
Reconfiguration Problems on Submodular Functions
Naoto Ohsaka

NEC Corporation

ohsaka@nec.com

Tatsuya Matsuoka

NEC Corporation

ta.matsuoka@nec.com

ABSTRACT
Reconfiguration problems require finding a step-by-step transforma-

tion between a pair of feasible solutions for a particular problem.

The primary concern in Theoretical Computer Science has been

revealing their computational complexity for classical problems.

This paper presents an initial study on reconfiguration problems

derived from a submodular function, which has more of a flavor of

Data Mining. Our submodular reconfiguration problems request

to find a solution sequence connecting two input solutions such

that each solution has an objective value above a threshold in a

submodular function 𝑓 : 2
[𝑛] → R+ and is obtained from the pre-

vious one by applying a simple transformation rule. We formulate

three reconfiguration problems: Monotone Submodular Recon-
figuration (MSReco), which applies to influence maximization,

and two versions of Unconstrained Submodular Reconfigura-
tion (USReco), which apply to determinantal point processes. Our

contributions are summarized as follows:

• Weprove thatMSReco andUSReco are bothPSPACE-complete.

• We design a
1

2
-approximation algorithm for MSReco and a

1

𝑛 -

approximation algorithm for (one version of) USReco.
• We devise inapproximability results that approximating the opti-

mumvalue ofMSRecowithin a (1− 1+𝜖
𝑛2
)-factor isPSPACE-hard,

and we cannot find a (5
6
+ 𝜖)-approximation for USReco.

• We conduct numerical study on the reconfiguration version of

influence maximization and determinantal point processes using

real-world social network and movie rating data.

CCS CONCEPTS
• Information systems→ Data mining; • Theory of computa-
tion→ Approximation algorithms analysis.

KEYWORDS
reconfiguration; submodular functions; approximation algorithms;

influence maximization; determinantal point processes

ACM Reference Format:
Naoto Ohsaka and Tatsuya Matsuoka. 2022. Reconfiguration Problems on

Submodular Functions. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining (WSDM ’22), February 21–25,
2022, Tempe, AZ, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/

10.1145/3488560.3498382

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WSDM ’22, February 21–25, 2022, Tempe, AZ, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9132-0/22/02. . . $15.00

https://doi.org/10.1145/3488560.3498382

0.4 0.5 0.6 0.7 0.8 0.9 1.0

12

3
4

5
67

8
9

10

11
12

13

14

15
16

17

18

19

20

21

22

23
24

25
26

27

2829

30

31 32
3334

(a) 𝑓 (𝑋) = 23.2

𝑋 = {2, 4, 7, 9, 11, 30, 32, 34}

12

3
4

5
67

8
9

10

11
12

13

14

15
16

17

18

19

20

21

22

23
24

25
26

27

2829

30

31 32
3334

(b) 𝑓 (𝑆 (4)) = 25.5

𝑆 (4) = {1, 2, 3, 6, 7, 32, 33, 34}

12

3
4

5
67

8
9

10

11
12

13

14

15
16

17

18

19

20

21

22

23
24

25
26

27

2829

30

31 32
3334

(c) 𝑓 (𝑌) = 23.6

𝑌 = {1, 3, 6, 14, 24, 25, 27, 33}

Figure 1: Example of influence maximization reconfigura-
tion on karate network (see §7.1). Each vertex is colored ac-
cording to the activation probability. Given seed sets 𝑋 (1a)
and𝑌 (1c), we wish to find a sequence of influential seed sets
connecting them. The 4th seed set 𝑆 (4) (1b) found by our al-
gorithm (see §5.2) is more influential than 𝑋 and 𝑌 .

1 INTRODUCTION
Consider the following problem over the solution space:

Given a pair of feasible solutions for a particular source problem,
can we find a step-by-step transformation between them?

Such problems that involve transformation and movement are

known by the name of reconfiguration problems in Theoretical Com-

puter Science [28, 52, 60]. A famous example of reconfiguration

problems is the 15 puzzle [32], where a feasible solution is an ar-

rangement of 15 numbered tiles on a 4 × 4 grid with one empty

square, and a transformation involves sliding a single tile to the

empty square. The goal is to transform from a given initial arrange-

ment to the target arrangement such that the tiles are placed in

numerical order. This paper aims to introduce the concept of recon-

figuration into Data Mining, enabling us to connect or interpolate
between a pair of feasible solutions. We explain two motivating

examples of reconfiguration below:

InfluenceMaximizationReconfiguration (§7.1): Supposewe

are going to plan a viral marketing campaign [17] for promoting a

company’s new product. Given structural data about a social net-

work, we can solve influence maximization [35] to identify a small

group of influential users. However, the power of influence may de-

cay as time goes by because social networks are evolving [40, 54] or
users may be affected by overexposure [45]. One strategy to circum-

vent this issue is replacing an outdated group with a newly-found

one. When a change in user groups incurs a cost and we are given

a limited budget (e.g., per day), we need to interpolate between an

outdated group and a new one without significantly sacrificing the

influence, which entails the concept of reconfiguration. Figure 1

depicts an example of influence maximization.

MAP Inference Reconfiguration (§7.2): Consider that we are

required to arrange a list of items to be displayed on a recommender

system. If a feature vector is given for each item, we can use a

determinantal point process [7, 47] to extract a few items achieving

ar
X

iv
:2

11
1.

14
03

0v
1

 [
cs

.D
S]

 2
8

N
ov

 2
02

1

https://orcid.org/0000-0001-9584-4764
https://doi.org/10.1145/3488560.3498382
https://doi.org/10.1145/3488560.3498382
https://doi.org/10.1145/3488560.3498382

Table 1: Complexity-theoretic results of submodular reconfiguration problems (see §3.2 for definitions).
name source transformation §3 formulation §4 exact solution §5 approximability §6 inapproximability

MSReco max

𝑆 ∈([𝑛]𝑘)
𝑓 (𝑆)

jump
Problem 3.2 PSPACE-complete max{ 1

2
, (1 − ^)2}-factor (1 − 1+𝜖

𝑛2
)-factor ⇒ no FPTAS

Problem 3.5 (Theorem 4.2) (Theorem 5.1) (Theorem 6.1)

USReco[tar] max

𝑆⊆[𝑛]
𝑓 (𝑆)

add/remove
Problem 3.3 PSPACE-complete open (5

6
+ 𝜖)-factor

Problem 3.6 (Theorem 4.5) (see also §5.4) (Theorem 6.3)

USReco[tjar] max

𝑆⊆[𝑛]
𝑓 (𝑆)

jump/add/remove
Problem 3.4 PSPACE-complete

1

𝑛 -factor (5
6
+ 𝜖)-factor

Problem 3.7 (Theorem 4.6) (Theorem 5.3) (Theorem 6.2)

𝑛 denotes the size of the ground set; ^ denotes the total curvature of an input submodular function; 𝜖 is an arbitrarily small positive number.

a good balance between item quality and set diversity [21, 38]. Since

novelty plays a crucial role in increasing the recommendation utility

[61], we would want to update the item list continuously. On the

other hand, we need to ensure stability [1]; i.e., the list should not be
drastically changed over time, which gives rise to reconfiguration.

Source problems for both examples are formulated as Submod-
ular Maximization [9–11, 36, 51], which finds many applications

in data mining (see §2). Unfortunately, the primary concern in

the area of reconfiguration has been revealing the computational

complexity of reconfiguration problems for classical problems such

as graph-algorithmic problems and Boolean satisfiability (see §2),

which are incompatible with Data Mining and not applicable to the

above examples. Our objective is to formulate, analyze, and apply

reconfiguration problems derived from a submodular function.

1.1 Our Contributions
We present an initial, systematic study on reconfiguration prob-

lems on submodular functions. Our submodular reconfiguration

problems request to determine whether there exists a solution se-

quence connecting two input solutions such that each solution

has an objective value above a threshold in a submodular function

𝑓 : 2
[𝑛] → R+ and is obtained from the previous one by applying

a simple transformation rule (e.g., a single element addition and re-

moval). We formulate three submodular reconfiguration problems

according to Ito et al. [28]’s framework of reconfiguration:

• Monotone SubmodularReconfiguration (MSReco; Problem 3.2):

This problem derives fromMonotone SubmodularMaximiza-
tion and applies to influence maximization reconfiguration.

• Unconstrained SubmodularReconfiguration (USReco[tar]
andUSReco[tjar]; Problems 3.3 and 3.4): These problems derive

fromUnconstrained SubmodularMaximization and two trans-

formation rules. MAP inference reconfiguration fits into them.

We further formulate the optimization variants (Problems 3.5–3.7),

which aim to maximize the minimum objective value among the

solutions in the output sequence. We analyze the proposed recon-

figuration problems through the lens of computational complexity.

Our complexity-theoretic results are summarized in Table 1.

Hardness (§4). We first investigate the computational tractabil-

ity of the submodular reconfiguration problems. We prove that

MSReco,USReco[tar], andUSReco[tjar] are allPSPACE-complete

(Theorems 4.2, 4.5 and 4.6), which is at least as hard asNP-completeness.

Approximability (§5). Having established the hardness of solving
MSReco and USReco exactly, we seek for approximation in terms

of the minimum function value in the output sequence; namely,

we would like to maximize the minimum function value among

the solutions as much as possible. We design a max{ 1
2
, (1 − ^)2}-

approximation algorithm forMSReco (Theorem 5.1), where^ is the

total curvature of a submodular function, and a
1

𝑛 -approximation

algorithm for USReco[tjar] (Theorem 5.3).

Inapproximability (§6). We further devise two hardness of ap-
proximation results. One is that approximating the optimum value

of MSReco within a factor of (1 − 1+𝜖
𝑛2
) is PSPACE-hard (The-

orem 6.1), implying that a fully polynomial-time approximation

scheme does not exist assuming P ≠ PSPACE. The other is that we
cannot find a (5

6
+ 𝜖)-approximation for USReco, without making

a complexity-theoretic assumption. (Theorems 6.2 and 6.3).

Numerical Study (§7). We finally report numerical study on the

reconfiguration version of influence maximization [35] using net-

work data and that ofMAP inference on determinantal point process

[21] using movie rating data, which are formulated asMSReco and

USReco[tjar], respectively. Comparing to an A* search algorithm,

we observe that an approximation algorithm for MSReco quickly

finds sequences that are better than the worst-case analysis, while

that for USReco[tjar] is far worse than the optimal sequence.

2 RELATEDWORK
Reconfiguration Problems. The concept of reconfiguration has

arisen in problems involving transformation and movement, such

as the 15-puzzle [32] and the Rubik’s Cube. Ito et al. [28] established

the unified framework of reconfiguration. One of the most impor-

tant reconfiguration problems is reachability, asking to decide the

existence of a solution sequence between two feasible solutions

for a particular source problem. Countless source problems derive

the respective reconfiguration problems in Ito et al. [28]’s frame-

work, including graph-algorithmic problems, Boolean satisfiability,

and others; revealing their computational complexity has been the

primary concern in Theoretical Computer Science. Typically, anNP-
complete source problem brings a PSPACE-complete reachability

problem, e.g., Vertex Cover [33], Set Cover [28], 4-Coloring [5],

Clique [28], and 3-SAT [23]. On the other hand, a source problem

in P usually induces a reachability problem in P, e.g., Matching
[28] and 2-SAT [23]. However, some exceptions are known; e.g.,

3-Coloring is NP-complete, but its reachability version is in P
[31]. See Nishimura [52]’s survey for more information. This study

explores reconfiguration problems for which the source problem

is Submodular Maximization, which generalizes Vertex Cover
and Set Cover and has more of a flavor of Data Mining.

