
Bayesian Inference of a Social Graph with
Trace Feasibility Guarantees

Effrosyni Papanastasiou
Sorbonne University, CNRS, LIP6

F-75005, Paris, France
effrosyni.papanastasiou@lip6.fr

Anastasios Giovanidis
Sorbonne University, CNRS, LIP6

F-75005, Paris, France
anastasios.giovanidis@lip6.fr

Abstract—Network inference is the process of deciding what
is the true unknown graph underlying a set of interactions
between nodes. There is a vast literature on the subject, but
most known methods have an important drawback: the inferred
graph is not guaranteed to explain every interaction from the
input trace. We consider this an important issue since such
inferred graph cannot be used as input for applications that
require a reliable estimate of the true graph. On the other
hand, a graph having trace feasibility guarantees can help us
better understand the true (hidden) interactions that may have
taken place between nodes of interest. The inference of such
graph is the goal of this paper. Firstly, given an activity log
from a social network, we introduce a set of constraints that
take into consideration all the hidden paths that are possible
between the nodes of the trace, given their timestamps of
interaction. Then, we develop a non-trivial modification of the
Expectation-Maximization algorithm by Newman [1], that we
call Constrained-EM, which incorporates the constraints and
a set of auxiliary variables into the inference process to guide
it towards the feasibility of the trace. Experimental results on
real-world data from Twitter confirm that Constrained-EM
generates a posterior distribution of graphs that explains all
the events observed in the trace while presenting the desired
properties of a scale-free, small-world graph. Our method also
outperforms established methods in terms of feasibility and
quality of the inferred graph.

Keywords—social graph, network inference, network recon-
struction, expectation maximization

I. INTRODUCTION

Network inference, or reconstruction is the problem of pre-
dicting the presence or absence of edges between a set of nodes
that form the vertices of a graph, given an observed set of data,
i.e., the trace [2]. Network inference has long been considered
an important task; initially, it attracted a lot of attention
in computational biology with various works reconstructing
biological networks using representation learning, Bayesian
networks, etc [3]. At the same time, studies applying network
inference on social network data began emerging in literature
and continue until today, thanks to the rapid growth of Online
Social Networks (OSNs) [4]–[6]. The main goal of such
works is to infer the influence between users - an important
property of a social network [7] - and usually rely on diffusion
models that capture the way information is diffused through
the network. Such models include the Independent Cascade

This work is funded by the ANR (French National Agency of Research)
by the “FairEngine” project under grant ANR-19-CE25-0011.

(IC) model, also called Susceptible-Infected-Recovered (SIR)
in epidemiology [8], [9] and the Susceptible-Infected (SI)
model [10]. The Linear or General Threshold model has also
been extensively used for network inference [7].

After the choice of a diffusion model, the corresponding
model parameters can be learned with several approaches, such
as maximum likelihood [7], [11], Expectation-Maximization
(EM) [1], [8], [9] and other static or continuous-time models
[7]. For example, Saito et al. [8], used the IC model and
applied the EM algorithm to learn the pairwise transmission
probabilities of influence between users. More recently, Bouri-
gault et al. [9] presented an embedded version of the IC
model on OSNs that learns information diffusion probabilities
along with the representation of users in the latent space.
More recently, Newman [1] proposed an EM algorithm that is
designed for network inference given unreliable data with the
help of a set of parameters that estimate the size of the errors.
Peixoto [12] approached network reconstruction similarly to
Newman and combined it with community detection, proving
that the task of inferring edges can improve the accuracy of
community detection and vice-versa.

In the aforementioned inference procedures, we observed
that the feasibility of the trace in relation to the inferred
network is not always guaranteed. This means that the inferred
network may not accurately and completely explain the input
trace. For example, the application of the algorithm proposed
by Saito et al. [8] applied on a Twitter cascade of user tweets
and retweets, showed that, while it can predict high diffusion
probabilities for some pairs of users and, thus, explain why
we observe some retweets in the trace, it cannot do so for
every original tweet. As a result, for a considerable number
of retweets, we do not know the source of their influence and
we, therefore, cannot explain their existence in the trace. The
same is true for Newman’s network reconstruction algorithm
[1].

In cases like the above, we say that the trace is not feasible
with respect to the inferred network. We argue that the concept
of trace feasibility is an important condition that an inference
framework must meet if we wish to understand the produced
networks with relation to the trace and get them to explain
every instance of our data. Therefore, we approach the problem
of network inference in a novel way by developing a method
that infers a posterior distribution of feasible networks that

ar
X

iv
:2

10
9.

11
64

2v
1

 [
cs

.S
I]

 2
3

Se
p

20
21

can accurately explain the given trace while respecting the
temporal order of the observed events (e.g., posts). Towards
this goal, we propose a non-trivial modification of the EM
inference procedure developed by Newman [1] by introducing
a set of constraints that take into consideration all the (yet
unknown) paths that are possible according to the timestamps
of interaction between the nodes and therefore derive feasible
graphs.

