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Abstract—k nearest neighbor (kNN) query is an essential graph
data management tool to find relevant data entities suited to
a user-specified query node. Graph indexing methods have the
potential to achieve a quick kNN search response, the graph
indexing methods are one of the promising approaches. However,
they struggle to handle large-scale complex networks since
constructing indexes and to querying kNN nodes in the large-
scale networks are computationally expensive. In this paper, we
propose a novel graph indexing algorithm for a fast kNN query on
large networks. To overcome the aforementioned limitations, our
algorithm generates two types of indexes based on the topological
properties of complex networks. Our extensive experiments on
real-world graphs clarify that our algorithm achieves up to 18,074
times faster indexing and 146 times faster kNN query than the
state-of-the-art methods.

Index Terms—Graph query, kNN search, Indexing

I. INTRODUCTION

Given a graph G, can k nearest neighbor (kNN) nodes to
a user-specified query node be found efficiently? This work
presents a fast graph indexing algorithm to efficiently query
kNN nodes on large complex networks.

As social applications advance, complex networks (or
graphs) are becoming increasingly important to represent
complicated data [1], [2]. To handle such networks, kNN
queries [3] are essential building blocks in various applica-
tions. Given a query node in a graph, kNN query explores a set
of nodes with the top-k shortest path distances from the query.
Unlike traditional distance-based queries, kNN queries can
return a result within a short time since they do not compute
the whole of the graph. Due to this feature, kNN queries have
been employed on various social applications such as a POI
search and user recommendations.

Although kNN queries are useful in many applications, they
have a serious drawback when handling real-world complex
networks. Specifically, traditional kNN search algorithms are

computationally expensive if the given graph is large. Histor-
ically, kNN queries are applied to small graphs such as ego-
networks and road networks, which have a few thousand nodes
at most. By contrast, recent social networking applications
must handle large-scale complex networks with a few million
nodes [4]. That is, applications suffer from a long computation
time to query kNN nodes when the traditional algorithms run
queries. Thus, the algorithms fail to find kNN nodes in large-
scale real-world complex networks.

A. Existing Approaches and Challenges

Various approaches have been proposed to overcome the
expensive costs in kNN queries. Graph indexing methods are
the most successful to date [3], [5], [6]. Examples include
G-Tree [3] and ILBR [6]. To achieve a fast kNN query on
a graph, they construct an index by partitioning a graph and
pre-computing the shortest-path distances among nodes in the
graph before running a kNN query. For instance, G-Tree [3]
partitions a graph into disjoint subgraphs using Metis [7], and
it pre-computes the distances among all nodes included in
each subgraph. Similarly, ILBR selects several landmark nodes
from a graph, and constructs a Voronoi subgraph using the
landmarks. Then, it then pre-computes the distance from the
landmarks to nodes in each Voronoi subgraph. By searching
kNN nodes on the index, these methods avoid computing
unnecessary nodes and edges, achieving a fast kNN query.

Although indexing methods improve kNN query efficiency,
they cannot handle large complex networks due to two reasons.
First, indexing complex networks is expensive because they
are designed under the assumption that most networks are the
planar graph [8]. Their partitioning methods are efficient for
planar graphs such as road networks but their assumptions are
not suitable for complex networks with diverse structures [9].
Second, a long running time is necessary for a kNN query on
complex networks due to the above assumption. Regardless
of indexing, they must compute many distances for complex
networks at the querying time because the indexed subgraphs
do not include many edges in the complex networks. Thus,
a fast graph indexing algorithm for efficient kNN queries
remains elusive.
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B. Our Approaches and Contributions

Our goal is to achieve a fast indexing to efficiently find
exact kNN nodes on large complex networks. We present a
fast graph indexing method based on the well-known topo-
logical property of complex networks, called the core-tree
property [10]. Real-world complex networks are typically
composed of two parts: a core and trees. A core is a small
dense subgraph whose nodes are highly connected within
the subgraph. By contrast, a tree is a long stretched sparse
subgraph. As reported in [11], the vast majority of nodes are
included in trees, and only 0.6 – 9.3% nodes are contained in
the core for a typical complex network.

