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ABSTRACT
In this paper we present a Click-through-rate (CTR) prediction
model for product advertisement at Amazon. CTR prediction is
challenging because the model needs to a) learn from text and
numeric features, b) maintain low-latency at inference time, and
c) adapt to a temporal advertisement distribution shift. Our pro-
posed model is DCAF-BERT, a novel lightweight cache-friendly
factorized model that consists of twin-structured BERT-like en-
coders for text with a mechanism for late fusion for tabular and
numeric features. The factorization of the model allows for com-
partmentalised retraining which enables the model to easily adapt
to distribution shifts. The twin encoders are carefully trained to
leverage historical CTR data, using a large pre-trained language
model and cross-architecture knowledge distillation (KD). We em-
pirically find the right combination of pretraining, distillation and
fine-tuning strategies for teacher and student which leads to a 1.7%
ROC-AUC lift over the previous best model offline. In an online
experiment we show that our compartmentalised refresh strategy
boosts the CTR of DCAF-BERT by 3.6% on average over the baseline
model consistently across a month.
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1 INTRODUCTION
At Amazon, ads for sponsored products are served on the land-
ing page of a given product (Fig. 1). The selection of sponsored
products depends on the current product being viewed and the
order is determined by an ML model operating on a host of fea-
tures including textual features like product title and description,
contextual features like advertiser name, and historical features
like total sales value. CTR prediction is challenging due to (i) de-
ployment constraints – the model must serve millions of requests
per second at high throughput and low (<5 ms) average latency,
and (ii) user preferences that can experience temporal shifts due to
special events, new campaigns, seasonality and other factors (e.g., a
pandemic). To adapt to this changing distribution, the model must
be refreshed often by retraining at a daily or hourly cadence.
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Figure 1: A sample product shown on the e-commerce web-
site. For the given product (Page Product), a list of advertised
products are shown at the bottom of the same web page.

This implies CTR models must be lightweight (fast inference),
be economical to train/re-train (reduce cost), and improve per-
formance (better customer experience). In this paper we outline
how we address these 3 core tenants by leveraging large language
models (LLM), knowledge distillation, and compartmentalized train-
ing using DCAF-BERT – a novel lightweight factorized model that
consists of twin-structured BERT-like encoders with a mechanism
for late fusion for tabular and numeric features. Factorizing the
text and tabular features allows the BERT-based text features to be
pre-computed offline and cached in memory. The cost at inference-
time is therefore from the late fusion layer only. This fusion layer
is a lightweight multi-layer perceptron (MLP), that can meet the
stringent inference latency and throughput requirements.

Refreshing or retraining a large BERT-based model at an hourly
cadence is quite expensive and infeasible without expensive GPU
hardware. We observed that textual features such as product title
and description exhibit distribution shift over longer time scales
than numeric features like total sale value in the past day. Taking
advantage of the factorized nature of our model, we can refresh
the late fusion layer (MLP) at an hourly cadence and refresh the
twin-BERT backbone at a longer cadence (eg. monthly). To further
reduce costs while keeping the benefits of LLMs, we leverage 2 key
insights: (i) we have an abundance of stale historical CTR data that
can be used to train a privileged but improved teacher model (ii)
we can use cross architecture knowledge distillation to shrink the
model to a cachable variant. In offline experiments, we evaluate
initialization, distillation, and fine-tuning design choices for the
teacher and student models. We show that initialization plays a key
role – Masked Language Model (MLM) pre-training improves the
student. Cross architecture distillation on historical data followed
by fine tuning is better than directly training a smaller model on
recent data by 1.5%. Self-training or training on soft labels from the
same model further improves performance by 0.15%. Furthermore,
we empirically demonstrate on real user traffic that DCAF-BERT’s
compartmentalized refresh strategy strikes the best balance in terms
of performance (better than an MLP baseline model by 3.6% in CTR
lift) and cost (25x cheaper than refreshing a BERT tower daily).

Table 1: Summary of CTR features for product advertisement

Feature
group

Sample
features

Feature
count

Distribution shift
time scales

Textual Product title, description 4 Long (∼1 month)
Contextual Application name, advertiser name 3 Medium (∼1 week)
Historical Total sale value (per product) 13 Short (∼1 hour)

2 APPROACH
Problem Definition: If y is binary random variable representing
a customer click, the CTR prediction task is to estimate the condi-
tional click probability P(y |x), given input features x representing
a pair of Page and Ad products (refer Fig. 1).