Our algorithm works for OSN traces that include hundreds
of thousands to millions of nodes. We focus the analysis
on data from Twitter but we could apply the constraint set
on other domains as well. However, to do so, the feasibility
constraints should be adjusted each time to the type of data
that we work with.

II. ENVIRONMENT

A. Assumptions on the environment

In the present paper, we will work with traces available
from OSNs like Twitter or Weibo. On these platforms, a set
of users can generate content that we call posts. For example,
in the case of Twitter, users can post either original posts (i.e.,
tweets) or reposts (i.e., retweets) of original posts from other
users. For this paper, we make three crucial assumptions:

1) Users repost from users they follow, i.e., their followees.
2) The followee from whom each user reposts is included

inside the available trace.
3) Each user can repost the same post only once.

Of course, the above do not always hold in reality, but they
serve as a simplification for our work. As an extension, our
method could be modified to include cases where users repost
outside the available trace or users, or from users who are not
even their followees (e.g., if they traced a tweet from trending
topics, hashtags, search, etc).

For the diffusion of posts, we choose the SI diffusion model
from epidemiology [10]: with respect to each post, a user
can transition from the susceptible state (i.e., when one of
their followees posts or reposts something) to the infected
state (i.e., when the user reposts it) only once and cannot
transition back. In addition, we consider that an infected user
can influence their yet uninfected followers during all the
consecutive timestamps.

B. Trace description

Throughout this paper, we use P to denote our trace that is
a log of T posts and reposts, generated by a set U of |U| =N
users on an OSN (N ≤ T). Each line in P is a quadruple
(pid, t, uid, rid) that includes four types of information: i) the
unique post id pid; ii) its timestamp t; iii) the uid ∈ U of the
user who posted it; and iv) a repost id rid that is either equal
to −1 if the post is an original post, or equal to the pid of
the original post if it is a repost. All posts in P are ordered
according to their timestamps. It is important to underline
here that social media logs, like in Twitter do not provide the
identity of the user from whom someone found and reposted a
post; they only include the rid, from which we can then track
the original author.

III. PROBLEM FORMULATION

A. Problem definition

Since posts propagate by reposting, we assume the existence
of an underlying friendship network between the N different
users in the trace that is unknown to us. This network is
a directed social graph G = (V,E) where the nodes are
the users of the trace (V = U) and the edges include
the friendships between the users. We represent G with an
adjacency matrix N×N, denoted by A, where each element
Aij is equal to 1 if user j follows user i and 0 otherwise.
Our intuition is that if a user j shares content frequently
from user i, it is more probable that j follows i. The goal of
this work is to infer the unknown friendship network G, with
trace feasibility guarantees, by inferring the hidden path each
original post takes from user to user in the trace. It is important
to note here that we can only retrieve friendships between
users that have had at least one interaction with each other in
the given trace. The richer the trace, the more complete our
network inference will be.

B. Preliminaries

Our method relies on rich information extracted from a
social media trace during the pre-processing phase. We begin
by extracting from P the set of original posts denoted by S
with cardinality |S| = S. We denote by rs the uid of the user
who originally posted each post s, i.e., (s, t, rs,−1) ∈ P for
some t.

Definition 1 (Episode): For each original post s ∈ S we
define an episode as a set of users Es = rs∪{u ∈ U|∃(pid, t) :
(pid, t, u, s) ∈ P}. The whole set of episodes is denoted by
E and includes S episodes in total.

Each episode Es includes the user who originally posted
s, denoted by rs, followed by the users who reposted it, in
chronological order. We use i

s
≺ j to say that user i appears

in Es before j, and we call this pair a temporally ordered pair
(i, j)s. We count Mij out of the S total episodes where i

s
≺ j.

If Mij > 0, then it is possible that j has reposted from i an
original post or repost and we call this pair an active pair.
Hence, it is a very important quantity for the inference of the
hidden post propagation paths and we will make use of it in
the next sections. The total number of active pairs is denoted
by L and is equal to

∑
i 6=j 1(Mij > 0), where 1(z) = 1

when z is true. All information extracted from the trace is
summarized in Table I.

C. Diffusion model per episode

Given an episode Es and an ordered pair (i, j)s, we first
define the value Xij(s) ∈ {0, 1} that is equal to 1 if user j
reposted s directly from i (i.e., post s propagated from i to j)
and equal to 0 otherwise. However, the real value of Xij(s)
is still unknown to us. Therefore, for the given post s, if we
look into the temporal order of its reposts, we could think of
several feasible ways or paths through which the post could
have spread to reach the users that reposted it. These paths
form a propagation graph Gs = {Vs, Es} per episode, with

TABLE I
TRACE INFORMATION

Symbol Definition
P Set of posts and reposts in the trace, |P| = T
S Set of original posts in the trace, |S| = S
U Set of users that posted or reposted a post
N Number of different users appearing in the trace
E Set of episodes, |E| =S

Es ∈ E Episode of post s, 1 ≤ s ≤ S
rs The id of the user that originally posted s

i
s
≺ j User i reposted or posted s before j

Mij Number of episodes where i
s
≺ j

L Number of active pairs with Mij > 0

the users in episode Es as nodes (Vs = Es), and the edges set
Es containing the edges that are activated for the given post.
Each activated edge follows the direction of propagation, e.g.,
an edge (i, j) in Gs means that Xij(s) = 1.

