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ABSTRACT

In our research we test data and models for the recognition of housing quality in the city of Amsterdam
from ground-level and aerial imagery. For ground-level images we compare Google StreetView
(GSV) to Flickr images. Our results show that GSV predicts the most accurate building quality scores,
approximately 30% better than using only aerial images. However, we find that through careful
filtering and by using the right pre-trained model, Flickr image features combined with aerial image
features are able to halve the performance gap to GSV features from 30% to 15%. Our results indicate
that there are viable alternatives to GSV for liveability factor prediction, which is encouraging as
GSV images are more difficult to acquire and not always available.

1 Introduction

Modern-day urbanization has led to large increases in the number of people living in cities. It is expected that more than
half of the global population will live in cities by 2050 [1]. While cities are increasingly important for finding work,
it is frequently the case that cities show very disparate access to service and quality of infrastructure, and therefore
mixed quality of life in urban dwellings. Not taking into account people’s social and physical housing needs can have
detrimental effects on their well-being. For instance, the physical quality of housing is an indicator for one’s mental
well-being [2]. In a broader sense, the quality of a neighbourhood may affect the residents’ dietary and physical activity
patterns [3], as well as their morbidity [4]. Evidently, monitoring that neighbourhoods are liveable and of an adequate
quality could support policy makers and urban planners to design more liveable cities. Liveability is typically measured
using surveys. However, surveyed data is expensive to acquire, infrequently available, and their results may be hard to
scale beyond the original survey area. Ideally, quality of life data gathered through such surveys would be available
at large scales, on a frequent basis and at low cost to monitor the liveability of urban areas and identify areas for
improvement.

Image data such as ground-level photography can offer a solution to this problem, as it is easier to acquire and scale.
Prior research has shown that ground-level images can reliably pick up attributes relating to urban sentiments [5, 6]. A
potential drawback is that large-scale collection of this data is often not trivial, and images may be affected by biases
such as lighting and weather effects. Aerial images are another source of image data which can be considered. Their
main advantage over ground-level images and surveys is that they can be used to survey large areas in a single data
collection effort. For aerial images, it has also been proven that they can be used to survey factors relating to quality of
life [7, 8].

In this research we focus on building quality scores surveyed in Amsterdam at hectometer scale. We are interested in
determining if a combination of ground-level images and aerial images can improve the prediction of liveability factors.
For the aerial image modality, we train models using high-resolution aerial image data. For the ground-level model we
compare two pre-trained feature extractors to determine if models tuned towards liveability make a noticeable difference
in performance on our dataset of housing quality. Furthermore, we also train models to combine both modalities to test
whether or not they can improve the overall prediction accuracy of housing quality.
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Figure 1: Data splits of our experiments over the city of Amsterdam. Testing squares are padded by validation cells to
ensure that no test data is seen during training. Cyan squares are for training, red for validation, and blue for testing.
Black points represent geotagged photos of the Flickr buildings subset.

2 Data

We use three data sources in our study: housing quality scores of the city of Amsterdam, Aerial imagery, and
ground-level imagery.

Housing Quality Scores
For our liveability ground truth labels we use housing quality scores over the city of Amsterdam. This score quantifies
how housing contributes to liveability. This data is available as a grid with cells covering 100m2 each. It is derived
from various statistics such as building age, ownership situation, and consumption of utilities such as electricity. The
statistics used to create the building score are averaged from buildings within 200m2 from the patch center. The grid
with scores is published by the Leefbaarometer project 1.

Aerial Imagery
For the aerial images we use aerial image patches of 500x500 pixels with a spatial resolution of 1 meter derived from
the 2017 national aerial image dataset [9]. For each patch, we consider the housing quality score attributable to the 100
meters patch center. We do this to ensure that the model has the context needed to recreate the housing score, as the
scores were created by using data from a 200m2 square meter radius from the cell center. As such, there is a 200m2

overlap for each patch with its neighbouring patches.

ground-level Images
We test two data types for our ground-level images. Firstly, we use Google StreetView (GSV) panorama images, which
are widely used for urban attribute prediction [6, 5]. We use the dataset of GSV panorama images in Amsterdam from
[10]. The dataset is designed for building function classification, and as such each panorama image in this dataset is
oriented to directly face a building in the city by using the location and orientation data of the panorama images. After
filtering images to the extents of the aerial image patches, we retained 90′256 images. Our second dataset consists of
Flickr images. Flickr is freely available and consists of crowdsourced images, making it more flexible and easier to
acquire than GSV panorama images. It is a source of data that is increasingly used to study the environmental factors
contributing to individuals’ well-being from a first-person perspective [11]. We gathered Flickr images taken between
2004 and 2020 with a geotag located in the city of Amsterdam, which resulted in 54’250 images.