Submodular Function Maximization. We review two submod-

ular function maximization problems, which have been studied in

Theoretical Computer Science and applied in Data Mining.

Given a monotone submodular function,Monotone Submodu-
lar Maximization requires finding a fixed-size set having the max-

imum function value. The simple greedy algorithm has a provable

guarantee of returning a (1 − 1/e)-factor approximation in polyno-

mial time [51]. This factor is the best possible as no polynomial-time

algorithm can achieve a better approximation factor [18, 50]. Since

monotone submodular functions abide by the law of diminishing re-
turns,Monotone Submodular Maximization has been applied

to a diverse range of data mining tasks, e.g., influence maximization

[35] document summarization [44], outbreak detection [41], and

sensor placement [37]. We develop a
1

2
-approximation algorithm

for the corresponding reconfiguration problem (§5.2).

Given a (not necessarily monotone) submodular function, Un-
constrained Submodular Maximization requires finding a sub-

set that maximizes the function value. This problem can be approx-

imated within a
1

2
-factor [9, 11], which is proven to be optimal

[19]. Some of the application tasks include movie recommendation,

image summarization [48], and MAP inference on determinantal

point process [21]. We develop a
1

𝑛 -approximation algorithm for

the corresponding reconfiguration problem (§5.3).

3 PROBLEM FORMULATION
Preliminaries. For a nonnegative integer 𝑛, let [𝑛] ≜ {1, 2, . . . , 𝑛}.
R+ represents the set of nonnegative real numbers. For a finite

set 𝑆 and a nonnegative integer 𝑘 , we write
(𝑆
𝑘

)
for the family of

all size-𝑘 subsets of 𝑆 . A sequence S consisting of a finite number

of sets 𝑆 (0) , 𝑆 (1) , . . . , 𝑆 (ℓ) is denoted as ⟨𝑆 (0) , 𝑆 (1) , . . . , 𝑆 (ℓ) ⟩, and
we write 𝑆 (𝑖) ∈ S to mean that 𝑆 (𝑖) appears in S (at least once).

The symbol ⊎ is used to emphasize that the union is taken over

two disjoint sets. Throughout this paper, we assume that every set

function is nonnegative. For a set function 𝑓 : 2
[𝑛] → R+, we

say that 𝑓 is monotone if 𝑓 (𝑆) ≤ 𝑓 (𝑇) for all 𝑆 ⊆ 𝑇 ⊆ [𝑛], 𝑓 is

modular if 𝑓 (𝑆) + 𝑓 (𝑇) = 𝑓 (𝑆 ∩ 𝑇) + 𝑓 (𝑆 ∪ 𝑇) for all 𝑆,𝑇 ⊆ [𝑛],
and 𝑓 is submodular if 𝑓 (𝑆) + 𝑓 (𝑇) ≥ 𝑓 (𝑆 ∩ 𝑇) + 𝑓 (𝑆 ∪ 𝑇) for
all 𝑆,𝑇 ⊆ [𝑛]. Submodularity is known to be equivalent to the

following diminishing returns property [57]: 𝑓 (𝑆 ∪ {𝑒}) − 𝑓 (𝑆) ≥
𝑓 (𝑇 ∪ {𝑒}) − 𝑓 (𝑇) for all 𝑆 ⊆ 𝑇 ⊆ [𝑛] and 𝑒 ∈ [𝑛] \𝑇 . For a subset
𝑅 ⊆ [𝑛], the residual [36] is defined as a set function 𝑓𝑅 : 2

[𝑛]\𝑅 →
R+ such that 𝑓𝑅 (𝑆) ≜ 𝑓 (𝑆 ⊎ 𝑅) − 𝑓 (𝑅) for 𝑆 ⊆ [𝑛] \ 𝑅. If 𝑓 is

monotone and submodular, then so is 𝑓𝑅 [36]. The total curvature
^ [15, 62] of a monotone submodular function 𝑓 : 2

[𝑛] → R+ is
defined as ^ ≜ 1−min𝑒∈[𝑛]

𝑓 ([𝑛])−𝑓 ([𝑛]\{𝑒 })
𝑓 ({𝑒 }) . The total curvature

^ takes a value from 0 to 1, which captures how far away 𝑓 is from

being modular; e.g., a modular function has curvature ^ = 0, and

a coverage function has curvature ^ = 1.
1
We assume to be given

access to a value oracle for a set function 𝑓 , which returns 𝑓 (𝑆)
whenever it is called with a query 𝑆 . We recall the definitions of

two submodular function maximization problems:

1. Monotone Submodular Maximization: Given a monotone

submodular function 𝑓 : 2
[𝑛] → R+ and a solution size 𝑘 , maxi-

mize 𝑓 (𝑆) subject to 𝑆 ∈
([𝑛]
𝑘

)
.

2. Unconstrained SubmodularMaximization: Given a submod-

ular function 𝑓 : 2
[𝑛] → R+, maximize 𝑓 (𝑆) subject to 𝑆 ⊆ [𝑛].

1
Given a collection of 𝑛 subsets 𝐴1, . . . , 𝐴𝑛 of some ground set𝑈 , we refer to a set

function 𝑓 : 2
[𝑛] → R+ such that 𝑓 (𝑆) ≜ |⋃𝑖∈𝑆 𝐴𝑖 | as a coverage function.

3.1 Ito et al. [28]’s Reconfiguration Framework
In reconfiguration problems, we wish to determine whether there

exists a sequence of solutions between a pair of solutions for a

particular “source” problem such that each is “feasible” and obtained

from the previous one by applying a simple “transformation rule.”

We recapitulate the reconfiguration framework of Ito et al. [28]. The

reconfiguration framework requires three ingredients [28, 49, 52]:

1. a source problem, which is usually a search problem in P or

NP-complete;

2. a definition of feasible solutions;
3. an adjacency relation over the pairs of two solutions, typically

symmetric and polynomial-time testable [52].

An adjacency relation can be defined in terms of a reconfiguration
step, which specifies how a solution can be transformed. We say

that two solutions are adjacent if one can be transformed into the

other by applying a single reconfiguration step. We now define a

central concept called reconfiguration sequences.

Definition 3.1. For two feasible solutions 𝑋 and 𝑌 , a reconfig-
uration sequence from 𝑋 to 𝑌 is a sequence of feasible solutions
S = ⟨𝑆 (0) , 𝑆 (1) , . . . , 𝑆 (ℓ) ⟩ starting from 𝑋 (i.e., 𝑆 (0) = 𝑋) and ending
with𝑌 (i.e., 𝑆 (ℓ) = 𝑌) such that every two consecutive solutions 𝑆 (𝑖−1)

and 𝑆 (𝑖) for 𝑖 ∈ [ℓ] are adjacent (i.e., 𝑆 (𝑖) is obtained from 𝑆 (𝑖−1)

by a single reconfiguration step). The length ℓ of S is defined as the
number of (possibly duplicate) solutions in it minus 1.

There are several types of reconfiguration problems [49, 52, 60].

One of the most important problems is reachability, asking to de-

termine whether there exists a reconfiguration sequence between

a pair of feasible solutions. Of course, reconfiguration problems for

the same source problem can have different complexities depending

on the definitions of feasibility and adjacency.

3.2 Defining Submodular Reconfiguration
We are now ready to formulate reconfiguration problems on sub-

modular functions. We first designate the ingredients required for

defining the reconfiguration framework. Source problems are ei-

therMonotone SubmodularMaximization orUnconstrained
Submodular Maximization. Given a submodular function 𝑓 :

2
[𝑛] → R+, we define the feasibility according to [28, §2.2]: We

introduce a threshold \ , offering a lower bound on the allowed func-

tion values, and a set 𝑆 is said to be feasible if 𝑓 (𝑆) ≥ \ . For a set se-

quence S, the value of S, denoted 𝑓 (S), is defined as the minimum

function value among all sets in S, i.e., 𝑓 (S) ≜ min𝑆 (𝑖) ∈S 𝑓 (𝑆 (𝑖)).
Accordingly, a reconfiguration sequence S must satisfy 𝑓 (S) ≥ \ .

We consider three reconfiguration steps to specify an adjacency

relation, some of which are established in the literature:

1. Token jumping (tj) [33]: Given a set, a tj step can remove one

element from it and add another element not in it at the same

time; i.e., two sets are adjacent under tj if they have the same

size and their intersection has a size one less than their size.

2. Token addition or removal (tar) [28]: Given a set, a tar step can

remove an element from it or add an element not in it; i.e., two

sets are adjacent under tar if the symmetric difference has size 1.

3. Token jumping, addition, or removal (tjar): A tjar step can perform

either a tj or tar step.

It is easy to see that these adjacency relations are symmetric and

polynomial-time testable.

3.2.1 Reachability Problems. We define three reachability prob-

lems on a submodular function with different adjacency relations.
2

Problem 3.2 (Monotone SubmodularReconfiguration;MSReco).
Given a monotone submodular function 𝑓 : 2

[𝑛] → R+, two sets 𝑋
and 𝑌 in

([𝑛]
𝑘

)
, and a threshold \ , decide if there exists a reconfigura-

tion sequence S from 𝑋 to 𝑌 under tj such that 𝑓 (S) ≥ \ .

Problem 3.3 (Unconstrained Submodular Reconfiguration
in tar;USReco[tar]). Given a submodular function 𝑓 : 2

[𝑛] → R+,
two subsets 𝑋 and 𝑌 of [𝑛], and a threshold \ , decide if there exists a
reconfiguration sequenceS from𝑋 to𝑌 under tar such that 𝑓 (S) ≥ \ .

Problem 3.4 (Unconstrained Submodular Reconfiguration
in tjar; USReco[tjar]). Given a submodular function 𝑓 : 2

[𝑛] →
R+, two subsets 𝑋 and 𝑌 of [𝑛], and a threshold \ , decide if there
exists a reconfiguration sequence S from 𝑋 to 𝑌 under tjar such that
𝑓 (S) ≥ \ .

Note that these problems do not request an actual reconfiguration

sequence. Without loss of generality, we assume that \ is at most

min{𝑓 (𝑋), 𝑓 (𝑌)}, because otherwise the answer is always “no.”

3.2.2 Optimization Variants. By definition, the answer to Prob-

lems 3.2–3.4 is always “yes” if \ = 0. On the other hand, there exists

a constant \yes, referred to as a reconfiguration index [29], for which
the answer is “yes” if \ ≤ \yes and “no” otherwise. We can thus

think of the following optimization variants, requiring that 𝑓 (S)
be maximized among all possible reconfiguration sequences. Such

variants have been studied for Clique [28] and Subset Sum [27].

Problem 3.5 (MaximumMonotone Submodular Reconfig-
uration; MaxMSReco). Given a monotone submodular function
𝑓 : 2

[𝑛] → R+ and two sets 𝑋 and 𝑌 in
([𝑛]
𝑘

)
, find a reconfiguration

sequence S from 𝑋 to 𝑌 under tj maximizing 𝑓 (S).

Problem 3.6 (MaximumUnconstrained SubmodularRecon-
figuration in tar;MaxUSReco[tar]). Given a submodular func-
tion 𝑓 : 2

[𝑛] → R+ and two subsets 𝑋 and 𝑌 of [𝑛], find a reconfigu-
ration sequence S from 𝑋 to 𝑌 under tar maximizing 𝑓 (S).

Problem 3.7 (MaximumUnconstrained SubmodularRecon-
figuration in tjar;MaxUSReco[tjar]). Given a submodular func-
tion 𝑓 : 2

[𝑛] → R+ and two subsets 𝑋 and 𝑌 of [𝑛], find a reconfigu-
ration sequence S from 𝑋 to 𝑌 under tjar maximizing 𝑓 (S).

