseboard radiators may not have an air handling unit but will still
typically have zone temperature sensors. Some applications could
use the data from such a building as well as the example buildings
in Figure 1.

1.2 Proposed Approach
To overcome modeling obstacles caused by limited building under-
standing and/or general variability in building models, we propose
a method to generate “relaxed” versions of Brick queries from an

original set of queries formulated by the developer. The key insight
of our approach is that the developers only needs basic knowledge
of building components and the Brick ontology to express their
intentions and conditions. Query relaxation rewrites the original
query so that it returns results on more buildings while preserving
the intent of the query. Previous work has demonstrated such re-
laxation techniques being developed for both entity-relationship
databases [14] and RDF datasets [25]. Query relaxation can en-
able developers to operate queries over buildings even if they lack
knowledge of building structures and ontologies. Relaxing queries
can also allow developers to write and leverage generic applications
without having to consider all possible entries and configurations.

Our proposed approach to query relaxation operates using the
formal definitions provided by the Brick ontology. We define a
set of logical derivation rules that adhere to Brick taxonomy and
semantic constraints. Relaxed queries can be generated by applying
the set of derivation rules to an original SPARQL query in a simple
manner.

1.3 Contributions
The contributions of this paper are three-fold. We provide:

(1) an algorithm for relaxing developer-provided queries so that
they execute on a provided Brick model

(2) a similarity-based ranking model for assessing the relevance
of relaxed Brick queries and for ranking them according to
developers’ preferences

(3) a functional proof-of-concept implementation for query re-
laxation, evaluated over a representative set of queries and
real-world buildings and their Brick models that have been
created by different modelers

The paper proceeds as follows. First, we provide a high-level
overview of the Brick ontology, SPARQL query language, and prior
work on query relaxation (§2). Then, we precisely define the query
relaxation problem, and define a family of ontology-informed re-
laxation rules. We then discuss how to rank the relaxed queries
created by our approach so the process returns the most semanti-
cally relevant queries with non-null results (§3). We describe the
query relaxation algorithm and its implementation in a proof-of-
concept system (§4), and we evaluate its performance and efficacy
on a representative set of real-world queries and Brick models (§5).

2 BACKGROUND
2.1 The Brick Ontology
A Brick model is a directed, labeled graph describing the entities —
physical, virtual, and logical “things” — in a building and the rela-
tionships between them. The structure of this graph is determined
by the Brick ontology [7], a formal specification of the semantic
representations of data sources in buildings and their context. Brick
organizes entities using a hierarchy of classes. Classes are named
sets of entities sharing similar properties which are formalized by
the Brick ontology. Relationships between entities in a Brick model
correspond to edges in the graph. Like classes, relationships have a
label and a formal definition. They may also carry restrictions on
what kinds of entities can have a particular relationship, and what
kinds of entities can be the object of that relationship.

151

Query Relaxation for Portable Brick-Based Applications BuildSys ’21, November 17–18, 2021, Coimbra, Portugal

Brick VAV Box Brick HVAC
ZoneBrick AHU Brick Room

Brick Zone Air
Temperature

Setpoint

Brick Zone Air
Temperature

Sensor

Brick Air
Temperature

Sensor

Brick Air
Temperature

Setpoint

ZAT1

SP1

ZAT1

SP1

AHU A VAV 1 Zone 4 Rm 410

a a a a

hasPart

Specific to Brick Model B

feedsfeeds

hasPointhasPoint

Specific to Brick Model A

a

a

a

a

Instance
(Entity)

Brick Class

Relationship

Legend

Figure 1: A simple Brickmodel illustrating a section of an air distribution systemwith a single zone and its temperature sensor
and setpoint. These are associated either with a terminal unit (Model A) or the zone (Model B).

Brick models adhere to the RDF data model. RDF describes a
directed, labeled graph as a series of 3-tuples called triples. A triple,
written as 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑜𝑏 𝑗𝑒𝑐𝑡 represents a directed edge be-
tween two nodes: the subject node has an edge predicate to another
node object. The Brick ontology formally defines the meaning (se-
mantics) and proper use of the classes and relationships using the
OWL ontology language [1] and SHACL constraint language [3].
These languages provide an executable description of what state-
ments are valid in a Brick model as well as what information can
be automatically inferred about a Brick model. In normal usage, an
external piece of software called a “reasoner” interprets the Brick
ontology using the OWL and SHACL formal languages in order to
validate the entities in a Brick model, and materialize any inferred
properties or relationships. We will exploit these formal definitions
to guide the process of query relaxation.

Figure 1 displays the two Brick models described in the mo-
tivating example. The types of the entities (AHU, VAV, etc.)
are indicated by the a (rdf:type) relationship. The other rela-
tionships describe the connections between different entities in
the HVAC system. The two models represent the same build-
ing, but differ in the way zone sensors and setpoints are de-
scribed. Model A associates the two entities to the VAV Box us-
ing a brick:hasPoint relationship, while Model B associates
them directly to the HVAC Zone. In addition, Model A has
been modelled with more specific description of the points (i.e.,
brick:Zone_Air_Temperature_Sensor) while model B uses more
generic classes (i.e., brick:Air_Temperature_Sensor), since the
location of the sensor can be inferred from the relationship to the
HVAC Zone.

2.2 SPARQL Queries
Software applications query Brick models in order to retrieve the
metadata and configuration they need to operate. These queries are
predominantly expressed in SPARQL [2], the W3C standard query
language for the RDF data model. A SPARQL query (e.g., Figure 2)
consists of a set of patterns describing a subgraph; evaluation of a
query on a Brick model returns the subgraph matching the query
predicate. These patterns are indicated by the WHERE clause of a
SPARQL query. Each pattern follows the subject, predicate, object

structure of an RDF triple; patterns may contain variables (indicated
by a ? prefix) or relationships, entities, and other resources in the
graph. A SPARQL SELECT clause defines the variables to be returned
by the query.

SPARQL also defines a family of property path operators which
augment how the RDF graph can be traversed during query exe-
cution. The + and * operators indicate that an arbitrary number of
edges with the same label can be explored; for example the pred-
icate brick:feeds+ in a pattern would correspond to 1 or more
brick:feeds edges between the subject and object. The / oper-
ator joins two predicates to indicate a sequence of edges through the
graph; for example the predicate brick:hasPart/brick:hasPoint
in a pattern would correspond to a brick:hasPart edge followed
by a brick:hasPoint edge from the subject to the object. These
expressive operators are instrumental in authoring SPARQL queries
that return results on many different kinds of RDF graphs [15].

