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Abstract
Electric vehicles (EV) are an emerging mode of transporta-
tion, and big cities in the United States have witnessed an
ever-growing demand for EV usage. The primary benefit of
EVs is the high fuel efficiency by using only electricity, and
hence lowers the dependency on fossil fuels and significantly
reduces greenhouse gas emissions. Although the number of
EVs has increased, the availability of EV charging stations
for public use has been disproportionate to its demand. More
recently, populations residing in the Southern California re-
gion have been faced with challenges such as range anxiety
owing to the uneven spatial distribution of charging sta-
tions throughout the region. As the EV population continues
to expand, identifying hotspots of EV charging and barri-
ers to the equitable access of charging stations have gained
much importance. Our study uses a geospatial data fusion
approach with spatial statistics to combine EV charging sta-
tion data, land use information, and American Community
Survey (ACS) data at the census block group level in Orange
County, California to discover optimal locations to broaden
the EV charging network and identify potential equity issues
surrounding charging station placements.
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1 Introduction
The sales of EVs have been growing exponentially since the
last decade as California is set to have 100% all-electric new
cars by 2035 [1]. Notably, the number of light-duty BEVs has
increased from 82,686 in 2015 to 369,364 in 2020, and there
are 74,459 total EV chargers in California as of July 2021 [2].
18 out of the 20 largest original equipment manufacturers
(OEM) have set goals to develop and sell more battery elec-
tric vehicles (BEV) to embrace electric mobility worldwide
[3]. There will be more BEV models available from various
car brands in the upcoming years. However, the charging de-
mand has also been rising simultaneously, and the charging
networks are overcapacity in many places. The EV charg-
ing Infrastructure Assessment from CEC have shown that
California will need nearly 1.2 million chargers to meet the
fueling demands of the 7.5 million EVs by 2030 [4]. In Orange
County, eight cities have not fully complied with AB1236,
which requires the city to implement a streamlined process
in obtaining permits to install EV charging stations [5]. Thus,
Orange county needs a comprehensive evaluation of the ex-
isting infrastructures to understand the changing demands.
Quantifying EV charging demand depends upon a combi-
nation of factors including availability of charging stations,
access to EVs, economic levels as well as sociodemographic
composition of resident populations within our study area.
Using a geospatial data fusion approach we develop a mech-
anism to quantify and visualize the spatial variation in EV
charging demand and assess how the demand various contin-
gent about social, economic and demographic composition
of the study area. The following sections highlight the study
area, different data preprocessing, fusion analysis and visu-
alization of charging demand within the Orange county area
(Figure 1) in southern California.

2 Data & Study Area
Our study area is the Orange County (OC) in Southern Cali-
fornia. As of 2021, OC has a population of 3.175million across
its 34 cities [6]. The population density in the central part
of the county is notably higher in cities such as Santa Ana
and Garden Grove (Figure 1). The EV charging demand in
those regions has also been increasing as the EV population
continues to grow. In 2020, there were 44,441 light-duty BEV
and 32,265 PHEV in Orange County, but the total number of
EV chargers is currently at 5,477 [2]. The uneven distribution
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of EV charging stations within OC (Figure 1), highlights the
growing divide in EV usage between urban and suburban
areas which needs further examination of underlying socioe-
conomic factors that lead to such inequalities. We collect
data from various sources as highlighted in (Table 1)

Figure 1. Population density of the anticipated study region
(left) and median household income (right) in census block
group level

3 Methods
We combine data from various sources as highlighted in Ta-
ble 1 using data fusion and apply spatial statistics to capture
the spatial variation of EV charging demand within Orange
County, CA.

Data Layer Source Spatial
Resolution Reference

OC DEM USGS 30x30m Topography
Street
Centerlines SCAG Parcels High/Low

Cost

EV Charging
Stations

Alternative
Fueling Station,
Dept of Energy

Points Destination

Census
Demographic

ACS, Census
Bureau

Census
Block Group
Level

Origin/
Source Point

Table 1. Sources for Weighted Cost Raster and Least-
CostPath Model

3.1 Geospatial data fusion
To achieve data fusion approach, we developed a model
to preprocess layers for LCP analysis using ArcGIS model
builder (Figure 2). Slope, land use, and street centerlines
were the three components used to created weighted raster.
To merge the cost raster layer, A Digital Elevation Model
(DEM) imagery was converted to a slope raster. The slope

is one crucial component to consider when calculating cost
distance because of the geographical barriers from point
to point, as steeper terrain might result in a higher cost of
traveling. The Land-use layer was converted to a raster by
reclassifying the zoning designation to an applicable scale,
which involves residential, commercial, office, open space,
government buildings, and other infrastructures. The street
centerlines shapefile was also converted to a raster by using
polyline to raster tool. Last, all three layers were merged as
20% slope, 40% land use, and 40% Street centerlines using the
raster calculator.

Figure 2. Workflow of least-cost path model, blue indicates
sources, yellow indicates geoprocessing tools, and green
indicates the outputs

3.2 Charging demand analysis
First, we used the weighted raster for the LCP analysis by
determining the distance from an EV charging station to the
centroid of census block group. The fused raster layer was
weighted by the factors listed in Table 1 and EV charging
station data, to estimate the least cost distance and backlink
rasters.

Second, we conducted a kernel density analysis to identify
the spatial hotspots of the LCP of charging stations. The
regions were classified based on the LCP values and con-
verted to a line shapefile using the raster to polyline tool.
The output vectors were then used as a population field to
generate the kernel density.
Finally, based on the 2019 ACS census block group data,

we created a cluster and outlier analysis of the LCPs using
the Local Moran’s I statistic for two specific attributes - the
median age and the median household income (Based on a
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4-person household) using the inverse distance technique.
The local Moran’s I highlights the high and low clusters of
LCP variations at the census block group level.

