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Abstract

The existence of strongly polynomial-time algorithm for linear programming is a cross cen-
tury international mathematical problem, whose breakthrough will solve a major theoretical
crisis for the development of artificial intelligence. In order to make it happen, this paper pro-
poses three solving techniques based on the cone-cutting theory: 1. The selection of cutter:
principles highest vs. deepest; 2. The algorithm of column elimination, which is more conve-
nient and effective than the Ye-column elimination theorem; 3. A step-down algorithm for a
feasible point horizontally shifts to the center and then falls down to the bottom of the dual
feasible region D. There will be a nice work combining three techniques, the tri-skill is variant
Simplex algorithm to be expected to help readers building the strong polynomial algorithms.
Besides, a variable weight optimization method is proposed in the paper, which opens a new
window to bring the linear programming into uncomplicated calculation.

Keywords : Linear programming, Strongly polynomial-time algorithm, Cone-cutting, Col-
umn elimination algorithm, Factor space.

1 Introduction

Linear programming is not only an indispensable computing tool for intelligent decision making
and data science, but also a potential cornerstone of intelligent science with its causal interaction
and dialectical connotation[1]. It is also an important subject concerned by the application of
factor space theory[2, 3]. The Simplex algorithm proposed by G. B. Dantzig[4] is a precious pearl
in mathematics, in mathematics, which is not only beautiful in mathematical theory, but also has
been widely used in practice. Although Klee-Minty counterexample[5] points out that the deepest
Simplex may appear exponential explosion, but people always hope to find generalized Simplex
polynomial algorithm. Owing to distinguish it from the Karmarkar’s weak polynomial algorithm[6].
The researchers are still eager to find the strongly polynomial algorithm still. The breakthrough of
the cross-century mathematical problem[7], will save the development of artificial intelligence from
an important theoretical crisis. In 1989, Y. Ye proposed the elimination theorem[8], which is of
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great significance. Under the influence of Z. Z. Zhang[9], P. Z. Wang proposed the cone cutting
theory[10, 11] in 2014, which provided a clear geometric description for the Simplex algorithm in
the dual space. On this basis, we proposed the gravity sliding algorithm[12, 13]. Based on the
mentioned works, the work of this paper is to continue to put forward three solving techniques for
linear programming under the guidance of this geometric vision. Firstly, the highest principle for
the selection of cutting plane from the special t-value tableau such that the elevation of the new
cone vertex is changed as higher as possible. The second is the new column elimination rule, which
is more easy to use and more effective than Ye’s column elimination theorem. The third is making
a feasible point to horizontally shifts to the feasible center and falls down to the bottom of the
feasible region D. These three techniques all have the function of accelerating solution, and can
be matched with each other to produce joint effect, the tri-skill is variant Simplex algorithm to be
expected to help readers building the strong polynomial algorithms.

Structure of this paper is as follows: The second section introduces the theory of cone cutting,
which is the theoretical basis of this paper. It is quoted from the paper [13], but it is updated.
The third section introduces the highest principle for the selection of cutting plane, which is a
discretization of the gradient method in the non smooth convex domain. Using this principle in
the Klee-Minty counter example, the solution can be obtained in one step. Section 4 introduces
a new column elimination theorem. The condition of column elimination is that the norm vector
of the cutting plane must be non-negative or non-positive (homo-symbolic). We provides a homo-
symbolic theorem to convert a column vector mixed with positive and negative coefficients into a
homo-symbolic vector, and into the new column elimination theorem. The fifth section introduces
how to find a feasible interval on a ray, and conveniently solves the difficulty of horizontal edge: if
0 appears in the right column of the Simplex table, then the base row is fixed, the Simplex method
will not work well here. In fact, as long as we find out a feasible point on this edge, it must be an
optimal point, and then the problem is solved. If there is no point, the edge must be completely cut
off. Instead of avoiding the meeting of horizontal edge, we should actively capture them. The sixth
section introduces the third technique, which constructs a horizontal plane passing through a given
feasible point and extents the feasible rays towards to each edge and forms an m-vertices polygon.
Then horizontally shifts the feasible point to the center of the polygon, the center of this polygon,
and performs gravitational descend to the bottom of the feasible region. The deeper the falling, the
faster the solbing.. The seventh section emphasizes that these three techniques can be combined
together to create synergistic effect. The readers can make use of these techniques to develop the
strongly polynomial time algorithm. Finally, a short conclusion is given in eighth section.

2 Cone-cutting theory

2.1 Mathematical definition of cones

A non-empty set F in the space Y “ Rm is called an affine set, if for any two points P,Q P F and
t P p´8,`8q, there is P ` tpQ´ P q P F . Two affine sets F and F 1 are called parallel, if there is
P P F such that P ` Q P F 1 is true for any Q P F 1, and there is Q P F ’such that P ` Q P F 1 is
true for any P P F . An affine set is a subspace if and only if it contains the origin O. Any affine
set is parallel to and only parallel to a subspace, so the dimension of affine sets can be determined.
A pm´ 1q´ dimensional affine set in Y is called a hyperplane, hereafter referred to as plane.

Linear inequality constraints in linear programming problems can be transformed into equality
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constraints in terms of boundary surface, but the direction of inequality must be defined: In the
search that maximizes the target value, only “ď” is allowed, while in the search that minimizes the
target value, only “ě” is allowed. In minimum optimization, if the inequality y1 ´ y2 ď 1 occurs,
we must rewrite it as ´y1`y2 ě ´1, and then write the equation ´y1`y2 “ ´1. The norm vector
to this equation must be p´1, 1q and cannot be p1,´1q. The norm vector of all the planes is only
free to be multiplied by a positive number and not by a negative number, so that the plane is going
to be directed. A plane is determined by its norm vector τ and constant c for simple, the plane is
denoted as pτjq.

Let y “ py1, ..., ymq be a row vector and τ “ pτ1, ..., τmq
T be a column vector, then a plane is

an m´ 1 dimensional affine set constrained by an equation yτ “ c, where c is a constant and τ is
referred as the normal vector. Furthermore, a facet denotes an inequality constraint yτ ě c. For
simplicity, we use the symbol pτq to denote both a plane and a facet. A point P in Y is called
accepted by the facet if yτ ě c. We also say that it lies inside the interior of the facet. Otherwise,
P is rejected by the facet as it lies on the exterior of the facet.

There are many kinds of cones, which are discussed in details in the combinational optimization
textbook[14], but the cone we say here is only the special one. In order to get rid of complexity,
this paper gives the following definitions of cone directly and concisely instead of using deeper
terminologies.
Definition 2.1 [11] Let yτj “ cjpj “ 1, ...,mq be a group of planes, the norm vector of them form
the matrix B “ pτ1, ..., τmq. If the rank rpBq “ m, then their common accepted area is called a
cone, denoted as:

C “ ty P Y |yτ1 ě c1, ..., yτ1 ě cmu

B “ pτ1, ..., τmq is called the face matrix of C and each plane yτj “ cj is called a face of C.
Note that y is a row vector, τj is a column, therefore yτj is the inner product pyT , τjq.
Since B is full rank, there must be a unique intersection point V “ V1ˆm, called the vertex of cone
C. It is obvious that:

V “ cBB
´1 (2.1)

