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ABSTRACT 
e COVID-19 pandemic had significantly impacted the public 
transit system in most cities across the world. Factors including 
physical distancing, remote working, distance education, and 
COVID-risk perception due to exposure have contributed to 
reducing public transport ridership. Automated Connected 
shules (ACS) services can be an effective alternative to regular 
buses with substantially reduced break-out risks and efficient 
operations. Our goal is to assess the mobility and energy impacts 
of ACS deployments when deployed as a replacement of standard 
(human-driven) buses within the context of the COVID-19 
pandemic accounting for adjustment in passenger demand and 
capacity. To accomplish this purpose, we used a traffic 
microsimulation tool—PTV VISSIM—to simulate the behavior of 
buses and ACS units. We designed and simulated hypothetical 
scenarios in a New York City, NY, network. e scenarios are 
designed based on different COVID-19 restrictions, and the 
performances are compared to measure ACS effectiveness over 
regular buses. e results showed that ACS units are more 
effective than regular buses when they operate at business-as-
usual capacity. Further, ACS services are more energy-efficient 
during physical distancing restrictions than bus services based on 
the emissions and energy estimates using the EPA-MOVES tool.  
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1  Motivation 
Nations worldwide are trying to combat the recent COVID-19 
pandemic with consecutive lockdowns, physical distancing 
restrictions, and strict hygiene protocols. People have been 
staying home primarily either by choice or due to local  

enforcements. As the pandemic progressed, it significantly 
impacted travel behavior—a shi towards private vehicles from 
the public transport modes to avoid a high risk of exposure to the 
virus. Several factors including, risk of infections, remote 
working, and fewer (educational, medical, and recreational) 
discretionary trips during the COVID-19 pandemic have 
significantly ( about 70 – 90  percent) reduced public transport 
(PT) ridership in major cities, including New York City, NY, 
Washington DC, and San Francisco, CA [13] [38]. Moreover, 
transit agencies are burdened with disinfecting, personnel 
absences, growing labor costs while revenues are declining [3].  

us, the COVID-19 crisis has put public transit-based mobility 
services into a survival mode. e public transit system faced 
hardship even before the pandemic—low ridership, farebox 
recovery, and service reliability. Transit authorities are puing 
their best efforts into improving the ventilation and hygiene 
inside buses and similar units. Nevertheless, it would be 
challenging to change the risk perception of the regular transit 
riders—is it safe to ride the buses? Studies [34] are already 
predicting a substantial shi toward personal mobility services.  
However, members from low-income and disadvantaged 
communities may not afford personal mobility services—own a 
car or use ride-hailing services. With low transit ridership and 
resulting fair-box revenues, it is possible that the transit service 
may be canceled or may only operate at a limited frequency. is 
will create a ripple effect puing more and more community 
members without any mobility services. 
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Automated Connected Shules (ACSs) can play an essential role 
in reducing the exposure for both drivers and passengers during 
this current pandemic. Automated shules usually have a smaller 
capacity (4 – 16 passengers) compared to transit buses (a city 
transit bus can carry about 30 – 80 passengers) and can operate 
over shorter routes with fewer stops. Also, the ACS units can run 
24 hours a day and do not need human drivers. us, ACS services 
do not expect to struggle with driver shortage due to exposure to 
the virus and can be used in higher frequencies. Moreover, it is 
possible to assign designated shule services to carry elderly 
passengers with proper physical distancing. erefore, it can be 
an alternative to standard transit services during the COVID-19 
pandemic. 