Data splits
We split our dataset into training, validation and test sets by selecting square regions within the dataset. The edges
of these squares partly overlap with the training set as a result of the patch size. We therefore assign the edges to
the validation set. The region centers are assigned to the test set to avoid correlation between the sets due to spatial
co-location. Our splits are shown in Figure 1. For both sources of ground-level images, if no images intersect with an
aerial image patch, then we leave the patch out of the subset.

1https://www.leefbaarometer.nl/
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Figure 2: Multimodal model predicting housing quality scores. Only the aerial branch and the merging layer shown in
blue are trained. Features extracted from the ground-level images are fixed. Depending on the subset, the ground-level
image branch uses features extracted from either Google StreetView, or Flickr images.

3 Methods

Our model is tasked with predicting a housing quality score ŝ from data within a patch. It consists of an aerial feature
branch and a ground-level feature branch, as shown in Figure 2. The ResNet-50 [12] feature extractor of the aerial
feature branch is initialized with weights for housing quality prediction over The Netherlands from our preliminary study
[8]. For ground-level features, we use a ResNet-50 pre-trained ImageNet model, as well as a pre-trained ResNet-50
Place Pulse 2 (PP2) [5] model. Place Pulse 2 is a dataset for urban sentiment analysis consisting of GSV images. The
aerial feature branch extracts a 2048-dimensional vector a from an input aerial image. The ground-level feature branch
produces one 2048-dimensional feature vector for each of the N geotagged ground-level images within the patch. We
average-pool these vectors to form the ground-level feature vector vector g, following the same design as [13]. To
merge the feature vectors a and g into the feature vector m, we perform pairwise addition:

m = a+
1

N

N∑
n=1

gn (1)

The vector m is then passed to a two-layer perceptron to extract joint features over the merged vector. We first
apply batch normalization to the features, which are then passed to the first fully-connected layer which produces a
100-dimensional vector. These features are subsequently passed to the final fully-connected layer to regress the building
score ŝ. We train our model using a Mean Squared Error loss calculated over the predicted patch housing score ŝ w.r.t.
the ground truth patch housing score s:

Lscore = (s− ŝ)2 (2)

During the first three epochs, only the fully connected layers are trained. Starting at epoch four, the aerial feature
extractor is also optimized to fine-tune it to Amsterdam. The ground-level feature extractor is not modified at any stage,
since it has been pre-trained with images of a similar nature.

4 Experimental setup

Beyond reporting the results on the full method using either GSV or one of the Flickr subsets for the ground-level
branch, we also perform ablation studies to test the performance of each branch individually. To test the aerial branch,
we set the ground-level features g to be a vector containing zeroes. We do the same to the aerial features a to test the
ground-level features.

We train all models with the Adam optimizer for 25 epochs, which we initialize with a learning rate of 0.001 and a
weight decay of 0.001. We report the root mean squared error (RMSE) of the housing quality score, as well Kendall’s τ
[14], which is a ranking coefficient between -1 and 1 which indicates whether or not samples are correctly placed in the
right order in terms of increasing housing quality score. A value of -1 indicates a perfectly inverse ranking, while a
value of 1 represents a perfect ranking.

Filtering Flickr images
As Flickr consists of social media photos that are less organised than GSV images, filtering is necessary to retain only
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Ground Truth Only Aerial Outdoors PP2 + Aerial Buildings PP2 + Aerial GSV Only PP2

Ground Truth Only Aerial Outdoors PP2 + Aerial Buildings PP2 + Aerial GSV Only PP2

Figure 3: Plots of predictions of building quality score for the best model of each data subset on the two most spatially
diverse tiles. Their locations are displayed in Figure 1. Colors range from red (low-quality) to blue (high-quality).

Table 1: Patches per split for each subset

Subset Train Validation Test Coverage
Aerial 4’300 570 491 100%
GSV 4’294 570 491 99.88%
Flickr Outdoors 4’255 570 491 98.97%
Flickr Buildings 4’027 538 458 93.69%

images which are beneficial for building score regression. We apply a pre-trained Places365 [15] model for scene
classification to test two filtering methods. As a weak filtering method, we retain only images where 9 out of the 10
most activated classes are marked as outdoors in the dataset. We refer to this subset as Flickr Outdoors. In total, the
Flickr Outdoors subset contains 34’222 images. Secondly, we select images that have at least one scene strongly related
to buildings above a given threshold, for which we consider 24 building-related classes. This threshold was empirically
tested and set to an activation of 0.05. This will filter the dataset more aggressively to focus on buildings in favour of
the housing quality score. We refer to this subset as Flickr Buildings. The Flickr Buildings subset contains 11’774
images. Filtering out images also resulted in some patches having no ground-based images, which had to be excluded.
We show our patch distribution per subset in Table 1.

