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Abstract—Who are the most important or influencing actors of
a social network? There are many ways to answer this question,
but node centrality is probably the theoretical concept that better
captures it and formalizes it. Traditional centrality measures, like
the degree, closeness or betweenness of the actors, are purely
based on topological properties of the network and that is not
enough. Nowadays social networks are much more than simple
topological structures, specially because they are very much
involved in the spreading of information and have become a
media themselves. Lately, models capturing that diffusion effect
are enriching our theoretical knowledge about them. Examples of
it are the Independent Cascade model and the Linear Threshold
model and, based on them, a new generation of centrality
measures are being proposed, e.g. the Independent Cascade Rank
and the Linear Threshold Rank (LTR) [28].

The focus of this research is on analyzing the effect of the
initial activation set in the Linear Threshold Rank (LTR). The
rank assigns to each actor the size of the set influenced by taking
as initial activation set the actor and its immediate neighborhood.
In the LTR both predecessors and successors are considered as
immediate neighbors. We propose to analyze here the effect on
the rank when the initial activation set contains only successors
(Forward LTR, FwLTR), or only predecessors (Backward LTR,
BwLTR). We perform an experimental analysis in a data set
formed by a selection of networks with a variety of parameters.
We compare our proposed measures among themselves and with
other classical measures. Our results show that LTR and BwLTR
behave quite similarly, while FwLTR is different. Furthermore
the LTR variations define measures that are different from the
other centrality measures considered in the study. To make the
comparison, we use the same parameters and statistics used
in [28] together with other taken from Social Sciences: the Gini
coefficient and a categorization analysis. This second kind of new
comparative analysis is of independent interest.

I. INTRODUCTION

Facebook, Twitter, LinkedIn, Instagram, Snapchat... In re-
cent years, social media are more and more integrated in our
daily lives. Via digital ways we are connected to the rest of
the world. We create accounts and connect to our friends or
spread our experiences, photos and opinions among followers.
Social networks can be represented as a graph with actors
as nodes and edges representing the interpersonal ties. The
massive increment of social media has allowed the emergence
of varied and complex social networks. One of the main
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questions arising is ‘Who are the most important or central
persons in the network?’.

In graph theory and network analysis, indicators of cen-
trality identify the most important vertices within a graph.
Applications include identifying the most influential person(s)
in a social network, key infrastructure nodes in the Internet
or urban networks, and super-spreaders of disease. Centrality
concepts were first developed in social network analysis, and
many of the terms used to measure centrality reflect their
sociological origin [23]. They should not be confused with
node influence metrics, which seek to quantify the influence
of every node in the network.

Centrality is one of the most studied concepts in social
network analysis. It defines the importance of a node from a
particular perspective. Furthermore, it might provide relevant
analytical information about the graph and its nodes. This
started in 1948 when Bavelas published his paper A Math-
ematical Model for Group Structures [3]. Centrality measures
determine how structurally relevant an actor is within a social
network. Traditional measures are the degree, closeness and
betweenness which are related to the topology of the graph.
Other well-known centrality measures are the Katz Rank [14]
and the PageRank [24].

Two centrality measures have been introduced in an attempt
to measure centrality with respect to influence spreading. The
Independent Cascade (IC) model is a stochastic model which
was initially proposed in the context of marketing [11]. It is
based on the assumption that whenever a node is activated,
it will do (stochastically) attempt to activate a neighbor. The
whole process ends when there are no active nodes with a
new chance to spread its influence. Based on the IC model,
the Independent Cascade Rank (ICR) centrality measure was
defined [16]. The ICR associates to each actor the normalized
size of the set that the actor can activate under the IC model.

The Linear Threshold (LT) model is a deterministic model
for influence spread based on some ideas of collective behavior
[15]. In the LT model the strength of the tie between every
pair of actors quantifies the capacity of one to influence the
other and, additionally, each actor opposes a resistance to be
influenced. A node gets influenced when their active prede-
cessors can exert enough influence to overpass its resistance.
Based on the LT model, the Linear Threshold Rank (LTR),
was introduced in [28]. The LTR for an actor i can roughly
be described as the part of the network which is influenced
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when initially only actor i and its neighbors (predecessors
and successors), the initial activation set, are spreading their
common opinion.

We analyze here the impact on the LTR of the selection of
the initial activation set. In the original paper both predecessors
and successors were included in it. However, in real social
networks the predecessors and the successors play a different
role in spread of influence processes. It seems more natural
to think that only the immediate successor of a node could be
initially influenced when measuring the influence power of the
node. Furthermore, we have the perception that a good set of
predecessors would make the role of the successors irrelevant.
Under this point of view, we consider two new centrality
measures, the Forward Linear Threshold Rank (FwLTR) and
the Backward Linear Threshold Rank (BwLTR). The initial set
is formed only by the successors of a node i in the former, and
only by its predecessors in the latter. Our aim is to asses if the
three measures are related among themselves and also, whether
the new ones are different or not from the other centrality
measures considered in the paper.