4 Results
4.1 Quantifying public EV charging demand using

LCP analysis
The LCP statistics for OC subdivisions are summarized in Ta-
ble 2, where the cost unit indicates the high/low cost of trav-
eling from point to point, it’s a result of different unit/scale
calculated from multiple raster layers, not in geographic
units. It appears the highly urbanized regions in North and
central of Orange County have the lowest cost unit, and this
value increases towards the suburban/rural areas. This illus-
trates the denser cities might have flatter surfaces, more road
access, or less blockage for people traveling from point to
point. Furthermore, the kernel density estimate further quan-
tified the spatial hotspots based on overall charging demands
(Figure 3) across Orange County. Irvine has the highest EV
charging demands, followed by Fullerton, Santa Ana, Orange,
Southern Costa Mesa, and Laguna Niguel. These cities have
significantly higher demands because the LCP are very close
to each other, which means more people will be seeking to
charge their EV in these regions.

Orange County
Subdivisions

Mean
(Cost Unit) Min Max Std.Dev

North Coast 6155 1195 12313 3886
Anaheim-Santa Ana-
Garden Grove 9153 1686 18029 5202

Central Coast 7507 380 19822 5548
Irvine-Lake-Fores 17708 791 36810 10095
South Coast 9909 1678 20054 5142
Mission-Viejo 16189 1321 27356 7614
Sliverado 19575 1484 43437 13834
Table 2. Least-cost path statistics in the order of population
density (North Coast is highest, Sliverado is the lowest)

4.2 Evaluating the variation between socioeconomic
factors based on cluster and outlier analysis

The current public EV charger distribution in California has
clear socioeconomic disparities between the outlier regions
with much higher or lower charger deployment than the
population would suggest [7]. Using Anselin Moran’s I, the
result of the cluster analysis with median age and household
income (Figure 5) shows the high-high cluster correlation
is well separated from the low-low clusters. The boxplot
demonstrated the similarity of range between the four clus-
ter groups in terms of age and income. As higher age people
(HH) are more likely to have higher income (HH). In com-
parison, the median household income clusters in denser

Figure 3. LCP Kernel Density shows the charging demand
in Orange County, CA

city centers in Anaheim, Garden Grove, and Santa Ana are
mostly low-low clusters (Figure 4). The high-high income
clusters are thoroughly distributed in the suburban regions,
and the majority of the low-high outliers are near Irvine
and Southeastern Orange County. In addition, the P-Value is
an indicator whether the cluster analysis are considered as
significant, and the income cluster shows a more significant
P-value and lower standard deviations than the age cluster.
This aligns with our clustering results and shows median
household income is a more reliable factor to compare with
charging demands.

Figure 4. Spatial distribution of median age clusters (left)
and median household income clusters(right)

5 Discussion
Our study quantified the EV charging demand and assessed
the spatial autocorrelation among population, median age
and household income in Orange County, California. The
LCP value and population density are not necessarily the

25



ARIC ’21, November 02, 2021, Virtual Workshop Law and Roy

Figure 5. Boxplot summary of the age (left) and income
(right) clusters in HH, HL, LH, LL.

dominant impact of charging demand. Instead, the age and
income clusters shows a spatial correlation with our kernel
density analysis (Figure 3). For instance, Irvine has 88 EV
charging stations within its jurisdictions, but the city still
have extremely high demands. The lower income regions
in Irvine (Figure 1) are not benefited by the distribution of
charging stations, and there are lack of services in the poorer
neighborhoods. Similar circumstances have appears in high-
demand cities such as Santa Ana, Tustin, and Fullerton. In
Santa Ana, it has significantly higher demands than the sur-
rounding regions, but there are only 20 EV charging stations
within the city. Majority of the block groups in Santa Ana are
low-low clusters with a few high-low outliers (Figure 4). This
indicates the low income regions are having higher charging
demands, but more charging stations were deployed in the
high-low outlier areas. The age clusters also demonstrated
the high demand cities tend to be in the younger neighbor-
hoods. Thus, it appears EV is not only a premium to the high-
incomes anymore as they are becoming more affordable and
efficient. In the U.S., the average annual household income
for PEV buyers is $125-150k, and average age is 40-55 in 2019
[8]. However, California have approximately 425,300 EV reg-
istrations, which is 25% share nationwide[9]. The EV buyers
in California is in transition from high-medium income to
middle-low income households, and for lower income fami-
lies that owns an EV, their average age is 30.7 [10]. Hence,
what makes Orange county cities have higher charging de-
mands is the income diversity and the trend of younger EV
owners in the region. The low-income neighborhoods does
not have equitable access of EV charging, which resulted
overcapacity near poor neighborhoods. This matches our
findings that the high EV charging demand regions are usu-
ally medium-low income and younger neighborhoods that
have lack of charging access.

6 Conclusion
The LCP charging demand analysis shows a spatial corre-
lation with the median household income clusters. From a
transportation equity perspective, the EV charging demands
are underestimated based on the income outlier clusters (Fig-
ure 4). The existing EV charging station placements tend to
focus on providing the most geographic coverage [11]. Thus,
deploying more EV charging stations in the high-demand
regions will benefit current EV owners and potential buyers.
As California is transitioning to an emission-free state, the
EV population is expecting to grow more quickly, so increas-
ing EV charging access will improve the current capacity and
reduce range anxiety. In the future work we aim to focus on
improving the metrics for transportation equity around EVs,
thereby helping policymakers in local governments to help
fulfill the disparities of charging demands for underserved
populations.
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