Consider the query in Figure 2, which retrieves the zone
air temperature sensor and setpoint associated with entities
that are downstream of an AHU. The WHERE clause first con-
strains each of the types of the variables to be returned: line
4 indicates that ?sen should be bound to instances of the
brick:Zone_Air_Temperature_Sensor class, for example. Line 7
indicates the topological relationship between the entitywithwhom
the sensor and setpoint entities are associated, and the upstream
AHU. Line 8 constrains the query to return pairs of temperature
sensors and setpoints that are associated with the same entity. This
SPARQL query is an example of what a developer might produce
when writing a RZD Application. The query, as is, will only return
the sensor and setpoint entities for Model A and will fail to produce
any results on Model B (Figure 1). The query relaxation techniques
discussed in this paper will automatically transform this query so
that it returns the relevant entities on both models.

2.3 Query Relaxation and Related Work
Query relaxation is the process of rewriting a failing query so that
it returns results on more inputs while preserving the intent of the
original query. Such relaxation techniques have been developed
for both entity-relationship databases [14] and RDF datasets [25].

152

BuildSys ’21, November 17–18, 2021, Coimbra, Portugal Bennani, et al.

1 PREFIX brick: <https://brickschema.org/schema/Brick#>
2 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
3 SELECT * WHERE {
4 ?sen rdf:type brick:Zone_Air_Temperature_Sensor .
5 ?sp rdf:type brick:Zone_Air_Temperature_Setpoint .
6 ?ahu rdf:type brick:AHU .
7 ?ahu brick:feeds ?thing .
8 ?thing brick:hasPoint ?sen .
9 ?thing brick:hasPoint ?sp .
10 }

Figure 2: A simple SPARQLquery for retrieving zone air tem-
perature sensors and setpoints connected to the same entity.

Broadly, these techniques exploit properties of the domain to refor-
mulate the provided query in more generic terms. These properties
may be provided by integrity constraints on the database or, in the
case of RDF datasets, ontology statements that define the semantics
of data in terms of first order logic. Without a formal ontology,
query relaxation techniques must infer constraints from the in-
stance data [28].

The work presented in this paper builds on existing work on
query relaxation [11, 13, 21, 25] and applies these techniques to
the building domain. Cali et. al [11] relax SPARQL queries using
extensions to the SPARQL 1.1 query language to produce more
results while querying an RDF dataset. The work presented in [13]
relaxed queries based on user preferences in addition to existing
constraints within the ontology itself and [25] used RDFS semantics
to relax the queries. Hogan et. al. [21] relaxed RDF querying to
return relevant answers in addition to perfectly matching answers
using a distance measure between original and relaxed queries.

Metadata standards such as Haystack [5] and Brick [7] have
enabled the development of portable applications and there has
been significant research in the building domain to support similar
work [8, 17]. [9, 16, 22] introduced tools to generate Brick models
for buildings using both existing time-series data and metadata. The
relaxation work presented in this paper allows for slight differences
in the Brick representations generated and enables the queries to
return a larger number of results. This is complementary to existing
work on developing efficient query processors for Brick models,
such as HodDB [15].

Existing query relaxation techniques have not been applied yet
to the Brick ontology. Current tools developed to query Brick mod-
els also require exact knowledge of the query, the model, and the
ontology itself. In this work, we investigate query relaxation in
the context of data analytics applications for buildings [10]. Addi-
tionally, our work leverages the rich formal definitions provided
by the ontology to relax queries from real data-driven building
analytics applications. Brick is more complex than ontologies used
in prior work [25] because it leverages both the OWL 2 RL ontology
language and SHACL constraint language. In contrast, prior work
has only concentrated on RDFS-based ontologies, which provide a
subset of the expressive power of OWL 2 RL-based ontologies.

3 RELAXATION FRAMEWORK
Our proposed query relaxation procedure adopts a rule-based ap-
proach that is similar to prior work [18, 23, 24]. Rule-based query
relaxation operates by repeatedly applying transformation rules to
the query until it meets some termination conditions. We first pro-
vide mathematical preliminaries that underlie the query relaxation

technique before formally defining the query relaxation problem.
We then present the the different relaxation rules used in our frame-
work (§3.3) and elaborate on the model used to rank the relaxed
queries (§3.4) before we define the query relaxation algorithm (§4).

3.1 Preliminaries
Brick models are represented as RDF graphs. An RDF graph 𝐺 is a
set of triples {𝑡0, . . . , 𝑡𝑚}, where each triple 𝑡𝑖 is a 3-tuple

𝑡𝑖 ∈ (I) × (I) × (I × L)
where I is the set of IRIs 1 and L is the set of literals.

We adopt a simplified definition of a SPARQL query 𝑄 as a
projection clause 𝑠 (𝑄) ∈ V and a set 𝑝 (𝑄) ∈ 𝑃 of triple patterns:
{𝑝0, . . . , 𝑝𝑛}. A triple pattern 𝑝𝑖 is a 3-tuple

𝑝𝑖 ∈ (I ×V) × (I ×V) × (I × L ×V)
where V is the set of query variables and I and L are defined
as above. Executing a query 𝑄 on a graph 𝐺 (annotated as 𝑄 (𝐺))
produces a multiset of tuples with arity |𝑠 (𝑄) |, computed by taking
the join of all intermediate relations produced bymatching the triple
patterns 𝑝 (𝑄) on the graph. The triple patterns may not match any
subgraph of 𝐺 , in which case the query returns no results.

3.2 Problem Definition
We address the generic problem of conjunctive query relaxation
over RDF data in the context of smart building applications. We
use the technique of query relaxation defined in §2.3 to enlarge the
scope of a SPARQL query such that alternative results are returned
over Brick models. A query 𝑄 is relaxed by applying a relaxation
rule 𝑟𝑖 ∈ 𝑅 to one or more of its triples, producing a new relaxed
query 𝑄 ′. A relaxation rule 𝑟𝑖 ∈ 𝑅 is a function that takes a triple
pattern 𝑝 as an argument and returns one or several relaxed triples
𝑝 ′. 𝑅{𝑟1, 𝑟2, . . . , 𝑟𝑛} is the set of relaxation rules. The patterns in
the relaxed query 𝑄 ′ are given by

𝑝 (𝑄 ′) = 𝑝 (𝑄) − 𝑝 𝑗 + 𝑟𝑖 (𝑝 𝑗)
where 𝑝 𝑗 ∈ 𝑝 (𝑄) is a pattern from the original query 𝑄 that has
been rewritten using rule 𝑟𝑖 ∈ 𝑅. If the application of the rule fails,
i.e if the triple 𝑝 cannot be relaxed anymore, the last relaxation of
the triple pattern is returned. All patterns in a query are candidates
for relaxation.