Table 1 provides a high level summary of the various input
features. For our example in Fig. 1, ‘iPhone Charger [Apple ... White’
is a textual feature (i.e., the product title) denoting the Page Product,
its rating value (11.3 K) is a numeric feature and ‘Cable Type’ is a
categorical feature. The features can also be categorized based on
their distribution shift time scales — textual features like product
title change slowly, often remaining unchanged for periods longer
than a month while historical features like sale value change rapidly
as people purchase products every hour.

2.1 DCAF-BERT
We propose a knowledge distillation approach to train DCAF-BERT.
This is motivated by the fact that we have large quantities of past
click data that can be leveraged by large language models. We
then distill it to smaller dual encoders using cross-architecture
distillation which has shown to be more effective than training
from scratch [9].

Teacher Model Training: Our teacher model is a single large
pre-trained BERT tower with an additional layer norm before the
MLP layers. During finetuning, the features (textual, contextual
and historical) are transformed into their string representation and
concatenated along with their feature names. The tokens from Page
and Advertised products are separated with the [SEP] token. An
example input would look as follows: "[CLS] Page_product_title:
title Page_product_num_feat1: num_feat, Page_product_cat_feat1:
cat_feat [SEP] Ad_product_title: title Ad_product_num_feat1:
num_feat, Ad_product_cat_feat1: cat_feat". Training with MLM
across fields, enables learning strong cross-feature representations
[7] through the attention mechanism.

Student Model Training: The DCAF-BERT student model ar-
chitecture is designed for the online inference scenario. It is a cache-
friendly model with two separate arms for the Page Product and
Advertised Product respectively. The textual embeddings corre-
sponding to the [CLS] token in each arm (highlighted in gray) can
be computed and cached in advance for every product in the given
e-commerce catalog. At inference time, these representations are
retrieved from the cache and concatenated with the rest of the
features via a late-fusion layer for the final CTR prediction. The
cost at inference time is therefore from the late fusion layer only.

We train the student using cross-architecture distillation or distil-
lation from the large cross-attention teacher model to the DCAF-
BERT student model. More specifically, we seek a BERT-CTR stu-
dent psθ parametrized by θ that is close to the teacher pt . Let the
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temperature softened outputs for the student/teacher network de-
noted by f be given by pf (τ ) = softmax(zf /τ ), where zf is the
logits vector and τ the temperature. To learn the optimal student
θ∗, we minimize a combination of the cross entropy (CE) loss and
Kullback Leibler (KL) divergence loss with the teacher [5].

θ ∗ = argminθ E(x,y)∼P [(1 − α )LCE (psθ (1), y) + αLKL (p
s
θ (τ ), p

t (τ ))],

LCE (psθ (1), y) = Σj − yj logpsj (1),

LKL (psθ (τ ), p
t (τ )) = τ 2Σjptj (τ ) log

ptj (τ )

psj (τ )
.

Here the summation j is over the number of classes.
Related Approaches There exists little work on using pre-

trained LLMs akin to BERT for CTR prediction. While deep learning
models have recently gained traction in CTR prediction [14], to
meet latency requirements, the models are still relatively shallow
by modern deep learning standards. The largest model in DCN-V2
[13], for example uses <5 million parameters. Other approaches like
[8] utilize multi-head self attention layers to encode both text and
other features but do not use pre-trained model representations.
We point readers to [14] for an overview of existing approaches.

3 EXPERIMENTS
Motivated by the cost considerations in repeatedly finetuning large
teacher models, we study the interaction between knowledge dis-
tillation and distribution shift in the setting where a large teacher
model is trained once on out-of-distribution historical data and
subsequently frozen. Given a frozen teacher trained on past data,
we ask the question: What is the best training strategy to maximize
performance on recent data for the student, where there is abundant
past labeled data and limited recent labeled data?

3.1 Dataset
Past dataWe select train-test splits from 2020 online traffic. The
data is temporally divided: after picking a reference point in 2020,
the train set is uniformly sampled from data before this reference
point in time and the test/val sets are sampled after the reference
point. As the proportion of clicks is much lesser than non-clicks in
the dataset, the two classes are balanced in the train set by down-
sampling the dominant (non-clicks) class. We do not artificially
balance the test set which remains skewed towards the non-clicks
in a 95:5 ratio. The train set comprises of 1 billion data points and
the test and validation sets comprise about 25 million points each.
Recent data The train-test splits are sampled from 2021 online traf-
fic and balanced the same way as past data. The train set comprises
200 million data points and the test and validation sets comprise 25
million points each.
Preprocessing All text data is preprocessed using the Sentence-
piece tokenizer [6]. A Byte Pair Encoding [12] subword vocabulary
of 32000 tokens is constructed from the train corpus.
Metrics and evaluation All metrics are reported on the test set
of Recent data. Since the task is binary classification, we report
the ROC-AUCwhich is frequently used in imbalanced classification.