From the perspectives of traffic flow, the ACSs can have positive 
impact—the shorter headways of ACS units can significantly 
increase roadway and intersection capacity [5, 20]. Conversely, if 
the regular buses were to be directly replaced with the ACS units, 
the traffic volume may increase because more ACS units will be 
needed to fill the capacity gaps compared with buses. Further, 
optimized ACS operations—routing and departure time—can  
reduce passenger waiting times [4,37]. Finally, electrified ACS 
services have the potential to cut down on-road fossil-fuel 
consumption and greenhouse gas (GHG) emissions from 
transportation networks. ACS services can be envisioned as an 
efficient and sustainable mobility solution for communities across 
the nation. e energy and emissions impacts will be dictated by 
the spatial-temporal distribution of the passenger demands, the 
charging infrastructure (static vs. dynamic charging), availability 
of distributed energy resources in the geographic area, and 
operational constraints. Now, these mobility and energy impacts 
are going to be different under the COVID-19 circumstances—
physical distancing, capacity reduction, and low demand.  

is research aims to understand the effectiveness of ACS 
deployments by quantifying the network level mobility and 
energy impacts of ACS services when deployed as a replacement 
of standard (human-driven) buses within the context of the 
COVID-19 pandemic accounting for reduction passenger demand 
and capacity.  e research questions are: 

RQ-1: Would ACS units improve the traffic flow when 
deployed as replacements for buses under COVID-19 
restrictions? 

RQ-2: What is the impact of physical distancing restrictions on 
ACS services' performance (delay and travel time)? 

RQ-3: Would ACS services reduce energy consumption and 
greenhouse gas emissions from transportation networks? 

We evaluated the impact of ACS as a replacement of regular buses 
using traffic microsimulation—namely the PTV Vissim—to answer 
these questions. 

2 Literature Review 
Connected and automated vehicle (CAV) technology has gained 
popularity over the last decade because of its potential to improve 
traffic safety and mobility as well as energy efficiency. Several 
studies [2,11,18,21] argued that CAVs will be more beneficial to 
the environment when used as public transportation services 
compared to personal mobility. Cities including Detroit, MI; 
Columbus, OH; Denver, CO; Las Vegas, NV had deployed pilots 
services in small areas for testing automated shules in the pre-
COVID-19 period to understand user perception and improve the 
automated shule [12,27]. e CityMobil project was a significant 
effort to integrate autonomous buses in different European cities 
[35]. Inspired by the success of the CityMobil project, the 
CityMobil2 project was set to explore the real-time interaction of 
autonomous buses with other road users in more realistic traffic 
conditions in European cities like Lausanne (Switzerland), Vantaa 
(Finland), Trikala (Greece), La Rochelle (France), and Oristano 
(Italy) [29,35]. During the COVID-19 era, some automated and 
connected shule projects have halted, while some of those have 
been repurposed to serve the community's needs. e AV shule 
program in Columbus, OH, was set up to serve a small, 
underserved community. During the pandemic, that shule 
service is being used to deliver food in that community [9]. 
Orlando, FL, is using Automated shules in their community to 
transport COVID-19 tests and supplies at Mayo Clinic to reduce 
stress from healthcare resources and personnel [26]. 

Most existing studies on autonomous vehicles mainly focus on the 
effectiveness of passenger cars, while autonomous shules have 
been a less explored area [21]. e few studies on autonomous 
shules available in the literature are based on simulation and 
modeling approaches [19]. Researchers have developed models to 
replicate the behavior of ACS and compute their effects on the 
network. e Automated Mobility District—a concept proposed 
by the National Renewable Energy Laboratory—is a district-sized 
implementation of ACS service within a geofenced area [4]. is 
approach integrated a travel microsimulation model, energy 
estimation model and an optimization-based planning module for 
automated electric shule operation accounting for passenger 
waiting times using a mixed-integer program [4]. Hyland and 
Mahmassani [14] used sequential stochastic control and 
assignment to optimize fleets to reduce waiting times. An agent-
based simulation study conducted to evaluate the performance of 
an integrated ACS-Public Transport system for Singapore which 
replaced 10% of low-demand first mile bus routes were ACS [30]. 
Results from this study showed that first and last mile ACS 
services were effective to reduce out-of-vehicle travel time while 
replacing only the first mile bus services with ACS worsened the 
system performance by increasing miles traveled [19,30]. 
Muhammad et al. [22] used a modified cellular automata model to 
investigate the impact of automated cars and buses on the traffic 
flow at  different market penetration rates. eir results indicate 
that increasing the penetration rate of automated cars 
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significantly improved the traffic flow and network speed while 
increasing the rate of autonomous buses increased the roadway 
capacity.  