Where cB “ pc1, ..., cmq.
In the m-dimensional space, any m ´ 1 faces must yield a straight line as long as the rank of

the matrix formed by their norm vectors is m´1. Let Li be the intersection line of all faces except
the i-th face, which is called the i-th edge-line of C. It is easy to prove that if rpBq “ m, then
L1, . . . , Lm can not lie in a common face, so that the i-th edge-line can not lie in the i-th face. All
edge-lines intersect in the vertex V . The ray being the half of Li within the cone C is called the
i-th edge of C, denoted as Li. Its direction is denoted as ei, a row vector. Since a direction has no
fixed length, set that:

e˚i “ ei{eiτi “ ei{pe
T
i , τiq pi “ 1, ...,mq, (2.2)

E˚ “ pe˚1 , ..., e
˚
mq

T is called the regular edge matrix. E˚ can be determined directly by the basis
matrix B. Obviously we have that:

e˚i τi “ 1 pi “ 1, ...,mq. (2.3)

The position of face and edge is equal and they can be determined mutually. Since the i-th edge
is the intersection of all except the i-th face, the i-th face should also be spanned by all except the
i-th edge. We can define a cone in terms of edges:
Definition 2.11 [11] Given a point V and matrix E “ pe1, ..., emq

T . If rpEq “ m, denote that
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C “{y PY — D(λ1, ..., λmq ě 0, λ1`,...,+λm “ 1, such that λ1e1`, ...,`λmem “ y}.

Which is called an m-cone, V is called the vertex of the cone, Li “ V ` teipt ě 0q is called the
i-th edge of C.

We are going to prove the equivalence between definition 2.1 and definition 2.1:
Theorem 2.1 The regular edge matrix E˚ and face matrix B are reciprocal: E˚ “ B´1.
Proof For any i “ 1, ...,m, Li is the intersection line of all faces except the i-th one. Since Li is
on all these faces, it is perpendicular to the norm vector of all these faces:

e˚i τj “ 0 pj ‰ iq. (2.4)

According to 2.3 and 2.4, we have that E˚B “ I. End
Definition 2.2 If the face matrix of C2 is the regular edge matrix of C1, then, cone C2 is called
the anti-cone of cone C1, denoted as C2 “ C´1

1 .
Anticonicity is obviously symmetric:

Corollary 2.1 If cone C2 is the anticone of cone C1, then cone C1 must also be the anticone of
cone C2.
Proof Assume that the face matrices of C1 and C1 are B1 and B2, and the edge matrices of them
are E˚1 and E˚2 respectively. Since cone C2 is the anticone of cone C1, B2 “ E˚1 . Take the inverse of
both ends of this equation, and it can be known from Theorem 2.1 that E˚2 “ B1, the face matrix
of C1 is the regular edge matrix of C2. Therefore, C1 is anticone of cone C2. End

It is obvious that:
pC´1q´1 “ C. (2.5)

2.2 Cone interpretation of Simplex table

Given a problem of linear programming:

pP q maxtcx|Ax ď bu,

Where x “ xnˆ1 and b “ bmˆ1 are column vectors, y “ y1ˆm and c “ c1ˆn are row vectors,
A “ Amˆn. The original Simplex tableau is given as follows:

Table 2.1 Original Simplex table

¨

˚

˚

˚

˝

x1 ¨ ¨ ¨ xn y1 ¨ ¨ ¨ ym

α11 ¨ ¨ ¨ α1n 1 ¨ ¨ ¨ 0 b1
...

. . .
...

...
. . .

...
...

αm1 ¨ ¨ ¨ αmn 0 ¨ ¨ ¨ 1 bm
c1 ¨ ¨ ¨ cn 0 ¨ ¨ ¨ 0 0

˛

‹

‹

‹

‚

(To)

Denote A` “ pA, Iq, the header px1, .., xn; y1, ..., ymq is collectively denoted as pτ1, ..., τn`m, Let
c` “ pc1, ..., cn, 0...0q. The Cone-Cutting theory interprets this original tableau as follows: The
identity matrix I represents an original cone Co, Its vertex is the origin of the coordinate system
O “ p0, ..., 0q; its edges are the coordinate axes. Each row of I is the directional coefficients of
the edge. The row vector below this matrix I is the coordinate of the vertex of this cone. We can
combine matrix I and the vertex vector below it together to form a matrix I. This is called the
initial cone matrix Co. Let A denotes the extension of A to include the row vector c below it, then
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the equation yAj “ cj represents a dual constraint plane, called a cutting plane. All cutting plane
cuts the Y “ Rm space into a feasible region D. The points inside D are called the feasible points.

In this paper, we say that point PA is lower than point PB if P T
A b ă P T

B b, where b is the dual
target vector.

That is, all measurement comparison is relative to the b vector; and we refer u “ P T
A b as the

height of PA.
The unit square I represents the original cone Co, whose vertex is the origin O “ p0, ..., 0q, the

edges are the axes. The unit square I is the edge matrix, each row is the direction of an edge, and
the row vector below I is the coordinate of the vertex of the cone. Let A be the combining A with
its lower row, then, I is called the cone matrix of tableau To. In this paper, we always assume that
the dual target vector is non-negative, that is, b ě 0. Under the assumption that vertex O is in
its bottom of Co, if cone O is accepted by all constraint planes, it is the optimal point! Otherwise,
there must be a constraint plane cut off O, and form a newer cone C containing the feasible region
D. The algorithm of cone cutting ensures that the new cone must be regular, i.e. the vertex of
cone is in its bottom. Repeat, once the cone vertex cannot be cut, it is an optimal point, this is
the thought of the cone cutting.

Set the index set of all constraint planes as J “ t1, ..., n`mu, let B be a subset of J , containing
m indices. If the indicated matrix B is full rank, then B is called a base index set. The Simplex
theory rely on the base transformation:

y1 “ yB´1 ` V, y “ py1 ´ V qB. (2.6)

Suppose that the cutting plane (τj) has equation y1τj “ cj . According to 2.6, its equation
can be written as pyB´1 ` V qτj “ cj , or yB´1τj “ cj ´ V τj . when expressed in the transformed
coordinate system. Let c^j “ cj ´ V τj .
Definition 2.3 The constant c^j is called the cutting degree of plane (τi) with respect to the vertex
V . Vector c^ “ pc^1 , ..., c

^
n`mq is called the cutting vector.

Cutting degree c^j measures the norm distance from a cutting plane to cone vertex; V is cut off
by (τj), if and only if c^j ą 0. cut degree is the transformation of the constant term in the equation
of (τj):

c^j “ c`j ´ cBB
´1Aj (2.7)

Where cB is the subset of c` “ pc1, ..., cm, 0, ..., 0q with index set B.
Proof. For c^j “ c`j ´ V τj , 2.7 is true by means of 2.1 . End

Corollary When c`j “ 0, We have that:

c^j “ ´V τj . (2.8)

There are many papers use geometry to describe LP solution, but descriptions could not clearly
stated in space X; Cone cutting theory describes pivoting in the dual space Y “ Rm for the dual
problem:

pDq min tyb|yA ě c, y ě 0u

There are n`m constraint planes, the new usage of symbol τj now stands for the norm vector of
the plane pτjq. Its initial vector is that τ oj j “ A`j pj “ 1, ..., n`mq. After the basis transformation,
the general Simplex matrix T “ pτijq is written in the following tableau:
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Table 2.2 Transformed Simplex tableau
ˆ

B´1A B´1 B´1b
c´ cBB

´1A ´cBB
´1 ´cBB

´1b

˙

(T )

When B “ tn ` 1, ..., n `mu, B returns to the original base I : B “ I, then cB “ 0, so the
tableau T returns to To.
Theorem 2.1 enables us to replace B´1 with E˚ in Simplex tableau T , thus obtain the cone
interpretation of Simplex tableau:

Table 2.3 Cone-Simplex tableau
ˆ

E˚A E˚ s “ E˚b
c´ V A ´V ´hpV q

˙

(T )

Where s “ E˚b is called the slop vector of edges: si “ 0 means that the edge Li is horizontal
with respect to b; Li going up (down) when si ą 0 psi ă 0q.

