
Lightweight and Scalable Model for Tweet Engagements
Predictions in a Resource-constrained Environment
Luca Carminati

Politecnico di Milano
Milan, Italy

luca5.carminati@mail.polimi.it

Giacomo Lodigiani
Politecnico di Milano

Milan, Italy
giacomo.lodigiani@mail.polimi.it

Pietro Maldini
Politecnico di Milano

Milan, Italy
pietro.maldini@mail.polimi.it

Samuele Meta
Politecnico di Milano

Milan, Italy
samuele.meta@mail.polimi.it

Stiven Metaj
Politecnico di Milano

Milan, Italy
stiven.metaj@mail.polimi.it

Arcangelo Pisa
Politecnico di Milano

Milan, Italy
arcangelo.pisa@mail.polimi.it

Alessandro Sanvito
Politecnico di Milano

Milan, Italy
alessandro1.sanvito@mail.polimi.it

Mattia Surricchio
Politecnico di Milano

Milan, Italy
mattia.surricchio@mail.polimi.it

Fernando B. Pérez Maurera
Politecnico di Milano

Milan, Italy
fernandobenjamin.perez@polimi.it

Cesare Bernardis
Politecnico di Milano

Milan, Italy
cesare.bernardis@polimi.it

Maurizio Ferrari Dacrema
Politecnico di Milano

Milan, Italy
maurizio.ferrari@polimi.it

ABSTRACT
In this paper we provide an overview of the approach we used as
team Trial&Error for the ACM RecSys Challenge 2021. The compe-
tition, organized by Twitter, addresses the problem of predicting
different categories of user engagements (Like, Reply, Retweet and
Retweet with Comment), given a dataset of previous interactions
on the Twitter platform. Our proposed method relies on efficiently
leveraging the massive amount of data, crafting a wide variety
of features and designing a lightweight solution. This results in
a significant reduction of computational resources requirements,
both during the training and inference phase. The final model, an
optimized LightGBM, allowed our team to reach the 4th position
in the final leaderboard and to rank 1st among the academic teams.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ingmethodologies→Classification and regression trees;Neu-
ral networks.
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1 INTRODUCTION
Recommender Systems have established themselves as a useful tool
to offer personalized and relevant content in many different sectors.
Social networks are no exception, since accurate recommendations
can substantially impact the user experience. The ACM RecSys
Challenge 2021 [2], organized by Twitter, aims at identifying the
best approach to predict different user engagements (Like, Reply,
Retweet, Retweet with comment) with a certain tweet. This predic-
tion task comes with several other challenges: the need to handle a
dataset at scale (approximately 1B data points), the limited compu-
tational resources available for the evaluation and the inclusion of
fairness as an evaluation metric. Hence, solutions must be scalable
and maintain high accuracy for different categories of users. We
propose an optimized LightGBM model, which leverages a wide
variety of meaningful features. The proposed solution strikes a bal-
ance between highly accurate predictions, scalability and fairness,
allowing our team to reach the 4th position with an inference time
from two to three times lower than the other top participants. The
source code of our final model and the respective documentation
are publicly available on Github.1

1https://github.com/recsyspolimi/recsys-challenge-2021-twitter
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The paper is organized as follows. In Section 2 we introduce the
problem, the dataset and the evaluation metrics of the Challenge.
In Section 3 we discuss the data splitting for validation and feature
extraction. In Section 4 we present in detail the feature engineering
process and some important features. In Section 5 we describe the
tested models and their hyperparameter optimization. In Section 6
we report the experimental results of the most promising models.
Lastly, in Section 7 we draw the conclusions.

2 PROBLEM FORMULATION
The ACM RecSys Challenge 2021 required participants to predict
the probability that a user will interact (engage) with a tweet in
a certain way. In particular 4 kinds of engagements are possible:
Like, Reply, Retweet, Retweet with comment (we refer to this class
as Comment in the text). Although the goal of predicting user
engagements is similar to that of the ACM RecSys Challenge 2020
[4], this Challenge included both resource constraints and fairness
metrics in the evaluation. These constraints are set to encourage
teams to propose novel solutions.