We perform experiments on our new defined centrality
measures. For those experiments, we selected data sets which
are easy to model as an influence graph, with a variety of sizes
and properties. We complement the four social networks used
in the experiments in [28] with another four social networks.
To compare the results of the different centrality measures, we
use the Kendall [17] and Spearman [30] coefficients, together
with two new methods. We use the Gini coefficient [4], [10],
which is mostly known from the field of sociology, as a mea-
sure of the inequality of populations with respect to different
criteria (e.g., wealth spread). Besides, we apply an inequality
study based on the social tables and political arithmetic of
Denis Diderot of the 18th century. In this method the actors
of the network are divided in three categories based on the
outcome of a centrality measure. We observe the migration of
nodes across categories when switching to another underlying
centrality measure as an additional parameter that might shed
light on the intrinsic differences among measures.

Our results show that the FwLTR is in general different
from the BwLTR. They only behave almost identical in the
almost symmetric network (the Caida network) considered
in our data set. On the other hand the BwLTR appears to be
closely related to the LTR.

The paper is organized as follows. In Section II, we intro-
duce the background on social networks and influence spread
together with the definitions of the already known centrality
measures. The definition of the LTR and the new variants
FwLTR and BwLTR is given in Section II. In Section IV,
we describe the social networks used in this study. Details
and results of the experiments, together with the parameters
of the comparative analysis, are given in Section V. The paper
ends with conclusions and a discussion about further research
in Section VI.

II. CENTRALITY MEASURES

We introduce some known centrality measures that we will
use later to compare our new measures. The reader is referred
to [12] for an overview on these and other common centrality
measures. In all what follows, we consider a social network
as a directed graph, whose nodes are the actors of the network
and whose arcs represent the interpersonal ties among these
actors. Thus, we represent a social network as a digraph
G = (V,E), where V is the set of actors or individuals and
E is the set of edges of G. As we will see, sometimes we
require a weighted digraph (G,w, θ), where G is a graph and
w : E → N and θ : V → N are weight functions which
assigns a non negative weights to every edge and vertex.
For a vertex u ∈ V , the output neighborhood is defined
N+(u) = {v | (u, v) ∈ E}, the input neighborhood as
N−(u) = {(v | (v, u) ∈ E}, and the total neighborhood as the
union of both, i.e., N(u) = N+(u) ∪ N−(u). Consequently,
the outdegree δ+(u) = |N+(u)| refers to the cardinality of
the output neighborhood, the indegree δ−(u) = |N−(u)|
quantifies the cardinality of the input neighborhood and there-
fore, δ(u) = |N(u)| denotes the degree. Given two vertices
u, v ∈ V , d(u, v) denotes the total weight of the lightest
path between nodes u and v when considering only its edge
weights. In social networks, d(u, v) is also often referred to
as the distance between the nodes. We use `(u, v) to refer to
the shortest path between u and v in the classical sense, i.e.,
in terms of the number of edges. Note that d(u, v) = `(u, v)
when ∀(i, j) ∈ E : wij = 1.

Centrality measures can be classified in many ways de-
pending on how the concept of centrality is interpreted and
computed. In this work, we distinguish two categories depend-
ing on whether what strongly influences the calculation of the
measure is the topology of the graph, or rather the power to
influence other actors.

A. Topology-based measures

The oldest and simplest centrality measure is the degree
of a node u ∈ V , which is defined as the number of links
incident upon it. The degree can be interpreted in terms of
the immediate risk of a node to be captured by whatever is
flowing through the network (e.g. virus, information).

The closeness of a node u ∈ V is the reciprocal of the sum
of the shortest path distances to all other nodes. The closeness
takes a measurement based on the distance to all other nodes.
Thus, the more central a node is, the closer it is to all other
nodes.

The betweenness of a node u ∈ V is the sum of the fraction
of all-pairs shortest paths that pass through u. Betweenness
centrality quantifies the number of times a node acts as a
bridge along the shortest path between two other nodes. Thus,
a node is more important if it enables short links to other actors
in the network. Indirectly, vertices that have a high probability
to occur on a randomly chosen shortest path between two
randomly chosen vertices have a high betweenness. From
a reciprocal point of view, it is somehow measuring how
many shortest paths would be broken (and thus, how much



disconnected the network would be) if the would is removed.
It was introduced as a measure for quantifying the control of
a human on the communication between other humans in a
social network. [8]

These three measures are formally defined respectively as
follows:

Deg(u) = δ(u), and Clsn(u) =
n− 1∑

v∈V \{u} d(u, v)
,

and Btwn(u) =
∑
s,t∈V

σ(s, t|u)

σ(s, t)
,

where σ(s, t) is the number of shortest (s, t)-paths and
σ(s, t|u) is the number of those paths passing through some
node u.