Based on the above property, our algorithm reduces the
indexing costs by separately indexing a core and trees. First,
it extracts trees from a graph, and generates a tree-index by
computing the distances between the root node to each leaf
node in a tree. It then constructs a core-index from non-tree
nodes by updating edge-weights of the graph. In the kNN
query process, our algorithm explores nodes on the core-index
by pruning unnecessary computations for trees based on the
tree-index. This approach leads to the following properties:

• Fast Indexing: Our algorithm achieves faster indexing
than the state-of-the-art methods proposed in the last few
years (Section IV-B). We experimentally confirmed that
our method outperforms state-of-the-art methods by up
to four orders of magnitude.

• Fast Querying: Our proposed method is also faster than
the state-of-the-art methods in terms of the kNN query
time (Section IV-C). We experimentally demonstrate that
it is up to 146 times faster than state-of-the-art methods.

• Correctness: Our method theoretically guarantees to find
exact kNN nodes, although it prunes unpromising nodes
using the tree-index (Theorem 1).

Our algorithm is the first solution that achieves fast indexing
and kNN queries on large complex networks. For instance, it
generates an index for a Pokec network with 1.6 million nodes
within 5 seconds, and it finds exact kNN nodes within 1 sec-
ond. Although kNN queries are useful in real-life applications,
applying them to large graphs is difficult. Our fast and exact
method will enhance many applications.

II. PROBLEM STATEMENT

Here, we briefly define the problem addressed in this paper.
Let G = (V,E,W ) be a weighted undirected graph, where
V , E, and W are sets of nodes, edges, and edge-weights,
respectively. If a graph G has an edge between nodes u, v ∈ V ,
it is denoted as e(u, v) ∈ E. For each edge e(u, v) ∈ E, an
edge-weight w(u, v) ∈W must be defined such that w(u, v) ∈
N.

The kNN query problem is defined as follows:

Definition 1 (kNN query). Given a graph G = (V,E,W ),
a query node q ∈ V , and an integer k ∈ N, kNN query is
a problem to find a set of nodes Vk such that |Vk| = k and
dist(q, u) ≤ dist(q, v), where dist(u, v) is the shortest path

Algorithm 1 INDEXING

Input: a graph G = (V,E,W );
Output: a graph index I = 〈T , C〉;

. (Step 1) Tree-indexing:
1: T← EXTRACTTREES(G) and D← ∅;
2: for each Ti ∈ T do
3: r ← root(Ti) and Di ← ∅;
4: for each v ∈ Ti do
5: Di ← Di ∪ {dist(r, v)};
6: D← D ∪Di;
7: T = (T,D);

. (Step 2) Core-indexing:
8: for each Ti ∈ T do
9: r ← root(Ti) and Vc ← (V \Ti) ∪ {r};

10: Ec = {e(u, v) ∈ E|u, v ∈ Vc} and Wc ← ∅;
11: for each e(u, v) ∈ Ec do
12: Wc ← Wc ∪ {dist(u, v)};
13: C = (Vc, Ec,Wc);
14: return I = 〈T , C〉;

distance between u and v, u = arg maxu′∈Vk
dist(q, u′), and

v = arg minv′∈V \Vk
dist(q, v′).

III. PROPOSED ALGORITHM

We present our indexing method for a fast kNN query on
large complex networks. Our indexing and kNN query algo-
rithms are introduced in Section III-A and III-B, respectively.

A. Indexing Construction

Based on the core-tree property, our algorithm generates an
index I = 〈T , C〉, where T and C are defined as follows:

Definition 2 (Tree-index T ). Let T1, T2, . . . , Ti be trees
included in G, ri be a root node of Ti, and Di =⋃

v∈Ti
{dist(r, u)}. The tree-index is defined as T = (T,D),

where T = {T1, T2, . . . , Ti} and D = {D1, D2, . . . , Di}.