A relaxation graph 𝐺 captures the transformation relationships
between a query𝑄 and the relaxed versions of the query. The nodes
of the relaxation graph are relaxed queries {𝑄 ′

1, 𝑄
′
2, . . . , 𝑄

′
𝑛} and the

root node is the original query𝑄 (Figure 3). Edges in the relaxation
graph connect each query to the direct relaxations of the query.
We define the level of a query in the relaxation graph as the total
number of rules that have been applied to it with respect to the
original query. In Subsection 4.1, we explain how to generate the
relaxation graph of a query.

3.3 Relaxation Rules
Query relaxation can be expressed using inference rules derived from
an ontology language such as RDFS [25]. Inference rules are logical
functions which add implied information to an RDF graph based
1internationalized resource identifier: a generalized URL that indicates a named entity
in the graph

153

Query Relaxation for Portable Brick-Based Applications BuildSys ’21, November 17–18, 2021, Coimbra, Portugal

Figure 3: The relaxation graph of an initial query Q (level 1).

on the triples that exist in that graph and the ontology language
which defines the semantics of those triples. A triple pattern 𝑝𝑖 can
be relaxed via the application of inference rules.

Consider the RDFS [19] ontology language which is used for
query relaxation in [25]. Among other inference rules, RDFS defines
the semantics of classes and instances such that a class is a named
set, and an instance of the class is a member of that set. Another
inference rule defines the semantics of subclasses: any instance of a
class𝐴 is also an instance of all parent classes of𝐴. In the context of
query relaxation, any pattern 𝑝𝑖 that matches instances of a class 𝐴
could potentially be replaced by a modified pattern 𝑝 ′

𝑖
that matches

instances of a parent class of 𝐴. This will necessarily match at least
the same entities as the original pattern but may also match many
more entities.

In this study, we build on prior work to formulate ontology-
based relaxation rules that are adapted to the Brick ontology. We
also consider additional rules not directly informed by the ontology
such as the use of SPARQL property path operators to capture a
wider variety of RDF graph structures. Our query relaxation process
encompasses two types of relaxation: (1) class relaxation and (2)
predicate relaxation. We now formalize the two types of relaxation
rules and provide concrete examples of triple relaxation for each of
them.

3.3.1 Entity Type Relaxation. Type relaxation uses class hierarchy
information from the ontology to relax type conditions of Brick
entities that are instances of Brick classes.

Relaxation Rule 1 (Superclass relaxation (sc)). Given a query
pattern in the form (𝑎, type, 𝑏) with (𝑏, subclassOf, 𝑐), returns the
relaxed query pattern (𝑎, type, 𝑐). For example, the triple (?sensor,
rdf:type, brick:Zone_Temperature_Sensor) can be relaxed to (?s-
ensor, rdf:type, brick:Air_Temperature_Sensor), as brick:Air-
_Temperature_Sensor is a superclass of brick:Zone_Air_Tempe-
rature_Sensor.

3.3.2 Relationship Relaxation. This type of relaxation replaces the
relationship (predicate) in a triple by another relationship that
connects the subject entity to the object entity. Rule 2 below parses
information from the ontology to derive other relationships whose
domain or range includes the subject or object (respectively) in
the triple. When applying this rule to a query pattern, we use the
SHACL shapes given in Table 1 to enforce high-level domain/range
restrictions and to validate the set of relaxed triples. Relaxation
with Rule 3 can be performed without parsing the Brick ontology.

Relaxation Rule 2 (Domain/range-based predicate relaxation).
Given a query pattern in the form (𝑎, pred0, 𝑏) where pred0
is the relationship between entities a and b, the rule returns
the relaxed triple (𝑎, pred1 , 𝑐), where pred1 is another relation-
ship that connects 𝑎 and 𝑏. For example, based on the SHACL
shapes in Table 1, the triple (?ahu, brick:feeds , ?thing) relaxes

to the following set of triples: (?ahu, brick:hasPoint, ?thing),
(?ahu, brick:hasPart, ?thing), (?ahu, brick:isPartOf, ?thing), (?ahu,
brick:isFedBy, ?thing). This is because ahu is an instance of the root
class Equipment and thing has no associated type in the query.

Relaxation Rule 3 (Predicate to property path relaxation). Given
a query pattern in the form (𝑎, predicate, 𝑏), the rule returns the
relaxed triple (𝑎, predicate+ , 𝑐), where + is a property path operator.
For instance, the triple (?ahu, brick:feeds , ?thing) can be relaxed
to (?ahu, brick:feeds+, ?thing).

3.4 Ranking Model
Ranking is the process of determining which relaxed queries should
be returned by the relaxation process. Relaxing an initial query 𝑄0
returns a potentially large set of relaxed queries {𝑄 ′

1, 𝑄
′
2, . . . , 𝑄

′
𝑛} at

each level of the relaxation graph. As more levels of the relaxation
graph are explored, queries become more relaxed and potentially
run on more Brick models. Moreover, the more patterns that are
in the original query, the higher the number of the relaxed queries.
For this reason, it is important to filter the set of possible relaxed
queries down to those which are most likely to assist the portability
of an application. Taking inspiration from Huang et al. [24], we
present a relaxation-based ranking model that assumes that the
more similar a relaxed query is to the original one, themore relevant
the answers will be to the developer. We consider a 𝑡𝑜𝑝 − 𝑘 model
of query relaxation in which the 𝑘 most highly ranked queries are
returned by the process.

We use a similarity function to quantify the degree of closeness
of a relaxed query 𝑄 ′ to the input query 𝑄 . Ranking is achieved by
ordering the relaxed queries and their results in ascending order of
similarity score. Given an initial query𝑄(𝑝1, 𝑝2,..., 𝑝𝑛) and a relaxed
version of the query 𝑄 ′(𝑝 ′1, 𝑝

′
2,..., 𝑝

′
𝑚), the similarity score between

the two queries is computed as follows:

Sim(𝑄,𝑄 ′) =
𝑛∏
𝑖=1

𝑤𝑖 · Sim
(
𝑝𝑖 , 𝑝

′
𝑖

)
(1)

where 𝑆𝑖𝑚(𝑝𝑖 , 𝑝 ′𝑖) is the similarity between a triple pattern 𝑝𝑖
in query 𝑄 and its relaxed version 𝑝 ′

𝑖
in 𝑄 ′, and 𝑤𝑖 ∈ (0, 1] is the

weight of a triple pattern 𝑝𝑖 that reflects the importance of 𝑝𝑖 in 𝑄 .
Application developers determine the weight 𝑤𝑖 of a triple 𝑝𝑖

by considering the attributes of the original query they are willing
to relax, given the application at hand. In this work, we simplify
this task by restricting𝑤𝑖 to the set𝑊 = {0.1, 0.5, 1} of values that
can be assigned to each query pattern. Developers can assign a
weight of 1 to the patterns in the query they are not willing to relax.
Consequently, relaxed queries where those patterns have stayed
unaltered are rewarded with a higher similarity score. Developers
can assign a lower weight of 0.5 to the patterns they want to relax,
such that relaxed queries where those triples have not been altered
are penalized with a lower similarity score. Following the same
logic, developers can also prioritize relaxing specific triples over
others by choosing to assign an even lower weight of 0.1. If a
developer does not provide weights, a default value of 1 is assigned
to all the patterns in the query. In section 4.3, we show with an
example how those weights can be determined and used in practice,
in the context of a real-world building application.