The importance of a node can also derive from properties
other than those merely coming from the graph structure.
Additional relevance criteria can be introduce in order to
provide the property of centrality with different meanings
and applications. Within this category, we consider two well-
known centrality measures: the Katz centrality and the PageR-
ank.

The Katz centrality [14] is a generalization of degree
centrality and it can also be viewed as a variant of eigenvector
centrality. While degree centrality measures the number of
direct neighbors, the Katz centrality measures the number of
all nodes that can be connected through a path, while the
contributions of distant nodes are penalized. It is based on the
idea that an actor is important if it is linked to other important
actors or if it is highly linked. The Katz centrality of an actor
u ∈ V is given by

Ktz(u) = α
∑
v∈V

(av,u) Ktz(v) + β,

where A is the adjacency matrix representation of the graph
(i.e., elements (ai,j) = 1 if (i, j) ∈ E, and (ai,j) = 0
otherwise), β is a constant which is independent of the network
structure and α ∈ [0, λ−1max] is the damping factor, being λmax

the largest eigenvalue of A.
Another well-known centrality measure is called PageR-

ank [24]. PageRank is an algorithm used by Google Search to
rank websites in their search engine results. PageRank works
by counting the number and quality of links to a page to
determine a rough estimate of how important the website is.
The underlying assumption is that more important websites
are likely to receive more links from other websites. Given a
damping factor α ∈ (0, 1], the PageRank of an actor u ∈ V ,
is given by

PgR(u) = (1− α) + α
∑
v∈V

(av,u) PgR(v)

δ+(v)
.

B. Influence-based measures

A criteria to consider the importance of a node can also
derive from its power to influence the other nodes in the
network. The spread of influence is used to model the ways in
which actors influence each other through their interactions.

Given an influence spread (or diffusion) model describing
how an element (e.g. virus, information) spreads through
the network and how the nodes and edges of the network
participate on that spreading process, the centrality of a node
can be determined in order to quantify how important its
participation is in the whole spreading procedure. In the initial
state, a few nodes X ⊆ V are activated (namely, the seeds
or core), which represent the source of the diffusion. Other
nodes will be activated as a response of the influence of their
neighbors. Once activated, a node will never be deactivated
again. As this procedure evolves in time, it reaches the moment
when no new nodes are activated anymore. Conditions other
than the natural stagnation of the process (e.g., a fixed certain
amount of steps or time, reaching a certain node) can also
be used to stop the process. In any case, once the spreading
process is finished we can talk about the influence spread of
the initial core X , i.e., the final amount of nodes influenced
by X over time. A key point of a diffusion model will be to
stablish the necessary conditions for that influence to activate
the nodes. Perhaps the two most prevalent diffusion models
in computer science are the Independent Cascade model [11]
and the Linear Threshold model [15] (see also [29]).

The IC model is a stochastic model which was initially
proposed in the context of marketing. It is based on the
assumption that whenever a node is activated, it will do
(stochastically) attempt to activate each actor he targets. Given
an activated node i ∈ V , any neighbor j ∈ N+(i) will be
activated with a probability pij . When a new actor is activated,
the process is repeated for this actor. The whole process ends
when there are no active nodes with a new chance to spread
its influence.

Given an initial core X ⊆ V and a probability p ∈ [0, 1]
(where ∀(i, j) ∈ E : pij = p), the influence spread of X
is denoted by F ′(X, p). Based on the Independent Cascade
model, in [16] the Independent Cascade Rank of a node u ∈ V
is then defined as

ICR(u, p) =
|F ′(u, p)|

maxv∈V {|F ′(v, p)|}
.

In contrast, the Linear Threshold (LT) model is a determin-
istic model for influence spread, where the strength of the tie
between every pair of actors quantifies the capacity of one
to influence the other and, additionally, each actor opposes a
resistance to be influenced.

To represent the strength of the interpersonal tie between
each par of connected actors, the edges of the graph represent-
ing the social network have associated weights. For a given
edge (i, j) ∈ E with weight wij > 0, the interpretation is
that actor i can influence j with power wij . Thus, the greater
the weight wij , the stronger the power of i ∈ V to influence
j ∈ V .1 Every node u ∈ V is also considered to have a weight

1A variation of the LT model was recently introduced [33], which con-
sidered both positive and negative relationships within the network. Those
networks are commonly named friend/foe networks, where positive weights
correspond to friend relationships and negative weights correspond to a
distrust ones. In this paper we only consider networks with positive edge
weights.