As mentioned before, it is crucial that the paths in Gs take
into account the temporal order of the users’ posts and reposts.
For example, we can think of a hypothetical episode Es of
post s, depicted in Fig. 1. The user Frosso (Fr) was the first
who posted s, followed by Phoebe (Ph) and then, Anastasios
(An). Therefore, the possible propagation graphs, based on the
chronological ordering of each repost in the episode, are the
following:
• Users Phoebe and Anastasios reposted it both directly

from Frosso. This corresponds to a propagation graph Gs
with two directed paths: i) from the node Frosso to the
node Phoebe; and ii) from the node Frosso to the node
Anastasios (case I in Fig. 1).

• Phoebe reposted it from Frosso and then Anastasios from
Phoebe. This corresponds to a propagation graph Gs with
one directed path: from Frosso to Phoebe and then to
Anastasios (case II in Fig. 1).

Notice that each path in each possible tree follows the time-
ordering of reposts. In addition, Gs is an arborescence with
root rs [13]: this means that (i) Gs is a DAG; and (ii) given
the vertex rs called the root and any other vertex u in Gs,
there is exactly one directed path from rs to u. Equivalently,
Gs is a directed, rooted tree in which all edges point away
from the root.

IV. FEASIBILITY AND CONSTRAINTS

A. Feasibility definition

Given our problem definition, for each original post in S,
we need to infer a propagation DAG that is feasible in relation
to the trace.

Definition 2 (Feasible propagation DAG per episode): Given
an episode Es from the trace, we say that a propagation DAG
Gs = {Vs, Es} is feasible in relation to Es, if Vs = Es and
there exists (at least) one directed path from the root user rs
to every other user j ∈ Vs\rs. For each edge (i, j) of the path
it holds that i

s
≺ j in the trace.

Using a DAG for each episode, Gs with s = 1, 2, ..,S, we
can construct the full adjacency matrix A of the final friendship
graph G as follows: we set Aij = 1 if there exists at least

Fig. 1: Possible propagation graphs for episode Es.
one propagation DAG Gs where the edge (i, j) exists, and 0
otherwise.

Definition 3 (Feasible friendship graph): We define the
adjacency matrix A of an inferred network G as feasible in
relation to an OSN trace if, for every original post s there
exists a subgraph in G, which is a feasible propagation graph
Gs as defined in Def. 2.

For example, in Fig. 2, given a trace of three episodes E =
{E1, E2, E3} that involves five users Frosso (Fr), Anastasios
(An), Phoebe (Ph), Rachel (Ra), Joey (Jo), we can see the
case of a non-feasible G and a feasible G′. G is non-feasible
since there exists no feasible path from source node Frosso
to Anastasios for the case of episode E1 and there exists no
feasible path from source node Anastasios to Frosso for the
case of episode E3. In contrast, G′ is feasible since there exists
a feasible propagation graph for each episode.

B. Feasibility constraints on retweets behavior

The real value of Xij(s) defined in Section III is not
available, but we can limit the possible combinations by
introducing a set of constraints on Xij(s), that ensure that
a user j ∈ Es has reposted s directly by at least one user
i ∈ Es who has reposted s earlier according to the trace. As
a result, for each episode Es ∈ E , and each user j ∈ Es\{rs},
the constraints take the following form:∑

i∈Es s.t. i
s
≺j

Xij(s) ≥ 1,∀j ∈ Es\{rs}. (1)

For all episodes we will get T-S constraints in total, i.e., as
many constraints as the number of reposts with

∑S
s=1(|Es| −

1) · (|Es|)/2 unknown variables in total. The way we formed
the constraints, we allow the possibility that a user j has
reposted the post s from more than one users instead of only
one user for reasons that will become clear in the following
section. For example, for episode Es in Fig. 1 we will get
constraints: XFrossoPhoebe(s) ≥ 1 and XFrossoAnastasios(s)
+XPhoebeAnastasios(s) ≥ 1. This means that the user Phoebe
has definitely reposted s from Frosso and that Anastasios
has reposted it from Frosso, Phoebe, or both.

C. Diffusion probabilities

To be able to infer Xij(s) we make an important assump-
tion: For every ordered pair (i, j)s in an episode Es, user
j reposted post s from i independently of other episodes
with unknown probability σij ∈ [0, 1] that is common for all
episodes. In other words, Xij(s) is an independent Bernoulli
random variable with mean σij that is independent of s.

Fig. 2: Example of feasibility check given a trace.