We have to emphasize that the main matrix can be regarded as a couple:
ˆ

E˚A
c^ “ c´ V A

˙

Ñ A1
ˆ

E˚

´V

˙

Ñ C

The matrix A1 is transferred from A in table To, which is called the constraint matrix, the j-th
column shows the new equation yτj “ c^j in stead of equation yAj “ cj . Note that A1 “ E˚A. It
means that for any τij in table T , we have that

τij “ e˚iAj , (2.9)

For B, each row vector in E˚ is the edge vector e˚i of a cone and the last entry of this sub-matrix
is the negative value of the vertex coordinates. Thus the submatrix B describes the cone completely
and is called the cone matrix. For C, s is the edge slope vector as mentioned before. Each element
si “ e˚i b meansures the slope of the edge vector e˚i against the target vector b. The last entry is
the negative value of hpV q “ V b. which is actually the current value of the objective function that
we want to minimize.

Thus, each term in the table has a clear geometric interpretation in cone cutting theory. This
is the new vision of the Simplex method brought by cone cutting theory.

2.3 Cone-cutting vs Pivoting

Whenever a vertex V of cone C is cut by a plane (τj˚). How do we generate a new cone C 1? Where
is its vertex V 1, and what are directions of new edges? There is an algorithm Cone-cutting to resolve
these problems. This algorithm is not described in detail in this paper. Because, the significance
of cone cutting lies not in the very algorithm but in its geometric description for Simplex. In a
nutshell, Let Qi “ V ` tijei be the intersection of plane (τi) and edge Li, it must hold that

tij “ c^j {τijpτij ‰ 0q (2.10)

Qi is called real, if tij ě 0; it is called virtual, If tij ă 0, a virtual Qij is located on the inversed
ray of Li. The vertex of the new cone is that:

V 1 “ Qi˚ ; i˚ “ arg min
i

ttijeib|tij ą 0u (2.11)
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Which is the lowest real intersection of edges with the cutter (τij).
The edges’ directions of C 1 are calculated as follows:

(1) e
1

i˚ “ ei˚ ;
(2) If i ‰ i˚, and tij ą 0, then e

1

i “ Qi ´Qi˚ ;
(3) If i ‰ i˚, and tij ă 0, then e

1

i “ Qi˚ ´Qi ;
(4) If edge line Li parallels to plane τj˚ , then the e

1

i “ ei.
Cone cutting demonstrates the pivoting process, pivoting is to bring in a non-basic variable xj˚

to replace a basic varible xi˚ . Once j˚ is determined, i˚ is computed according to:

i˚ “ arg min
i

tsi{τij˚ |τij˚ ą 0, i “ 1, ...,mu (2.12)

Simplex performs the pivoting operation at the pivoting point pi˚, j˚q. For Cone-Cutting, a non-
basic facet j˚ not in B is selected to replace a basic facet i˚ from the set of basic facets. Referring
to 2.12, since tij “ c^j {τij , that τij “ c^j {tij , while si “ eib, we have that si{τij “ tijeib{c

^
j . Note

that c^j is a positive number, which has no relation with the index i, so that 2.11 equivalents to
2.12. It means that cone cutting is the very pivoting.

Adding a column to the leftest of the Simplex table to represent BT . The initial base indices
was Bo “ tn ` 1, ..., n `mu and the base faces was py1q, ..., pymq, B changes a name during each
pivoting; the name of expelled face can be find out from B at i˚-th row.
Example 2.1 Given a linear programming problem:

Max 2x1 ` x2

s, t. x1 ´ x2 ď 1;
x1 ` x2 ě 2.

´x1 ď 0,´x2 ď 0

Its standard Simplex table To can be written as follow Table 2.4:

Table 2.4 Simplex table of example 2.1

¨

˝

x1 x2 y1 y2

x1 1 ´1 1 0 1
y2 1 1 0 1 2
c^ 2 1 0 0 0

˛

‚

We can see from Figure 1, the original cone Co is the first quadrant of Y “ R2, the vertex of
the cone is the origin O, and its two edges are the axis vectors e1 “ p1, 0q and e2 “ p0, 1q, which
are written in the cone matrix C of To respectively. The dual target vector is b “ p1, 2qT and O is
the lowest point of the first quadrant. Since the first number of c^ is a positive number 2, it means
that face y1 ` y2 “ 2 (the line px1q in the figure) can cut off the vertex O.

Taking j˚ “ 1, according to 2.12, we have i˚ “ 1; Doing pivot at (1,1) get table as follows:

B x1 x2 y1 y2

x1 1 -1 1 0 1
y2 0 2 -1 1 1
c^ 0 3 -2 0 -2
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Figure 1: Cone C1

In the left column of the table, cutter px1q replaces face py1q. The vertex of the new cone
is shown under the cone matrix: V1 “ ´p´2, 0q “ p2, 0q, and the new cone is angle =BAC,
where B “ p0, 2q, A “ p2, 0q and C “ p4, 0q. Two edge directions are listed in the second table:
e11 “ p1, 0q, e

1
2 “ p´1, 1q. Since c^2 “ 2 ą 0, V1 can be cut by px2q. Take j˚ “ 2, according to 2.12,

i˚ “ 2, doing pivot at 2.2 and get the following table:

B x1 x2 y1 y2

x1 1 0 0.5 0.5 1.5
y2 0 1 -0.5 0.5 0.5
c^ 0 0 -1.5 -0.5 -3.5

In the left column, the base variable indicates that plane px2q replaces face py2q, In Figure 2, the
vertex of cone C2 is V2 “ p1.5, 0.5q, and the new cone is the angle =BEF , where B “ p0, 2q, E “
p1.5, 0.5q and QG “ p3, 2q, two edges are listed in the above table : e11 “ p0.5, 0.5q, e

1
2 “ p´0.5, 0.5q.

Figure 2: Cone C2

Since there’s no positive number in the c^, V2 has no cutter and then it is the dual optimum y˚ “
py˚1 , y

˚
2 q “ p1.5, 0.5q; According to Simplex algorithm the prime optimal point is x˚ “ px˚1 , x

˚
2q “

p1.5, 0.5q; The optimal value is 3.5.
The example is end.

3 The t-value table and highest cutting method

The theory of cone cutting provides a new perspective for Simplex methods, an important gift is
the t-value table introduced as follows:
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3.1 The t-value table

Definition 3.1 Given a Simplex table To, the t-value table is the matrix ptq “ ptijqmˆpm`nq.

tij “ c^j {τij (3.1)

Where tij is vacancy if τij “ 0, This table is easily constructed, with each row divides c^j row
item by item. Qij is called virtual if it locates on the inverse ray of an edge, for short, say it locates
a virtual edge; when tij is vacancy, Li parallels or lie in pτjq. According to 2.8:

tij “ e˚iAj (3.2)

Where tijτij “ c^j . By means of the t-value table, we can quickly determine the location in-
formation around intersected points on each edge of a cone. The usage is not only taken for
edge, but on more rays starting from any point P along any direction d. Generally: Given a ray
R : y “ Q` tdpt ě 0q, writing three vectors as follows:

M “ pM1, ...,Mm`nq : Mj “ c` ´QA`j pj “ 1, ..., n`mq;

D “ pD1, ..., Dm`nq : D “ dA`j pj “ 1, ..., n`mq;

t “ pt1, ..., tm`nq : tj “Mj{Djpj “ 1, ..., n`mq;

(3.3)

We call that MolecularDenominator and t-value vectors respectively, and they form a matrix,
called the Tri-rows.