θu ≥ 0, which represents its resistance to be influenced. The
greater the weight of a node θu, the greater the resistance of the
node to be influenced. In practical terms, this will mean that
it will require the amount of influence coming from its input
neighbors to be proportional to its resistance weight in order to
be activated. For this reason, θu is also sometimes referred to
as the threshold of node u ∈ V . We name a network (G,w, θ)
with such characteristics an influence graph.

Based on the LT model, the Linear Threshold Rank was
recently proposed in [28] as a new centrality measure. This
new measure showed to be useful for ranking actors and
networks in a distinguishable way. In this paper, we propose
new centrality measures related to the Linear Threshold Rank,
with special focus on the direction in which the diffusion takes
place. For readability and completeness reasons, we postpone
the mathematical definition of the Linear Threshold Rank to
the next section.

III. THE FORWARD AND THE BACKWARD LINEAR
THRESHOLD RANKS

Given an influence graph (G,w, θ) and an non-empty core
X ⊆ V , we consider the following iterative activation process:
Let Ft(X) ⊆ V be the set of nodes activated at some iteration
t. Initially, at step t = 0, only the nodes in X are activated,
that is F0(X) = X . At iteration t + 1 a node i ∈ V will be
activated if, and only if,

∑
j∈Ft(X) wji ≥ θi. In other words,

a node i is activated when the weights’ sum of the activated
nodes connected to i is greater or equal to its resistance to be
influenced. The value t denotes the current spread level of X .
The process stops when no additional activation occurs (usual
stagnation condition). Therefore, the spread of influence of X
is defined as

F (X) = Fk(X), where

k = min{t ∈ N|Ft(X) = Ft+1(X)} ≤ n.

The linear threshold rank of a node u ∈ V is computed as

LTR(u) =
|F ({u} ∪N(u)|

n
.

We introduce here two directed counterparts that take into
account the direction of the spread: the Forward Linear
Threshold Rank (FwLTR) and the Backward Linear Threshold
Rank (BwLTR), which are defined as follows. For u ∈ V ,

FwLTR(u) =
|F ({u} ∪N+(u))|

n
,

BwLTR(u) =
|F ({u} ∪N−(u))|

n
.

Observe that the only difference among the three ranks is
in the initial core. As F (X) can be computed in polynomial
time for any X ⊆ V , LTR(u) and FwLTR(u) and BwLTR(u)
can also be computed in polynomial time [28].

IV. THE DATA SETS

The experiments in [28], where the LTR centrality measure
was proposed, are run on four data sets, namely: the ArXiv
network [21], the dining-table partners network [7], the Dol-
phin social network, the Higgs network [5]. In addition, we
decided to expand the benchmark for out experiments with
four additional data sets: the Caida network [20], the Epinions
network [26], the Human Brain network [31], [32], and the
Wikipedia network [18], [19]. In this paper we focus only on
directed networks, as for undirected graphs the three measures
have the same initial set of activated nodes.

We selected data sets which are easy to model as
social networks for influence spread with a variety of
sizes and properties. As in [28], large networks are taken
from the SNAP’s Stanford Large Network Dataset Col-
lection. See Appendix www.cs.upc.edu/∼mjblesa/ASONAM.
2021/FB-LTR-appendix.pdf for a brief description of them.

In Table I the characteristics of these datasets are summa-
rized. In their description, besides number of nodes and edges,
we use the following structural parameters. The diameter of
the graph which is the longest shortest path between any
pair of nodes. Some of the data sets have an infinitely large
diameter due to the fact that these graphs are not (strongly)
connected. The Average Clustering Coefficient (ACC) is com-
puted by the average of the local clustering coefficients of all
nodes, where a local clustering coefficient is the proportion of
links between the vertices within its neighborhood divided by
the number of links that could possibly exist between them.
The k-core of a graph is the maximal subgraph such that every
vertex has degree at least k. The main core (MC) is the core
with the largest degree.

In order to get an appropriate representation of each of
these social networks as an influence graph (G,w, θ), we
need G to be a directed graph representing the relations of
the network and we need to associate weight functions w
and θ to the components of G. The undirected networks
are understood as symmetric directed graphs. Thus, every
undirected relation a, b between actors a and b is translated
into an arc in both directions, i.e., (a, b) and (b, a). For the
unweighted networks, all edges e ∈ E were assigned weight
we = 1. Due to the nature of the Caida network, a different
mapping is considered for it. Its influence graph is constructed
considering the following rules: An arc (a, b) with wab = 1 is
placed whenever a is provider of b, or b is customer of a. When
a and b are peers, we place both arcs (a, b) and (b, a) with
wab = wba = 1. When two actors a and b are siblings, arcs
are also placed in both directions but with wab = wba = 2.