Our choice to model the uncertainty about the path by
using an independent Bernoulli random variable with a fixed
mean σij , assumes that user j does not have a contextual
behavior that depends on the content of the episode, but rather
behaves with randomness when choosing their sources of
information. This serves as a simplification for the inference;
as an extension, it could be further refined to include context-
dependent mean values for different types of episodes. The
value of σij can be seen as the limiting frequency that user
j reposts directly a post from i when the number of episodes
goes to infinity. Given an ordered pair (i, j)s, σij is equal to:

σij = E [Xij(s)] . (2)

Given our intuition that the number of times a user j reposts
a user i is indicative of their friendship we introduce to the
problem the quantity Yij , as the (unknown) number of times
that j reposted from i, out of the Mij possible ones (the number
of times they appear as an active pair). That is:

Yij =

Mij∑
m=1

Xij(s). (3)

Since Yij is the sum of Mij independent Bernoulli random
variables with mean value σij , Yij is an independent Binomial
random variable with mean value Mijσij . That is:

E[Yij] =

Mij∑
m=1

E[Xij(s)] =

Mij∑
m=1

σij = Mijσij . (4)

The value of σij plays an important role in the inference of
the relationship between i and j, as we will demonstrate in
the following sections.

1) Constraints on diffusion probabilities σij: Having trans-
formed the problem from solving over Xij(s) to solving over
σij , we can constrain σij = E [Xij(s)] to be inside a specific
set of values. If we take the expectation of the constraints in
(1), for each episode Es ∈ E , and each user j ∈ Es\{rs}, we
end up with the following set of constraints on parameters σij :∑

i∈Es s.t. i
s
≺j

σij ≥ 1,∀j ∈ Es\{rs} (5)

σij ∈ [0, 1], ∀(i, j) ∈ U . (6)

We define with Fσ the feasibility space of the parameters
vector σ that includes all σij parameters, (i, j) ∈
U , such that (5) and (6) hold. In this case, for
episode Es in Fig. 1 the constraints change to the
following: σFrossoPhoebe ≥ 1 and σFrossoAnastasios +
σPhoebeAnastasios ≥ 1. This means that user Phoebe has
reposted s from Frosso with probability σFrossoPhoebe = 1
and that the probabilities of Anastasios reposting it from
Frosso and Phoebe must sum up to a value inside the
interval ∈ [1, 2].

As a result, the parameters σij ∈ [0, 1] are the problem
unknowns that replace the Xij(s) ∈ {0, 1} for all episodes
where an action from user i precedes an action from j.
For the whole trace E , we will get a set of constraints
C = {c1, c2, ..., c(T-S)}, where, each element ck ∈ C, 1 ≤ k ≤
(T-S), corresponds to the constraint of a (rs, j) tuple, where
rs ∈ Es and user j ∈ Es\{rs}, and is defined by (5)-(6). By
imposing this set of constraints on the parameters σij , we have
drastically reduced the number of our problem’s unknowns to
the number of possible (i, j) pairs from the users set U , i.e.,
we now have N(N− 1) unknowns.

2) Removing redundant constraints: We notice that given a
trace, some constraints become redundant and can be removed
according to the following rules:
• If all parameters σij that are included in a constraint ck ∈
C, are also included in a different constraint cw ∈ C, then
cw is removed from C.

• In (5), we observe that the first constraint of each episode
includes only one variable, which is the σij between the
first user i = rs and the second user j in the episode.
Therefore, given also that σij ∈ [0, 1], all parameters
between the first and the second user of each episode be-
come σij = 1. As a result, the first constraint per episode
is removed, since the solution for these parameters has
already been found.

Note that for Mij = 0, σij = 0. Generally, the exact number
of constraints by which our problem will be reduced depends
on the characteristics of each trace.

V. PROBLEM MODELING AND LEARNING METHOD

As mentioned in the introduction, we develop a non-trivial
modification of Newman’s EM algorithm proposed in [1] that
was designed for network inference given erroneous data. In
our case, our data is not erroneous, but rather incomplete; how-
ever, we take advantage of Newman’s probabilistic modeling
and we adapt its parameters and the EM equations to our case.

A. Parameters

Firstly, in a similar fashion to Newman [1], we assume
that the relationship between the underlying network G and
the trace can be expressed in the form of a probability
function P(data|A, θ), which is the probability of generating
the particular trace P , given the adjacency matrix A and a set
of additional model parameters, denoted by θ. The parameters
θ, added to cover a larger range of possibilities for the type
of graph and the way the data is generated, are the following:

1) To model our uncertainty about the structure of the
graph G, we assume a uniform prior probability ρ of the
existence of an edge in any position between any pair
of nodes, i.e. G has been drawn under the Erdős–Rényi
model with parameter ρ.

2) The values σij , which is the fixed probability that j
shares content from i.

3) The true-positive utilization rate α: the probability of
post propagation through existing edges of the underly-
ing network G.

4) The false-positive utilization rate β: the probability
of post propagation through non-existing edges of the
underlying network G.

We see that α and β are global parameters, conditioned on the
existence or not of an edge in the ground truth network G.