3.2 Highest algorithm

We would like to draw a comparison between the classical Simplex algorithm in solving the primary
LP problem verse the Cone-Cutting algorithm tackling the dual LP problem. In the primary LP
problem solving maxtcx|Ax ď bu, the classical Simplex algorithm starts off with a feasible solution
(notice that when b ą 0, the origin x “ 0 is a feasible solution). Then the algorithm identifies
a non-basic variable xj˚ that can improve the objective function firstly, and then finds a basic
variable xi˚ that can replace and maintain feasibility.

For the dual LP problem of mintyb|yA ě c, y ě 0u, the vertex of the coordinate cone (i.e.
the origin O) is not necessary a feasible point. If it is, then the minimum solution V b “ 0 is the
optimum solution. Otherise, it sacrifices the minimum value but move to another cone that is less
infeasible in each iteration. The Cone-Cutting algorithm is to choose a cutting facet pτj˚q or a
cutter that rejects the vertex to cut an existing cone; and then to identify a cut point τi˚,j˚ which
becomes the vertex of a new cone. In moving to the new cone, the facet pτi˚q is deleted. The new
objective value or target value is higher than the previous one, but number of facets that rejects
the new vertex is non-increasing. In both cases, it involves identifying j˚ first, and then uses 2.12
to compute i˚.

The key problem of Simplex method is how to choose the base variable, i.e., how to choose the
cutter. The principle of deepest algorithm is to maximize the cutting degree c^j :

j˚ “ arg max
j

tc^j |c
^
j ą 0u. (3.4)

However, this choice may not be the most effective. A measure of effectiveness should be the
height difference pVptqb´ Vpt´1qbq between the pt´ 1q iteration and the t iteration. When the norm
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vector τj˚ of cutter deviates from the target vector b, the cutting will have little changing on the
height of cone vertex. In extreme cases, when τj˚ is perpendicular to b, the height difference is
zero. The Klee–Minty anti-example was designed with this in mind. We quote its simplest form as
follows:

Table 3.1 Klee-Minty example (m “ 3)

B x1 x2 x3 x... y1 y2 y3 s

y1 1 0 0 1 0 9 1
y2 20 1 0 0 1 0 100
y3 200 20 1 0 0 1 10000

c^ 100 10 1 0 0 0 0

The traditional algorithm, according to (3.4), should choose the first one as the basis, so that
the optimal solution can be obtained by 7 “ 23 ´ 1 pivoting. By extension, the optimal solution
can be obtained through 2m ´ 1 pivoting, so it is determined that the deepest algorithm is not got
in polynomial time. Now, we write the t-value table of Table 3.1 as follows.

Table 3.2 The t-value table of last table

B x1 x2 x3 y1 y2 y3 s

y1 100 0 1
y2 5 10 0 100
y3 0.5 0.5 1 0 10000

c^ 100 10 1 0 0 0 0

Where each value tij reflects the location information of Qij intersected by plane pτjq and edge
Li : tij ą 0 implys that Qij is real, which locates on Li; while tij ă 0 implying that Qij is virtual,
which is in the inversed ray of Li. What we care about is the height of these intersections. We have
that Qijb “ V b` tijeib, since Qij “ V ` tijei, and we have that si “ eib, which was emphasized in
Theorem 2.1, so that tijsi “ Qijb´ V b. The right side of the equation is called the relative height
of Qij with respect to the vertex V . Times slop si to all real t´values tij in i´th row, we get the
following tableau, called the intersected relative heights table.

Table 3.3 Intersected relative heights table

B x1 x2 x3 y1 y2 y3 s

y1 100 0 1
y2 500 100 0 100
y3 5000 5000 10000 0 10000

c^ 100 1000 0 0 0 0 0

What does the last row of this table represent? For any j P J , let

hj “ minjttijsi|tij ą 0u (3.5)

which is called the lowest positive height difference. The highest cut point principle to select a
cutter pτj˚q is:

j˚ “ arg max
j

thi|c
^
j ą 0u (3.6)
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If for a particular j P J , ti,j ď 0 hold for all i, then 3.5 is meaningless. However, if c^j ą 0 in
this case, then cutter pτjq will cut the whole acceptable region of the cone out, resulting an empty
dual feasible region. This is explained clearly in section 4. Assuming the dual feasible region is
non-emplty, 3.6 can always produce a proper j˚ solution.

After obtaining j˚, 3.5 can be used to find the facet i˚ that will leave the basic facet set.

i˚ “ arg min
i

ttijsi|tij ą 0u (3.7)

Because C is a strictly regular cone, all the edge slopes si ą 0, so τi,j ą 0 when and only when
ti,j ą 0; since c^j˚ is not dependent on i, we have

i˚ “ arg min
i

tti,j˚si|ti,j˚ ą 0u “ arg min
i

tc^j si|ti,j˚ ą 0u “ arg min
i

tsi{τi,j˚|ti,j˚ ą 0u “ ipj˚q,

This is identical to 2.12 in computing the leaving basis in Simplex. Hence in the highest
algorithm, when the cuter j˚ is selected, it uses the same method as Simplex to determine the pivot
point pi˚, j˚q. In the Klee-Minty counter-example, after determining the pivot point pi˚, j˚q “ p3, 3q,
it performs the pivot operation on 3.5 to obtain the following tableau:

Table 3.4 Pivoting from Table 3.1

B x1 x2 x3 y1 y2 y3 s

y1 1 0 0 1 0 9 1
y2 20 1 0 0 1 0 100
y3 200 20 1 0 0 1 10000

c^ -100 -10 0 0 0 -1 -10000

Since that there is no positive number occurring in c^, we get the dual optimal point is y˚ “
p0, 0, 1q, with optimal height h˚ “ 10000. The highest algorithm gets the solution of Klee-Mimty
counter-example by only one time of pivoting.

In our papers [13], there was a gravity sliding algorithm, which is not a method of cone-cutting,
but a method of feasible point falling and sliding along the wall of feasible region. The corresponding
algorithm in cone-cutting can be described as follows:

The steepest principle for cutter selection:

j˚ “ arg max
j

tsipjqu. (3.8)

The steepest principle can be used to solve the Klee-Minty counter example by one time of cone-
cutting also, but we could not say that steepest is better than deepest principle absolutely. We
can get counter example showing that deepest can be better than steepest principle. However, The
highest principle is always better than deepest and steepest principles both in a large probability.

4 Column elimination

4.1 Basic theorem of column elimination

In cone cutting, an expelled face can cut back into base cone frequently, this is the main obstacle
for the searching of strong polynomial solution. The column elimination theorem proposed by Y.
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Ye in article [9] has important significance, and we have advanced work stated in this section.
Definition 4.1 A constraint plane (τj) is called an redundant plane if it does not intersect the
feasible region D and it accepts D; (τj) is called a golden plane if it includes an optimal point;
(τj) is called a defective plane if it neither the redundant, nor the golden plane. A cone is called a
golden cone if all its faces are golden.
Definition 4.2 A constraint plane (τj) is called eliminatable if it is not golden.