None of the data sets have weights associated to the actors,
therefore a node-weight function θ also needs to be defined.
We consider θ as in [28]: for each actor u ∈ V , we set θ(u) =
bw̄u/2c+1, where w̄u =

∑
v∈N−(u) wvu. Thus, the activation

value of an actor follows the simple majority rule.

V. EXPERIMENTS AND RESULTS

In order to perform a pairwise comparison among the
new and the already known centrality measures, we run

http://snap.stanford.edu/data/as-caida.html
http://snap.stanford.edu/data/soc-Epinions1.html
http://snap.stanford.edu/data/soc-Epinions1.html
http://pitgroup.org/connectome/
http://snap.stanford.edu/data/wiki-Vote.html
www.cs.upc.edu/~mjblesa/ASONAM.2021/FB-LTR-appendix.pdf
www.cs.upc.edu/~mjblesa/ASONAM.2021/FB-LTR-appendix.pdf


Table I: Summary of the data sets. ACC = Average Clustering Coefficient, MC = size of the main core. When the diameter is
∞, the diameter of the biggest connected component is provided. The symbol † states for the new data sets.

Data set n m Directed? Edge-weighted? ACC Diameter MC
Caida† 26475 106762 yes yes 0.2082 17 50
Dining-table 26 52 yes yes 0.1178 ∞ (6) 20
Epinions† 75879 508,837 yes no 0.1378 14 422
Higgs 256491 328132 yes yes 0.0156 19 10
Wikipedia† 7115 103689 yes no 0.1409 7 336

three type of experiments with different indicators: (1) using
summary statistics and rank-independent parameters, (2) using
statistical correlation by means of the Spearman and Kendall
coefficients, and (3) analysing the migration between fixed
categories.

Analogously to the experiments in [28], we compare the
results obtained by the proposed LT-based centrality measures
to those used previously, namely, Deg, Btwn, Clsn, Ktz,
PgR and ICR (see Section II). To compute the ICR, PgR
and Ktz measures, we use the same parameters as in [28]2.
The measures were programmed in C++ and often ran in
parallel. The experiments were run on the RDLAB-UPC com-
puting cluster [1], using HP ProLiant DL380p server
machines with two Intel(R) Xeon(R) E5-2660.

A. Summary statistics

For this set of experiments, the following global rank
parameters have been considered: the standard deviation, the
number of different values, and the Gini coefficient [4], [10].
The Gini coefficient of a vector x ∈ Rn is defined as:

Gini(x) =

∑n
i=1

∑n
j=1 |xi − xj |

2
∑n

i=1

∑n
j=1 xj

=

∑n
i=1

∑n
j=1 |xi − xj |

2n
∑n

i=1 xi
.

While the standard deviation is based on central tendency,
i.e. deviation from the mean, the Gini coefficient is a general
measurement of dispersion that intends to represent the in-
equality within a dataset. In contrast to the standard deviation,
the Gini coefficient is invariant to scale and bounded in [0, 1]
(the closer the value to zero, the more equal the values are).
When tested against different natural sparsity properties, the
Gini index stands out as the best to measure sparsity [6], [9],
[13], [34].

Due to space restrictions, the rank parameters for our
data sets can be consulted online We can see that the Gini
coefficients of the centrality measures are differing a lot.
We can see that the more equal ranks are Clsn and ICR,
while the most unequal one is Btwn. The measures on the
Higgs network show the highest variability with respect to
this coefficient (0.081 for ICR to over 0.99 for Btwn and
Clsn). For the undirected networks, with few exceptions,
the Gini coefficients are below 0.63, independently of the
measure. A higher variability appears on the directed networks.

2The ICR measure is computed with probability p = 0.1, and the final
rank is taken as the average over 100 executions. The PgR measure uses a
damping factor α = 0.85. The Ktz measure is used with values α = 0.1
and β = 1.0. To make sure the Katz algorithm converges, the tolerance is
reduced from the standard six significant digits to only two.

FwLTR has smallest Gini coefficient than LTR and BwLTR, in
particular for the Higgs network. Also, with the exception of
Epinions, the FwLTR assigns less different values and has
the smallest standard deviation. We can conclude that FwLTR
assigns few values in an egalitarian way. Observe also that in
Caida, FwLTR and BwLTR coincide, but they are different
from LTR, this is somehow expected as the network is almost
symmetric.