4 HARDNESS
In this section, we prove that MSReco, USReco[tar], and US-
Reco[tjar] are all PSPACE-complete to solve (Theorems 4.2, 4.5

and 4.6). Here, PSPACE is a class of decision problems that can

be solved using polynomial space in the input size, and a decision

problem is said to be PSPACE-complete if it is in PSPACE and

every problem in PSPACE can be reduced to it in polynomial time.

PSPACE is known to include (and believed to be outside [3]) P,
NP, and ♯P. Commonly known PSPACE-complete problems are

Quantified Boolean Formula [20], puzzles and games such as

2
We do not consider MSReco under tar or tjar since they yield a set not in

(𝑛
𝑘

)
.

Sliding Blocks [26] and Go [43]. We can easily verify that sub-

modular reconfiguration problems are included in PSPACE, whose
proof is deferred to Appendix A.

Observation 4.1. Problems 3.2, 3.3 and 3.4 are in PSPACE.

4.1 PSPACE-completeness ofMSReco
Theorem 4.2. MSReco is PSPACE-complete.

To prove Theorem 4.2, we use a polynomial-time reduction from

Minimum Vertex Cover Reconfiguration. Of a graph, a vertex
cover is a set of vertices that include at least one endpoint of every
edge of the graph. Given a graph and an integer 𝑘 , it isNP-complete

to decide if there exists a vertex cover of size 𝑘 [34]. We define

Minimum Vertex Cover Reconfiguration as follows.

Problem 4.3 (MinimumVertexCoverReconfiguration). Given
a graph 𝐺 = (𝑉 , 𝐸) and two minimum vertex covers 𝐶𝑥 and 𝐶𝑦 of
the same size, determine whether there exists a sequence of minimum
vertex covers from 𝐶𝑥 to 𝐶𝑦 under tj.

Our definition is different from that of Vertex Cover Reconfig-
uration due to [28, 29], in which two input vertex covers may not

be minimum. We show that Problem 4.3 is PSPACE-hard, whose
proof is reminiscent of [28, Theorem 2] and deferred to Appendix A.

Lemma 4.4. Problem 4.3 is PSPACE-hard.

Proof of Theorem 4.2. We present a polynomial-time reduc-

tion from Minimum Vertex Cover Reconfiguration. Suppose
we are given a graph 𝐺 = (𝑉 , 𝐸) and two minimum vertex covers

𝐶𝑥
and 𝐶𝑦

. Define a set function 𝑓 : 2
𝑉 → R+ such that 𝑓 (𝑆) for

𝑆 ⊆ 𝑉 is the number of edges in 𝐸 that are incident to 𝑆 . In particular,

𝑓 (𝑆) = |𝐸 | if and only if 𝑆 is a vertex cover of𝐺 . Since 𝑓 is monotone

and submodular, we construct an instance ofMSReco consisting

of 𝑓 , 𝐶𝑥
, 𝐶𝑦

, and a threshold |𝐸 |. Observe that a reconfiguration
sequence for the Minimum Vertex Cover Reconfiguration in-

stance is a reconfiguration sequence for theMSReco instance, and

vice versa, which completes the reduction. □

4.2 PSPACE-completeness of USReco
Theorem 4.5. USReco[tar] is PSPACE-complete.

Proof. Wedemonstrate a polynomial-time reduction fromMono-
tone Not-All-Equal 3-SAT Reconfiguration, which is PSPACE-
complete [12]. A 3-conjunctive normal form (3-CNF) formula 𝜙 is

said to be monotone if no clause contains negative literals (e.g.,

𝜙 = (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥2 ∨ 𝑥3 ∨ 𝑥4) ∧ (𝑥1 ∨ 𝑥3 ∨ 𝑥4)). We as-

sume that every clause of 𝜙 contains exactly three literals. We

say that a truth assignment 𝝈 not-all-equal satisfies 𝜙 if every

clause contains exactly two literals with the same value; i.e., it

contains at least one true literal and at least one false literal (e.g.,

𝝈 (𝑥1) = 𝝈 (𝑥2) = 𝝈 (𝑥4) = True and 𝝈 (𝑥3) = False). In Mono-
tone Not-All-Equal 3-SAT Reconfiguration, given a monotone

3-CNF formula𝜙 and two not-all-equal satisfying truth assignments

𝝈𝑥
and 𝝈𝑦

of 𝜙 , we wish to determine whether there exists a se-

quence of not-all-equal satisfying truth assignments of 𝜙 between

𝝈𝑥
and 𝝈𝑦

such that each truth assignment is obtained from the

previous one by a single variable flip; i.e., they differ in exactly one

variable (cf. 3-SAT Reconfiguration [23] in Problem A.1).

Algorithm 1 Greedy algorithm.

Input: function 𝑓 : 2
[𝑛] → R+; set 𝑁 ⊆ [𝑛]; solution size 𝑘 ≤ |𝑁 |.

1: for each 𝑖 = 1 to 𝑘 do 𝑒𝑖 ← argmax

𝑒∈𝑁 \{𝑒1,...,𝑒𝑖−1}
𝑓 ({𝑒1, . . . , 𝑒𝑖−1, 𝑒 }) .

2: return sequence ⟨𝑒1, . . . , 𝑒𝑘 ⟩.

Suppose we are given a monotone 3-CNF formula 𝜙 with 𝑛

variables 𝑥1, . . . , 𝑥𝑛 and𝑚 clauses 𝑐1, . . . , 𝑐𝑚 and two not-all-equal

satisfying truth assignments 𝝈𝑥
and 𝝈𝑦

of 𝜙 . For a subset 𝑆 ⊆ [𝑛],
we write 𝝈𝑆 for a truth assignment such that 𝝈𝑆 (𝑥𝑖) for variable 𝑥𝑖
is True if 𝑖 ∈ 𝑆 and False otherwise. For a truth assignment 𝝈 , we
define the set 𝑆𝝈 ≜ {𝑖 ∈ [𝑛] | 𝝈 (𝑥𝑖) = True}. We now construct a

set function 𝑓𝜙 : 2
[𝑛] → R+ such that 𝑓 (𝑆) for 𝑆 ⊆ [𝑛] is the num-

ber of clauses not-all-equal satisfied by 𝝈𝑆 . In particular, 𝑓 (𝑆) =𝑚

if 𝝈𝑆 not-all-equal satisfies 𝜙 . Since 𝑓 is submodular,
3
we construct

an instance ofUSReco consisting of 𝑓 , 𝑆𝝈𝑥 , 𝑆𝝈𝑦 , and a threshold𝑚.

Observe that there exists a reconfiguration sequence for theMono-
tone Not-All-Equal 3-SAT Reconfiguration instance if and only
if there exists a reconfiguration sequence for the USReco instance,

which completes the reduction. □

The last PSPACE-completeness result is shown below, whose

proof is based on a reduction fromMinimum Vertex Cover Re-
configuration and deferred to Appendix A.

Theorem 4.6. USReco[tjar] is PSPACE-complete.

5 APPROXIMABILITY
In the previous section, we saw thatMSReco, USReco[tar], and
USReco[tjar] are all PSPACE-complete, implying that their op-

timization variants are also hard to solve exactly in polynomial

time. However, there is still room for consideration of approxima-
bility. A 𝜌-approximation algorithm for 𝜌 ≤ 1 is a polynomial-

time algorithm that returns a reconfiguration sequence S such

that 𝑓 (S) ≥ 𝜌 · 𝑓 (S∗), where S∗ is an optimal reconfiguration

sequence with the maximum value. We design a max{ 1
2
, (1 − ^)2}-

approximation algorithm for MaxMSReco (§5.2; Theorem 5.1),

where ^ is the total curvature, and a
1

𝑛 -approximation algorithm

for MaxUSReco[tjar] (§5.3; Theorem 5.3), while we explain the

difficulty in algorithm development forMaxUSReco[tar] (§5.4).

5.1 Greedy Algorithm
Before going into details of the proposed algorithms, we introduce

the greedy algorithm shown in Algorithm 1, which is used as a sub-

routine. Given a set function 𝑓 : 2
[𝑛] → R+, a ground set 𝑁 ⊆ [𝑛],

and a solution size 𝑘 ≤ |𝑁 |, the greedy algorithm iteratively selects

an element of 𝑁 , not having been chosen so far, that maximizes

the function value. The number of calls to a value oracle of 𝑓 is at

most |𝑁 |𝑘 . Let 𝑒𝑖 denote an element chosen at the 𝑖-th iteration;

define 𝑆𝑖 ≜ {𝑒1, . . . , 𝑒𝑖 }. We call the output sequence ⟨𝑒1, . . . , 𝑒𝑘 ⟩ a
greedy sequence. If 𝑓 is a submodular function, then the following

inequality is known to hold for any 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 , see, e.g., [36]:

𝑓 (𝑆𝑖) − 𝑓 (𝑆𝑖−1) ≥ 𝑓 (𝑆 𝑗) − 𝑓 (𝑆 𝑗−1). (1)

3
Suppose 𝜙 contains a single clause, say, 𝜙 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 . Then, 𝑓𝜙 can be written

as 𝑓𝜙 (𝑆) = 𝑔 (|𝑆 ∩ [3] |) , where 𝑔 : N → R+ is defined as 𝑔 (0) = 𝑔 (3) = 0 and

𝑔 (1) = 𝑔 (2) = 1. Since 𝑔 is concave, 𝑓𝜙 is submodular [46, Proposition 5.1].

Algorithm 2 max{ 1
2
, (1 − ^)2}-approximation algorithm for

MaxMSReco.
Input: monotone submodular func. 𝑓 : 2

[𝑛] → R+; two sets 𝑋,𝑌 ∈
([𝑛]
𝑘

)
.

1: 𝑅 ← 𝑋 ∩𝑌, 𝑋 ′ ← 𝑋 \ 𝑅, 𝑌 ′ ← 𝑌 \ 𝑅, 𝑘′ ← |𝑋 ′ | = |𝑌 ′ |.
2: invoke Algorithm 1 on 𝑓𝑅, 𝑋

′, 𝑘′ to get greedy sequence ⟨𝑥1, . . . , 𝑥𝑘′ ⟩.
3: invoke Algorithm 1 on 𝑓𝑅, 𝑌

′, 𝑘′ to get greedy sequence ⟨𝑦1, . . . , 𝑦𝑘′ ⟩.
4: for each 𝑖 = 0 to 𝑘′ do 𝑆 (𝑖) ← {𝑥1, . . . , 𝑥𝑘′−𝑖 } ⊎ {𝑦1, . . . , 𝑦𝑖 } ⊎ 𝑅.
5: return sequence S = ⟨𝑆 (0) , . . . , 𝑆 (𝑘′) ⟩.

5.2 max{ 1
2
, (1 − ^)2}-Approximation Algorithm

forMaxMSReco
Algorithm 2 describes the proposed approximation algorithm for

MaxMSReco. Given a monotone submodular function 𝑓 : 2
[𝑛] →

R+ and two sets 𝑋 and 𝑌 in

([𝑛]
𝑘

)
, it first invokes Algorithm 1 on

𝑓𝑅 , 𝑋 \ 𝑅, and 𝑘 ′ (resp. 𝑓𝑅 , 𝑌 \ 𝑅, and 𝑘 ′), where 𝑅 ≜ 𝑋 ∩ 𝑌 and

𝑘 ′ ≜ |𝑋 \ 𝑅 | = |𝑌 \ 𝑅 |, to obtain a greedy sequence ⟨𝑥1, . . . , 𝑥𝑘′⟩
(resp. ⟨𝑦1, . . . , 𝑦𝑘′⟩). It then returns a set sequence from𝑋 to𝑌 , the 𝑖-

th set in which is defined as 𝑆 (𝑖) ≜ {𝑥1, . . . , 𝑥𝑘′−𝑖 }⊎{𝑦1, . . . , 𝑦𝑖 }⊎𝑅.
Our algorithm is guaranteed to return amax{ 1

2
, (1−^)2}-approximation

reconfiguration sequence in O(𝑛𝑘) time, where ^ is the total cur-

vature of 𝑓 . Algorithm 2 is thus nearly optimal whenever ^ ≈ 0.