How can the eliminatable planes be eliminated?
Theorem 4.1 (New elimination theorem) If τj ě 0 and c^j ă 0, then (τj) is eliminatable; If τj ď 0
and c^j ą 0, then (τj) cuts off all feasible points.
Proof According to 3.1, If τj ě 0 (i.e., for i=1,...,m, τij ě 0) and c^j ď 0, then for i=1,...,m, we
have that τij ď 0. For those index i who makes that τij “ 0, τij parallels to and accepts Li since
c^j ď 0; The rest situation is that all intersected parameters are negative: τij ď 0 . It means that
all intersected points are virtual. Therefore, the whole cone C is located at one side of the plane
(τj). Since c^j ă 0, (τj) accepts the whole cone C but does not contain any optimal point. So that
(τj) is eliminatable.

This theorem is similar to the Ye-column elimination theorem, but derived from different basis,
and more intuitive.

The condition of elimination theorem is that all coefficients in the norm vector must have a
same symbol: non-negative or non-positive, we call such a property as symbol consistency. How to
take a plane having symbol consistency? We need to introduce the following concepts.

4.2 Implantation of the reverse horizontal

Definition 4.3 A normal cone called a strictly normal cone, if for i “ 1, . . . ,m, si ą 0. A non-strict
normal cone is a normal cone with horizontal edges.

The strictly normal cone is unbounded on top, in order to get a bounded enclosure, we put a
lid on it.
Definition 4.4 For a given positive number u, the u-reverse horizontal lid is a plane with equation
in the original table pToq:

´ b1y1 ´ ...´ bmym “ ´u (4.1)

Or, in the table T :
´ s1y1 ´ ...´ smym “ ´u (4.1’)

Which is called the reverse horizontal lit of a strict normal cone C, Note that the norm vector
of the lit is ´b, or ´s “ ´B´1b.
Definition 4.5 Suppose that the C is a strictly normal cone, denote that

Cu “ ty P C|hpyq ď uu, Du “ ty P D|hpyq “ uu. (4.2)

Cu is called the u-frustum of C and Du is the u-feasible section of C.
Proposition 4.1 Given a Simplex table T , as long as there is a feasible point whose height is equal
to or lower than u, then, without affecting the solution of the programming problem, u-reverse
horizontal plane can be added to the table and the feasible region D can be substituted by Du.
Proof The set Du is formed by deleting points higher than u from D. Let y˚ be a lowest point,
because it is the lowest point in D, and its height will not be higher than the height of any feasible
point, so y˚ will not be higher than u, and then will not be deleted by the u-reverse horizontal
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plane. Therefore, adding this lit to the table will not change the acquisition of the lowest point,
and Du can be used to replace D. End

The proposition benefits us that a defective plane for D can be changed to a redundant plane
for Du, the later one is easer to be eliminated than the former.
Definition 4.6 Given a Simplex table (T ), add the reverse horizontal plane column with a column
index, after the n-th column, the expanded table is called an expanded table, denoted as (T`).

4.3 Symbol consistency theorem

Theorem 4.2 (Symbol consistency coefficient theorem) Given a strictly normal cone plus an u-lit
written in the expanded table (T`). Doing pivoting at pi˚,∆q according to following t˚-values.

i˚ “ arg max
i

tsi{τij |τij ă 0upwhen c^j ă 0q; (4.3)

i˚ “ arg min
i

tsi{τij |τij ą 0upwhen c^j ą 0q. (4.4)

Then, the norm vector of τj can become non-negative by 4.3 and non-positive by 4.4.
Proof Note that the norm coefficients of px∆q is that τi∆ “ ´sipi “ 1, ...,mq, After pivoting, we
have that

τ 1ij “ τij ´ τi˚jτi∆{τi˚∆ “ τij ´ τi˚jp´siq{p´si˚q “ τij ´ τi˚jsi{si˚

Hence, according to 4.3, si˚{τi˚j ě si{τij , i.e., τij{si ě τi˚j{si˚ , while si ą 0, then we have that

τ 1ij “ sipτij{si ´ τi˚j{si˚q ě 0

The new coefficents become non-negative by 4.3. Similar proof can be got for the rest. End
Example 4.1 Given the extended table pT`q, try to sign the coefficients of plane px5q .

Table 4.1 extended table pT`q

B x1 x2 x3 x4 x5 x∆ y1 y2 y3 y4 s

y1 -2 -2 1 1 0 -1 1 0 0 0 1
y2 -1 4 -1 2 -1 -2 0 1 0 0 2
y3 3 2 0 -1 1 -6 0 0 1 0 6
y4 1 -1 3 0 1 -3 0 0 0 1 3

c^ -1 2 1 2 -2 -u 0 0 0 0 0

Solve Since that c^5 “ ´2 ă 0, according to 4.3 i˚=arg maxitτij{τij˚|τij ă 0u “ 2, Doing pivoting
at p2,∆q “ p2, 6q, get new table as follows:

Table 4.2 (x∆) enters into the base

B x1 x2 x3 x4 x5 x∆ y1 y2 y3 y4 s

y1 -3/2 -4 3/2 3/2 1/2 0 1 -1/2 0 0 0
x∆ 1/2 -2 1/2 1/2 1/2 1 0 -1/2 0 0 -1
y3 6 -10 3 2 4 0 0 -3 1 0 0
y4 5/2 -7 9/2 3/2 5/2 0 0 3/2 0 1 0

c^ -2+u/2 -u -u

13



This pivoting is taken at a negative grid, which is a non-classical Simplex. The approach is still
to normalize the pivoting grid, times´1 to second row, and then continue to operate.

Note that a non-classic pivoting gets no longer a normal cone, the second edge slope of the
edges is negative, The transformation brings the norm coefficients of plane px5q in consistency:
τ5 “ p1{2, 1{2, 4, 5{2q

T .
The intuitive idea of Theorem 4.2 is: Treating Cu as a cone with a flat top cover at height u ,

there are m vertexes V1puq, ..., Vmpuq on the cover. We refer these as edge-vertices to distinguish
it from the vertex of a cone. Cu becomes an enclosed polyhedron. Let u began to rise from hpV q,
The whole body of the intersected cone Cu was located in the lower side of any given plane pτjq,
Once a vertex Vi˚puq contacts with the τj , firstly at u “ u˚, the plane then gets symbols consistency
there: Let Ci˚ be the cone, which is got by doing pivot at pi˚,∆q, i.e., which is the original cone
C cut by px∆q. It is obvious that Vi˚puq is the vertex of Ci˚ . If u “ u˚ ´ ε then pτjq cuts Ci˚ on
real edges consistently; If u “ u˚ ` ε, then pτjq cuts Ci˚ on virtual edges consistently. The vertex
Vi˚puq is so important for us, How to get it? It is the lowest real intersection of (τj) with the older
cone C. This is what mean in 4.3 and 4.4.
Definition 4.8 The i-th edge is called the fishing edge with respect to pxjq; the intersected point
Vi˚ is called its critical point; u˚ “ hpVi˚q is called the critical height of (xj). u is called a feasible
height if there is a feasible point Q with hpQq ď u.

The above discussion leads to the following theorem:
Proposition 4.2 Every constraint plane (xj) has at least one fishing edge; each fishing edge has
one and only one critical point Vi˚ :

Vi˚ “ V ` c^j ei˚{τi˚j (4.5)

with creticle height u˚j
u˚j “ hpV q ` c^j si˚{τi˚j (4.6)

The critical point Vi˚ of plane (xj) implies that (xj) could be deletable provided its critical
height u˚j is a feasible height; otherwise, if all feasible points exist above critical height only, then
no meaning for critical point again. So far, we have following theorem:
Theorem 4.3 A plane (xj) with c^j ă 0 can be deleted if and only if there is a dual feasible point
being not higher than its criticle point; A plane (xj) with c^j ą 0 can cut off the whole dual feasible
region D , if and only if there is a dual feasible point being not higher than its critical point.