5 Results and Discussion

Using GSV images as ground modality
We show our results when using GSV images for the ground branch in Table 2. Overall, we find that using only features
extracted using a PP2 model provides the best results, slightly edging out ImageNet features in terms of Kendall’s τ ,
which reaches a value of 0.778. When using GSV for ground-level features, merging with overhead aerial imagery does
not provide performance improvements regardless of the feature extractor. In addition, pre-training the feature extractor
on ImageNet or PP2 results in similar performances. Compared to a Kendall’s τ of 0.5810 obtained from using only
aerial images, there is a 30% performance gap.

Using Flickr images as ground modality
Table 3 shows the results obtained from the Flickr ground images. Our results show substantial differences between the
three modalities. The least competitive result in terms of Kendall’s τ occurs when merging the aerial image features
with Outdoor Flickr images using ImageNet features, 0.576. The best unimodal setting with Flickr images consists of
using PP2 features from the Flickr Buildings subset, reaching a Kendall’s τ of 0.649. For unimodal prediction it is
important to simultaneously use the Flickr Buildings images along with PP2 pre-training, since using either the Flickr
Outdoors subset or only ImageNet pre-training results in a loss of performance, down to 0.596 and 0.602 respectively.
Adding the aerial branch to the PP2 pre-trained Flickr Buildings model result in another increase in performance, up to
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Table 2: Metrics when using GSV as ground image source

Modality Ground Fea-
tures

RMSE Kendall’s τ

Aerial n.a. 0.1314 0.5818
GSV ImageNet 0.0670 0.7651
GSV PP2 0.0707 0.7780
Aerial & GSV ImageNet 0.0787 0.7699
Aerial & GSV PP2 0.0765 0.7656

Table 3: Metrics when using Flickr as ground image source

Modality Ground Features RMSE Kendall’s τ
Aerial n.a 0.1314 0.5810
Outdoor ImageNet 0.1100 0.5755
Outdoors PP2 0.1155 0.5962
Buildings ImageNet 0.1179 0.6024
Buildings PP2 0.1031 0.6487
Aerial & Outdoors ImageNet 0.1427 0.5729
Aerial & Outdoors PP2 0.1306 0.6215
Aerial & Buildings ImageNet 0.1142 0.6243
Aerial & Buildings PP2 0.1104 0.6862

0.686. By using a combination of Flickr Buildings PP2 features and the aerial features, the performance gap compared
to the best GSV model is halved.

By comparing the metrics of the three subsets, we can assess the suitability of alternatives to be used instead of GSV.
While GSV image features prove to be most suitable for building quality at the city scale, it is encouraging that Flickr
and aerial images are able to close the performance gap. Furthermore, while GSV images are more suitable for
urban analyses, the data is often difficult to acquire for larger areas, or even entirely unavailable. In contrast, Flickr
images are easy to acquire and widely available. The success of using Flickr shows that general-purpose social me-
dia data sources can also be used, as they are easier to scale over larger areas, for instance through crowdsourcing efforts.

Spatial Predictions
In Figure 3 we show the spatial predictions for the best model of each subset for the two most spatially diverse testing
tiles. The maps show that the PP2-only GSV model is able to approximate the ground truth most accurately in both
tiles. Both Flickr models struggle with predicting the extent of the low quality housing of tile A. This may be caused by
a lack of images in the north of Amsterdam, which can be seen in the black points of Figure 1, which represent images
of the Buildings subset. This area is less popular with tourists, which may explain the lack of Flickr photos. The GSV
dataset has much better coverage in this area, which is reflected by the better prediction quality for this tile.

6 Conclusions

In this paper we use a combination of features extracted from ground-level and aerial images to predict the quality of
houses in Amsterdam. For the ground-level images we tested two pre-trained feature extractors, one pre-trained on
ImageNet, and one on Place Pulse 2, a dataset for subjective perception of urban ground-level images. We collected
and refined three ground-level image datasets: Google Streetview (GSV), Flickr Outdoors and Flickr Buildings. The
latter two were obtained by filtering geotagged Flickr images. Using only GSV images resulted in the best overall
performance, providing a 30% increase in Kendall’s τ with respect to using only aerial imagery. This suggests that the
nature of GSV imagery is well-suited, as it captures 360◦ panoramas of most of the city’s streets at regular intervals.
However, this type of imagery is costly to obtain and not always available. Our results show that using less curated but
more easily available social media images such as Flickr can still provide a 15% increase in performance w.r.t. the
aerial imagery if both the images and the feature extractor are carefully selected for the task.
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