Such a small ^ can be observed in real-world problems, e.g., entropy

sampling on Gaussian radial basis function kernels [58].

Theorem 5.1. Given a monotone submodular function 𝑓 : 2
[𝑛] →

R+ and two sets 𝑋 and 𝑌 in
([𝑛]
𝑘

)
, Algorithm 2 returns a reconfigura-

tion sequence S forMaxMSReco of length at most 𝑘 in O(𝑛𝑘) time
such that 𝑓 (S) ≥ max{ 1

2
, (1 − ^)2}min{𝑓 (𝑋), 𝑓 (𝑌)}. In particular,

it is a max{ 1
2
, (1 − ^)2}-approximation algorithm forMaxMSReco.

Proof. Define 𝑅 ≜ 𝑋 ∩ 𝑌 , 𝑋 ′ ≜ 𝑋 \ 𝑅, 𝑌 ′ ≜ 𝑌 \ 𝑅, and
𝑘 ′ ≜ |𝑋 ′ | = |𝑌 ′ |. Let ⟨𝑥1, . . . , 𝑥𝑘′⟩ (resp. ⟨𝑦1, . . . , 𝑦𝑘′⟩) denote the
greedy sequence returned by Algorithm 1 invoked on 𝑓𝑅, 𝑋

′, 𝑘 ′

(resp. 𝑓𝑅, 𝑌
′, 𝑘 ′). For each 𝑖 ∈ {0}∪ [𝑘 ′], we define𝑋𝑖 ≜ {𝑥1, . . . , 𝑥𝑖 }

and 𝑌𝑖 ≜ {𝑦1, . . . , 𝑦𝑖 }. Note that 𝑋0 = 𝑌0 = ∅, 𝑋𝑘′ = 𝑋 ′, and
𝑌𝑘′ = 𝑌 ′. For each 𝑖 ∈ {0} ∪ [𝑘 ′], 𝑆 (𝑖) in the returned reconfig-

uration sequence S is equal to 𝑋𝑘′−𝑖 ⊎ 𝑌𝑖 ⊎ 𝑅, which is of size 𝑘 .

The correctness of Algorithm 2 comes from the fact that 𝑆 (𝑖) is
obtained from 𝑆 (𝑖−1) by removing 𝑥𝑘′−𝑖+1 and adding 𝑦𝑖 . The time

complexity is apparent.

Showing that 𝑓 (𝑆 (𝑖)) ≥ 1

2
min{𝑓 (𝑋), 𝑓 (𝑌)} for every 𝑖 now

suffices to prove a
1

2
-approximation. Since the statement is clear

if 𝑖 = 0, 𝑘 ′, we will prove for the case of 𝑖 ∈ [𝑘 ′ − 1]. Observe first
that, whenever 𝑖 ≤ 𝑗 , we have that 𝑓𝑅 (𝑋𝑖) − 𝑓𝑅 (𝑋𝑖−1) ≥ 𝑓𝑅 (𝑋 𝑗) −
𝑓𝑅 (𝑋 𝑗−1) due to Eq. (1). Hence, for any 𝑖 ∈ [𝑘 ′ − 1], we have that
1

𝑖

∑
1≤ 𝑗≤𝑖

(𝑓𝑅 (𝑋 𝑗) − 𝑓𝑅 (𝑋 𝑗−1)) ≥ 1

𝑘′−𝑖
∑

𝑖+1≤ 𝑗≤𝑘′
(𝑓𝑅 (𝑋 𝑗) − 𝑓𝑅 (𝑋 𝑗−1)) .

Simple calculation further yields that 𝑓𝑅 (𝑋𝑖) ≥ 𝑖
𝑘′ 𝑓𝑅 (𝑋

′), where we
have used the nonnegativity of 𝑓𝑅 (∅). Similarly, we can show that

𝑓𝑅 (𝑌𝑖) ≥ 𝑖
𝑘′ 𝑓𝑅 (𝑌

′) for every 𝑖 ∈ [𝑘 ′−1]. Using the two inequalities
on 𝑓𝑅 (𝑋𝑘′−𝑖) and 𝑓𝑅 (𝑌𝑖), we have that for any 𝑖 ∈ [𝑘 ′ − 1],

𝑓 (𝑆 (𝑖)) = 𝑓𝑅 (𝑋𝑘′−𝑖 ⊎ 𝑌𝑖) + 𝑓 (𝑅) ≥ max{𝑓𝑅 (𝑋𝑘′−𝑖), 𝑓𝑅 (𝑌𝑖)} + 𝑓 (𝑅)

≥ max

{
𝑘′−𝑖
𝑘′ 𝑓𝑅 (𝑋 ′), 𝑖

𝑘′ 𝑓𝑅 (𝑌
′)
}
+ 𝑓 (𝑅) = 1

2
min{𝑓 (𝑋), 𝑓 (𝑌)}, (2)

where the first inequality is due to the monotonicity of 𝑓𝑅 . Proving

a (1 − ^)2-approximation is deferred to Appendix A. □

Algorithm 3 1

𝑛 -approximation algorithm forMaxUSReco[tjar].

Input: submodular function 𝑓 : 2
[𝑛] → R+; two subsets 𝑋,𝑌 of [𝑛].

1: invoke Algorithm 1 on 𝑓 , 𝑋, |𝑋 | to get greedy sequence ⟨𝑥1, . . . , 𝑥 |𝑋 | ⟩.
2: invoke Algorithm 1 on 𝑓 ,𝑌 , |𝑌 | to get greedy sequence ⟨𝑦1, . . . , 𝑦 |𝑌 | ⟩.
3: declare empty sequence S = ⟨⟩.
4: for each 𝑖 = |𝑋 | to 1 do append {𝑥1, . . . , 𝑥𝑖 } at the end of S.
5: for each 𝑖 = 1 to |𝑌 | do append {𝑦1, . . . , 𝑦𝑖 } at the end of S.
6: return sequence S.

Difficult Instance for Algorithm 2. We provide a specific in-

stance ofMaxMSReco forwhichAlgorithm 2 returns a
3

4
-approximation

reconfiguration sequence, whose proof is deferred to Appendix A.

As a by-product, we give evidence that an optimal reconfiguration

sequence can include elements outside 𝑋 ∪ 𝑌 .

Observation 5.2. There exists an instance 𝑓 , 𝑋,𝑌 of MaxM-
SReco such that the optimal reconfiguration sequence S∗ has value
𝑓 (S∗) = 1, and any reconfiguration sequence S that is restricted to
include only subsets of 𝑋 ∪𝑌 has value 𝑓 (S) ≤ 3

4
. Thus, Algorithm 2

returns a 3

4
-approximation reconfiguration sequence for this instance.

5.3 1

𝑛
-Approximation Algorithm for

MaxUSReco[tjar]
Algorithm 3 describes the proposed approximation algorithm for

MaxUSReco[tjar]. Given a submodular function 𝑓 : 2
[𝑛] → R+

and two subsets 𝑋 and 𝑌 of [𝑛], it first invokes Algorithm 1 on

𝑓 , 𝑋, |𝑋 | and 𝑓 , 𝑌 , |𝑌 | to obtain the greedy sequences ⟨𝑥1, . . . , 𝑥 |𝑋 |⟩
and ⟨𝑦1, . . . , 𝑦 |𝑌 |⟩, respectively. It then returns the concatenation

of a reconfiguration sequence from 𝑋 to {𝑥1} and that from {𝑦1}
to 𝑌 . Our algorithm is guaranteed to return a

1

𝑛 -approximation

reconfiguration sequence in O(𝑛2) time as claimed below.

Theorem 5.3. Given a submodular function 𝑓 : 2
[𝑛] → R+ and

two subsets 𝑋 and 𝑌 of [𝑛], Algorithm 3 returns a reconfiguration
sequence S for MaxUSReco[tjar] of length at most 2𝑛 in O(𝑛2)
time such that 𝑓 (S) ≥ 1

𝑛 min{𝑓 (𝑋), 𝑓 (𝑌)}. In particular, it is a
1

𝑛 -approximation algorithm for MaxUSReco[tjar].

Proof. Let ⟨𝑥1, . . . , 𝑥 |𝑋 |⟩ (resp. ⟨𝑦1, . . . , 𝑦 |𝑌 |⟩) denote the greedy
sequence returned byAlgorithm 1 invoked on 𝑓 , 𝑋, |𝑋 | (resp. 𝑓 , 𝑌 , |𝑌 |).
For each 𝑖 ∈ {0} ∪ [|𝑋 |] (resp. 𝑖 ∈ {0} ∪ [|𝑌 |]), we define 𝑋𝑖 ≜
{𝑥1, . . . , 𝑥𝑖 } (resp. 𝑌𝑖 ≜ {𝑦1, . . . , 𝑦𝑖 }). Observe that the sequence S
returned by Algorithm 3 is a valid reconfiguration sequence for

MaxUSReco[tjar] and consists of sets in the form of either 𝑋𝑖 or

𝑌𝑖 for some 𝑖 ≥ 1. The time complexity is obvious.

We will show that 𝑓 (𝑋𝑖) ≥ 1

|𝑋 | 𝑓 (𝑋) for every 𝑖 ≥ 1. Since the

value of 𝑓 (𝑋𝑖)−𝑓 (𝑋𝑖−1) is monotonically nonincreasing in 𝑖 ∈ [|𝑋 |]
owing to Eq. (1), there exists an index 𝑖∗ such that 𝑓 (𝑋𝑖)−𝑓 (𝑋𝑖−1) ≥
0 if 𝑖 ≤ 𝑖∗ and 𝑓 (𝑋𝑖)−𝑓 (𝑋𝑖−1) ≤ 0 if 𝑖 ≥ 𝑖∗+1. In the former case, we

have that 𝑓 (𝑋𝑖) ≥ 𝑓 (𝑋1); in the latter case, we have that 𝑓 (𝑋𝑖) ≥
𝑓 (𝑋) . Using the inequality that 𝑓 (𝑋) ≤ ∑

𝑖∈[|𝑋 |] 𝑓 ({𝑥𝑖 }) ≤ |𝑋 | ·
𝑓 ({𝑥1}), we obtain that 𝑓 (𝑋𝑖) ≥ min{𝑓 (𝑋1), 𝑓 (𝑋)} ≥ 1

|𝑋 | 𝑓 (𝑋) for
any 𝑖 ∈ [|𝑋 |]. Similarly, we can derive an analogous inequality that

for any 𝑖 ∈ [|𝑌 |], 𝑓 (𝑌𝑖) ≥ 1

|𝑌 | 𝑓 (𝑌). Accordingly, we derive that

𝑓 (S) ≥ min

{
1

|𝑋 | 𝑓 (𝑋),
1

|𝑌 | 𝑓 (𝑌)
}
≥ 1

𝑛 min{𝑓 (𝑋), 𝑓 (𝑌)}, (3)

which completes the proof. □

Does Algorithm 2 Work on MaxUSReco[tjar]? Algorithm 3’s

approximation factor of
1

𝑛 is not fascinating compared to a
1

2
-factor

of Algorithm 2 onMaxMSReco. One might wonder if Algorithm 2

generates a good reconfiguration sequence on MaxUSReco[tjar],
assuming that |𝑋 | = |𝑌 |. However, we have bad news that Al-

gorithm 2 does not have any positive approximation factor for

MaxUSReco[tjar], whose proof is deferred to Appendix A.