154

BuildSys ’21, November 17–18, 2021, Coimbra, Portugal Bennani, et al.

Relationship Definition Domain Range Inverse

feeds Subject conveys some media to the object entity in
the context of some sequential process

Equipment Equipment isFedByEquipment Location

hasPoint Subject has a monitoring, sensing or control point
given by the object entity

Equipment Point isPointOfLocation Point

hasPart Subject is composed – logically or physically – in
part by the object entity

Equipment Equipment isPartOfLocation Location
Table 1: High-level relationships enforced by SHACL Shapes in predicate relaxation.

Given a standard triple pattern 𝒑(𝑠, 𝑝, 𝑜) and its relaxation
𝒑′(𝑠 ′, 𝑝 ′, 𝑜 ′), 𝑆𝑖𝑚(𝑝𝑖 , 𝑝 ′𝑖) is computed as follows:

Sim
(
𝒑,𝒑′) = 1

3
· Sim

(
𝑠, 𝑠 ′

)
+ 1
3
· Sim

(
𝑝, 𝑝)′

)
+ 1
3
· Sim

(
𝑜, 𝑜 ′

)
(2)

To compute the similarity score in this paper, we consider in-
dividually (1) relaxed triples whose type has been relaxed, and (2)
relaxed triples whose predicate (relationship) has been substituted.

For the former, a triple in the form (𝑎, type, 𝑏) that assigns a
class 𝑏 to a subject 𝑎 relaxes to a triple (𝑎, type, 𝑐), where 𝑐 is a
superclass of 𝑏 following the Brick class hierarchy. As only the
object 𝑜 of the original triple is relaxed, 𝑆𝑖𝑚(𝑠 ,𝑠 ′) and 𝑆𝑖𝑚(𝑝 ,𝑝 ′) are
equal to 1, and the similarity between the two objects is defined by
the similarity between the class 𝑏 and its superclass 𝑐 . Like in [24],
we use information content as a measure of similarity between two
classes. Information theory quantifies the information content of
a class 𝑐 as 𝐼 (𝑐)= -𝑙𝑜𝑔 Pr(𝑐), where Pr(𝑐) is here the probability of
having an instance of class 𝑐 in a Brick model. Given a class 𝑐 , Pr(𝑐)
is defined as follows:

Pr (𝑐) = |Instances (𝑐) |
| Instances | (3)

where 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠(𝑐) is the number of entities in a Brick model that
are instances of class 𝑐 and 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 the total number of entities in
the Brick model. Let 𝑐1 and 𝑐2 be two classes such as 𝑐1 is a subclass
of 𝑐2. As 𝑐2 encompasses 𝑐1, the similarity between the two classes
is given as follows:

Sim (𝑐1, 𝑐2) =
I (𝑐1, 𝑐2)
𝐼 (𝑐1)

=
𝐼 (𝑐2)
𝐼 (𝑐1)

=
− log Pr (𝑐2)
− log Pr (𝑐1)

(4)

where 𝐼 (𝑐1,𝑐2) is the information content shared by the two classes
𝑐1 and 𝑐2. We now consider triples in the form (𝑎, 𝑝 , 𝑏) that connect
two entities 𝑎 and 𝑏 with a relationship p. Applying the second
relaxation rule from §3.3, the transformation occurs by substitution
of the predicate with all the possible relationships that connect 𝑎
and 𝑏. In that case, 𝑆𝑖𝑚(𝑠 , 𝑠 ′) and 𝑆𝑖𝑚(𝑜 ,𝑜 ′) in (2) are equal to one.
This simple relaxation not guided by the ontology hierarchy can
be regarded as relaxing the predicate to a variable, and we define
the similarity between the predicate 𝑝 and the relaxed predicate
𝑝 ′ as 0. If instead the original triple relaxed using the predicate to
property path relaxation rule, we assign a value of 1 to 𝑆𝑖𝑚(𝑝 ,𝑝 ′).

Once we compute the similarity score of all the triple patterns
𝑝𝑖 ∈ 𝑄 and of all their relaxed versions 𝑝 ′

𝑖
∈ 𝑄 ′, we can get the

similarity score between the two queries 𝑄 and 𝑄 ′ using (2).

4 QUERY RELAXATION ALGORITHM
The relaxed queries and the corresponding relaxation graph are
generated by a query relaxation algorithm. We describe the steps

of the algorithm and its implementation, and provide an example
rooted in the motivating RZD application.

4.1 Algorithm
The query relaxation algorithm applies the rules defined in §3.2 to
produce a relaxation graph. Algorithm 1 presents the steps involved
in the query relaxation process. The original query forms the root
node in the relaxation graph. Applying relaxation rules to the triple
patterns in this query generates a list of relaxations for each one of
the triples. The Cartesian product of those lists defines the set of
relaxed queries. The relaxed queries are organized into the graph by
how many relaxations they contain. The diameter of the relaxation
graph is limited by the maximum level of relaxation provided as
input to the relaxation process. As defined in §3.2, the level in a
relaxation graph is the total number of rules (or edits) applied to
the original query.

To avoid presenting the developer with all the possible queries
and their corresponding results, the algorithm prunes the relaxation
graph to remove queries that return empty results when executed
on a particular building. After pruning, the ranking model chooses
the top-𝑘 queries using the developer-provided weights (described
in §3.4) and computed similarity scores assigned to each of the
remaining queries. The algorithm returns the top-𝑘 relaxed queries
along with their similarity scores.

4.2 Implementation
The query relaxation algorithm along with its associated relaxation
rules, utilities functions, and evaluation, were developed in Python3.
We load version 1.2 of the Brick ontology using the RDFlib [6]
package to perform the necessary extraction of rules from the
ontology. This extraction uses the constraints on Brick relationships
(Table 1) to inform the relaxation of relationships. The SHACL
definitions provide more expressive domain and range constraints
than what is provided by the RDFS ontology language.

The developer provides the algorithm with the Brick represen-
tation of a building along with the initial query to be relaxed and
the number, 𝑘 , of relaxed queries requested. The developer can also
provide a maximum level of relaxation and weights for each triple.
The query relaxation graph generated by the algorithm is stored
using NetworkX [4], which facilitates exploration of the relaxed
queries. The implementation, execution, evaluation scripts, and all
the necessary packages related to the project can be found at the
publicly accessible repository 2 .