Definition 3 (Core-index C). Let Vc be a set of nodes
included in a core of G. The core-index is defined as
C = (Vc, Ec,Wc), where Ec = {e(u, v) ∈ E|u, v ∈ Vc},
Wc = {dist(u, v)|e(u, v) ∈ Ec}.

For convenience, we also define a label function fl as follows:

Definition 4 (Label function fl). A label function fl is defined
as fl[u] = tree if u ∈ T . Otherwise, fl[u] = core.

Algorithm: Algorithm 1 is a pseudo-code of our algorithm to
generate I = 〈T , C〉. This algorithm has two components: the
tree-indexing (lines 1-7) and the core-indexing (lines 8-14).

Given a graph G, the goal of the tree-indexing step is to
construct the tree-index T in Definition 2. First, the algorithm
extracts all trees T = {T1, T2, . . . , Ti} in G. To obtain T, it
runs the EXTRACTTREES function (line 1), which employs the
incremental aggregation method [12]. This aggregation method
is summarized as follows:

1) Select a node u ∈ V whose degree is one.
2) Aggregate u into its adjacent nodes.
3) Continue the above steps until no nodes are aggregated.
4) Output the aggregated nodes as a set of trees T.

Now, we have a set of trees T = {T1, T2, . . . , Ti}, each
of which is a set of nodes included in a tree. Algorithm 1
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Algorithm 2 kNN QUERY PROCESSING

Input: an index I = 〈T , C〉, a query node q, and the number of results k;
Output: a set of kNN nodes Vk;

. (Step 1) Initialization:
1: Vk ← ∅, and priority queue Q← ∅;
2: if fl[q] = tree then
3: Obtain Ti s.t. q ∈ Ti and r ← root(Ti);
4: Obtain dist(q, r) from Di;
5: 〈Vk, Q〉 ← TREEPRUNING(〈r, dist(q, r)〉);
6: else
7: Q← {〈q, 0〉};

. (Step 2) kNN search:
8: while |Vk| ≤ k do
9: 〈u, dist(q, u)〉 ← Q.dequeue();

10: if fl[u] = tree then
11: 〈Vk, Q〉 ← TREEPRUNING(〈u, dist(q, u)〉);
12: else
13: Vk ← Vk ∪ {u};
14: for each {e(u, v) ∈ Ec|v /∈ Vk} do
15: dist(q, v)← dist(q, u) + w(u, v);
16: Q.enqueue(〈v, dist(q, v)〉);
17: return Vk;

. Subroutine for tree pruning:
18: procedure TREEPRUNING(〈r, dist(q, r)〉)
19: Obtain Ti s.t. r ∈ Ti;
20: for each {e(r, v) ∈ Ec|v /∈ Vk} do
21: dist(q, v)← dist(q, r) + w(r, v);
22: Q← Q ∪ {〈v, dist(q, v)〉};
23: dmin ← min{dist(q, v)|〈u, dist(q, v)〉 ∈ Q};
24: if |Vk|+ |Ti| ≤ k and d(r) ≤ dmin then
25: Vk ← Vk ∪ Ti;
26: else
27: for each v ∈ Ti do
28: fl[v]← core, dist(q, v)←dist(q, r)+dist(v, r);
29: Q← Q ∪ {〈v, dist(q, v)〉};

computes Di in Definition 2 for each tree Ti ∈ T (lines 2-6).
Finally, it outputs the tree-index T = (T,D) (line 7).

Next, the core-indexing step generates the core-index C
(lines 8-14). As shown in Definition 3, C is composed of Vc,
Ec, and Wc. In lines 8-9, the algorithm constructs a set of
nodes Vc, which includes all non-tree nodes and all root nodes
in T. Algorithm 1 then links nodes in Vc if they have edges
in E (line 10). Finally, the algorithm updates the weights of
edges (line 11-12). As shown in line 12, each weight is set as
the shortest path distance between two adjacent core nodes.