Observation 5.4. There exists an instance 𝑓 , 𝑋,𝑌 of MaxUS-
Reco[tjar] with |𝑋 | = |𝑌 | such that Algorithm 3 and Algorithm 2
return a reconfiguration sequence of value 1 and 0, respectively.

5.4 Difficulty in Designing Approximation
Algorithms forMaxUSReco[tar]

Unfortunately, Algorithm 3 designed for MaxUSReco[tjar] does
not produce a reconfiguration sequence for MaxUSReco[tar] be-
cause we cannot transform from {𝑥1} to {𝑦1} directly by a tar step.
Here, we explain what makes it so challenging to design approxima-

tion algorithms forMaxUSReco[tar]. Eqs. (2) and (3) in the proofs

of Theorems 5.1 and 5.3 indicate that if 𝑓 (𝑋) and 𝑓 (𝑌) are positive,
then there must exist a reconfiguration sequence S whose value is

positive (which can be found efficiently). Such a feature is critical

for proving 𝑓 (S) ≥ 𝜌 · min{𝑓 (𝑋), 𝑓 (𝑌)} for some positive 𝜌 > 0.

We show, however, that this is not the case for MaxUSReco[tar];
i.e., it can be impossible to transform from 𝑋 to 𝑌 without ever

touching zero-value sets, whose proof is deferred to Appendix A.

Observation 5.5. There exists an instance 𝑓 , 𝑋,𝑌 of MaxUS-
Reco[tar] such that 𝑓 (𝑋) = 𝑓 (𝑌) = 1 and every reconfiguration
sequence S has value 𝑓 (S) = 0.

6 INAPPROXIMABILITY
In this section, we devise inapproximability results ofMaxMSReco
andMaxUSReco, which reveal an upper bound of approximation

guarantees that polynomial-time algorithms can achieve. We first

prove that it is PSPACE-hard to approximate the optimal value

of MaxMSReco within a factor of (1 − 1+𝜖
𝑛2
) (§6.1; Theorem 6.1),

which is slightly stronger than Theorem 4.2. Though this factor

asymptotically approaches 1 (as 𝑛 goes to infinity), the result rules

out the existence of a fully polynomial-time approximation scheme,

assuming that P ≠ PSPACE (which is a weaker assumption than

P ≠ NP). A fully polynomial-time approximation scheme (FPTAS) is
an approximation algorithm that takes a precision parameter 𝜖 > 0

and returns a (1−𝜖)-approximation in polynomial time in the input

size and 𝜖−1. We then show that both versions of MaxUSReco
cannot be approximated within a factor of (5

6
+ 𝜖) for any 𝜖 > 0 by

using exponentially many oracle calls in 𝑛 and 𝜖 , without making a

complexity-theoretic assumption (§6.2; Theorems 6.2 and 6.3).

6.1 Inapproximability Result ofMaxMSReco
The first result is shown below, whose proof appears in Appendix A.

Theorem 6.1. It is PSPACE-hard to approximate the optimal
value of MaxMSReco within a factor of (1 − 1+𝜖

𝑛2
) for any 𝜖 > 0,

where 𝑛 is the size of the ground set. In particular, an FPTAS for
MaxMSReco does not exist unless P = PSPACE.

6.2 Inapproximability Results ofMaxUSReco
Theorem 6.2. For any 𝜖 > 0, there is no (5

6
+ 𝜖)-approximation

algorithm forMaxUSReco[tjar]making at most e𝜖
2𝑛/2 oracle calls.

Proof. We show a reduction from Unconstrained Submodu-
lar Maximization in an approximation-preserving manner. Sup-

pose we are given a submodular function 𝑓 : 2
[𝑛] → R+ and a

number 𝜖 > 0, and we wish to find a (1
2
+ 𝜖)-approximation for

Unconstrained Submodular Maximization. We first compute

a
1

2
-approximation �̂� in polynomial time [9], and we define Υ ≜

(2 + 2𝜖) 𝑓 (�̂�). We have that (1 + 𝜖)OPT ≤ Υ ≤ (2 + 2𝜖)OPT, where
OPT ≜ max𝑆⊆[𝑛] 𝑓 (𝑆) (which is unknown). We can safely assume

that Υ > 0 because otherwise we can declare that the optimal value

is OPT = 0. Define 𝑉 ≜ {𝑥1, 𝑥2, 𝑦1, 𝑦2} and 𝑁 ≜ [𝑛] ⊎𝑉 . We then

construct a submodular function 𝑔 : 2
𝑁 → R+ such that 𝑔(𝑇) ≜

Υ
2
· 𝑐 (𝑇 ∩𝑉) + 𝑓 (𝑇 ∩ [𝑛]) for each𝑇 ⊆ 𝑁 , where 𝑐 is a cut function

on graph 𝐺 = (𝑉 , 𝐸) with 𝐸 = {(𝑥1, 𝑦1), (𝑥1, 𝑦2), (𝑥2, 𝑦1), (𝑥2, 𝑦2)}.
Since

Υ
2
· 𝑐 (·) takes either of 0, Υ, 2Υ as a value and 𝑓 (·) takes a

value within the range of [0,OPT], we have the following relation

between 𝑔(𝑇) and 𝑐 (𝑇 ∩𝑉):
1. if 0 ≤ 𝑔(𝑇) < Υ, then Υ

2
· 𝑐 (𝑇 ∩𝑉) = 0;

2. if Υ ≤ 𝑔(𝑇) < 2Υ, then Υ
2
· 𝑐 (𝑇 ∩𝑉) = Υ;

3. if 𝑔(𝑇) ≥ 2Υ, then Υ
2
· 𝑐 (𝑇 ∩𝑉) = 2Υ.

Consider nowMaxUSReco[tjar] defined by𝑔,𝑋 ≜ {𝑥1, 𝑥2}, 𝑌 ≜
{𝑦1, 𝑦2}. Note that 𝑔(𝑋) = 𝑔(𝑌) = 2Υ + 𝑓 (∅). Since we are allowed
to use tar and tj steps, for any 𝑆 ⊆ [𝑛], we can construct a recon-

figuration sequence S whose value is 𝑔(S) = Υ + 𝑓 (𝑆): an example

of such a sequence is ⟨{𝑥1, 𝑥2}, · · · adding elements of 𝑆 one by

one · · · , {𝑥1, 𝑥2} ∪ 𝑆, {𝑥1} ∪ 𝑆, {𝑦1} ∪ 𝑆, {𝑦1, 𝑦2} ∪ 𝑆, · · · removing

elements of 𝑆 one by one · · · , {𝑦1, 𝑦2}⟩. Since we cannot trans-

form from {𝑥1, 𝑥2} to {𝑦1, 𝑦2} without ever touching 𝑇 such that

Υ
2
· 𝑐 (𝑇 ∩ 𝑉) ≤ Υ, the optimal value for the MaxUSReco[tjar]

instance must be Υ + OPT. Conversely, if a reconfiguration se-

quence S has a value 𝑔(S) > Υ, we would be able to find a set

𝑆 (𝑖) ∈ S such that 𝑓 (𝑆 (𝑖) ∩ [𝑛]) = 𝑔(S) − Υ. In particular, given a

(5
6
+ 𝜖 ′)-approximation algorithm for MaxUSReco[tjar], we can

find (1
2
+𝜖)-approximation forUnconstrained SubmodularMax-

imization by setting 𝜖 ′ = 4𝜖
9+6𝜖 > 0 because

Υ+(1
2
+𝜖)OPT

Υ+OPT ≤ 5

6
+ 𝜖 ′.

Since no algorithmmaking fewer than e
𝜖2𝑛/8

oracle calls cannot find

a (1
2
+ 𝜖)-approximation to Unconstrained Submodular Maxi-

mization [19, Theorem 4.5], there is no (5
6
+ 𝜖 ′)-approximation

algorithm for MaxUSReco[tjar] making fewer than e
(9𝜖′
4−6𝜖′)

2 𝑛
8

oracle calls, which is more than e
𝜖′2𝑛/2

, completing the proof. □

The last inapproximability result is presented below, whose proof

is similar to that of Theorem 6.2 and deferred to Appendix A.

Theorem 6.3. For any 𝜖 > 0, there is no (5
6
+ 𝜖)-approximation

algorithm for MaxUSReco[tar] making at most e𝜖
2𝑛/2 oracle calls.

7 NUMERICAL STUDY
We report numerical study onMSReco and USReco[tjar] using
real-world data. We first applied Algorithm 2 forMaxMSReco to

influence maximization reconfiguration. We discover that Algo-

rithm 2 quickly returns a reconfiguration sequence whose value

is substantially better than the worst-case guarantee (§7.1). We

second applied Algorithm 3 for USReco[tjar] to MAP inference

reconfiguration on determinantal point processes. We find that Al-

gorithm 3’s value is nine times smaller than the optimal value (§7.2).

We implemented an A* search algorithm forMSReco and USReco
as a baseline (see Appendix B for details), which was found to make

more oracle calls than Algorithms 2 and 3. Experiments were con-

ducted on a Linux server with Intel Xeon E5-2699 2.30GHz CPU

and 792GB RAM. All algorithms were implemented in Python 3.7.

7.1 Influence Maximization Reconfiguration
7.1.1 Problem Description. We formulate the reconfiguration

of influence maximization asMSReco. Influence maximization [35]
requests to identify a fixed number of seed vertices that maximize

the spread of influence in a social network. We adopt the indepen-
dent cascade model [22] to specify the process of network diffusion.

Given an influence graph 𝐺 = (𝑉 , 𝐸, 𝑝), where 𝑝 : 𝐸 → [0, 1] is
an edge probability function, we consider the distribution over

subgraphs (𝑉 , 𝐸 ′) obtained by maintaining each edge 𝑒 of 𝐸 with

probability 𝑝 (𝑒). We say that a seed set 𝑆 ⊆ 𝑉 activates a vertex
𝑣 ∈ 𝑉 if 𝑆 can reach 𝑣 in (𝑉 , 𝐸 ′); an objective function called the

influence spread Inf (𝑆) is defined as the expected number of vertices

that have been activated by 𝑆 . Since Inf (·) is monotone and submod-

ular [35], the reconfiguration version of influence maximization

corresponds toMSReco, whose motivation was described in §1.