Many researchers sought shared autonomous vehicles (SAVs) as 
a potential alternative to mass transit. Levin et al. [17] developed 
a system optimal routing model for shared autonomous vehicles 
(SAVs) in 2017. Later in 2018, researchers explored the prospect of 
integrating SAVs with public transit [6]. In 2018, a simulation 
study for Berlin explored the potential of shared autonomous taxis 
as a replacement for buses. is study explored different capacity 
options and fleet sizes to serve the entire bus demand and found 
an SAV fleet size of 150 with a service capacity of 4 to be 
appropriate to meet the demand for the simulated area of 24,000 
inhabitants [16].  

ACS units can operate at a flexible schedule (routes and locations 
of stops) and adjust their capacity depending on passenger 
demands. Flexible scheduling may allow the ACS to serve the 
customers with a beer reliability compared to regular buses and 
can result into to an increase in the ridership [7,8,21,23]. Studies 
also investigated the impacts of ACS schedule optimization on the 
network performance. Cao and Ceder [7] developed a 
mathematical model to optimize ACS schedules and found that 
skipping stops depending on real-time passenger demand 
distribution can improve passenger travel times and reduce ACS 
fleet size. is research also showed that advanced deficit 
function-based methodology has the potential to develop fully 
autonomous transit systems in a network in future [7]. Dai et al. 
[8] developed a mixed vehicle fleet environment comprised of 
human-driven buses and ACSs to optimize dispatching headways 
and capacity to improve the network's level of service and 
passenger waiting time. An integer nonlinear programming 
model was used to optimize the PT schedules and dispatch 
capacity jointly. 

e above-mentioned discussion indicates that most studies are 
focused at business-as-usual cases and have not accounted for the 
cases where capacity and operational plans may be disrupted 
(such as the COVID-19 pandemic). Also, the energy and 
environmental impacts are not assessed except for a few studies. 
Our proposed research aims to address these gaps by answering 
the research questions (RQ 1 – RQ 3) posed in section 1. 

3 Experimental Design 

3.1 Test Network 
Our test network is a 230 m roadway segment (Figure 1) of W 
Fordham Road in New York City, NY, from University Avenue to 
Davidson Avenue. Table 1 reports the geometric aributes of the 
network, and Figure 2 shows the exclusive bus lanes and the 
locations of curbside parking spaces. e W Fordham Road has 
two travel lanes on East-West approaches, excluding the bus lanes 
on both sides. e North-South approach is one way, and two 

lanes on both sides have on-street parking (Figure 1). At present, 
the road has a 10  wide bus-only lane on both sides of the East-
West approach.  

3.2 Traffic Demand 
We have used the NYC open dataset (hourly volumes are available 
from October 31, 2015 to November 8, 2015) to determine the 
traffic demand for the test network. Evening Peak hours (6:00 – 
7:00 pm) traffic volumes have been used to represent the 
congestion [24]. We have used average weekday traffic volumes 
to model the scenarios. Note that, the traffic volume for the test 
segment (Figure 1) is not directly available. Since the Grand 
Concourse to Valentine road section is within a single km stretch 
of our considered road segment, we have assumed that the traffic 
volume would remain unchanged from University Avenue to 
Valentine road segment. Further, the existing signal timing for the 
intersection has been extracted from the live video camera footage 
for an accurate representation of the scenario. Table 1 presents 
the traffic volumes used for this intersection.  

 

Figure 1: West Fordham Road, New York City, New York. 

Table 1: Network Geometry for West Fordham Road 

Approach 
No. 
of 
Lanes 

Lane 
Width 
() 

Peak Hour 
Volume 
(vehicles/hour) 

Grand Concourse to 
University Heights 3 10 1050 

University Heights 
to Grand Concourse 3 10 850 

Grand Avenue 3 10 700 

N 
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Figure 2 shows the locations of bus lanes and bus stop modeled in 
this scenario. A bus stop is located at the beginning of the West-
East approach of Fordham Road. The scenario does not involve 
any transit signal priority. Four vehicle classes have been 
considered for the simulation: car, truck, delivery van, and bus. 
The proportions are chosen based on the NYC Open Data: 93% car, 
2% bus, 1% truck, and 4% delivery vans [25]. We assume the 
pedestrian activities do not affect the curbside operations near the 
intersection. We determined from the available vehicle 
composition that a total of 17 buses were operating in this street 
during the peak hour and assumed that the buses are running at 
an average occupancy (seating capacity at peak hour) of 31 
passengers. We determined the bus demand be 510 passengers 
during peak hour with 210 s bus headway for our model using 
occupancy. 