3.2 Models
Teacher: In all our experiments we use a 1.5 billion parameter
teacher model pretrained using MLM on Amazon product data
and finetuned on past data for 1 epoch. The teacher uses 48 layers,
hidden size=1600, 25 attention heads and intermediate dim=6300.
We use Adam optimizer with lr= 2e-5, weight decay = 1e-2, and
dropout = 0.1. [10] shows that scaling the teacher model size to 1.5
billion parameters, significantly improves performance (2.59% ROC
AUC increase) over an MLP baseline.
Baseline:We use a 3-layer MLP baseline (65 million parameters)
with ReLU activations carefully designed to meet the latency for
the CTR task. The MLP resembles the DCAF-BERT fusion layer and
uses a learnt word-embedding matrix to replace BERT embeddings.
For offline experiments, we finetune the model for 2 epochs.
DCAF-BERT student: DCAF-BERT is a 70 million parameter stu-
dent model, where the parameters between the two BERT towers
are shared. DCAF-BERT uses 6 layers, hidden size=768, 16 attention
heads and intermediate dim=3072. We use the Adam optimizer with
weight decay = 1e-2, and dropout = 0.1. During distillation we use
an lr=1e-4 and train for 3 epochs, while during finetuning we use
an lr=1e-5 and train for 2 epochs. DCAF-BERT can be trained on 8
A100 GPUs in less than a day (<1000 USD).

3.3 Training Strategies
Using a past dataset from 2020 and a recent dataset from 2021, we
examine the influence of various combinations of initialization,
distillation and fine-tuning strategies on student performance. The
student is first initialized with a selected initialization strategy, then
pre-finetuned using a specified distillation strategy and finally fine-
tuned using a fine-tuning strategy. In particular, we examine the
following strategies applied in sequence:

(i) Initialization strategy: This can be one of (a) Random ini-
tialization, where the student is initializedwith normally distributed
weights similar to BERT initialization [2] before pretraining. (b)
Masked Language Modeling (MLM) where we pretrain the student
using MLM on Amazon product data, resembling the approach in
[11]. (c) Supervised learning on labeled past data.

(ii) Distillation as a pre-finetuning strategy: (a) No distilla-
tion, (b) Past distillation where we train the student on soft labels
from the past dataset teacher on past data, (c) Recent distillation
where we distill using soft labels from the past dataset teacher on
recent data, using the recent data soft-label validation loss for early
stopping. We posit that recent data distillation can help the model
see the recent data covariates during pre-finetuning, to further help
downstream performance on recent data.

(iii) Finetuning strategy: (a) Vanilla fine-tuning on recent data,
(b) Self-training where we use the finetuned recent data student to
further label both the past and recent data, then use these labels
for a second round of fine-tuning. Recent work in [3, 15] suggest
that self-training provides gains orthogonal to supervised and self-
supervised pretraining in the low transfer-data learning regime.

3.4 Results
We compare the performance of our model for the different com-
bination of initialization, distillation and fine-tuning strategies in

112



WWW ’22 Companion, April 25–29, 2022, Virtual Event, Lyon, France Muhamed, et al.

Table 2: DCAF-BERT student performance for the various choices
of initialization, distillation and fine-tuning strategies. We report
the ROC-AUC on the recent data test set after finetuning.

Approach Initialization Distillation Fine-tuning Recent AUC

Teacher Random No KD No fine-tuning 63.53%
MLP baseline Random No KD Vanilla 75.43%

1 Random No KD Vanilla 75.42%
2 MLM No KD Vanilla 75.93%
3 Supervised No KD Vanilla 75.48%

4 Random Past KD Vanilla 76.73%
5 MLM Past KD Vanilla 76.92%
6 Supervised Past KD Vanilla 76.84%

7 Random Recent KD Vanilla 75.60%
8 MLM Recent KD Vanilla 76.22%
9 Supervised Recent KD Vanilla 75.62%

10 Supervised Past KD Self-training 77.02%
11 MLM Past KD Self-training 77.07%

Table 2. The Teachermodel trained on past datawithout any finetun-
ing on recent data achieves only a 63.53% ROC-AUC. Both the MLP
baseline and DCAF-BERT without MLM or distillation (Approach
1) achieve comparable ROC-AUC of 75.42%. Our best DCAF-BERT
approach (MLM, Past KD, Self-training) achieves a 77.7% ROC-AUC.