7.1.2 Setup. We prepare an influence graph 𝐺 = (𝑉 , 𝐸, 𝑝) and
two input sets 𝑋 and 𝑌 . We used two publicly-available social net-

work data, karate network4 with 34 vertices and 78 bidirectional

edges, and physicians network5 with 117 vertices and 542 directed
edges, from Koblenz Network Collection [39]. We set the probabil-

ity 𝑝 (𝑢, 𝑣) of edge (𝑢, 𝑣) ∈ 𝐸 to the inverse of the in-degree of 𝑣 ,

which was adopted in [2, 53, 59]. Since exact computation of Inf (·)
is ♯P-hard [14], we used the approximation scheme in [53, §5.2] to

construct a monotone submodular function 𝑓 : 2
𝑉 → R+ from 10

5

reverse reachable sets [6, 59], which provides an unbiased estimate
for the influence spread. We constructed 𝑋 and 𝑌 so that they are

disjoint and moderately influential. To that end, we ran the greedy

algorithm interchangeably: Beginning with 𝑋0 ≜ ∅ and 𝑌0 ≜ ∅, we
compute 𝑋𝑖 and 𝑌𝑖 for 𝑖 ≥ 1 as follows:

𝑋𝑖 ≜ 𝑋𝑖−1 ∪
{

argmax

𝑒∈[𝑛]\(𝑋𝑖−1∪𝑌𝑖−1)
𝑓 (𝑋𝑖−1 ∪ {𝑒 })

}
, (4)

𝑌𝑖 ≜ 𝑌𝑖−1 ∪
{

argmax

𝑒∈[𝑛]\(𝑋𝑖∪𝑌𝑖−1)
𝑓 (𝑌𝑖−1 ∪ {𝑒 })

}
. (5)

On karate, we define 𝑋 ≜ 𝑋8 and 𝑌 ≜ 𝑌8, where 𝑓 (𝑋) = 23.2

and 𝑓 (𝑌) = 23.6, which are drawn in Figure 1. On physicians, we
define 𝑋 ≜ 𝑋16 and 𝑌 ≜ 𝑌16, where 𝑓 (𝑋) = 93.2 and 𝑓 (𝑌) = 93.3.

7.1.3 Results. We ran Algorithm 2 and the A* algorithm with

\ = 0.9𝑣, 0.95𝑣, 𝑣 , where 𝑣 ≜ min{𝑓 (𝑋), 𝑓 (𝑌)}, on karate and

physicians. The obtained sequences were found to be all the short-
est. Figure 2 displays the influence spread of sets in each reconfig-

uration sequence. On karate, the A* algorithm with \ = 𝑣 and

Algorithm 2 found an optimal reconfiguration sequence of value

𝑣 . We can observe that the intermediate sets for Algorithm 2 were

more influential than those for the A* algorithm. Figure 1 draws

4
http://konect.cc/networks/ucidata-zachary/

5
http://konect.cc/networks/moreno_innovation/

http://konect.cc/networks/ucidata-zachary/
http://konect.cc/networks/moreno_innovation/

0 1 2 3 4 5 6 7 8
index i

22

23

24

25

in
flu

en
ce

 sp
re

ad
 f

(S
(i)

)

A*(θ = 0.9v)

A*(θ = 0.95v)

A*(θ = v)

Alg. 2

(a) karate network

0 2 4 6 8 10 12 14 16
index i

84
86
88
90
92
94

in
flu

en
ce

 sp
re

ad
 f

(S
(i)

)
A*(θ = 0.9v)

A*(θ = 0.95v)

A*(θ = v)

Alg. 2

(b) physicians network
Figure 2: Influence spread of each set in the reconfiguration
sequences returned by A* algorithm (\ = 0.9𝑣, 0.95𝑣, 𝑣) and
Algorithm 2, where 𝑣 = min{𝑓 (𝑋), 𝑓 (𝑌)}.
karate network, where each vertex is colored according to its prob-

ability of being activated by 𝑋 , the fourth subset 𝑆 (4) returned by

Algorithm 2, or 𝑌 . We can see that many vertices are more likely

to be activated by 𝑆 (4) than by 𝑋 or 𝑌 , making it easy to trans-

form from 𝑋 to 𝑌 . (See Appendix C for the entire reconfiguration

sequence returned by Algorithm 2.) On physicians, Algorithm 2

found a reconfiguration sequence of value 84.9 ≈ 0.91𝑣 , which

is still drastically better than
1

2
𝑣 envisioned from Theorem 5.1,

though the A* algorithm’s sequence has value 𝑣 . We finally report

the number of oracle calls for an influence function: On karate,
Algorithm 2 made 72 calls and the A* algorithm made 1,428 calls; on

physicians, Algorithm 2made 272 calls and the A* algorithmmade

53,987 calls. (We stress that we do not report actual running time

as it heavily depends on implementations of an unbiased estimator

[53] and scalability against large instances is beyond the scope of

this paper.) In summary, Algorithm 2 produced a reconfiguration

sequence of reasonable quality by making fewer oracle calls.

7.2 MAP Inference Reconfiguration
7.2.1 Problem Description. We formulate the reconfiguration

of maximum a posteriori (MAP) inference on determinantal point

process as USReco[tjar]. Determinantal point processes (DPPs)
[7, 47] are a probabilistic model on the power set 2

[𝑛]
, which cap-

tures negative correlations among objects. Given a Gram matrix

A ∈ R𝑛×𝑛 , a DPP defines the probabilitymass of each subset 𝑆 ⊆ [𝑛]
to be proportional to det(A𝑆). Seeking a subset with the maximum

determinant (i.e., max𝑆⊆[𝑛] det(A𝑆)), which is equivalent to MAP
inference [21], finds applications in recommendation and summa-

rization [38, 63, 64]. Since log det(A𝑆) as a set function in 𝑆 is

submodular, the reconfiguration counterpart of MAP inference is

USReco, whose motivation was explained in §1.

7.2.2 Setup. We prepare a Gram matrix A and a pair of input

sets 𝑋 and 𝑌 . We used MovieLens 1M6 [24], which consists of 1

million ratings on 3,900movies from 6,040 users of an online movie

recommendation website MovieLens.
7
We first selected 𝑛 = 207

movies with at least 1,000 ratings and𝑚 = 839 users who rated at

least 100 movies, resulting in an 𝑛 ×𝑚 movie-user rating matrix.

We then ran Nonnegative Matrix Factorization [8] with dimension

64 to extract a feature vector 𝝓𝑖 ∈ R64 with ∥𝝓𝑖 ∥2 = 1 for each

movie 𝑖 ∈ [𝑛]. The Gram matrix A ∈ R𝑛×𝑛 is constructed as 𝐴𝑖, 𝑗 =

6
https://grouplens.org/datasets/movielens/1m/

7
http://movielens.org/

0 4 8 12 16 20 24 28 32 36 40 44
index i

2

4

6

8

lo
g-

de
ter

m
in

an
t

f(S
(i)

)

A*(θ = 0.9v)
A*(θ = 0.95v)
A*(θ = v)
Alg. 3

Figure 3: Log-determinant of each set in the reconfiguration
sequences returned by A* algorithm (\ = 0.9𝑣, 0.95𝑣, 𝑣) and
Algorithm 3 on MovieLens 1M, where 𝑣 = min{𝑓 (𝑋), 𝑓 (𝑌)}.
⟨2𝑟𝑖−4𝝓𝑖 , 2𝑟 𝑗−4𝝓 𝑗 ⟩ for all 𝑖, 𝑗 ∈ [𝑛], where 𝑟𝑖 is an average rating

of movie 𝑖 between [1, 5]. Since det(A𝑆) is equal to (
∏

𝑖∈𝑆 2
𝑟𝑖−4)2

times the square volume of the parallelepiped spanned by {𝝓𝑖 }𝑖∈𝑆
[38], movies in a subset of large determinant are expected to be

highly-rated and of diverse genres. An input submodular function 𝑓

is defined as 𝑓 (𝑆) ≜ log det(A𝑆) for 𝑆 ⊆ [𝑛]. We created 𝑋 and 𝑌

in a similar manner to the first experiment: We computed 𝑋𝑖 and 𝑌𝑖
for 𝑖 ≥ 1 according to Eq. (4) until no further selection is possible

and extracted those with the largest determinant, resulting is that

𝑋 ≜ 𝑋24 and 𝑌 ≜ 𝑌22, where 𝑓 (𝑋) = 8.52 and 𝑓 (𝑌) = 7.79.

7.2.3 Results. We ran Algorithm 3 and the A* algorithm with

\ = 0.9𝑣, 0.95𝑣, 𝑣 , where 𝑣 ≜ min{𝑓 (𝑋), 𝑓 (𝑌)}. The A* algorithm
produced reconfiguration sequences of length 24while Algorithm 3

produced a reconfiguration sequence of length 45. Figure 3 plots

the log-determinant of sets in each reconfiguration sequence. The

A* algorithm with \ = 𝑣 was able to find an optimal reconfiguration

sequenceS∗. 22 of the 24 steps inS∗ were found to be tj steps, which
is quite different from the behavior of Algorithm 3. One possible

reason is that log-determinant functions exhibitmonotonicity when

every eigenvalue of A is greater than 1 [58]; in fact, the principal

submatrix of A induced by 𝑋 and 𝑌 has the minimum eigenvalue

of 0.70 and 0.76, respectively, while the minimum eigenvalue of A
was approximately 0. Hence, there is a sequence of tj steps that
preserves the log-determinant large. As opposed to the success

of Algorithm 2 for MSReco, Algorithm 3’s value was 0.823 ≈
0.11𝑣 , which is nine times smaller than the optimal value 𝑣 . This

result is easily expected from the mechanism of Algorithm 3, which

includes singletons (i.e., {𝑥1} and {𝑦1}) into the output sequence.

The number of oracle calls for a log-determinant function was 553

for Algorithm 3 and 105,412 for the A* algorithm.
8
We conclude that

Algorithm 3 consumes fewer oracle calls but further development

on approximation algorithms forMaxUSReco[tjar] is required.

8 CONCLUSION AND OPEN QUESTIONS
We established an initial study on submodular reconfiguration prob-

lems, including intractability, (in)approximability, and numerical

results. We conclude this paper with two open questions.

• Canwe devise an approximation algorithm forMaxUSReco[tar]?
• Can the approximation factors in §5 bemade tight?We conjecture

an O(1)-factor approximability forMaxUSReco[tjar].

8
Again, we do not report actual running time, which is severely affected by implemen-

tation of determinant computation [13].

https://grouplens.org/datasets/movielens/1m/
http://movielens.org/

REFERENCES
[1] Gediminas Adomavicius and Jingjing Zhang. 2012. Stability of recommendation

algorithms. ACM Trans. Inf. Syst. 30, 4 (2012), 23:1–23:31.
[2] Akhil Arora, Sainyam Galhotra, and Sayan Ranu. 2017. Debunking the Myths of

InfluenceMaximization: An In-Depth Benchmarking Study. In SIGMOD. 651–666.
[3] Sanjeev Arora and Boaz Barak. 2009. Computational Complexity: A Modern

Approach. Cambridge University Press.

[4] Masataro Asai and Alex Fukunaga. 2016. Tiebreaking strategies for A* search:

How to explore the final frontier. In AAAI. 673–679.
[5] Paul Bonsma and Luis Cereceda. 2009. Finding paths between graph colourings:

PSPACE-completeness and superpolynomial distances. Theor. Comput. Sci. 410,
50 (2009), 5215–5226.

[6] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. 2014.

Maximizing Social Influence in Nearly Optimal Time. In SODA. 946–957.
[7] Alexei Borodin and Eric M. Rains. 2005. Eynard-Mehta theorem, Schur process,

and their Pfaffian analogs. J. Stat. Phys. 121, 3–4 (2005), 291–317.
[8] Christos Boutsidis and Efstratios Gallopoulos. 2008. SVD based initialization: A

head start for nonnegative matrix factorization. Pattern Recognit. 41, 4 (2008),
1350–1362.

[9] Niv Buchbinder and Moran Feldman. 2018. Deterministic algorithms for submod-

ular maximization problems. ACM Trans. Algorithms 14, 3 (2018), 1–20.
[10] Niv Buchbinder and Moran Feldman. 2018. Submodular Functions Maximization

Problems. InHandbook of Approximation Algorithms andMetaheuristics. Chapman

and Hall/CRC, 771–806.

[11] Niv Buchbinder, Moran Feldman, Joseph Seffi, and Roy Schwartz. 2015. A tight

linear time (1/2)-approximation for unconstrained submodular maximization.