 

Figure 2: Exclusive Bus Lane on West Fordham Road (E-W 
Direction) and On-Street Parking on Grand Avenue (N-S 

Direction) (Snapshot from VISSIM) 

3.2 Scenario Descriptions (Bus vs. ACS Units 
Operations During COVID-19 Pandemic) 

During the COVID-19 pandemic, people worked from home or 
avoided bus rides due to the fear of infection. Accordingly, cities 
like New York City, NY; Seale, WA; Chicago, IL, whose backbone 
is public transportation, faced significant reduction in ridership 
and fair-box revenue [15,33]. e subway ridership was down by 
around 92% in New York City, NY,  in the beginning of the 
pandemic [15]. Later, city authorities enforced strict physical 
distancing in public transit services by reducing the passenger 
capacities. Likewise, New South Wales, Australia, imposed severe 
restrictions on public transport capacities by allowing a maximum 
of 12 passengers in 12 m long standard buses and 32 passengers in 
train carriages. In Asia, cities in China, Singapore reduced bus 
capacity by 50% [33]. Based on these observations, we designed 
three scenarios to evaluate within the PTV Vissim 
microsimulation framework. 

To reflect the COVID-19 induced demand reduction, we 
considered a 50% decrease in the original demand (255 passengers) 

during peak hours while keeping all other traffic conditions 
constant. Also, the physical distancing requirements will dictate 
the passenger capacity and the required number of buses and ACS 
units to meet the demand. e specific scenarios are discussed 
below 

Case A1 & B1 (Low Ridership): Initially, we assume no physical 
distancing, only low ridership (expressed as average bus 
occupancy, no change in the passenger capacity) in the transit 
system. Case A1 and Case B1 in Table 2 represent the regular 
buses and ACS units, respectively that  are operating at 100% 
capacity but have low demand.  

Case A2, A3 & B2 (Low Ridership and Enforced Physical 
Distancing): Next, we consider the case when physical 
distancing was enforced (either due to a higher COVID-19 
positivity rate or as a preventive measure). The cases A2 and A3 
represent the enforced physical distancing scenarios with two 
possible cases for the ACS units (50% and 70% reduction in 
capacity, respectively) with the same level of demand. Case B2 
reflects 30% reduction in capacity for buses, and this is based on 
observed data in some cities, and the relatively lower reduction 
compared to the ACS units is due to the joint effect of low bus 
ridership and space availability. A 16 passenger ACS unit may not 
have more than 8 passengers with physical distancing enforced 
whereas a 60-passenger capacity bus can go with 42-passenger 
capacity because of the higher space availability and ventilation. 

When ACS services faces a 50% reduction in capacity, the number 
of ACS units needed to serve the same level of demand will be 32 
(compared with 17 with full capacity). Now, when ACS units 
operate at 70% reduced capacity, 51 ACS units will be required to 
serve the same level of demand with a higher frequency. Table 2 
describes the details of the scenarios.  