The theorem tells us that we can’t guarantee that all non-golden columns can be deleted im-
mediately; column elimination relies on the falling down of feasible height, we need to wait about
feasible falling stated in Section 6.
Example 4.2 Critical height records.

Table 4.4 Records of critical heights

B x1 x2 x3 x4 x5 x6 y1 y2 y3 y4 y5 s

x1 1 3.5 0.5 0 0 0 0.5 -0.5 0 0 0 1.5
x4 0 2.5 0.5 1 0 1 -0.5 1.5 0 1 0 1.5
y3 0 -2 -1 0 0 -1 1 -2 1 -2 0 2
x5 0 1.5 0.5 0 1 0 -0.5 0.5 0 1 0 0.5
y5 0 0.5 -1.5 0 0 1 -0.5 0.5 0 0 1 0.5
c^ 0 -19 -2 0 0 0 -3 1 0 0 0 3.5

-30 -15 -14 -u
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In theory, we need to use expanded table, but we can use table T directly according to propo-
sition 4.2.

The cutting degrees of (x2), (x3) and (y1) are negative, and their critical heights can be calcu-
lated according to 4.6 respectively:

Fishing index of px2q: i
˚ “ 3, u2˚ “ pV q ` c

^
2 s3{τ32 “ 30;

Fishing index of px3q: i
˚ “ 3, u3˚ “ pV q ` c

^
3 s3{τ33 “ 15;

Fishing index of py1q: i
˚ “ 3, u6˚ “ pV q ` c

^
6 s4{τ46 “ 14;

End of Example. 4.1
We only introduce how to record eliminatable information for negative cutting degree plane

based on 4.3, but do not introduce how to treat cut off situation for positive cutting degree planes
based on 4.4. Why? Because, an Assumption for strong polynomial problem in the paper is that:
The dual feasible region D is not empty. So there is no necessary to consider the cut off situation.
It is not no such desire, it is no enough ability.

The same plane can have positive, negative or zero cutting degree in different tables. Therefore,
the critical height records of a plane may appear and disappear, and may contradicted each other,
but the plane can be eliminated as long as one record is feasible.

5 Ray feasible interval and non-strict normal cone treatment

The horizontal upper cover of the cone requires that the cone is strictly normal, no edges with
a zero slope. Otherwise, the horizontal intersected cone is not a bounded closed convex set, and
the pivoting grid will stays on the horizontal edge, which causes the taboo of equal height cycle
in the traditional Simplex algorithm. In fact, the appearance of the horizontal edge is exactly the
information what we look for firstly, if there is a feasible point on the horizontal edge, then all the
points in the feasible interval are the dual optimal points.

5.1 Looking for feasible interval on a ray

Given the Simplex table To, rays are extracted from point P along direction d, and we are looking
for the feasible internal on the ray.
Theorem 5.1 Judgement of feasible interval on a ray Given a Simplex table To. According to
Definition 3.1:

F1) If there is a Dj “ 0 with Mj ą 0, Then there is no feasible point on the ray; F2) If Mj ď 0
whenever Dj “ 0, then set that

ta “ max
j
ttj |Dj ą 0u; (5.1)

tb “ min
j
ttj |Dj ă 0u; (5.2)

If ta ď tb then there is a feasible interval rQa, Qbs on the ray:

Qa “ P ` tad, Qb “ P ` tbd, (5.3)

Proof is obvious.
It is wrong that accepting a feasible interval by means of condition F2) only. We must check

if the condition F1) is satisfied in the first. When P “ V is the vertex of cone C with respect to
Table pT q and d “ e˚i is the direction of edge Li of C then the Molecular vector M is the lowest
row c^ in table pT q, and the Denominator vector D is the i-th row in table pT q.
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It is wrong that calculating Dj “ dτj in stead of Dj “ dA`j . Since that τj is the variant of A`j ,
it is very easy to mix the usages of them. When you calculate the denominator D, please turn back
to the original table To.

5.2 Treatment of non-strict normal cones

Example 5.1 Discover a horizontal edge from Tables 5.1.

Table 5.1 Original table To

B x1 x2 x3 x4 x5 x6 y1 y2 y3 y4 y5 ∆h

y1 2 -2 1 1 0 1 1 0 0 0 0 4
y2 0 1 0 1 -1 1 0 1 0 0 0 1
y3 0 2 0 1 1 0 0 0 1 0 0 4
y4 1 1 1 0 1 0 0 0 0 1 0 2
y5 1 0 -1 0 0 1 0 0 0 0 1 6

σ 6 -20 1 -2 2 0 0 0 0 0 0 0

This is tableau represents a strictly regular cone, but it has potential horizontal edges. Generally
speaking, if the exit basic variable i˚ “ ipjq of the jth column is not unique, a horizontal edge
must appear when the pivot operation is performed on pi˚, jq. In the first column of this table,
i˚ “ ipjq “ 1 or 4. If (4,1) is used as the pivot point, the first edge of the new tableau after the
transformation is a horizontal edge. This can be observed as the edge slope s1 is zero. Hence L1 is
a horizontal edge.

Once the horizontal edge appears, it is necessary to find the feasible segment on it to determine
the optimal solution. According to Section 5.1, since the ray we are considering is an edge of a
cone, the vector t is a row vector of the t-value table mentioned in the previous section. Thus, we
can write down the three-row ray cut matrix based on the values of the tableau pT q as follows: The
numerator vector is the last row of pT q, the denominator vector is the first row of pT q, corresponding
to the horizontal edge; and the t value vector can be readily obtained by doing element-wise division.
This is shown below:

It is a criterion that if si{τij “ sk{τkj , then taking pivot at pi, jq or at pk, jq, there must occur
the horizontal edge in the next table. Now, do pivot at p4, 1q, get table 5.2.

Table 5.2 Discover an horizontal edge

B x1 x2 x3 x4 x5 x6 y1 y2 y3 y4 y5 s

y1 0 -4 -1 1 -2 1 1 0 0 -2 0 0
y2 0 1 0 1 -1 1 0 1 0 0 0 1
y3 0 2 0 1 1 0 0 0 1 0 0 4
y4 1 1 1 0 1 0 0 0 0 1 0 2
y5 0 -1 2 0 -1 1 0 0 0 -1 1 4

σ 0 -26 -5 2 -8 2 0 0 0 -6 0 -12

Since that s1 “ 0, the 1-th edge is a horizontal edge, then looking for the feasible interval on
the edge L1, according to Theorem 5.1:
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x1 x2 x3 x4 x5 x6 y1 y2 y3 y4 y5

M: 0 -26 -5 2 -8 2 0 0 0 -6 0
D: 0 -4 -1 1 -2 1 1 0 0 -2 0
t: 6.5 5 2 4 2 0 3

F1. No positive cutting degree when D-value is zero, satisfied;
F2. ta “ maxjttj |τ1j ą 0u “ 2 ă 3 “ minjttj |τ1j ă 0u “ tb,
There is a feasible interval on the edge:
Qa “ p0, 0, 0, 6, 0q ` 2p1, 0, 0,´2, 0q “ p2, 0, 0, 2, 0q
Qb “ p0, 0, 0, 6, 0q ` 3p1, 0, 0,´2, 0q “ p3, 0, 0, 0, 0q
Conclusion: The dual optimal points are the interval rQa, Qbs, the optimal value is hpQaq “ 12.
Most optimal solutions in big data linear programming are company with horizontal edge prob-

lem. According to this paper’s idea, the most difficult problem becomes easier task.