B. kNN Query Processing

This section explains how a kNN query is computed on
I = 〈T , C〉. To reduce the query time, our algorithm attempts
to avoid computing tree-nodes. The algorithm starts a kNN
search from a core node in C. Once it reaches a root node r
of a tree Ti, it examines whether computing Ti can be skipped
by the tree-index T . If Ti can be kNN nodes, the algorithm
adds them into Vk without computing Ti.
Algorithm: Algorithm 2 shows the pseudo-code of kNN
query using I. Algorithm 2 has two components: the main
search algorithm (lines 1-17) and a subroutine TREEPRUNING
(lines 18-29).

The main search algorithm explores kNN nodes for q using
the index I. At the beginning of the algorithm, it initializes a
priority queue Q, in which nodes are prioritized by the distance
from q. In the first step (lines 1-7), our algorithm initializes
Q based on the label function fl[q]. If fl[q] = core, it simply

inserts q into Q (lines 6-7). Otherwise it invokes the subroutine
TREEPRUNING (lines 2-5).

Given a root node r of Ti, TREEPRUNING examines
whether Ti is included in Vk without computing nodes in Ti

(lines 18-29). First, we introduce the following definition:

Definition 5 (Upper bound d). Let r be a root node of Ti, the
upper bound of distances d(r) is defined as follows:

d(r) =

{
distmax(Ti)− dist(q, r) (q ∈ Ti)

dist(q, r) + distmax(Ti) (Otherwise)

where distmax(Ti) = max{dist(u, v)|dist(u, v) ∈ Di}.

Definition 5 indicates that d(r) is the maximum distance
between the query node q and a node in Ti. That is, d(r) is the
upper bound of distances between q and Ti. From Definition 5,
we have the following property:

Lemma 1. Let r be a root of Ti, and dmin = min dist(q, v),
where v ∈ Q ∪ {v|e(r, v) ∈ Ec, v /∈ Vk}. If |Vk| + |Ti| ≤ k
and d(r) ≤ dmin, then Ti ⊆ Vk holds.

Proof : If q ∈ Ti, Lemma 1 trivially holds. Thus, we prove
the lemma if q /∈ Ti by contradiction. Assume u ∈ Ti but
u /∈ Vk. Since |Vk| + |Ti| ≤ k and u /∈ Vk, for at least one
node u′ ∈ V \{Vk ∪ Ti}, dist(q, u′) < d(r). This contradicts
d(r) ≤ dmin. Hence, Lemma 1 holds. �
Lemma 1 implies that we can prune the computations of trees
that satisfy the conditions shown in the lemma. Our method
(lines 20-25) prunes Ti without computing Ti by Lemma 1.
Otherwise, it regards Ti as core nodes (lines 26-29), which
are computed in the subsequent procedure (lines 12-16).

Finally, Algorithm 2 runs kNN search step (lines 8-17).
Once 〈u, dist(q, u)〉 is obtained from Q (line 9), it continues
the kNN search until |Vk| reaches k. If fl[u] = tree, the
algorithm examines TREEPRUNING (lines 10-11) as well as
the initialization step. Otherwise, it traverses the core nodes
by updating their distances (lines 12-16).

After the termination, the following property holds:

Theorem 1 (Correctness). Vk obtained by Algorithm 2 is
equivalent to kNN nodes searched on G.

Proof : From Lemma 1, TREEPRUNING prunes Ti only if all
nodes in Ti are included in Vk. Otherwise, the nodes are
labeled as core by Algorithm 2 (line 28). Since it traverses
all core nodes until |Vk| reaches k, Theorem 1 holds. �

IV. EXPERIMENTAL ANALYSIS

Here, we experimentally discuss the efficiency of our algo-
rithm in terms of the indexing time and kNN querying time.