B. Learning Method

To find the most probable value of the parameters θ given
the observed data and infer a graph with maximum likelihood,
we will develop an application of Expectation-Maximization
(EM): an iterative algorithm designed to find the maximum a
posteriori (MAP) estimates of parameters in statistical models
that depend on unobserved latent variables. Each EM iteration
will alternate between two steps: i) an expectation (E) step,
which creates the expectation of the log-likelihood using the
current estimate for the parameters θ; and ii) a maximization
(M) step, which finds the parameters that maximize the ex-
pected log-likelihood of the E-step. The estimated parameters
are then used in the next E-step and so on until convergence
is reached.

We begin in the same way as Newman [1] and we apply
the Bayes’ rule:

P(A, θ|data) =
P(data|A, θ)P(A|θ)P(θ)

P(data)
. (7)

The probability that we get the specific set of reposts,
given A and the parameters θ ={α, β, ρ,σ}, differs here
from Newman since we have introduced the hidden number of
interactions between users, Yij . Given the ordered nodes of an
episode, each repost path is chosen independently per episode.
In addition, we assumed as prior knowledge that between any
two nodes in A an edge has been drawn with probability ρ.
Therefore we get:

P(data|A, θ)P(A|θ) =
∏
i 6=j

[
αYij (1− α)

Mij−Yijρ
]Aij

×
[
βYij (1− β)

Mij−Yij (1− ρ)
]1−Aij

. (8)

Given this type of modeling, when Aij = 1, the Yij out
of the Mij experiments are successful, each with probability
α. When Aij = 0, the Yij out of Mij experiments are
successful, each with probability β. For the whole set of
parameters θ, we assume a uniform prior probability P(θ).
If we sum (7) over all possible networks A, we find that
P(θ|data) =

∑
A P(A, θ|data). Then, as suggested by Newman

[1], we can apply the well-known Jensen’s inequality on the
log of P(θ|data):

log P(θ|data) = log
∑

A

P(A, θ|data) ≥
∑

A

q(A) log
P(A, θ|data)

q(A)

(9)
where q(A) is any probability distribution over networks
A satisfying

∑
A q(A) = 1. We also define the posterior

probability of an edge existing between i and j by Qij =
P(Aij = 1|data, θ) =

∑
A q(A)Aij .

For the E-step, we modify the Newman algorithm by taking
the expectation over the set of random variables Yij at both
sides of (9):

E[log P(θ|data)] ≥ E[
∑

A

q(A) log
P(A, θ|data)

q(A)
]

=
∑

A

q(A)
(
E[log P(A, θ|data)]− log q(A)

)
. (10)

To find E[log P(A, θ|data)], we replace (8) into (7). Setting
Γ = P(θ)/P(data), the expectation of the log of (7) becomes:

E[log P(A, θ|data)] = logΓ +
∑
i 6=j

[
Aij

(
log ρ+ E[Yij] logα+

+ (Mij − E[Yij]) log (1− α)
)

+ (1−Aij)
(

log(1− ρ)+

+ E[Yij] log β + (Mij − E[Yij]) log (1− β)
)]
. (11)

Then, by replacing (4) into (11), and then (11) into (10), we
get:

E[log P(θ|data)] ≥
∑

A

q(A) log
Dij

q(A)
(12)

where, Dij = Γ
∏
i6=j

[
ραMijσij (1− α)

Mij(1−σij)
]Aij

×
[
(1− ρ)βMijσij (1− β)

Mij(1−σij)
]1−Aij

. (13)

For the M-step of the EM algorithm, the function that we
want to maximize is E[log P(θ|data)]. To do so, we need
to find the unknown values, q(A) and θ ={α, β, ρ,σ}, that
maximize the expectation on the left-hand side of (12), under
the feasibility constraints on the parameters set θ. From these,
only the σij have an important constraint set, specified in (5)
and (6).

C. Solution

1) With respect to q(A): We notice that the choice of q(A)
that achieves equality (i.e. maximizes the right-hand side) in
(12) is:

q(A) =
Dij∑
A Dij

. (14)

From (14), in a similar fashion to Newman’s method [Eq. (13),
20], and because Γ cancels out, we get:

q(A) =
∏
i6=j

Q
Aij

ij (1−Qij)1−Aij (15)

where Qij is the posterior probability that there exists an edge
between i and j:

Qij =
ραMijσij (1− α)Mij(1−σij)

ραMijσij (1− α)Mij(1−σij) + (1− ρ)βMijσij (1− β)Mij(1−σij)
.

(16)
The expression here is also different from Newman, since in
the exponents we get the expected number of events (using
Mijσij) instead of the number of times j reposts from origin
i directly (that is provided directly by the data). Notice
also that for Mij = 0, Qij becomes equal to the prior
probability ρ. Moreover, from (14) we observe that q(A) is
the posterior probability distribution over all possible networks
A, P(A, θ|data) when Yij is replaced by its expected value
Mijσij .