For most of the networks, the number of different rank
values obtained is clearly largest for Btwn, Clsn, ICR and
PgR, than for the other measures.

B. Correlation analysis

Let x and y be two lists of n users with xi and yi the
rankings of the user i in lists x resp. y. The Spearman’s
rank correlation coefficient (ρ) [30] and the Kendall’s rank
correlation coefficient (τ ) [17] are defined as follows:

ρ = 1−
6
∑n

i=1(xi − yi)2

n(n2 − 1))
and τ =

nc − nd
0.5n(n− 1)

,

where nc is the number of concordant pairs (i, j) (i.e. such
that either xi > xj and yi > yj , or xi < xj and yi < yj) and
nd is the number of discordant pairs, i.e. those that are not
concordant. The values of τ and ρ are in the interval [−1, 1],
where 1 means that both lists x and y have the same ranking
and −1 means the rankings are the inverses of each other.
Where the Spearman coefficient also depends on the relative
distances between the rankings, the Kendall coefficient only
considers the order of the rankings.

It is common to use statistic correlation for comparing the
results of two centrality measures, being the Spearman’s ρ
and the Kendall’s τ the most used coefficients. Results with
a small Kendall and Spearman coefficient indicate that the
output of the rankings differ. When both coefficients are high,
this indicates that the rankings are similar.

Table II draws these coefficients for the networks considered
in this article and compares all pairs of centrality measures. We
can observe that most of the times the Spearman and Kendall
coefficient are very similar. A reason for that might be that the
relative distances change without changing the order. When
performing a test to check whether two ranks are significantly
different we took care also of the significance of the test. The
results in color red correspond to test having a p-value greater
than 0.05, indicating that there are not significative difference.

We can see a higher correlation among LTR and BwLTR
in all the considered networks except in Higgs. We can also
see a good level of correlation among BwLTR and Clsn (the

https://www.cs.upc.edu/~mjblesa/ASONAM.2021/FB-LTR-appendix.pdf


effect is even stronger in Wikipedia). The FwLTR seems to
be closer to ICR, although the correlation indices are not so
high as those among BwLTR and Clsn. Finally, let us observe
that in the Caida network the correlation among the measures
is different, but we can observe a perfect correlation among
FwLTR and BwLTR. We suspect that this might be due to the
symmetry of the Caida network. Observe also that in Caida
the correlation index with LTR is still high.

Table II: Correlation coefficients for the centrality measures on
the networks Caida, Epinions, Higgs and Wikipedia.
The Kendall coefficients (τ) are shown in the upper triangular
part. The Spearman coefficients (ρ) in the lower triangular
part. Results with a p-value bigger than 0.05 are shown in
red. For the Katz measure, a − indicates non-convergence.

Caida
H

HHHρ
τ BwLTR FwLTR LTR Btwn Clsn Deg ICR Ktz PgR

BwLTR 1 1 0.896 0.231 0.673 0.364 0.538 − 0.253
FwLTR 1 1 0.896 0.231 0.673 0.364 0.538 − 0.253
LTR 0.982 0.982 1 0.227 0.724 0.362 0.566 − 0.226
Btwn 0.289 0.289 0.284 1 0.232 0.719 0.338 − 0.652
Clsn 0.862 0.862 0.902 0.299 1 0.399 0.625 − 0.193
Deg 0.470 0.470 0.469 0.803 0.510 1 0.555 − 0.812
ICR 0.735 0.735 0.765 0.445 0.816 0.683 1 − 0.326
Ktz − − − − − − − − −
PgR 0.376 0.376 0.339 0.808 0.308 0.926 0.491 − 1

Epinions
H

HHHρ
τ BwLTR FwLTR LTR Btwn Clsn Deg ICR Ktz PgR

BwLTR 1 0.251 0.779 0.525 0.776 0.550 0.165 − 0.595
FwLTR 0.323 1 0.511 0.573 0.250 0.638 0.744 − 0.272
LTR 0.884 0.586 1 0.542 0.651 0.636 0.357 − 0.490
Btwn 0.637 0.691 0.666 1 0.532 0.731 0.530 − 0.615
Clsn 0.916 0.350 0.810 0.653 1 0.555 0.207 − 0.619
Deg 0.659 0.755 0.749 0.834 0.679 1 0.584 − 0.632
ICR 0.240 0.883 0.472 0.661 0.310 0.712 1 − 0.211
Ktz − − − − − − − − −
PgR 0.766 0.389 0.647 0.733 0.798 0.767 0.306 − 1