SIAM J. Comput. 44, 5 (2015), 1384–1402.
[12] Jean Cardinal, Erik D. Demaine, David Eppstein, Robert A. Hearn, and Andrew

Winslow. 2020. Reconfiguration of satisfying assignments and subset sums: Easy

to find, hard to connect. Theor. Comput. Sci. 806 (2020), 332–343.
[13] Laming Chen, Guoxin Zhang, and Eric Zhou. 2018. Fast greedy MAP inference

for determinantal point process to improve recommendation diversity. In NeurIPS.
5622–5633.

[14] Wei Chen, Chi Wang, and Yajun Wang. 2010. Scalable Influence Maximization for

Prevalent Viral Marketing in Large-Scale Social Networks. In KDD. 1029–1038.
[15] Michele Conforti and Gérard Cornuéjols. 1984. Submodular set functions, ma-

troids and the greedy algorithm: Tight worst-case bounds and some generaliza-

tions of the Rado-Edmonds theorem. Discrete Appl. Math. 7, 3 (1984), 251–274.
[16] Stephen A. Cook. 1971. The complexity of theorem-proving procedures. In STOC.

151–158.

[17] Pedro Domingos and Matt Richardson. 2001. Mining the Network Value of

Customers. In KDD. 57–66.
[18] Uriel Feige. 1998. A threshold of ln 𝑛 for approximating set cover. J. ACM 45, 4

(1998), 634–652.

[19] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. 2011. Maximizing non-monotone

submodular functions. SIAM J. Comput. 40, 4 (2011), 1133–1153.
[20] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman.

[21] Jennifer Gillenwater, Alex Kulesza, and Ben Taskar. 2012. Near-optimal MAP

inference for determinantal point processes. In NIPS. 2735–2743.
[22] Jacob Goldenberg, Barak Libai, and Eitan Muller. 2001. Talk of the network: A

complex systems look at the underlying process of word-of-mouth. Mark. Lett.
12, 3 (2001), 211–223.

[23] Parikshit Gopalan, Phokion G. Kolaitis, Elitza Maneva, and Christos H. Papadim-

itriou. 2009. The connectivity of Boolean satisfiability: computational and struc-

tural dichotomies. SIAM J. Comput. 38, 6 (2009), 2330–2355.
[24] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens datasets: History

and context. ACM Trans. Interact. Intell. Syst. 5, 4 (2015), 1–19.
[25] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A formal basis for the

heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4,
2 (1968), 100–107.

[26] Robert A. Hearn and Erik D. Demaine. 2005. PSPACE-Completeness of Sliding-

Block Puzzles and Other Problems through the Nondeterministic Constraint

Logic Model of Computation. Theor. Comput. Sci. 343, 1-2 (2005), 72–96.
[27] Takehiro Ito and Erik D. Demaine. 2014. Approximability of the subset sum

reconfiguration problem. J. Comb. Optim. 28, 3 (2014), 639–654.
[28] Takehiro Ito, Erik D. Demaine, Nicholas J.A. Harvey, Christos H. Papadimitriou,

Martha Sideri, Ryuhei Uehara, and Yushi Uno. 2011. On the complexity of

reconfiguration problems. Theor. Comput. Sci. 412, 12-14 (2011), 1054–1065.
[29] Takehiro Ito, Hiroyuki Nooka, and Xiao Zhou. 2016. Reconfiguration of vertex

covers in a graph. IEICE Trans. Inf. & Syst. 99, 3 (2016), 598–606.
[30] Rishabh K. Iyer, Stefanie Jegelka, and Jeff A. Bilmes. 2013. Curvature and optimal

algorithms for learning and minimizing submodular functions. In NIPS. 2742–
2750.

[31] Matthew Johnson, Dieter Kratsch, Stefan Kratsch, Viresh Patel, and Daniël

Paulusma. 2016. Finding shortest paths between graph colourings. Algorithmica
75, 2 (2016), 295–321.

[32] WmWoolsey Johnson and William Edward Story. 1879. Notes on the “15” puzzle.

Am. J. Math. 2, 4 (1879), 397–404.
[33] Marcin Kamiński, Paul Medvedev, and Martin Milanič. 2012. Complexity of

independent set reconfigurability problems. Theor. Comput. Sci. 439 (2012), 9–15.
[34] RichardM. Karp. 1972. Reducibility among combinatorial problems. InComplexity

of Computer Computations. 85–103.
[35] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the Spread of

Influence through a Social Network. In KDD. 137–146.
[36] Andreas Krause and Daniel Golovin. 2014. Submodular Function Maximization.

In Tractability: Practical Approaches to Hard Problems. 71–104.
[37] Andreas Krause, Ajit Paul Singh, and Carlos Guestrin. 2008. Near-optimal sensor

placements in Gaussian processes: Theory, efficient algorithms and empirical

studies. J. Mach. Learn. Res. 9 (2008), 235–284.
[38] Alex Kulesza and Ben Taskar. 2012. Determinantal Point Processes for Machine

Learning. Found. Trends Mach. Learn. 5, 2–3 (2012), 123–286.
[39] Jérôme Kunegis. 2013. KONECT – The Koblenz Network Collection. InWWW

Companion. 1343–1350.
[40] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph Evolution:

Densification and Shrinking Diameters. ACM Trans. Knowl. Discov. Data 1, 1

(2007), 2.

[41] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne

VanBriesen, and Natalie Glance. 2007. Cost-effective Outbreak Detection in

Networks. In KDD. 420–429.
[42] Leonid Anatolevich Levin. 1973. Universal sequential search problems. Probl.

Peredachi Inf. 9, 3 (1973), 115–116.
[43] David Lichtenstein and Michael Sipser. 1980. Go is polynomial-space hard. J.

ACM 27, 2 (1980), 393–401.

[44] Hui Lin and Jeff Bilmes. 2011. A class of submodular functions for document

summarization. In ACL-HLT. 510–520.
[45] Grigorios Loukides, Robert Gwadera, and Shing-Wan Chang. 2020. Overexposure-

aware influence maximization. ACM Trans. Internet Technol. 20, 4 (2020), 1–31.
[46] László Lovász. 1983. Submodular Functions and Convexity. In Mathematical

Programming – The State of the Art. 235–257.
[47] Odile Macchi. 1975. The coincidence approach to stochastic point processes. Adv.

Appl. Probab. 7, 1 (1975), 83–122.
[48] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, and Amin Karbasi. 2016.

Fast constrained submodular maximization: Personalized data summarization. In

ICML. 1358–1367.
[49] Amer Mouawad. 2015. On Reconfiguration Problems: Structure and Tractability.

Ph. D. Dissertation. University of Waterloo.

[50] George L. Nemhauser and Laurence A. Wolsey. 1978. Best algorithms for approx-

imating the maximum of a submodular set function. Math. Oper. Res. 3, 3 (1978),
177–188.

[51] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. 1978. An

analysis of the approximations for maximizing submodular set functions. Math.
Program. 14 (1978), 265–294.

[52] Naomi Nishimura. 2018. Introduction to Reconfiguration. Algorithms 11, 4 (2018),
52.

[53] Naoto Ohsaka. 2020. The solution distribution of influence maximization: A

high-level experimental study on three algorithmic approaches. In SIGMOD.
[54] Naoto Ohsaka, Takuya Akiba, Yuichi Yoshida, and Ken-ichi Kawarabayashi. 2016.

Dynamic Influence Analysis in Evolving Networks. Proc. VLDB Endow. 9, 12
(2016), 1077–1088.

[55] Judea Pearl. 1984. Heuristics: Intelligent Search Strategies for Computer Problem

Solving. (1984).

[56] Walter J. Savitch. 1970. Relationships between nondeterministic and deterministic

tape complexities. J. Comput. Syst. Sci. 4, 2 (1970), 177–192.
[57] Alexander Schrijver. 2003. Combinatorial Optimization: Polyhedra and Efficiency.

Springer Science & Business Media.

[58] Dravyansh Sharma, Ashish Kapoor, and Amit Deshpande. 2015. On greedy

maximization of entropy. In ICML. 1330–1338.
[59] Youze Tang, Xiaokui Xiao, and Yanchen Shi. 2014. Influence Maximization:

Near-Optimal Time Complexity Meets Practical Efficiency. In SIGMOD. 75–86.
[60] Jan van den Heuvel. 2013. The complexity of change. In Surveys in Combinatorics

2013. Vol. 409. 127–160.
[61] Saúl Vargas and Pablo Castells. 2011. Rank and relevance in novelty and diversity

metrics for recommender systems. In RecSys. 109–116.
[62] Jan Vondrák. 2010. Submodularity and Curvature: The Optimal Algorithm (Com-

binatorial Optimization and Discrete Algorithms). RIMS Kôkyûroku Bessatsu 23

(2010), 253–266.

[63] Mark Wilhelm, Ajith Ramanathan, Alexander Bonomo, Sagar Jain, Ed H. Chi, and

Jennifer Gillenwater. 2018. Practical diversified recommendations on YouTube

with determinantal point processes. In CIKM. 2165–2173.

[64] Jin-ge Yao, Feifan Fan,Wayne Xin Zhao, XiaojunWan, Edward Y. Chang, and Jian-

guo Xiao. 2016. Tweet Timeline Generation with Determinantal Point Processes.

In AAAI. 3080–3086.

A MISSING PROOFS
Proof of Observation 4.1. It is known [60] that a reachability

problem defined in the reconfiguration framework is in NPSPACE
if the following assumptions hold:

1. given a possible solution, we can determine whether it is feasible

in polynomial time;

2. given two feasible solutions, we can decide if there is a reconfig-

uration step from one to the other in polynomial time.

It is easy to see that Problems 3.2, 3.3 and 3.4meet these assumptions.

By Savitch’s theorem [56], we have that PSPACE = NPSPACE,
which completes the proof. □

To prove PSPACE-hardness of Minimum Vertex Cover Re-
configuration (Lemma 4.4), we use a reduction from 3-SAT Re-
configuration [23]. Given a 3-conjunctive normal form (3-CNF)
formula 𝜙 , of which each clause contains at most three literals

9

(e.g., 𝜙 = (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥2 ∨ 𝑥3 ∨ 𝑥4) ∧ (𝑥1 ∨ 𝑥3 ∨ 𝑥4)), 3-SAT
asks to decide if there exists a truth assignment 𝝈 for the variables

of 𝜙 that satisfies all clauses of 𝜙 (e.g., 𝝈 (𝑥1) = 𝝈 (𝑥2) = True and
𝝈 (𝑥3) = 𝝈 (𝑥4) = False). 3-SAT Reconfiguration is defined as:

Problem A.1 (3-SAT Reconfiguration [23]). Given a 3-CNF
formula 𝜙 and two satisfying truth assignments 𝝈𝑥 and 𝝈𝑦 of 𝜙 ,
determine whether there exists a sequence of satisfying truth assign-
ments of 𝜙 from 𝝈𝑥 to 𝝈𝑦 , ⟨𝝈 (0) = 𝝈𝑥 ,𝝈 (1) , . . . ,𝝈 (ℓ) = 𝝈𝑦⟩, such
that each truth assignment is obtained from the previous one by a
single variable flip; i.e., they differ in exactly one variable.

3-SAT is widely known to be NP-complete [16, 42] while 3-SAT
Reconfiguration is PSPACE-complete [23].