2https://github.com/anandkp92/relaxed-brick-queries/

155

Query Relaxation for Portable Brick-Based Applications BuildSys ’21, November 17–18, 2021, Coimbra, Portugal

Figure 4: Query relaxation framework given a SPARQL query that retrieves air temperature sensors and setpoints connected
to the same zone entity.

Algorithm 1: Query Relaxation Algorithm
Input: 𝑞𝑢𝑒𝑟𝑦 (original query), 𝑙𝑒𝑣𝑒𝑙𝑙𝑖𝑚𝑖𝑡 (max level of

relaxation, optional), 𝑘 (number of relaxed queries
requested),𝑤 (set of user inputted weights for each
triple in query), 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑚𝑜𝑑𝑒𝑙 (brick model of the
building)

Result: set of at most 𝑘 relaxed queries
extract triples from query;
for 𝑡𝑟𝑖𝑝𝑙𝑒 in triples do

apply 𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛_𝑟𝑢𝑙𝑒𝑠(𝑡𝑟𝑖𝑝𝑙𝑒) ;
save 𝑟𝑒𝑙𝑎𝑥𝑒𝑑_𝑡𝑟𝑖𝑝𝑙𝑒𝑠

end
create empty graph 𝐺𝑟𝑒𝑙𝑎𝑥𝑒𝑑 ;
add node 𝑞𝑢𝑒𝑟𝑦 to 𝐺𝑟𝑒𝑙𝑎𝑥𝑒𝑑 with 𝑙𝑒𝑣𝑒𝑙=0 ;
for 𝑟𝑒𝑙𝑎𝑥𝑒𝑑_𝑞𝑢𝑒𝑟𝑦 in permutations(𝑟𝑒𝑙𝑎𝑥𝑒𝑑_𝑡𝑟𝑖𝑝𝑙𝑒𝑠) do

𝑙𝑒𝑣𝑒𝑙𝑟𝑒𝑙𝑎𝑥𝑒𝑑_𝑞𝑢𝑒𝑟𝑦 =
∑𝑛𝑢𝑚𝑏𝑒𝑟_𝑡𝑟𝑖𝑝𝑙𝑒𝑠
𝑖=1 𝑙𝑒𝑣𝑒𝑙𝑖 ;

if 𝑙𝑒𝑣𝑒𝑙𝑟𝑒𝑙𝑎𝑥𝑒𝑑_𝑞𝑢𝑒𝑟𝑦 < 𝑙𝑒𝑣𝑒𝑙𝑙𝑖𝑚𝑖𝑡 then
if node 𝑟𝑒𝑙𝑎𝑥𝑒𝑑_𝑞𝑢𝑒𝑟𝑦 not in 𝐺𝑟𝑒𝑙𝑎𝑥𝑒𝑑 then

add node 𝑟𝑒𝑙𝑎𝑥𝑒𝑑_𝑞𝑢𝑒𝑟𝑦 to 𝐺𝑟𝑒𝑙𝑎𝑥𝑒𝑑 ;
set 𝑙𝑒𝑣𝑒𝑙 = 𝑙𝑒𝑣𝑒𝑙𝑟𝑒𝑙𝑎𝑥𝑒𝑑_𝑞𝑢𝑒𝑟𝑦 ;

end
end

end
for 𝑛𝑜𝑑𝑒 in 𝐺𝑟𝑒𝑙𝑎𝑥𝑒𝑑 do

get 𝑟𝑒𝑙𝑎𝑥𝑒𝑑_𝑞𝑢𝑒𝑟𝑦 from 𝑛𝑜𝑑𝑒 ;
𝑟𝑒𝑠 = execute_brick_query(building=𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑚𝑜𝑑𝑒𝑙 ,
query=𝑟𝑒𝑙𝑎𝑥𝑒𝑑_𝑞𝑢𝑒𝑟𝑦) ;
if 𝑟𝑒𝑠 is empty then

remove 𝑛𝑜𝑑𝑒 from 𝐺𝑟𝑒𝑙𝑎𝑥𝑒𝑑

else
assign
𝑠𝑖𝑚_𝑠𝑐𝑜𝑟𝑒 (𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑞𝑢𝑒𝑟𝑦, 𝑟𝑒𝑙𝑎𝑥𝑒𝑑_𝑞𝑢𝑒𝑟𝑦,𝑤) to
𝑛𝑜𝑑𝑒 ;

end
end
return relaxed queries from top 𝑘 nodes (based on
𝑠𝑖𝑚_𝑠𝑐𝑜𝑟𝑒) in 𝐺𝑟𝑒𝑙𝑎𝑥𝑒𝑑

4.3 Running Example
To illustrate the query relaxation algorithm, consider the RZD ap-
plication query in Figure 2 which retrieves zone air temperature
sensors and setpoints connected to a same entity. The WHERE

Figure 5: Top-3 relaxed queries and their similarity scores
for case 1.

clause defines the query conditions using the following triple pat-
terns: 𝑝1(?sen, type, Zone_Air_Temperature_Sensor), 𝑝2 (?sp,
type, Zone_Air_Temperature_Setpoint), 𝑝3(?ahu, type, AHU),
𝑝4(?ahu, feeds, ?thing), 𝑝5(?thing, hasPoint, ?sen), and
𝑝6(?thing, hasPoint, ?sp).

We select an arbitrary Brick model with a structure and resources
similar to the Brick models presented in Figure 1 and we define a
maximum relaxation level of 3. To compute the similarity scores
after relaxation, we consider two case scenarios where different
weights𝑤𝑖 ∈𝑊 = {0.1, 0.5, 1} are assigned to the triples 𝑝𝑖 in the
original query (as discussed in §3.4). Below we present the different
weight assignments scenarios and discuss the results returned by
the ranking model for the selected Brick model.

4.3.1 Case 1: Default value 𝑤𝑖 = 1. In this case, we consider a
scenario where a developer would like to limit relaxations on the
query or does not provide weights to be assigned to the triples. A
default weight value of 1 is attributed to all the triples in the query,
and the similarity scores are computed accordingly. Figure 5 shows
the top-3 relaxed queries returned for the selected building ranked
in ascending order of similarity scores. In this case scenario, the
top-3 relaxed queries returned all have a similarity score of 1. This
is because only one predicate in one triple has been relaxed, and it
was relaxed using the + property path operator. Because assigning
a weight of 1 penalizes relaxations of triples (discussed in depth
in §3.4), the top relaxed queries generated are the ones that return
results on the Brick model while limiting edits on the original query.
Referring to Figure 1, we can see that in this setting executing any
of those relaxed queries on the Brick Model B would not return a
result.