2) With respect to σij: Our goal now is to find the parame-
ters θ that maximize the right-hand size of (12), given the max-
imising distribution for q(A) in (14), hence given the values of
Qij in (15). If we take into account that Qij =

∑
A q(A)Aij

and also that
∑

A q(A) = 1, by rearranging the right-hand side
of (12), the problem becomes equivalent to maximizing:

∑
A

q(A)
∑
i 6=j

σijMij

(
Aij log

α

1− α
+ (1−Aij) log

β

1− β

)
=
∑
i 6=j

σijMij

(
Qij log

α

1− α
+ (1−Qij) log

β

1− β

)
.

(17)

Finally, if σ is a vector of size L that includes all σij instances,
we end up with the following linear optimization problem:

max
σ

∑
i 6=j

σij(Wij − λ) (18)

s.t. σ ∈ Fσ

where Wij = Mij

(
Qij log

α

1− α
+ (1−Qij) log

β

1− β

)
and λ > 0 some given penalty for regularisation. (19)

Our goal is to infer a graph that is feasible and also has the
minimum possible number of edges; this is why we added
the value λ as a penalty into the maximization goal per each
iteration. Without it, all (i, j) pairs with Wij > 0 would
immediately get their σij = 1, leading to the inference of more
edges than necessary. Therefore, we choose to set λ equal to
the largest Wij value, i.e. λ = max(i,j)∈W Wij . This choice
of λ forces the optimization goal to be negative and thus, to
be guided only by the provided constraints. It is equivalent to
penalizing the total expected number of inferred edges.

3) With respect to α, β, ρ: Next, we maximize the right-
hand side of (12) in terms of parameter α by differentiating
it with respect to α and then setting it equal to zero (while
holding σij , q constant):

∑
i6=j

QijMij

(
σij
α
− 1− σij

1− α

)
= 0. (20)

After rearranging, we get:

α =

∑
i 6=jMijσijQij∑
i 6=jMijQij

. (21)

Similarly for β and ρ, we get:

β =

∑
i 6=jMijσij(1−Qij)∑
i6=jMij(1−Qij)

, (22)

ρ =
1

N(N− 1)

∑
i 6=j

Qij (23)

where N is the number of total different users in the trace.
Finally, we end up with an iterative EM algorithm that

iterates between finding an optimal value for q, i.e. a value
that allows for (12) to hold with equality (E-step), and then
holding it constant to maximize the right-hand side of (12)
(and therefore also the expectation in the left-hand side of
(12)) with respect to θ (M-step), through the updates in (18),
(19), (21), (22), (23). Our algorithm converges when the L2
norm of improvement ||Qnew − Qold|| < ε falls under some
threshold ε that we choose in advance, where Q is the matrix
containing all the Qij values.

VI. EXPERIMENTAL EVALUATION

A. Dataset
To evaluate our approach we use a real-world Twitter dataset

coming from Kaggle, referred to as Russian 1. It contains
almost 2 million tweets and retweets emitted from 181,621
users during the Russian presidential elections of 2018. Users
are anonymous and tweets are ordered in time. We choose
the first 500,000 lines of the trace. Each line is a quadruple
[PostID, TimeStamp, UserID, RePostID]. We remove all the
tweets that have not been retweeted by any users and all the
retweets for which we do not know the user who originally
posted it. In addition, we delete retweets that appear more
than once for the same user and tweet. The final statistics are
summarised in Table II.

B. Experimental Settings
1) Environment: We run the experiments on a Google

Cloud virtual instance with 16 vCPUs and 128 GB RAM.
For the solution of the optimization problem, we use PuLP 2,
an open-source linear programming library for Python.

2) Number of constraints: For a trace set of size |P| =
216, 989 the number of constraints is 198, 543. After removing
the redundant ones according to Section IV-C2, we observe
an approximately 10% percent decrease in the number of
constraints (= 170, 209). However, the level of decrease gen-
erally depends on the sparsity of the trace network itself. The
more connected the initial network, the higher the decrease
we observe.

3) Initialization and convergence rule: Parameters α, β and
r are initialized randomly. The threshold ε of our algorithm’s
convergence criterion on the L2 norm ||Qnew −Qold|| < ε is
set equal to ε = 0.001.

1https://www.kaggle.com/borisch/russian-election-2018-twitter
2https://pypi.org/project/PuLP/

TABLE II
BASIC STATISTICS ON RUSSIAN AFTER PRE-PROCESSING

Russian
Time window 20 days
Trace size |P| 216,989
#original tweets 14,781
#retweets 202,208
#users 42,011
% users with #tweets >0 13.00
% users with #retweets >0 94.30

Fig. 3: Constrained-EM results.

VII. RESULTS AND COMPARISON

Our algorithm Constrained-EM takes 109 iterations and
approximately 60 hours to converge. The converged parame-
ters of our method, are α∗ = 0.9932, β∗ = 0.0001, r∗ =
0.0034. This means that there is an approximately 99%
probability that a post propagated through an edge present
in the inferred network G. The small value of β suggests that
there are very few false-positive utilized edges: a post from
the trace propagates through an edge where none exists around
0.001% of the time.