Higgs
H

HHHρ
τ BwLTR FwLTR LTR Btwn Clsn Deg ICR Ktz PgR

BwLTR 1 -0.270 0.380 0.428 0.803 0.374 -0.214 0.805 0.788
FwLTR -0.295 1 0.536 0.183 -0.390 0.499 0.660 -0.390 -0.391
LTR 0.402 0.544 1 0.384 0.381 0.923 0.324 0.383 0.370
Btwn 0.445 0.195 0.405 1 0.519 0.407 0.139 0.518 0.508
Clsn 0.818 -0.423 0.405 0.535 1 0.379 -0.286 0.996 0.977
Deg 0.395 0.513 0.936 0.425 0.399 1 0.332 0.381 0.372
ICR -0.264 0.764 0.382 0.168 -0.350 0.391 1 -0.286 -0.287
Ktz 0.818 -0.423 0.406 0.535 1.000 0.401 -0.351 1 0.979
PgR 0.816 -0.428 0.397 0.528 0.998 0.395 -0.355 0.998 1

Wikipedia
HH

HHρ
τ BwLTR FwLTR LTR Btwn Clsn Deg ICR Ktz PgR

BwLTR 1 -0.004 0.640 0.674 0.936 0.628 -0.016 − 0.937
FwLTR 0.012 1 0.503 0.414 -0.016 0.508 0.830 − -0.013
LTR 0.729 0.531 1 0.531 0.613 0.983 0.390 − 0.615
Btwn 0.735 0.482 0.615 1 0.659 0.530 0.372 − 0.676
Clsn 0.988 -0.006 0.720 0.725 1 0.604 -0.026 − 0.924
Deg 0.718 0.541 0.998 0.612 0.709 1 0.397 − 0.607
ICR -0.004 0.932 0.469 0.457 -0.020 0.479 1 − -0.023
Ktz − − − − − − − − −
PgR 0.988 -0.001 0.721 0.734 0.990 0.711 -0.015 − 1

C. Categorization analysis

In order to further deepen into the comparative analysis
of the measures, we apply a new study of inequality to the
actors’ rankings once the different centrality measures are
applied. This time the analysis is done by means of catego-
rization, which is a common analysis method in sociology
(see, e.g. [25]). For each centrality measure and network, we
classify the actors in three position categories. For doing so we
first sort the actors in decreasing order of rank. Then, following
the terminology used in sociology, we define three categories:

Top (high class), which consists of the top 10 percent actors,
Low (low class) containing the 50 percent least performing
actors, and Mid (middle class) that contains the 40 percent of
actors in between.

Some actors of a given network might fall into different
categories when ranked according to different centrality mea-
sures. We will focus our attention on what and how migrations
occur when changing the underlying centrality measure. This
provides and additional insight on the nature of the differences.
We depict those migrations by showing one category, in terms
of percentages of the categories of the other measures, it is
composed of. Those percentages provide the migration levels
from the three categories in one measure to the considered
category in the target measure. A drawing of all the migrations
from BwLTR, FwLTR, and LTR to and from the remaining
measures can be found online.

We can observe that the majority of migrations occur
between adjacent classes and in percentages that are not
very high. The differences in percentages when the Top class
is involved, with respect to those of Mid and Low, follow
naturally form the big difference in their sizes. The percentages
in migrations among the Mid and Low categories are more
similar, of course the corresponding sizes are also not far away.
Direct migrations between categories Top and Low, or vice-
versa, with high percentages do not appear in many networks.
For Epinions almost all the migrations are below 35%.
The highest percentages are among classes Mid and Low and
migrations from Low to Top pretty low (see Figure 1).

Furthermore, migrations with a high percentage of actors
only occur in very few networks and among few measures.
We observe this behavior is Higgs (one of the largest in
the collection). The extreme behavior apppears only when
going from BwLTR to FwLTR, and from BwLTR to ICR
and in smaller percentages (58% and 65%). The fact that the
inequality coefficient gini for FwLTR and ICR is lower than
that of BwLTR, and that both ICR and FwLTR have little
correlation with BwLTR in this network could explain this big
migration of actors from the superior to the inferior category.
Also, we can observe that the lower is the Gini coefficient (the
gini of ICR is very close to 0) more actors seem to move
among extreme categories.