Table 2: Scenario Description 
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business-
as-usual) 

Case-B2 
Severe & 
Enforced 
Physical 

Distancing  

Yes (Buses 
operating at 
30% capacity 
dictating the 
occupancy) 

10 26 

Automated Connected Shuttle (ACS) 
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Demand 
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business-
as-usual) 

17 

Case-A2 

Severe & 
Enforced 
Physical 

Distancing  

Yes (ACS units 
operating at 
50% capacity 
dictating the 
occupancy) 

8 32 

Case-A3 

Severe & 
Enforced 
Physical 

Distancing 

Yes (ACS units 
operating at 
30% capacity 
dictating the 
occupancy) 

5 51 

4 Modeling ACS Attributes in VISSIM 
To model the automation-specific car-following aributes of the 
automated connected shules (ACSs), we modified the car-
following parameters in PTV VISSIM including desired speed, 
acceleration, and deceleration based on the following 
assumptions. (a) smaller standstill distance, safety distance, and 
shorter reaction time than human-driven vehicles, (b) minimal 
variation in the desired speed profile compared to human drivers, 
and (c) deterministic acceleration and deceleration rate and 
thresholds (AVs can maintain the exact prescribed values). ese 
modifications are achieved by changing the Wiedeman'74 model 
[28], the car-following model in PTV VISSIM for urban arterial 
segments [31]. For human-driven vehicles, we have used the 
default parameters of driving behavior in the vehicle class—Urban 
(motorized). e autonomous aributes of the ACS units are 
described in a newly defined class—Urban-ACS. PTV VISSIM also 
accounts for the stochasticity of human drivers through 
predefined distributions. AVs have a shorter reaction time than 
human drivers (0.5 s) [36]. Also, automated vehicles will react to 
signals relatively faster, we have assumed an average reaction 
time to signal (e.g., 0.4 s). A few parameters of ACS units used for 
simulation are presented in Table 3. We acknowledge that the 
chosen parameters are only a specific case for AV models and 
more research are required to understand the sensitivity of these 
parameters. 

 

Table 3: Car-Following Parameters of ACS units 

Wiedemann'74 car-following 
parameters Units (m) 

Average standstill distance 1.00 
Additive part of safety distance  1.20 

Reaction time distribution Units (sec) 

Mean 0.40 

Std. dev 0.01 

Upper Bound 0.50 

Desired deceleration (m/s2) -8.0  

Maximum deceleration (m/s2) -7.5 

Further, to capture the stochasticity in human driving, predefined 
Gaussian distributions are generally used for desired and 
maximum acceleration and deceleration values. In contrast, AVs 
are expected to behave with a lower variance (e.g., the desired 
speed is not expect to vary across different AVs unlike the human 
drivers) [36]. Therefore, we reduced the spread of maximum and 
minimum acceleration and deceleration values for ACS units [32].   

Further, desired speed distribution is directly related to the 
capacity and travel times of links. The range of desired speed for 
human drivers will be wider compared with automated shuttles. 
Therefore, we have used desired speed distribution for 
conventional vehicles from 30 mph to 35 mph. ACS are more 
likely to operate with a lower range as they will strictly follow the 
speed limits. We specified a new desired speed distribution for 
ACS with a value of 25 mph because the implemented speed limit 
for ACS in most cities is lower than 25 mph [39]. 

5 Assessing Environmental and Energy 
Impacts 

To understand if the implementation of ACS will improve the 
environment, we have used EPA MOVES2014b and modeled 
emissions from different types of mobile sources. In the modeling 
process, specific fuel-based vehicle types, time periods, 
geographical area, pollutants, road types, and vehicle operational 
characteristics were used as input parameters. In addition to the 
above-mentioned inputs, emission-related information from EPA 
MOVES default database has been used. We have modeled 
passenger cars and trucks for gasoline-type fuel and commercial 
vehicles and transit buses for diesel-type fuels in this study. e 
analysis has been conducted for the peak hour (6.00 pm to 7.00 
pm, November 2015). e analysis year has been selected to be 
2015 as the traffic volume used for operational analysis is 
extracted from the year 2015. e network has 10 links and the 
link drive schedules have been computed from the first three 
simulation instances of VISSIM to use as an input for energy 
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estimation. EPA MOVES has been used to compute energies for 
all classes of vehicles except the ACS units. Instead  ACS specific 
energy are computed from the energy consumption graph 
developed for NAVYA automated shuttles [4]. The energy 
consumption rate graph is developed using data generated by the 
FASTSim energy modeling tool. Again, it is possible to assume 
other types of ACS specification. We chose NAVYA shuttle as our 
ACS unit representing vehicle due to availability of the energy 
consumption rate. 