In Fig. 3 (left), we show the final values of Qij in relation
to the number of times Mij that each (i, j) edge is observed
in the trace. As we can see, when Mij is relatively small,
Qij alternates between the whole range of [0, 1]. As Mij

becomes larger, the Qij is either 0 or 1 and finally, for the
larger values of Mij , the value of Qij stabilizes to 1. This
could be attributed to the fact that the more times an edge
is observed in a trace, the more certain we become about
the existence of the edge; equivalently the more times a user
retweets after some other user, the more certain we become
about the existence of a friendship between them. Moreover,
the different Qij results for the same Mij values depict the
important role the constraints play in the inference process.
Regarding the σij values, we observe in Fig. 3 (right) that for
σij > 0.5, Qij is almost 1 and for σij < 0.5, Qij becomes
0. For σij = 0.5, Qij alternates between values in [0.1, 1].
Hence, we confirm our intuition that the probability that user
j follows i depends on the probability σij that j reposts i.

A. Comparison

To generate the hidden friendship network G inferred
by Constrained-EM, we round up the edges (i, j) with
Qij > 0.5 to 1, and the edges with Qij <= 0.5 to 0. Each
existing (i, j) edge suggests that user j follows user i. Then,
we compare Constrained-EM with the following inference
methods:

• Star: a baseline inference method that creates an edge
from the user who originally posted each tweet s in the
trace, to every other user who retweeted it.

• Chain: a baseline inference method which, for each
episode Es in the trace, creates a single long path between
the user nodes in Es according to the timestamps of their
actions: from the user who originally posted s, to the user
who retweeted s first, to the next user who retweeted s,
and so on.

• Saito et al. [8]: an EM-based algorithm that con-
siders the friendship graph as a pre-given and infers the
influence probabilities kij . For evaluation, we create a
graph by drawing an edge (i, j) whenever kij > 0.5.

• Newman [1]: the EM-based algorithm by Newman, pre-
sented in the introduction. It is not designed to con-
sider hidden paths between user tweets and retweets and
therefore infers networks that are not feasible. However,
it would be useful to observe the differences with our
method. For evaluation, we create a graph by drawing an
edge (i, j) whenever the friendship probability Qij for a
user pair (i, j) is greater than 0.5.

To evaluate each method, since the ground truth is not
available, we count how many episodes in the trace are
feasible, given the graph inferred by each method. Moreover,
we examine to what extent the properties of each graph
resemble those of a real network. Therefore, we first look
into the propagation graph inferred by each method, given
a random episode from the trace Es = {1, 2, ..., 9} (users
are anonymized by integers) and demonstrate it in Fig. 4.
Then, we compare each method on different graph statistics
(Table III). On top of that, we compare the in and out-degree
complementary cumulative distribution functions (CCDFs) of
each graph (Fig. 5). From these, we can make the following
observations for each method:

1) Star: Fig. 4 shows that the graph inferred by Star
explains the whole episode Es by connecting the author
directly to each user that retweeted it. This is repeated for
all episodes in the trace, achieving 100% feasibility, as shown
in Table III. However, the way nodes are connected is heuristic
and untrustworthy. This is also reflected in the unrealistically
high maximum out-degree of its graph (= 4, 524), compared
to the other methods.

2) Chain: Fig. 4 shows that the graph inferred by Chain
explains the whole episode Es with a 100% feasibility rate for
all episodes. Again, Chain may return a feasible graph, but
its high diameter (= 183) prevents us from choosing it as a
real-world scenario.

3) Saito et al. [8]: In Fig. 4 we observe that for
episode Es, the inferred graph explains only the retweet by user
2 (through the (1, 2) edge). For the whole trace, it explains
only 10% of it (Table III). Moreover, we observe that the
graph has no strongly connected components (#Scc in Table
III) which could also explain the small number of feasible
episodes.

4) Newman [1]: The vanilla method by Newman that does
not use any constraints, cannot explain any interaction in

(a) Constrained-EM (b) Saito et al. [8] (c) Star (d) Chain (e) Newman [1]

Fig. 4: Propagation graph inference for an episode Es = {1, 2, ..., 9} from the trace.

TABLE III
INFERRED GRAPH METRICS FOR EACH METHOD

Graph Type % Feasible Episodes #Edges Avg out-deg. Max out-deg. Max in-deg. Diameter Avg shortest path #Scc
Constrained-EM 98.90 100,073 2.38 448 133 28 5.95 17
Saito et al. [8] 10.06 20,542 0.49 21 18 88 8.78 0
Star 100.00 162,570 3.87 4,524 173 18 6.03 23
Chain 100.00 194,964 4.64 224 252 183 6.66 12
Newman [1] 0.48 21,431 0.51 59 1,481 12 4.55 8

Fig. 5: CCDF for all methods (on a log-log scale).

episode Es, as expected. For the whole trace, it explains less
than 0.50% of the episodes.