4.3.2 Case 2: 𝑤 (𝑝1),𝑤 (𝑝2) = 0.1, 𝑤 (𝑝3),𝑤 (𝑝4) = 0.5, and
𝑤 (𝑝5),𝑤 (𝑝6) = 1. We now consider another setting where a de-
veloper is willing to relax a set of triples in the original query. We
also consider that the developer has preferences towards relaxing

156

BuildSys ’21, November 17–18, 2021, Coimbra, Portugal Bennani, et al.

Figure 6: Top-3 relaxed queries and their similarity scores
for case 2.

specific triples over others. As discussed in §1.1, the purpose of
deploying a RZD application is to compare air temperature sensor
measurements against their respective setpoints, and find extents of
time where the measured temperature deviates significantly from
its corresponding setpoint. This means that the query in Figure 2
can be extended to other types of temperature sensors. It can also
be the case that different annotations have been used during mod-
elling such that the air temperature sensor and setpoint are directly
associated to a zone, as shown in Figure 1. In that sense, we decide
to assign a lower weight of 0.1 to 𝑝1 and 𝑝2 in the original query,
so that our ranking model prioritizes relaxation over these triples.

For the relaxed queries to keep the intent of the application,
it is also crucial that the temperature sensors and setpoints are
connected to the same entity. This means that relaxations over the
triples 𝑝5 and 𝑝6 from the original query should be penalized, and
we assign a weight of 1 to both triples. It is not as important for
the application to keep the remaining triples 𝑝1, 𝑝2, 𝑝3, and 𝑝4 as
is, and we attribute them a weight of 0.5. We can see in Figure 6
that the returned queries have lower similarity scores than in Case
1. This is because relaxation over some triples is now rewarded by
lower weights assignments. As intended, 𝑝5 and 𝑝6 have not been
altered while relaxation occurs for the other triples. In each of the
relaxed queries, 𝑝1 and 𝑝2 have been altered to the more generic
Brick class Air_Temperature_Sensor. Referring back to Figure 2,
we can see that executing the relaxed queries returned on the Brick
Model B would actually return results, as the scope of search has
been extended.

With this heuristic approach, we see that it is possible for a
developer to control the output of a relaxation process so that it
fits the needs of an application through weights assignments. We
also see that favoring some triple relaxations over others with the
use of lower weights comes along with lower similarity scores. In
this context, we can understand that the similarity score not only
acts as an indication of the closeness of two queries, but also as a
function that ranks queries according to developers preferences. In
the next section, we evaluate the relaxation algorithm defined in
§4 and discuss our results.

5 RESULTS AND DISCUSSION
In this section, we present an empirical evaluation of the query
relaxation algorithm presented in §4. We evaluate our approach
according to twometrics: (1) query relaxation overheadwith respect
to query execution time, and (2) portability of the query, measured

Min Mean Max

Number of triples 5 1011 8030
Number of classes 3 24 42
Number of relationships 2 526 4147
Number of entities 3 480 3870

Table 2: Brick models properties.

in terms of additional buildings that return results to the relaxed
queries.

5.1 Experimental Setup
5.1.1 Dataset. We evaluated the query relaxation algorithm over
50 Brick-based representations of buildings extracted from the Mor-
tar testbed [17]. All the models represent actual buildings created
by different modellers, and cover a wide range of Brick classes,
relationships, and literals queried by building-agnostic applications.
Details on the distribution of the buildings’ properties in the Brick
models are given in Table 2.

5.1.2 Queries. Figure 7 shows the set of queries considered for the
evaluation. All the queries presented are typical SPARQL queries
drawn from popular applications designed for Brick models, ob-
tained from the Mortar application suite and other research. For
example, query 𝑄0 finds all sensors associated to the same entity
that are instances of zone air temperatures sensors. We deliberately
selected queries of different lengths (number of triples) and with
simple types of clauses (e.g no UNION clause).

5.1.3 Preprocessing. As mentioned in §2.1, a reasoner has been
applied to the Brick graphs before executing any of the relaxed
queries. This preprocessing step allowed us to automatically gener-
ate additional implicit relationships in the Brick model (such as the
superclasses and inverse relationships), thereby providing a much
more complete and accurate building model for the relaxed queries
to execute on.

5.1.4 Parameters. We defined for the experimental setup a maxi-
mum relaxation level of 3. This choice was guided by the observa-
tion of a reasonable increase of queries at that level. This aspect is
discussed in depth in §5.2. To compute queries’ similarity scores,
we also defined a weight of 1 as a default value for all the triple
patterns in the queries considered in this setup.

5.2 Query Relaxation Overhead
As a first step in our evaluation, we measured the time it takes
to generate a relaxation graph (termed “relaxation time”) for each
of the queries selected, given a maximum relaxation level of 3.
Table 3 summarizes our results. We observed reasonable relaxation
times (<1 ms) for all the queries but Q7. As expected, the number
of relaxed queries and relaxation time increase with the size of
the query. For two queries of the same size (e.g 𝑄3 and 𝑄5), the
number of relaxed queries and relaxation time can be different, as
the content of the query also affects relaxation. The relaxation time
measured in this evaluation does not include the time to execute

157

Query Relaxation for Portable Brick-Based Applications BuildSys ’21, November 17–18, 2021, Coimbra, Portugal

1 ### Q0: Temp Sensors (Building Dashboard, Room Diagnostics)
2 SELECT * WHERE {
3 ?sensor rdf:type brick:Zone_Air_Temperature_Sensor .
4 ?sensor brick:isPointOf ?equip
5 }
6 ### Q1: Temp Setpoints (Building Dashboard, Room Diagnostics)
7 SELECT * WHERE {
8 ?sp rdf:type brick:Zone_Air_Temperature_Setpoint .
9 ?sp brick:isPointOf ?equip .
10 }
11 ### Q2: Airflow Sensors/Setpoints (Diagnostics)
12 SELECT ?sensor ?sp ?equip WHERE {
13 ?sensor rdf:type brick:Air_Flow_Sensor .
14 ?sp rdf:type brick:Air_Flow_Setpoint .
15 ?sensor brick:isPointOf ?equip .
16 ?sp brick:isPointOf ?equip .
17 }
18 ### Q3: Airflow Sensors (Zone Ventilation Monitoring)
19 SELECT * WHERE {
20 ?equip rdf:type brick:VAV .
21 ?equip brick:hasPoint ?air_flow .
22 ?air_flow rdf:type brick:Supply_Air_Flow_Sensor .
23 }
24 ### Q4: VAV Enum (Building Dashboard)
25 SELECT ?vav WHERE {
26 ?vav rdf:type brick:VAV .
27 }
28 ### Q5: Spatial Mapping (Building Dashboard)
29 SELECT * WHERE {
30 ?floor rdf:type brick:Floor .
31 ?room rdf:type brick:Room .
32 ?room brick:isPartOf+ ?floor .
33 }
34 ### Q6: AHU Operation (Economizer Operation)
35 SELECT * WHERE {
36 ?oat_damper a brick:Outside_Damper .
37 ?pos a brick:Damper_Position_Command .
38 ?oat_damper brick:hasPoint ?pos .
39 ?oat a brick:Outside_Air_Temperature_Sensor .
40 }
41 ### Q7: VAV Operation (Passing Valve Detection)
42 SELECT * WHERE {
43 ?equip rdf:type brick:VAV .
44 ?equip brick:isFedBy ?ahu .
45 ?ahu brick:hasPoint ?upstream_ta .
46 ?equip brick:hasPoint ?dnstream_ta .
47 ?upstream_ta rdf:type brick:Supply_Air_Temperature_Sensor .
48 ?dnstream_ta rdf:type brick:Supply_Air_Temperature_Sensor .
49 ?equip brick:hasPoint ?vlv .
50 ?vlv rdf:type brick:Valve_Command .
51 }