6 Results and Discussions 
We simulate the scenarios described in the earlier sections in PTV 
VISSIM for 3600 s periods with different random seeds and collect 
data for the final 3000 s with delay section measurements and 
node evaluation metrics. We have three primary evaluation 
metrics for regular buses and ACS units: 

(a) Average delay (all vehicles) (unit: seconds per vehicle 
unit): e experienced delay accounting for all classes 
and types of vehicles (transit modes and passenger cars, 
trucks and so on). 

(b) Average delay (transit) (unit: seconds per vehicle): e 
experienced delay for the transit vehicles (e.g., only the 
ACS units when they replaced the buses and vice versa). 

(c) Average person delay (transit) (unit: seconds per 
person): e experienced delay for each traveler using 
the transit mode—either bus (B1 and B2) or ACS units 
(A1 – A3) 

ese evaluation metrics are compared with regular buses to 
understand the performance of ACS. For each performance 
metric, we estimated the range of population mean at 95% 
confidence level. Further, we conducted the Student's t-distribution 
tests since the variances are unknown.  

e following sections will discuss the findings corresponding to 
our three research questions stated earlier. 

RQ-1: Would ACS units improve transportation network 
performance when deployed as replacements for buses under 
COVID-19 restrictions? 

Table 4 and Figure 3 show the comparison of performances 
between ACSs and regular buses. We consider cases where 
regular buses and ACS units operate at 100% capacity but face low 
ridership (represented by lower occupancy). Since the ACSs carry 
fewer passengers than buses, this reduction in average occupancy 
does not impact the ACS operations (flexibility regarding the 
number of ACS units to be deployed as a function of demand). 
Thus, the number of regular buses and ACS are identical in the 
network. The comparison shows that the average person delay 
reduces by 22.41% when ACSs are deployed in the network. 

Average transit delay reduces by 21.69%, while average delay for 
all vehicle classes reduces by 1.54%. Even though the number of 
public transports is the same in both cases, the observed benefits 
of the ACSs may be due to uniform operations—less variation in 
speed and headways than standard bus operations. Also, the 
manual bus operation has higher headway. At the same time, the 
ACS units operate with smaller headways and strictly abide by the 
speed limit. This may have resulted in a lower delay for ACS units. 

Table 4: Performance Metrics Comparison for Scenarios 

Case-B1 vs. Case-A1 (30 Simulation Runs) 

  Regular Bus AV 
Shuttle 

Improvement 
Compared 

with Transit 
(Bus) Services 

Significance 
at 95% 

Confidence 
Level 

Average Delay (All Vehicle) (sec/veh) 

Mean 27.10 26.68 

1.54% Yes 
Upper 
Bound  27.30 26.92 

Lower 
Bound 26.90 26.45 

Average Delay (Transit) (sec/veh) 
Mean 14.323119 11.216033 

21.69% Yes 
Upper 
Bound  15.09 11.66 

Lower 
Bound 13.56 10.77 

Average Person Delay (Transit) (sec/person) 
Mean 13.84 10.74 

22.41% Yes 
Upper 
Bound  14.69 11.20 

Lower 
Bound 12.98 10.27 

Case-B2 vs. Case-A2 (30 Simulation Runs) 

 Regular 
Bus AV Shuttle Improvement 

Significance 
at 95% 

Confidence 
Level 

Average Delay (All Vehicle) (sec/veh) 

Mean 26.93 26.95 

0.08% No 
Upper 
Bound  27.1643 27.17 

Lower 
Bound 26.69 26.74 

Average Delay (Bus) (sec/veh) 

Mean 14.88 13.62 

8.46% Yes 
Upper 
Bound  15.34 14.05 

Lower 
Bound 14.42 13.19 

Average Person Delay (Bus) (sec/person) 

Mean 13.81 12.68 
8.14% Yes Upper 

Bound  14.42 13.14 



IWCTS’21, November 2021, Beijing, China Akter and Aziz 

 

 