6 Horizontal feasible central falling

The elimination algorithm in Section 4 leaves a task to this section: Identify whether a height is
feasible. There needs given a feasible point F in the dual feasible region D. The height uo “ hpF q
is feasible, then, let the feasible point fall down, the feasible height will be extended down also.
In paper [13, 14], the authors have put forward a feasible point falling along the gravity direction
g “ ´b until down to the wall of D. then, sliding along the projection of g in blocking planes
until down to an optimal point, named the Gravity Sliding algorithm. Which realizes the maximal
gradient principle on the convex polyhedrons. Despite its advantages, the idea to be updated in
this section: When the feasible point hits the wall, instead of sliding in boundary planes, we move
the point horizontally to the inner of D such that it falls down along the gravity g continuously, so
to maintain as inner optimization.

6.1 Horizontal feasible outline

Given an expanded table pT`q. Let Q be a given feasible point.
Calculate u˚ “ hpQq “ Qb, assign that u “ u˚ ´ hpV q in pT`q, which is relative height of Q

with respect to the cone vertex V .
For i “ 1, ...,m,

1) Doing pivoting at pi,∆q, the i-th vertex Vi of the upper cover of Cu˚ is got.
2) Set Pi “ Vi, di “ Q ´ Pi, and find out the feasible interval on the ray y “ Pi ` tdi, Since that
the ray starts from Pi and directs to Q, we are looking for the start point of the feasible interval,
which is nearer the vertex Vi, denote the first point by F∆.
Definition 6.1 Denote:

rF∆s “ ty|Dpλ1, ...λmq ě 0, λ1`, ..., λm “ 1;λ1F1`, ..., λmFm “ yu (6.1)

Which is called the horizontal feasible outline on px∆q.
rF∆s may not include all feasible points on px∆q, which is just an outline.

Example 6.1 Given a Simplex table T (the same as Table 5.2), given a feasible point F “

p3.5, 0.2, 0, 0.2, 0q, try to find out the supportor of the upper cover containing F .
Step (0): Calculate the height of F : hpF q “ Fb “ F p4, 1, 4, 2, 6qT “ 14.6.
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Calculate the height of V “ p0, 0, 0, 6, 0q, the vertex of C in Table 5.2: hpV q “ 12;
Assign u “ 14.612 “ 2.6 in the expanded table pT`q:

Table 6.1 Assign u “ 2.6 in pT`q

B x1 x2 x3 x4 x5 x6 x∆ y1 y2 y3 y4 y5 s

y1 0 -4 -1 1 -2 1 0 1 0 0 -2 0 0
y2 0 1 0 1 -1 1 -1 0 1 0 0 0 1
y3 0 2 0 1 1 0 -4 0 0 1 0 0 4
y4 1 1 1 0 1 0 -2 0 0 0 1 0 2
y5 0 -1 2 0 -1 1 -4 0 0 0 -1 1 4

σ 0 -26 -5 2 -8 2 -2.6 0 0 0 -6 0 -12

Note that the norm vector of px∆q was τ∆ “ ´bin the original table, but now, τ∆ “ ´B
´1b “

´s. For i “ 1, ..., 5, calculating feasible start points on i-th ray(from Vi directs F ), here i “ 3.
Step (1): Doing pivoting at p3,∆q, get Table 6.2:

Table 6.2 Doing pivot at p3,∆q on table 6.1

B x1 x2 x3 x4 x5 x6 x∆ y1 y2 y3 y4 y5 s

y1 0 -4 -1 1 -2 1 0 1 0 0 -2 0 0
y2 0 0.5 0 0.75 -1.25 1 0 0 1 -0.25 0 0 0
y3 0 -0.5 0 -0.25 -0.25 0 1 0 0 -0.25 0 0 -1
x1 1 0 1 -0.5 0.5 0 0 0 0 -0.5 1 0 0
y5 0 -3 2 -1 -2 1 0 0 0 -1 -1 1 0

c^ 0 -27.3 -5 1.35 -8.7 2 0 0 0 0 -0.65 -6 -14.6

Since the number on p3,∆q is negative, this is a non-standard pivoting, by multiplying the third
row by ´4 and so on, operations will continue as usual.

The vertex of the new cone is V3 “ p0, 0, 0.65, 6, 0q.
Step (2): Set d3 “ F ´ V3 “ p3.5, 0.2,´0.65,´5.8, 0q. Searching the feasible interval on the ray
y “ V3 ` td3 on feasible interval, get the start point of feasible interval: F3 “ p1.9, 0.1, 0.3, 2.85, 0q.

Since the number in grid p1,∆q is zero, we can’t do pivoting. we can take the direction d “ e1

and calculating the first point of feasible interval on the ray and calculating the first point of feasible
interval on the ray y “ V1` te1 and get the result. Finally we can get the horizontal feasible outline
expanded by the following 5 vertices:

F1 “ p3.6, 0.2, 0, 0q;
F2 “ p0, 2.6, 0, 6, 0q;

F4 “ p1.9, 0.1, 0, 3.45, 0q;
F5 “ p1.8, 0.2, 0, 2.7, 0.3q;

F “ p1.84, 0.64, 0.06, 3, 0.06q;

6.2 Feasible point central falling

Definition 6.2 Let F be a feasible point, we call y “ F ` tg “ F ´ tbpt ě 0q the falling ray from F .
The end point of the feasible interval on the ray is called the foot of F , denoted as F Ó, inversely,
we call F the lift of F Ó.
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We are going to set F as the center of horizontal feasible outline the feasible central falling
algorithm can be given as follows:

Input A strictly normal simplex table To with b ě 0 and a feasible point Fo;
Step 1: F :“ Fo; calculating the certer F of rF∆s;
Step 2: Calculating the landing point F Ó from the falling ray y “ F ´ tb (t ě 0).
Step 3: Selecting a cutter passing through F Ó and doing cone cutting; If get the optimal point,

then stop; Else, go back step 1.
In Example 5.1 we have that

F “ pF1 ` F2 ` F3 ` F4 ` F5q{5 “ p1.84, 0.64, 0.07, 3, 0.06q.

And set d “ ´b, searching the feasible interval on the falling ray y “ F ` td “ F ´ tb:

x1 x2 x3 x4 x5 x6 y1 y2 y3 y4 y5

M: -0.9 -20 -3.8 -0.6 -4.5 -0.6 -1.9 -0.6 -0.1 -3 -0.1
D: -16 -3 0 -9 -5 -11 -4 -1 -40 -2 -6
t: 0.06 6.67 0.07 0.9 0.05 0.48 0.6 0.03 1.5 0.01

Since the starting point is feasible, the t-value of landing point is the minimum of positive
numbers in the t- vactor, which is 0.01 now, and the landing point is

F Ó“ F ´ 0.01b “ p1.8, 0.63, 0.03, 2.98, 0q

We have that
hpF Óq “ 13.9, hpF q ´ hpF Óq “ 14.6´ 13.9 “ 0.7.

While hpF q ´ hpV q “ 14.6´ 12 “ 2.6.
The effective rate of the central falling is 0.7{2.6 “ 27%, it is not so good in the example, we

can return to the Step 1 and get more lower feasible height, but we do not state in detail here.
Review the Example 4.2, there were 3 critical points: The criticle point of px2q with height 30

which is not lower than the feasible height 13.9, so that, the plane px2q can be deleted Similarly,
since px3q has a critical point with height 15 and py1q has a critical point with height 14, they can
be deleted both.