VI. CONCLUSIONS AND FUTURE WORK

The starting point of this paper was the Linear Threshold
Rank (LTR) introduced in [28]. This is a measure to determine
the importance of nodes within a social network based on the
Linear Threshold model. To give a better representation of
social networks, we propose to use the definition with only
successors or only predecessors in the initial activation set, in-
stead of considering both (as done in [28]). This decision was
also reinforced by the fact that we observed that considering
both sets of neighbours might often result in improper height
of the rankings. Our results show that the initial activation of a
node and its predecessors (BwLTR), provides a ranking similar
to the one produced when activating also its successors (LTR).
This suggests that the predecessors are somehow shadowing

https://www.cs.upc.edu/~mjblesa/ASONAM.2021/FB-LTR-appendix.pdf
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Figure 1: Epinions network: Migrations for the position classification for the FwLTR.

the real influence of the node, which is better captured by the
FwLTR.

We decided to contrast the different centrality measures
among them. For that aim, we selected a group of eight
networks as dataset for our experiments. Those networks
represent different types of social networks with different
characteristics. We applied different methods to analyse the
results of the different centrality measures on the dataset. In
addition to the classical statistical measures, we applied two
new methods coming from other areas of science. First we
applied the Gini coefficient, which is mostly known from
the field of sociology as a measure of the inequality among
populations. We saw that it is hard to directly use the Gini
coefficient of a centrality measure as an indicator of the social
network, since those values are varying per centrality measure
and no fixed trends could be found. Second, we applied an
inequality study based on the social tables and political arith-
metic of Denis Diderot of the 18th century. For the application
of this method, we divided the actors three categories based
on the outcome of a centrality measure. That provides us with
a 3-stages classification of the actors according to their power
of influence. We payed special attention to the migration of
nodes within categories when switching to another underlying
centrality measure. This method seems to be a promising tool
in the analysis of different centrality measures since, e.g., it
provides us with information on how robust is the category
of top-influencing actors when considering different centrality
measures.

For further research, it sounds specially interesting to ob-
serve centrality measures for influence graphs where a positive
and a negative seed try to spread their (opposite) influence.
This can model for example political campaigns where two

candidates try to reach as many votes as possible, a referendum
or another yes or no voting. How can the LTR be defined for
such models, how to choose the parameters? Probably initial
activation sets for both opponents need to be defined. The
idea of spreading opposing opinions can even be generalized
to k parties trying to spread their different opinions. How can
such influence spread be modelled? And how can we adapt the
centrality measures to this model? Here we come close to the
field of game theory, where influence games are defined [22].
A coalition of actors X ⊆ N is defined as a winning coalition
if this coalition activates more actors than a given threshold (so
probably X could be used as the initial activation set). More
types of influence games can be developed and investigated.
Besides trust relationships in social networks, there exist also
models where distrust relationships are included. Another idea
for further research is to investigate how to model them and
how do centrality measure behave on them.

One of the drawbacks of our study is that we could not find
datasets where thresholds were included. In fact, we could not
find data reporting the process of activation in a network. For
research on influence spread it would be very useful to be
able to have real datasets with this kind of information. In our
experiments, we fixed the thresholds for the resistance to be
the single majority criteria. Other thresholds were considered
in [27]. It would of interest to analyze what determines the
best threshold for a network.

In the LT model, the type of information which is spread
is not taken into account. The model behaves independent of
the message which is spread. Regard for example a retweeting
Twitter network. The threshold to retweet something about a
terrorist attack nearby is probably lower than the threshold
for retweeting a message about the weather, because of the



urgency and emotional load of the information. It might be
interesting to adapt the behaviour of the influence spread
model to the type of information spread. One might also
think on extending the LT model in order to incorporate the
devaluation of the opinions over time, or enriching it with
the introduction of some adversarial element on the diffusion
process that maliciously modifies the final influence.

Finally, It might be interesting to design a model for
influence spread which is a combination of the two mostly
used models: the deterministic Linear Threshold model and
the stochastic Independent Cascade model. The idea is to
combine the best of both models. One possible way is that
each actor i is certainly activated if the incoming influence
exceeds its threshold f(i), but, when this is not the case, there
is still a probability that actor i is activated. This probability
can be made larger when the incoming influence is closer to
the threshold. The probability that an actor i is activated in
iteration t can, for example, be defined as follows:

P (i ∈ Ft(X)) = exp(−max{f(i)−
∑

j∈Ft−1(X)

wj,i, 0}/c).

where Ft(X) is the spread level of initial activation set X in
time step t, wj,i is the weight of the edge (j, i) and c is some
parameter which determines the decrease of the probability
when the incoming influence is lower than the threshold. The
larger c, the bigger the probability that an actor is activated
although the threshold is not exceeded. The idea for this
influence model is based on Simulated Annealing [2], which
belongs to a class of local search algorithms that are known as
threshold algorithms. In these algorithms parameter c is often
called a cooling parameter.

Any future work should also consider a larger dataset
for experiments, to provide us with additional information
about what centrality measure better identifies the important
spreading nodes for every type of network.
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