Dataset [5]. For the purpose of this Challenge, Twitter released a
dataset of approximately 1B data points spanning over a period of
28 days. Each data point represents a possible engagement of a user
with a tweet. Engagements that occurred are referred to as positive
samples, while engagements that did not occur are referred to as
negative samples. The first three weeks are used as training data,
while the data points in the last week are randomly split in half
for the validation and test data. The ground truth of the validation
data points was released in the last two weeks of the Challenge.
Tweets removed from the platform also had to be removed from
the dataset to ensure compliance with privacy laws. Thus, several
versions of the dataset were released during the Challenge. At the
end of the Challenge the training and validation data contained
629.5M and 14.5M data points respectively. The data points have
features associated with them, such as the content of the tweet
represented as BERT tokens [9], the account of the creator of the
tweet, the account of the user which may engage with the tweet,
and a timestamp associated with the engagement if it occurred, i.e.,
if it is a positive sample. The dataset is strongly unbalanced towards
negative samples. The percentage of positive samples is: 39.38% for
Like, 8.63% for Retweet, 2.65% for Reply, 0.66% for Comment.

Computational resources. The predictions had to be computed
on a cloud computing instance provided by Twitter. This instance
was constrained to have only one CPU, 64GB RAM, and 24 hours
of total inference time. Solutions exceeding the 24 hours limit were
rejected.

Multi-objective evaluation. The Challenge rewards both accurate
and fair predictions, penalizing recommendations that are biased to-
wards more popular tweet creators. To account for fairness, authors
of tweets are categorized into 5 groups, according to the quantiles
of their follower counts. The accuracy of each group is computed as
the Average Precision (AP) and the Relative Cross-Entropy (RCE)
considering only the tweets authored by a user in that group. The
final AP and RCE scores for each engagement are obtained as the
average of the 5 group scores. Finally, submissions are first ranked
by RCE and AP separately, taking the average of the considered

metric for the 4 engagements; then, the ranking for the 2 metrics
are summed to obtain the Overall Score shown on the leaderboard.

3 DATA SPLIT
The dataset released for the final phase of the Challenge consists
of two parts: a training set containing 629.5M interactions and a
validation set containing 14.5M interactions. For our experiments,
we split the available data in three non-overlapping subsets (see
Figure 1):

• The first subset is used to extract and compute the features.
It is composed of the union between the 80% of the data
in the original training set and the 70% of the data in the
validation.

• The second subset is used to train our models. It is composed
of the 20% of the validation and the most recent engagements
accounting for the 20% of the data points in the training set
not included in the first subset.

• The third subset is used to validate ourmodels. It is composed
of the remaining 10% of validation data not included in the
previous subsets.

During the split operation it is of great importance to find a
balance between data coming from the original training and valida-
tion sets. Indeed, data available in the validation set is particularly
valuable, due to the similarity between validation and test sets dis-
cussed in Section 2 (i.e., data points in validation and test sets were
gathered during the same week). For the same reason, we applied
a temporal filtering on the training data points that compose the
second subset used for model training, keeping only the most recent
20% as previously mentioned.

Since the datasets contained both training and validation data, we
created a boolean feature to indicate whether any interaction came
from the original train or validation sets. Our experiments indicate
that including this feature into models improves the accuracy of
predictions.

4 FEATURES
Feature engineering proved crucial to improve the accuracy of
our model. The similarity with the ACM RecSys Challenge 2020
allowed us to benefit from the experience of the best teams. We
analyzed the list of features presented in [11, 16] and we selected
the most relevant ones, according to the respective authors. How-
ever, due to the characteristics of the Challenge, we had to perform
implementation-side modifications to integrate the features in our
new solution and to satisfy the tighter constraints on the computa-
tion. In particular, because of the size of the dataset, we leveraged
the capabilities of highly scalable libraries (such as Dask[7]). Indeed,
preprocessing and feature extraction had to be efficient both in CPU
and memory usage, due to the low amount of resources available
on the computing instance provided by Twitter at inference time.
Finally, other features were added to cope with the required focus
on fair recommendations of the evaluation metrics. In the following
sections we will describe some of the most important features we
used.
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Figure 1: Data splits used during the challenge. Blue splits are used for feature engineering, green splits for models’ training,
and orange splits for models’ testing.

4.1 Text-based Features
The text of each tweet, provided as BERT tokens, was used to gen-
erate counting features, with the purpose of representing both the
syntactic structure and semantic content of a tweet in a form bet-
ter suited for the model. To characterize the syntactic structure,
specific counts on the tokenized tweet were performed to count
different types of punctuation symbols or the number of tokens
in the tweet. To characterize the semantic structure, each tweet
was detokenized and a counting function over specific sets of the-
matic words in different languages was applied. This allowed to
characterize the tweet content in relation to various trending topics
such as covid19, sports, news, videogames. We produced those lists
of thematic words by integrating heterogeneous sources. Most of
the words were identified through a manual procedure, analyzing
the detokenized text of the tweets containing the most popular
hashtags. Additional topics were selected by analyzing the Google
Trends for the period of our data.