Be careful, we need not delete those columns from the simplex tableau, we just delete their
indices from the index-set J . Whenever the number |J | “ m, it means that the golden cone has
been got.

Significance of feasible Central Falling method: The falling velocity has nothing to rely on the
dimension. For a two dimensional feasible region, falling from a feasible center requires not hitting
the lowest point but only falling close enough to the lowest point, which is a simple problem without
complexity. We can start cone cutting from landing position as close as we want to the optimal
point, that’s what we are fascinated.

6.3 Variable weight combinations

Definition 6.3 Let w “ pw1, ..., wmq be a vector with coefficients non-negative and summed 1,
denote that

F ˚ “ w1F1 ` ...` wmFm (6.2)

Called the convex combination of F1, ..., Fm, w is called the weight vector. When w is variable,
Q˚ is called a variable weight combination.
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Theorem 6.1 Homomorphic Theorem Let tk be the falling t-vector from Fk, t˚ is falling t -vector
from F ˚ “ w1F1 ` ...wmFm, we have that

t˚ “ w1t1 ` ...` wmtm (6.3)

Proof The denominator D “ F ˚A` “ pw1F1 ` ...` wmFmqA
` “ w1F1A

` ` ...` wmFmA
`

Since w1 ` ...` wm “ 1, we have that

M “ pw1 ` ...` wmqc
` “ w1c

` ` ...` wmc
`,

M “ c` ´Q˚A` “ w1pc
` ´Q1A

`q ` ...` wmpc
` ´QmA

`q “ w1c
^
1 ` ...` wmc

^
m.

Since D is the same, (6.2) holds, End
It is obvious.

Corollary 6.1 If F ˚ “ w1F1 ` ...` wmFm, then

pF ˚q Ó“ w1pF1q Ó `...` wmpFmq Ó . (6.4)

Set that:

rF1, ..., Fms|b “ ty|DrF1, ..., Fmsu,

Which is the column generated byrF1, ..., Fms, it is not difficult to prove that.
Corollary 6.2 Let P ˚ be the optimal point in D, if P ˚ belongs to rF1, ..., Fms|b, then there is a
weight vector w˚ such that

pF ˚q Ó“ pw˚1F1 ` ...` w
˚
mFmq Ó“ P ˚. (6.5)

Thus, the solution of linear programming is transformed into an optimization problem of variable
weight combination.

We have no ability to solve the problem in the paper but presents a brief idea as follows:
Set r “ pb, bq, called the falling rate of parameter t. For example, if b “ p4, 1, 4, 2, 6q, then

r “ 73, It means that the t-value plus 1, the falling height will plus 73. Inversely, to make the
falling height go down 1, the t-value should plus 1{r. In the example, to fall down 2.6 it needs t
decrease 2.5{73 “ 0.036. Without the rate r, we can’t do good optimization on t-value tuning.
Example 6.2 Based on the 5 feasible vertices in Example 6.1, the variable weight combination is
sought to make its landing point as close to the optimal point as possible.

Step 1 Writing t-value vectors of F1 ´ F5 and F as follows:
x1 x2 x3 x4 x5 x6 y1 y2 y3 y4 y5

t1: 0.08 4.3 0.2 0.44 0.16 0.88 0.2 0 0 0
t2: 0 9.5 0.07 0.28 0.54 0 2.6 0 3 0
t3: 0.05 6.7 0.03 1.03 0 0.48 0.1 0.08 1.43 0
t4: 0.08 6.6 0 1.07 0 0.48 0.1 0 1.72 0
t5: 0.08 6.5 0.02 0.99 0.02 0.47 0.03 0.05 0.43 0.03
t: 0.06 6.67 0.07 0.9 0.05 0.48 0.6 0.03 1.5 0.01

In these 6 vectors, t is the best, since it does not include zero. Then ask where are its minimum
and second minimum. The last one corresponding to y5 is the minimum 0.01, the second minimum
0.018 corre sponds to y3. Which vector has biggest value corresponding to y5? The vector t5 has 0.05
there, unfortunately, which has zero corresponding to y3. There needs to do weight combination.

If we take weights (0.8,0.2): then 0.01ˆ0.8+0.05ˆ0.2=0.018, the minimum is increasing but
0.018ˆ0.8+0ˆ0.2=0.0144, the second minimum becomes minimum. So we can improve the weights
as (0.862 0.138):
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0.01ˆ 0.862` 0.005ˆ 0.138 “ 0.0155,
0.018ˆ 0.862` 0ˆ 0.138 “ 0.0155.

This is the better result. Then we get the weighted center of horizontal feasible outline:

F ˚ “ 0.862F5 ` 0.138F “ 0.028pF1 ` F2 ` F3 ` F4q ` 0.89F5 “ p1.8, 0.2, 0.06, 2.7, 0.26q.
F ˚ Ó“ F ˚ ´ 0.0155b “ p1.74, 0.18, 0, 2.67, 0.17q “ 13.5.

hpF ˚q ´ hpF ˚ Óq “ 14.6´ 13.5 “ 1.1.

The effectove of variable weight ombination falling is 1.1/2.6=42%, which is better than the
feasible central falling. However, it is not a good result in the example. Indeed, if the optimal
point is within the falling region of [F∆], then, we can make the landing point directly attach the
optimal solution. However, we can return to the Step 1, but we do not state the process in detail.

7 Tri-Skill combination

Tri-skill stands for 1. Highest principle on cutter-selection; 2. New column elimination; 3. Hor-
izontal feasible central falling/sliding. These three algorithms all have their own advantages, but
the strong power is in the combination of the three skills:

Given a Simplex table To, Assume b ě 0; And given a feasible point Fo;
Input index set of constraint planes J :“ t1, ..., n, n` 1, ..., n`mu;

Step 1: Check if the cutting degree c^ is non-positive. If so, stop and set the cone vertex as a dual
optimal point.
Step 2: Check whether slope vector s “ B´1b has same terms, If so, make transformation to occur
horizontal edges, and check feasible intervals on each horizontal edge. The convex set spanned by
these feasible intervals is the set of optimal points; If there is no feasible points on all horizontal
edges, they can be all cut off, and maintains the strict normal cone;
Step 3: F k`1 :“ F k Ó (doing on current table T ), check if the relative error ε “ phpV q ´
hpF k`1qq{hpV q is enough small, you can tuning an error threshold value, ε ă 0.1, for example,
if it is not, calculate the supportor of horizontal cover, doing fesible central falling again and again;
Else, go to Step 4;
Step 4: Do pivoting according to the highest algorithm, recording critical heights in the bottom
of negative cutting degree columns. Deleting the eliminatable planes’ indices from index set J .
Repeat step 4 within m times. After m times, go back to step 1.

The contribution of the algorithm: 1. In big data LP, optimal points always occur in horizontal
edges, the algorithm provides a fast way to face the new challenge. 2. Doing feasible falling in the
start, by a few steps (within 10 times), attaching the golden cone or near by that, then employ the
highest cutting plus column elimination, the linear programming is not a complex but a ordinary
calculation.

8 Conclusions

Linear programming is of extreme significance to artificial intelligence and data science. It is not
only an indispensable computing tool, It is an important topic of concern to the theory of factor
space[15, 16, 17]. The realization of strong polynomial algorithm for linear programming has solved
a major theoretical crisis for the development of artificial intelligence.
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