Lower 
Bound 13.19 12.24 

For B2 vs. A2, the physical distancing restrictions are enforced, 
and ACS units are impacted (passenger capacity goes down). For 
case A2, the number of ACS units deployed in the network is 
much higher than the regular buses (23%). ACS service is 
operating at a lower capacity level since physical distancing 
restrictions have been applied. Hence, the average delay per 
person increases compared with Case-A1. However, the average 
delay person using ACS decreases significantly than the regular 
buses (case B2). The implementation of ACS will not significantly 
impact delay reduction for all other vehicles in the network; 
however, this will reduce overall delay for transit modes. This 
may be because of the existing exclusive bus lane, which omits the 
impact of increasing ACS volume on other vehicles of the 
network.  Figure 3 summarizes the two comparisons. 

 

Figure 3: Reduction in Delay Due to ACS Implementation 

RQ-2: What is the impact of physical distancing restrictions on ACS 
services' performance (delay and travel time)? 

Table 5: Performance Metrics for ACS 

Scenarios 

Average 
Delay (All 
Vehicle) 
(sec/veh) 

Average 
Delay (ACS) 

(sec/veh) 

Average 
Person 

Delay (ACS) 
(sec/person) 

Case-A1  26.6839 11.216033 10.7397 
Case-A2 26.9524 13.6231912 12.6861 
Case-A3 26.7581 14.047558 13.7151 

Table 5 shows the performance of ACS at different capacity levels. 
When the number of ACS units is increased to 32 (Case-A2) from 
17 (Case-A1), the average person delay goes up by 18%, and it 
becomes 27% higher when the number of ACS is raised to 51 
(Case-A3) by reducing the capacity to 5 persons per ACS unit. 
This may occur due to increased ACS volume in the exclusive bus 
lane. Since ACS units are operating at a lower capacity (Case-A2 
and A3), people are waiting for a longer time to reach their 

destination; thus, the average person delay is increasing. The 
average delay for ACS goes up by about 21% and 35% for 
incrementing ACS by 15 (Case-A2) and 34 (Case-A3) units, 
respectively. So, it can be concluded that imposing physical 
restrictions will increase passenger and vehicle travel time for the 
same level of passenger demand since the passenger-carrying 
capacity for the ACS is being cut off. 

RQ-3: Would ACS services reduce energy consumption and the 
greenhouse gas emissions from transportation networks? 

Figure 4 summarizes the change in the energy consumption and 
emissions after the implementation of ACS services. If we 
compare the energy consumption for ACS and regular buses, it 
can be observed that, total energy consumption decreases by 
2.32% (Case-A1 vs. Case B1) when ACS are deployed indicating 
that ACS units are energy efficient than the regular buses. Figure 
4 also shows that, the total CO emissions can be reduced by 2.23% 
(Case-A1 vs. Case B1) by ACS units. By implementing ACS, the 
primary exhaust from vehicles (PM 2.5 and PM 10) in the network 
can be reduced by about 34%, CO2 emission can be reduced by 
about 3% and emission of NOx gases can be reduced by about 46% 
(Case-A1 Vs Case B1). The detailed results of the energy 
consumption and emission are provided in Table 6.  

 

Figure 4: Change in Energy Consumption and Emission 
for ACS Implementation 
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Table 6: Comparison of Energy Consumption and 
Emission 

Case-A1 vs. Case B1 (Average from three simulation runs) 

Pollutants Case-B1 Case-A1 Improvem
ent 

Total Gaseous 
Hydrocarbons (gm/hr) 734.27 724.43 1.34% 

Carbon Monoxide (CO) 
(gm/hr) 1606.27 1570.40 2.23% 

Oxides of Nitrogen 
(NOx) (gm/hr) 251.68 135.84 46.03% 

Methane (CH4) (gm/hr) 4.07 3.75 7.64% 
Atmospheric CO2 (kg/hr) 343.09 332.53 3.08% 
Total Energy 
Consumption (GJ/hr) 4769.62 4659.13 2.32% 

Fossil Fuel Energy 
Consumption (GJ/hr) 4460.71 4345.10 2.59% 

CO2 Equivalent (kg/hr) 343.19 332.62 3.08% 
Primary Exhaust PM10 - 
Total (gm/hr) 12.15 8.06 33.64% 