a)Which initialization strategy gives best results?We com-
pare 3 initialization strategies that correspond to a particular dis-
tillation strategy. When we examine approaches 1,2,3 for No KD,
approaches 4,5,6 for Past KD and approaches 7,8,9 for Recent KD,
we see that downstream performance of Random initialization <
Supervised learning < MLM pretraining. This trend holds across
all distillation and fine-tuning strategies. Both Supervised learning
and MLM improve performance over random initialization. This
performance gain is unsurprising as self-supervised pretraining and
supervised training helps the model learn features that generalize
to out-of-distribution data[1]. Our findings suggest in particular
that the MLM objective is better than supervised learning objectives
even when abundant labeled past data is available.

b)Which distillation pre-finetuning strategy gives best re-
sults?When we compare approaches 1,4,7; approaches 2,5,8 and
approaches 3,6,9 we see across the different initialization strategies
that the performance of models pre-finetuned with No KD < Recent
KD < Past KD. Both Past KD and Recent KD help learn from the
Past data teacher, and boost model performance over No KD. This
is consistent with findings in the literature [4]. Why does Recent
KD perform worse than Past KD? We speculate that in the low in-
distribution Recent data regime, to effectively learn from the Past
data teacher, the student needs a larger data distribution support
for effective pre-finetuning.

c) Does self-training provide an additional boost?We find
that self-training finetuning after vanilla finetuning (approaches 10
and 11) gives an additional performance boost over approaches 5
and 6 on recent data. This shows that self-training is another effec-
tive method to learn from labeled past data and the performance
gain is complementary to the gains from initialization and distilla-
tion. When infeasible to adapt the teacher to distribution shift, we
therefore recommend an MLM, Past KD, self-training strategy.

Figure 2: Average CTR (smoothed over 5 min) of DCAF-BERT rel-
ative to the MLP baseline over 7 days. Ad and page product index
hit rates also shown. The vertical dashed line denotes a point when
both the BERT backbone was refreshed and Page and Ad index re-
generated.

d)Does knowledge distillation boost performance over su-
pervised learning on thePast dataset? If we had to pick between
initialization and distillation pre-finetuning, comparing approaches
2 (MLM), 3 (Supervised learning), 4 (Past KD) we find that the best
strategy to learn from the Past dataset is to first train a large teacher
(MLM, vanilla fine-tuning) and then distill this teacher to a small
student, which performs much better than MLM initialization or
supervised learning alone. Training one large teacher on past data
can significantly boost performance on recent data.

3.5 Online evaluation
We performed an online experiment where DCAF-BERT was tested
within the Amazon e-commerce detail page service. The embed-
dings for the Page product (previous 7 days) and Ad Product (pre-
vious 1 day) were prepared offline using a 70 million parameter
DCAF-BERT backbone and indexed in a distributed database for
serving. The embeddings in the index were recomputed at a regular
cadence (every 3.5 days) to serve fresh ads using the most recently
refreshed BERT backbone. The DCAF-BERT MLP layer and the
MLP baseline were re-trained daily while the DCAF-BERT BERT
backbone was re-trained monthly. The index regeneration period
was determined based on a hit rate criterion and the model refresh
period was determined based on a CTR-lift criterion.

Figure 2 shows the average CTR of DCAF-BERT relative to the
MLP over a week along with the Page and Ad product embedding
index hit rates. The vertical dashed line denotes a point where
both the BERT backbone was retrained and the embeddings index
was regenerated. We observe that the BERT refresh helps increase
the CTR-lift of DCAF-BERT relative to the baseline and this lift
persists for extended periods of time without additional backbone
retraining. In between index regenerations, the page and ad hit rates
decrease which causes the CTR-lift of DCAF-BERT relative to the
baseline to decrease. When compared against the baseline, DCAF-
BERT improves CTR by 3.6% on average. Furthermore, we observed
an 8+% CTR lift on tail traffic which indicates that DCAF-BERT
generalizes better than the baseline.

4 CONCLUSION
In this paper, we address some significant challenges [14] in the
application of large language models to CTR prediction.We propose
a novel, lightweight factorizedDCAF-BERTmodel thatmeets online
latency requirements while being inexpensive to adapt to CTR
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distribution shift. Through an extensive empirical study using labels
from a stale pretrained LLM teacher, we show that student MLM
pretraining, distillation pre-finetuning and self-training can help
learn representations that maximize performance when subject to
distribution shift.
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