Figure 7: Selected Brick queries used in the evaluation.

Query ID size of query # relaxed queries relaxation
time(ms)

Q0 2 8 0.49
Q1 2 8 0.42
Q2 4 26 0.8
Q3 3 17 0.74
Q4 1 5 0.19
Q5 3 28 0.62
Q6 4 31 0.95
Q7 8 421 49.42

Table 3: Queries, number of relaxed queries, and relaxation
overhead.

the queries on a Brick model for results retrieval. This aspect of the
execution will be raised in the next section.

5.3 Query Portability Across Buildings
A second step in our evaluation consisted in assessing the efficacy
of the proposed query relaxation algorithm in making queries more

Figure 8: Number of unique buildings qualified at different
levels of relaxation.

portable. To measure this, we tracked the number of additional
buildings that return results on a relaxed query at different levels
of relaxation (up to a maximum of 5). Figure 8 shows that after a
relaxation level of 3, the number of buildings qualified increases
for all the queries except Q5, which remained unaffected by any
relaxation. This can be explained by the fact that Q5 refers to high-
level classes (brick:Floor and brick:Room) and already contains
a property path operator that would normally be added by a rela-
tionship relaxation rule.

No data on buildings selectivity was obtained for Q7 beyond a
relaxation level of 3. Because this query initially has 8 statements,
even a three-level relaxation generates 421 queries (as shown in
Table 3). In order to identify the relaxed queries that return results
and to compute the number of buildings that qualify, we had to
execute the relaxed queries across the 50 Brick models. This pro-
cess took more than one hour, and as such we decided to stop the
execution of the queries as it is not practical.

An increase in the size of an initial query yields more alternative
queries andmore opportunities to find a relaxed query that executes
on more buildings. However, this is balanced by an increase in the
time it takes to evaluate the relaxed queries and prune those which
do not return results. This aspect of the evaluation highlights a
limitation in our approach which is a heavy dependence on the
performance of the query processor.

6 CONCLUSION AND FUTUREWORK
In this paper, we present a method for performing SPARQL query
relaxation for buildings semantic models represented in Brick, and
a similarity-based ranking model that can be adapted according to
developers’ preferences. This approach leverages the rich ontology
defined in Brick, a graph-based metadata schema, to facilitate the
discovery of resources in buildings by developers, and the writing
of simple SPARQL queries which can be further extended with
relaxation. We have evaluated our query relaxation algorithm over
8 queries drawn from popular applications, and executed the al-
ternative queries generated on 50 Brick models from the Mortar
testbed.

Results show that for all the selected queries, a relaxation graph
can be computed within a reasonable amount of time. Although
the relaxation time itself is negligible, executing the relaxed queries
over a building to provide the developer with alternative queries
that return data is more challenging. A more thorough evaluation

158

BuildSys ’21, November 17–18, 2021, Coimbra, Portugal Bennani, et al.

of the query execution time should be investigated and considered
for optimization in future work. Future work may also consider
query relaxation techniques which defer evaluation of the queries to
reduce the coupling with the query processor, or perhaps eliminate
this dependency altogether.

We have also showed that query relaxation efficiently increases
query portability across buildings. This can ease the deployment
of applications at a large scale. Future work should extend the
query relaxation method presented to a broader set of modeling
choices, variations in building configurations, and to more sophis-
ticated queries. Finally, automatically inferring weight values from
provided developers’ preferences for the ranking model can also
improve the usability of this approach.

Overall, this work improves the usability of query tools for se-
mantic models, which is an important and understudied area of
research. Developing better tools for the building industry practi-
tioners and users of semantic models, such as Brick, is paramount
to promote their adoption.

ACKNOWLEDGEMENTS
This research was funded by the US Department of Energy un-
der Contract No. DE-AC02-05CH11231, Contract No. DE-AC36-
08GO28308 and grant DE-EE0008681.

REFERENCES
[1] World Wide Web Consortium (W3C) 2012. OWL 2 Web Ontology Language

Document Overview (Second Edition) - W3C Recommendation 11 December 2012.
World Wide Web Consortium (W3C). http://www.w3.org/TR/owl2-overview/

[2] 2013. SPARQL 1.1 Query Language. https://www.w3.org/TR/sparql11-query/
[3] 2017. Shapes constraint language (SHACL). Technical Report. W3C. https:

//www.w3.org/TR/shacl/
[4] 2021. NetworkX, Network Analysis in Python. https://networkx.org/
[5] 2021. Project Haystack. https://project-haystack.org/
[6] 2021. RDFLib. https://github.com/RDFLib/rdflib
[7] Bharathan Balaji, Arka Bhattacharya, Gabriel Fierro, Jingkun Gao, Joshua Gluck,

Dezhi Hong, Aslak Johansen, Jason Koh, Joern Ploennigs, Yuvraj Agarwal, Mario
Berges, David Culler, Rajesh Gupta, Mikkel Baun Kjærgaard, Mani Srivastava,
and Kamin Whitehouse. 2016. Brick: Towards a Unified Metadata Schema For
Buildings. In Proceedings of the 3rd ACM International Conference on Systems for
Energy-Efficient Built Environments (Palo Alto, CA, USA) (BuildSys ’16). Associa-
tion for Computing Machinery, New York, NY, USA, 41–50.