4.2 Memory-based Features
Memory-based features reflect the characteristics of the dataset
by analyzing the available data. We employed them to effectively
associate each interaction to broader-view information regarding
past trends of users and tweets.

4.2.1 Counts. These features consist in counting each possible
combination of two categorical features, eventually filtering the
count according to a required type of interaction. This type of
feature allows having a quantitative information of the past co-
occurrences of specific values for pairs of features. An example is to
count the occurrences of each tuple (userID, language), to identify
the number of past Like/Comment/Retweet/Reply/All interactions
that involved a specific pair of user and language. This type of
information helped the model to weight differently the predictions,
depending on the past history of the user (see Section 6). To address
the difficulties of counting over possibly high-cardinality features
in a distributed environment, we implemented the counting proce-
dures taking advantage of sparse matrices and ad-hoc reductions

to sum the counts computed concurrently over different partitions
of the dataset.

4.2.2 Target Encoding. In the released dataset, a significant por-
tion of the available information on the users was represented by
categorical features, mostly by userIDs. Since the cardinality of
such features ranged in the tens of millions, representing them
as one-hot encoded features was not feasible. Therefore, we used
the statistics of the 4 engagements (targets) for the encoding of
the categorical values, as proposed in [14]. Given a list of one or
more feature values, we calculated the frequency of those feature
values appearing together with the target label. To account for
high variance of statistics of values appearing just a few times in
the dataset, we adopted the smoothing strategy proposed in [16].
Target encoding gave us a great boost in terms of prediction accu-
racy, but it required a large amount of data for reliable statistics.
Hence, in our final approach we divided the feature engineering
dataset in several parts, we calculated the target encoding for each
part, and we finally averaged them. This approach proved more
efficient, allowing to obtain the same accuracy with lower resource
requirements.

5 MODELS
Due to the considerable size of the dataset, the models used for
predictions had to be scalable and fast. We experimented with three
different models, selected based on the results presented in the
previous ACM RecSys Challenge [11, 12, 16].

5.1 Neural Networks
Neural Network (NN) models are a widely researched topic that had
strong impact on current research literature, but their effectiveness
in competitions is varied, being sometimes the winning strategy
[8] and sometimes not [12]. In our experiments we tested a NN
model trained on all the available features (see Section 4). To avoid
overfitting and increase the generalization capability of the model,
we adopted a simple architecture composed of 3 hidden layers with
256, 128 and 64 neurons, respectively. We included dropout, batch
normalization and input normalization strategies. We trained four
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Table 1: Metrics with fairness measured on the subset we use for local validation described in Section 3.

AP RCE
Model Retweet Reply Like Comment Retweet Reply Like Comment
XGBoost 0.4034 0.2070 0.6629 0.0690 23.6291 21.7480 18.0909 13.8495
LightGBM 0.4056 0.2064 0.6685 0.0707 23.8161 21.719 18.4962 14.1673
NN 0.3852 0.2001 0.6614 0.0598 22.4358 21.2941 17.2435 12.7172

Table 2: Top 5 submissions in the final leaderboard of the Challenge.

Rank Team Method Inference Time Overall Score
1 NVIDIA nvidia_rapidsai_final_ensemble_v2 23 hours 2
2 SYNERISE Synerise_v1 18 hours 4
3 LAYER 6 LAYER6_AI 13 hours 6
4 Trial&Error test_lightgbm 5 hours 8
5 perecasxiru final1 19 hours 10

different NN, one for each type of engagement, sharing the same
hyperparameters.

5.2 Gradient Boosting for Decision Trees
Gradient Boosting for Decision Tree (GBDT)models are the state-of-
the-art solution for very sparse datasets. Similar to NNs, we trained
four different GBDT models, one for each type of engagement, us-
ing as input all the features we developed. In our experiments we
tested two of the most popular implementations of GBDT mod-
els: XGBoost [6] and LightGBM [13]. We adopted LightGBM as
it provided the highest prediction accuracy with lower resource
requirements.

5.3 Hyperparameter tuning
The optimization of the hyperparameters is a very important step
to maximize the effectiveness of the predictive models [3, 11]. We
adopted different hyperparameter tuning procedures depending
on the model. For NN, we performed a random search followed
by a manual fine-tuning. For LightGBM, we performed Bayesian
Optimization using Optuna [1]. More specifically, we adopted the
“Stepwise algorithm” that tunes important hyperparameters sequen-
tially, resulting in a compact search space [15]. We decided to use
the binary log-loss as evaluation metric for the optimization, since
it was strongly correlated with both RCE and AP and required
significantly less time for its computation.