Primary Exhaust PM2.5 - 
Total (gm/hr) 10.93 7.16 34.43% 

Case-A2 vs. Case-B2 (Average from three simulation runs) 

Pollutants Case-B2 Case-A2 Improvem
ent 

Total Gaseous 
Hydrocarbons (gm/hr) 740.93 729.85 1.50% 

Carbon Monoxide (CO) 
(gm/hr) 1635.11 1586.56 2.97% 

Oxides of Nitrogen 
(NOx) (gm/hr) 294.36 137.25 53.37% 

Methane (CH4) (gm/hr) 4.2 3.78 9.88% 
Atmospheric CO2 (kg/hr) 349.21 335.26 3.99% 
Total Energy 
Consumption (GJ/hr) 4853.54 4684.65 3.48% 

Fossil Fuel Energy 
Consumption (GJ/hr) 4532.78 4360.87 3.79% 

CO2 Equivalent (kg/hr) 349.31 335.35 4.00% 
Primary Exhaust PM10 - 
Total (gm/hr) 13.59 8.12 40.26% 

Primary Exhaust PM2.5 - 
Total (gm/hr) 12.24 7.21 41.11% 

Our experimental results indicate that if ACS units are deployed 
at their total capacity to carry the same number of passengers 
when regular buses face low ridership, and there are no travel 
restrictions, it can improve user travel quality with less impact on 
the environment and save energy. When physical restrictions are 
applied, ACS will still be economical to save energy and improve 
transit performance in the network. However, for low passenger 
carrying capacity, passengers may experience higher delays 
compared to bus-only services.  

 

7 Conclusions 

The COVID-19 pandemic took its toll on the transportation 
industry by reducing transit ridership and the travelers' associated 
hardships—accessibility and mobility. People shifted towards 
other modes of transport from buses to avoid exposure. 
Automated connected shuttles (ACS) can be a viable alternative to 
reduce the risks of exposure and the operating costs of public 
transports. In this paper, we have evaluated the effectiveness of 
ACS compared to regular public transports in terms of energy-
saving and delay reduction. This research shows that when bus 
ridership drops for the pandemic, ACS services can significantly 
improve travel quality and network performance (case B1 vs. case 
A1). However, the person delay increases significantly for ACS 
units (A2 and A3) with the capacity constraint imposed by the 
physical distancing. 

ACS services are also an effective strategy to reduce energy 
consumption and emission of greenhouse gases (GHG). When 
physical restrictions are applied to both the regular buses and 
ACS, the difference between their performances reduces. The 
trend is the same for both per capita fuel and CO emissions from 
our experimental results. 

7.1 Limitations  

We have not calibrated the network for this research and have 
used simulation parameters available in the existing literature. 
Calibrating the network for a mixed environment could lead to 
new observations for the efficiency of ACS at the network level. 
For the experiments conducted in this research, the standing 
capacity of buses has not been used, which can be included in 
future research. For future research, the interactions of vehicles 
with roadside activities can be included in the model. This 
research can be beneficial to practitioners and policymakers to 
understand how ACS will work in the post-pandemic situation 
when public transit ridership may get back to the pre-COVID 
demand. 

7.2 Future Directions 

Emerging mobility services, including ride-hailing or ride-
sourcing (sometimes argued as a competitor to the transit 
systems) and micro-mobility travel modes (bike-sharing, e-
scooters, micro-transit), can be a part of the solution, provided 
that cooperation and coordination with transit systems can be 
achieved. This study was conducted on a small part of the city 
which can further be extended to city-wide analysis to understand 
the applicability of the policies on a bigger scale. Our proposed 
solution may assist in developing a community-shared micro-
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transit-based mobility system that ensures physical distancing 
and is less crowded than standard bus services, provides flexibility 
(route and frequency), and enables automated contact tracing. The 
proposed service need not necessarily replace the existing transit 
system. As COVID-19 situations evolve, the robust mobility 
system can replace the entire system temporarily or simply 
complement a part of it as needed. 
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