A. Experimental Setting

Methods: We experimentally compared our method with two
state-of-the-art indexing methods: G-Tree [3] and ILBR [6].
For G-Tree, we set f = 4 as well as the same setting employed
in [3]. All algorithms were implemented by C++ and compiled
by gcc 9.2.0 using -O2 option. All experiments were conducted
on a server with an Intel Xeon CPU (2.60 GHz) and 128 GiB
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Fig. 1: Effect of k for kNN query time

TABLE I: Statistics of real-world datasets.

Name |V | |E| Type Source
CAL 21,048 21,693 road network [3]
NY 264,346 366,923 road network [5]
FLA 1,070,376 2,712,798 road network [13]
TV 3,892 17,262 social network [14]
GV 7,057 89,455 social network [14]
NS 27,917 206,259 social network [14]
AT 50,515 819,306 social network [14]
SP 1,632,803 22,301,964 social network [14]
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Fig. 2: Indexing time.
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Fig. 3: kNN query time.

RAM. We randomly selected 30 query nodes for each dataset.
Here, we report their average time. Unless otherwise stated,
we set k = 0.01× |V |.
Datasets: We employed eight real-world graphs, which were
published in previous studies [3], [5] and several public
repositories [13], [14] (Table I). CAL, NY, and FLA denote a
road network. All others indicate a social network.

B. Indexing Efficiency

Figure 2 shows the indexing time on the real-world datasets.
The results of G-Tree are omitted from GV, NS, AT, and SP as
indexing on the datasets was not finished within one hour. Our
algorithm significantly outperforms G-Tree and ILBR under all
examined conditions. It has an improved indexing efficiency
up to four orders of magnitude higher than the state-of-the-
art methods. For instance, our method is 18,074 times faster
than G-Tree on TV. As a comparison of the indexing time
by graph types (i.e., road or social networks) demonstrates

that our algorithm is better suited for social networks than
road networks. This is because Algorithm 1 can reduce its
running time if a graph contains many trees since each tree
Ti requires only O(|Ti|) time for distance pre-computations.
Social networks inherit the core-tree property of complex
networks, and most subgraphs of a social network are trees.
Hence, our algorithm can significantly reduce the indexing
time for social networks.

C. kNN Query Efficiency

Figure 3 shows the kNN query time when k = 0.01× |V |.
Results are omitted if the kNN query did not finish within
1 minute or its index is not available in Figure 2. Our
algorithm significantly outperforms the other methods for
social networks. By contrast, its improvements are relatively
small for road networks. This is because our algorithm can
skip search trees by Lemma 1. As such, it can improve the
indexing efficiency up to two orders of magnitude compared to
the state-of-the-art methods on social networks. Our algorithm
achieves quick kNN query processing for NS, AT, and SP,
whereas the other methods failed to compute the query.

In Figure 1 shows the impact of k for query time. We varied
k as 0.001× |V |, 0.01× |V |, and 0.1× |V |. Due to the space
limitations, we report results only for NY, FLA, TV, and SP.
Results are omitted if the kNN query did not finished within
1 minute. Our method is significantly faster than the others on
social networks regardless of k. By contrast, its improvements
are small for road networks. If a graph has many trees such as
those in social networks, our algorithm can drastically prune
trees without computing nodes by Lemma 1. Consequently,
our method is better suited for large-scale complex networks
than state-of-the-art methods.

V. CONCLUSION

We propose a novel indexing algorithm to efficiently com-
pute kNN queries on large-scale complex networks. Our algo-
rithm separatedly constructs the indexes for a core and trees,
reducing both the index construction time and kNN query
time. Consequently, the computations for trees are dynamically
pruned, while ensuring that the same results as a kNN search
on a graph are returned. Our algorithm outperforms state-
of-the-art methods in experiments by up to four orders of
magnitude in terms of indexing and query processing time.
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