5) Constrained-EM: Fig. 4 shows that our method can
explain the whole Es, while for all episodes it achieves an
almost 99% feasibility for the given convergence rule (Table
III). The remaining 1% that is left unexplained is attributed to
the (rare) case when in an Es there exist more than two users
that have the same Mij values and thus, are not distinguished
with sufficient certainty (σij = 0.5). We underline that our
method is feasible with the least number of edges (= 100, 073)
compared to Star and Chain. Moreover, in Fig. 5, especially
in out-degree CCDF, Constrained-EM presents a close to
scale-free behavior, with both a heavy tail and an almost linear
distribution line. On top of that, the average shortest path of
our graph is close to 6. Given the well-known notion of six
degrees of separation, or equivalently, the idea that in a small-
world graph, any two pairs of nodes are separated by less
than six nodes [14], we conclude that our graph has properties
close to these of a scale-free, small-world network. Hence, we
consider it to be a trustworthy framework for feasible network
inference.

VIII. CONCLUSION AND FUTURE WORK

As demonstrated above, given a log of tweets and retweets,
our method Constrained-EM successfully infers a feasible
friendship graph that explains each tweet’s propagation from
user to user, while being economical in the number of drawn
edges. On top of that, we showed that our graph has properties
that are close to these of a scale-free, small-world network.

Therefore, Constrained-EM generates feasible graphs that
are more reasonable than simple heuristics like Star and
Chain. It is worth noting that our method could be applied on
other domains where feasibility constraints can be imposed,
such as epidemics, biology, etc. As future work, we plan
to investigate ways in which Constrained-EM can be
improved in terms of convergence speed.

REFERENCES

[1] M. E. J. Newman, “Network structure from rich but noisy data”, Nature
Physics, vol. 14, 2018, pp. 67-75.

[2] J-P. Vert and Y. Yamanishi, “Supervised graph inference”, in Pro-
ceedings of the 17th International Conference on Neural Information
Processing Systems, 2004, pp. 1433–1440.

[3] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, “Using bayesian
networks to analyze expression data”, in Journal of Computational
Biology, vol. 7, pp. 601–620, 2000.

[4] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks”, Journal of the American society for information
science and technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[5] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network”, in Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2003, pp. 137–146.

[6] M. E. J. Newman, “Clustering and preferential attachment in growing
networks”, Physical Review Letters E, vol. 64, no. 2, 2001.

[7] A. Goyal, F. Bonchi, and L. Lakshmanan, “Learning influence probabil-
ities in social networks”, in Proceedings of the 3rd ACM International
Conference on Web Search and Data Mining, 2010, pp. 241-250.

[8] K. Saito, R. Nakano, and M. Kimura, “Prediction of Information
Diffusion Probabilities for Independent Cascade Model”, in Interna-
tional Conference on Knowledge-Based and Intelligent Information and
Engineering Systems, vol. 5179, 2008, pp. 67-75.

[9] S. Bourigault, S. Lamprier, and P. Gallinari, “Representation Learning
for Information Diffusion through Social Networks: an Embedded
Cascade Model”, in International Conference on Web Search and Data
Mining, 2016, pp. 573-582.

[10] D. J. Daley and J. Gani, Epidemic Modelling: An Introduction. Cam-
bridge University Press, 1999.

[11] C. Lagnier, L. Denoyer, E. Gaussier, and P. Gallinari, “Predicting
Information Diffusion in Social Networks using Content and User’s
Profiles”, in 35th European Conference on IR Research, 2013, pp. 74-85.

[12] T. P. Peixoto, “Network reconstruction and community detection from
dynamics”, Physical Review Letters, vol. 123, no. 12, 2019.

[13] G. Gordon, “A greedoid polynomial which distinguishes rooted arbores-
cences”, in Proceedings of the American Mathematical Society, 1989.

[14] A-L. Barabási, “Network Science Book”, Center for Complex Network
Research, Northeastern University, 2014.

	I Introduction
	II Environment
	II-A Assumptions on the environment
	II-B Trace description

	III Problem formulation
	III-A Problem definition
	III-B Preliminaries
	III-C Diffusion model per episode

	IV Feasibility and constraints
	IV-A Feasibility definition
	IV-B Feasibility constraints on retweets behavior
	IV-C Diffusion probabilities
	IV-C1 Constraints on diffusion probabilities ij
	IV-C2 Removing redundant constraints

	V Problem Modeling and Learning Method
	V-A Parameters
	V-B Learning Method
	V-C Solution
	V-C1 With respect to q(A)
	V-C2 With respect to ij
	V-C3 With respect to , ,

	VI Experimental Evaluation
	VI-A Dataset
	VI-B Experimental Settings
	VI-B1 Environment
	VI-B2 Number of constraints
	VI-B3 Initialization and convergence rule

	VII Results and Comparison
	VII-A Comparison
	VII-A1 Star
	VII-A2 Chain
	VII-A3 Saito et al. b5
	VII-A4 Newman b7
	VII-A5 Constrained-EM

	VIII Conclusion and Future work
	References