[8] Bharathan Balaji, Arka Bhattacharya, Gabe Fierro, Jingkun Gao, Joshua Gluck,
Dezhi Hong, Aslak Johansen, Jason Koh, Joern Ploennigs, Yuvraj Agarwal, Mario
Berges, David Culler, Rajesh Gupta, Mikkel Baun Kjærgaard, Mani Srivastava,
and Kamin Whitehouse. 2016. Portable Queries Using the Brick Schema for
Building Applications: Demo Abstract. In Proceedings of the 3rd ACM International
Conference on Systems for Energy-Efficient Built Environments (Palo Alto, CA,
USA) (BuildSys ’16). Association for Computing Machinery, New York, NY, USA,
219–220. https://doi.org/10.1145/2993422.2996411

[9] Arka A. Bhattacharya, Dezhi Hong, David Culler, Jorge Ortiz, KaminWhitehouse,
and Eugene Wu. 2015. Automated Metadata Construction to Support Portable
Building Applications. In Proceedings of the 2nd ACM International Conference on
Embedded Systems for Energy-Efficient Built Environments (Seoul, South Korea)
(BuildSys ’15). Association for Computing Machinery, New York, NY, USA, 3–12.
https://doi.org/10.1145/2821650.2821667

[10] H. Burak Gunay, Weiming Shen, and Guy Newsham. 2019. Data analytics to
improve building performance: A critical review. Automation in Construction 97
(2019), 96–109. https://doi.org/10.1016/j.autcon.2018.10.020

[11] Andrea Calì, Riccardo Frosini, Alexandra Poulovassilis, and Peter T. Wood. 2014.
Flexible Querying for SPARQL. In On the Move to Meaningful Internet Systems:
OTM 2014 Conferences, Robert Meersman, Hervé Panetto, Tharam Dillon, Michele
Missikoff, Lin Liu, Oscar Pastor, Alfredo Cuzzocrea, and Timos Sellis (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 473–490.

[12] Stephen Dawson-Haggerty, Andrew Krioukov, Jay Taneja, Sagar Karandikar,
Gabe Fierro, Nikita Kitaev, and David Culler. 2013. BOSS: Building Op-
erating System Services. In 10th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 13). USENIX Association, Lombard,
IL, 443–457. https://www.usenix.org/conference/nsdi13/technical-sessions/
presentation/dawson-haggerty

[13] Peter Dolog, Heiner Stuckenschmidt, Holger Wache, and Jörg Diederich. 2009.
Relaxing RDF queries based on user and domain preferences. Journal of Intelligent
Information Systems 33, 3 (2009), 239.

[14] Shady Elbassuoni, Maya Ramanath, and GerhardWeikum. 2011. Query relaxation
for entity-relationship search. In Extended Semantic Web Conference. Springer,
62–76.

[15] Gabe Fierro and David E Culler. 2018. Design and analysis of a query processor
for brick. ACM Transactions on Sensor Networks (TOSN) 14, 3-4 (2018), 1–25.

[16] Gabe Fierro, Jason Koh, Yuvraj Agarwal, Rajesh K. Gupta, and David E. Culler.
2019. Beyond a House of Sticks: Formalizing Metadata Tags with Brick. In
Proceedings of the 6th ACM International Conference on Systems for Energy-
Efficient Buildings, Cities, and Transportation (New York, NY, USA) (BuildSys
’19). Association for Computing Machinery, New York, NY, USA, 125–134.
https://doi.org/10.1145/3360322.3360862

[17] Gabe Fierro, Marco Pritoni, Moustafa Abdelbaky, Daniel Lengyel, John Leyden,
Anand Prakash, Pranav Gupta, Paul Raftery, Therese Peffer, Greg Thomson, and
David E. Culler. 2019. Mortar: An Open Testbed for Portable Building Analytics.
16, 1, Article 7 (Dec. 2019), 31 pages. https://doi.org/10.1145/3366375

[18] Riccardo Frosini, A. Calì, A. Poulovassilis, and P. Wood. 2017. Flexible query
processing for SPARQL. Semantic Web 8 (2017), 533–563.

[19] Ramanathan Guha and Dan Brickley. 2014. RDF Schema 1.1. http://www.w3.
org/TR/2014/REC-rdf-schema-20140225/

[20] Allen Haynes. 2018. ASHRAE’s BACnet Committee, Project Haystack and Brick
Schema Collaborating to Provide Unified Data Semantic Modeling Solution.
https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-project-
haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-
modeling-solution

[21] Aidan Hogan, Marc Mellotte, Gavin Powell, and Dafni Stampouli. 2012. Towards
Fuzzy Query-Relaxation for RDF. In Proceedings of the 9th International Confer-
ence on The Semantic Web: Research and Applications (Heraklion, Crete, Greece)
(ESWC’12). Springer-Verlag, Berlin, Heidelberg, 687–702. https://doi.org/10.1007/
978-3-642-30284-8_53

[22] Dezhi Hong, Hongning Wang, Jorge Ortiz, and Kamin Whitehouse. 2015. The
Building Adapter: Towards Quickly Applying Building Analytics at Scale. In
Proceedings of the 2nd ACM International Conference on Embedded Systems for
Energy-Efficient Built Environments (Seoul, South Korea) (BuildSys ’15). As-
sociation for Computing Machinery, New York, NY, USA, 123–132. https:
//doi.org/10.1145/2821650.2821657

[23] Hai Huang and Chengfei Liu. 2010. Query Relaxation for Star Queries on RDF. In
Web Information Systems Engineering – WISE 2010, Lei Chen, Peter Triantafillou,
and Torsten Suel (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 376–389.

[24] Hai Huang, C. Liu, and Xiaofang Zhou. 2011. Approximating query answering
on RDF databases. World Wide Web 15 (2011), 89–114.

[25] Carlos A. Hurtado, Alexandra Poulovassilis, and Peter T. Wood. 2008. Query
Relaxation in RDF. In Journal on Data Semantics X, Stefano Spaccapietra (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 31–61.

[26] Hannah Kramer, Guanjing Lin, Claire Curtin, Eliot Crowe, and Jessica Granderson.
2020. Proving the Business Case for Building Analytics. https://buildings.lbl.
gov/publications/proving-business-case-building

[27] Guanjing Lin, Marco Pritoni, Yimin Chen, and Jessica Granderson. 2020. Develop-
ment and Implementation of Fault-Correction Algorithms in Fault Detection and
Diagnostics Tools. Energies 13, 10 (2020). https://doi.org/10.3390/en13102598

[28] Ion Muslea. 2004. Machine learning for online query relaxation. In Proceedings
of the tenth ACM SIGKDD international conference on Knowledge discovery and
data mining. 246–255.

[29] Marco Pritoni, Drew Paine, Gabriel Fierro, Cory Mosiman, Michael Poplawski,
Avijit Saha, Joel Bender, and Jessica Granderson. 2021. Metadata Schemas and
Ontologies for Building Energy Applications: A Critical Review and Use Case
Analysis. Energies 14, 7 (2021), 2024. https://doi.org/10.3390/en14072024

[30] World Wide Web Consortium (W3C). 18 December 2020. RDF Primer. https:
//www.w3.org/TR/rdf-primer

159