6 RESULTS
In this section we provide an overview and a discussion of our re-
sults along the three relevant dimensions of accuracy, performance
and fairness. All the results shown in this section are obtained using
the data splits as described in Section 3.

Prediction accuracy. In Table 1 we show the accuracy of the
models presented in Section 5. LightGBM outperformed XGBoost
and the NN in almost all classes for AP and RCE, except for Reply,
where XGBoost had higher AP and RCE. Although the NN was
the least accurate model, its accuracy was close to both XGBoost
and LightGBM even with minimal tuning. However, due to its very
high computational cost it was unfeasible to thoroughly optimize its

hyperparameters within the resource constraints and short duration
of the Challenge, which is likely a factor in its lower accuracy. Due
to its consistently superior accuracy, LightGBM was our choice for
the final submission.

Performance. The choice of LightGBM was also driven by the
faster training and prediction times we observed during the Chal-
lenge compared to the other models. In Table 2 we show that, thanks
to the choice of the model and the efficient preprocessing described
in Section 4, our solution has the lowest inference time among
the top 5 of the official leaderboard, taking only 5 hours compared
to the 13 hours required by the second-fastest and the 23 hours
required by the slowest (but most accurate) method.

A considerable speedup in training time was achieved by lever-
aging training samples temporally close to the ones in the test set,
as described in Section 3. This resulted into both a substantial re-
duction in the number of samples used to train the model, and an
improvement in the accuracy of the predictions. Indeed, this solu-
tion scored 2% AP and 3% RCE more than an instance of LightGBM
trained on twice the amount of data points, randomly selected from
training and validation sets described in Section 32.

Fairness. In Figure 2 we show the difference in accuracy across
the different quantiles for LightGBM (i.e., the model used in our
final submission), which exhibited remarkably consistent results.
The most relevant exception is represented by a sudden increase of
AP measurement over the first quantile in the Comment class. This
quantile scores 0.1511 in AP, an outstanding 113.75% more than the
average AP for this engagement class. This behavior is likely due
to the lack of support of the Comment class in the first quantile.
Data points from this quantile account for 0.15% of the total data
points in the dataset we use for validation, where only 1.02% of
them (30 in absolute terms) represent positive interactions in the
Comment class. The RCE of the first quantile in the same class
exhibits a similar pattern, being 18.60% higher than the overall RCE.
The RCE of the first quantile in the Retweet class represents another
exception, although it exhibits an opposite pattern compared to
the Comment class. This quantile scores 17.3358 in RCE, which is

2The dataset used for training was composed of 10% of the training set and 10% of
validation set selected uniformly at random.
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Figure 2: LightGBM’s metrics by quantile and engagement measured on our local test data, described in Section 3.

27.21% less than the average RCE for this engagement class. This
time, support is higher, with 10.71% of the data points from the first
quantile representing poisitive interactions in the Retweet class.
Overall, it is interesting to notice that there is not a clear correlation
between the quantile (i.e., the popularity of the author of a tweet)
and the accuracy of the model.

Feature importance. To assess the relevance of each feature in
the model used in our final solution and gain insights about what
the model learned, we computed the permutation importance using
Eli5 [10]. The most important features are the target encodings
of “engager ID” and “creator ID” with respect to the target class.
They represent, respectively, the likelihood that the given user
interacts with a tweet and the likelihood that an engagement occurs
on a tweet of a given author. For all classes, target encoding of
multiple features (the combination of domains, tweet language,
tweet type, engager follows creator, the number of photos and
creator is verified) represents a valuable feature. Specifically for
Like and Retweet classes, media and language content features
are particularly important (i.e., the presence of photos or videos
in the tweet, the presence of a language with which the user had
previous positive interactions). For the Reply and Comment (to
a lesser extent) classes, the number of question marks plays an
important role in the prediction. This suggests that tweets with an
open question are more likely to be answered by users.

7 CONCLUSIONS
The ACM RecSys Challenge 2021 aimed at predicting, given a tweet,
the probability of a user’s engagement. Starting from the original
dataset, we crafted a large set of features relying on the text of the
tweet, target encoding and counting operations. This allowed us

to train the final model, a set of four optimized LightGBMs, one
for each type of engagement, with a more comprehensive repre-
sentation of the problem. Moreover, the peculiar dataset splitting
strategy and the effective feature extraction process paved the way
for a fast and accurate approach, whose inference time was two
to three times lower than solutions proposed by other top partici-
pants. As final result, our team Trial&Error placed first among the
academic teams and ranked 4th in the final leaderboard.
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