Proof of Lemma 4.4. The proof mostly follows [28]. We show

a polynomial-time reduction from 3-SAT Reconfiguration. Sup-
pose we are given a 3-CNF formula 𝜙 with 𝑛 variables 𝑥1, . . . , 𝑥𝑛
and𝑚 clauses 𝑐1, . . . , 𝑐𝑚 and two satisfying truth assignments 𝝈𝑥

and 𝝈𝑦
of 𝜙 . Starting with an empty graph, we construct a graph

𝐺𝜙 in polynomial time according to [28, Proof of Theorem 2]:

• Step 1. for each variable 𝑥𝑖 in 𝜙 , we add an edge to 𝐺𝜙 , the

endpoints of which are labeled 𝑥𝑖 and 𝑥𝑖 ;

• Step 2. for each clause 𝑐 𝑗 in 𝜙 , we add a clique of size |𝑐 𝑗 | to 𝐺𝜙 ,

each vertex in which corresponds to a literal in 𝑐 𝑗 ;

• Step 3.we connect between two vertices in different components

by an edge if they correspond to opposite literals of the same

variable, e.g., 𝑥𝑖 and 𝑥𝑖 .

It is proven [28] that 𝐺𝜙 has a maximum independent set
10 𝐼 of

size 𝑚 + 𝑛 if and only if 𝜙 is satisfiable; here, 𝑛 vertices in 𝐼 are

chosen from the endpoints of the 𝑛 edges corresponding to the

variables of 𝜙 , and𝑚 vertices in 𝐼 are chosen from the𝑚 cliques

corresponding to the clauses of 𝜙 . Using such 𝐼 , we can uniquely

construct a satisfying truth assignment 𝝈𝐼 of 𝜙 , which assigns True
(resp. False) to 𝑥𝑖 if 𝐼 includes the endpoint labeled 𝑥𝑖 (resp. 𝑥𝑖).

On the other hand, for a fixed truth satisfying assignment 𝝈 , there
may be exponentially many maximum independent sets 𝐼 such that

𝝈𝐼 = 𝝈 . Observe now the following facts for 𝐺𝜙 for which 𝜙 is

satisfiable:

9
Without loss of generality, we can assume that no clause contains both positive and

negative literals of the same variable.

10
An independent set is a set of vertices in which no pair of two vertices are adjacent.

• For any two satisfying truth assignments 𝝈1 and 𝝈2 that differ
in exactly one variable, there exist two maximum independent

sets 𝐼1 and 𝐼2 such that 𝐼1 is obtained from 𝐼2 by a single tj step,
𝝈𝐼1 = 𝝈1 and 𝝈𝐼2 = 𝝈2.
• For any two maximum independent sets 𝐼1 and 𝐼2 corresponding

to the same satisfying truth assignments (i.e., 𝝈𝐼1 = 𝝈𝐼2), there
exists a sequence of maximum independent sets corresponding

to the same satisfying truth assignment from 𝐼1 to 𝐼2 under tj.
We now translate the above discussion into the language of vertex

cover. Because a vertex set 𝐶 ⊆ 𝑉 (𝐺𝜙) is a minimum vertex cover

of𝐺𝜙 if and only if 𝑉 (𝐺𝜙) \𝐶 is a maximum independent set of𝐺𝜙 ,

𝐺𝜙 has a minimum vertex cover 𝐶 of size |𝑉 (𝐺𝜙) | −𝑚 − 𝑛 if and
only if 𝜙 is satisfiable; we can uniquely construct a satisfying truth

assignment 𝝈𝑉 (𝐺𝜙)\𝐶 . Consequently, for any two minimum vertex

covers𝐶𝑥
and𝐶𝑦

of size |𝑉 (𝐺𝜙) |−𝑚−𝑛 such that 𝝈𝑉 (𝐺𝜙)\𝐶𝑥 = 𝝈𝑥

and 𝝈𝑉 (𝐺𝜙)\𝐶𝑦 = 𝝈𝑦
, there exists a sequence of satisfying truth

assignments from 𝝈𝑥
to 𝝈𝑦

that meets the specification for 3-SAT
Reconfiguration if and only if there exists a sequence ofminimum

vertex covers from𝐶𝑥
to𝐶𝑦

under tj. Such vertex covers𝐶𝑥
and𝐶𝑦

can be found in polynomial time, which completes the reduction

from 3-SAT Reconfiguration toMSReco. □

Proof of Theorem 4.6. We demonstrate a polynomial-time re-

duction from Problem 4.3. Given a graph 𝐺 = (𝑉 , 𝐸) and two mini-

mum vertex covers 𝐶𝑥
and 𝐶𝑦

of size 𝑘 , we define a submodular

function 𝑓 : 2
𝑉 → R+ such that 𝑓 (𝑆) is “the number of edges in 𝐸

that are incident to 𝑆 minus 1

2
(𝑛 − |𝑆 |),” where 𝑛 ≜ |𝑉 |. Consider

USReco[tjar] defined by 𝑓 ,𝐶𝑥
,𝐶𝑦

, and a threshold \ ≜ |𝐸 |− 𝑘
2
+ 𝑛

2
.

It turns out that any reconfiguration sequence from 𝐶𝑥
to 𝐶𝑦

does

not include a vertex set of size either 𝑘 − 1 or 𝑘 + 1—that is, we can
only apply tj steps—in the following case analysis on 𝑓 (𝑆):
1. if |𝑆 | = 𝑘 − 1 (𝑆 cannot be a vertex cover): 𝑓 (𝑆) ≤ |𝐸 | − 𝑘

2
+ 𝑛

2
− 1

2
;

2. if |𝑆 | = 𝑘 and 𝑆 is a vertex cover: 𝑓 (𝑆) = |𝐸 | − 𝑘
2
+ 𝑛

2
;

3. if |𝑆 | = 𝑘 and 𝑆 is not a vertex cover: 𝑓 (𝑆) ≤ |𝐸 | − 𝑘
2
+ 𝑛

2
− 1;

4. if |𝑆 | = 𝑘 + 1 (𝑆 may be a vertex cover): 𝑓 (𝑆) ≤ |𝐸 | − 𝑘
2
+ 𝑛

2
− 1

2
.

Therefore, a reconfiguration sequence on the Minimum Vertex
Cover Reconfiguration instance is a reconfiguration sequence

on the USReco[tjar] instance, and vice versa, which completes

the reduction; the PSPACE-hardness follows from Lemma 4.4. □

Proof for (1 − ^)2-approximation in Theorem 5.1. We reuse

the notations𝑅,𝑋 ′, 𝑌 ′, 𝑘 ′, 𝑥𝑖 , 𝑦𝑖 , 𝑋𝑖 , 𝑌𝑖 from the proof of Theorem 5.1

in the main body. We denote by ^ the total curvature of 𝑓 ; note that

the residual 𝑓𝑅 has a total curvature not more than ^.

Showing that 𝑓 (S) ≥ (1 − ^)2min{𝑓 (𝑋), 𝑓 (𝑌)} is sufficient.

For each 𝑖 ∈ [𝑘 ′], we denote Δ𝑥𝑖 ≜ 𝑓𝑅 (𝑋𝑖) − 𝑓𝑅 (𝑋𝑖−1) and Δ𝑦𝑖 ≜
𝑓𝑅 (𝑌𝑖) − 𝑓𝑅 (𝑌𝑖−1). Note that Δ𝑥𝑖 and Δ𝑦𝑖 are monotonically nonin-

creasing in 𝑖 due to Eq. (1); i.e., Δ𝑥1 ≥ Δ𝑥2 ≥ · · · ≥ Δ𝑥𝑘′ and Δ𝑦1 ≥
Δ𝑦2 ≥ · · · ≥ Δ𝑦𝑘′ . We define a set function 𝑓𝑅 : 2

[𝑛]\𝑅 → R+ such
that, for each 𝑆 ⊆ [𝑛] \ 𝑅, 𝑓𝑅 (𝑆) ≜

∑
𝑒∈𝑆 𝑓𝑅 ({𝑒}) . Note that 𝑓𝑅 is a

monotone modular function, and that 𝑓𝑅 (𝑆) gives an upper bound

of 𝑓𝑅 (𝑆). Moreover, 𝑓𝑅 gives a (1 − ^)-factor approximation to 𝑓𝑅
(e.g., [30, Lemma 2.1]); i.e.,

(1 − ^) 𝑓𝑅 (𝑆) ≤ 𝑓𝑅 (𝑆) ≤ 𝑓𝑅 (𝑆), for all 𝑆 ⊆ [𝑛] \ 𝑅. (6)

We will bound 𝑓𝑅 (𝑋𝑘′−𝑖 ⊎ 𝑌𝑖) from below for each 𝑖 ∈ [𝑘 ′ − 1] in a

case analysis. We have two cases to consider:

1. Δ𝑦𝑖 ≥ Δ𝑥𝑘′−𝑖+1. We then have that Δ𝑦1 + · · · + Δ𝑦𝑖 ≥ Δ𝑥𝑘′−𝑖+1 +
· · · +Δ𝑥𝑘 . By adding

∑
1≤ 𝑗≤𝑘′−𝑖 Δ𝑥 𝑗 to both sides, we obtain that∑︁

1≤ 𝑗≤𝑖
Δ𝑦 𝑗 +

∑︁
1≤ 𝑗≤𝑘′−𝑖

Δ𝑥 𝑗 ≥
∑︁

𝑘′−𝑖+1≤ 𝑗≤𝑘′
Δ𝑥 𝑗 +

∑︁
1≤ 𝑗≤𝑘′−𝑖

Δ𝑥 𝑗

⇒ 𝑓𝑅 (𝑌𝑖) + 𝑓𝑅 (𝑋𝑘′−𝑖) ≥ 𝑓𝑅 (𝑋𝑘′) + 𝑓𝑅 (∅).

Simple calculation using Eq. (6) yields that 𝑓𝑅 (𝑌𝑖 ⊎ 𝑋𝑘′−𝑖) =

𝑓𝑅 (𝑌𝑖)+ 𝑓𝑅 (𝑋𝑘′−𝑖) ≥ (1−^) 𝑓𝑅 (𝑋 ′),where we note that 𝑓𝑅 (∅) = 0.

2. Δ𝑦𝑖 ≤ Δ𝑥𝑘′−𝑖+1. We then have that Δ𝑥1 + · · · + Δ𝑥𝑘′−𝑖 ≥ Δ𝑦𝑖+1 +
· · · + Δ𝑦𝑘′ . By adding

∑
1≤ 𝑗≤𝑖 Δ𝑦 𝑗 to both sides and using Eq. (6),

we obtain the following: 𝑓𝑅 (𝑌𝑖 ⊎ 𝑋𝑘′−𝑖) = 𝑓𝑅 (𝑌𝑖) + 𝑓𝑅 (𝑋𝑘′−𝑖) ≥
(1 − ^) 𝑓𝑅 (𝑌 ′) .

We thus have that, in either case,

𝑓𝑅 (𝑋𝑘′−𝑖 ⊎ 𝑌𝑖) ≥ (1 − ^)min{𝑓𝑅 (𝑋 ′), 𝑓𝑅 (𝑌 ′)}. (7)

Observing that Eq. (7) is true even if 𝑖 = 0, 𝑘 ′, we bound the value

𝑓 (S) of the resulting reconfiguration sequence S as follows:

𝑓 (S) = min

0≤𝑖≤𝑘′
𝑓𝑅 (𝑋𝑘′−𝑖 ⊎ 𝑌𝑖) + 𝑓 (𝑅)

≥ min

0≤𝑖≤𝑘′
(1 − ^) 𝑓𝑅 (𝑋𝑘′−𝑖 ⊎ 𝑌𝑖) + 𝑓 (𝑅)

≥ (1 − ^)2min{𝑓𝑅 (𝑋 ′), 𝑓𝑅 (𝑌 ′)} + 𝑓 (𝑅)
≥ (1 − ^)2min{𝑓 (𝑋), 𝑓 (𝑌)}. □

Proof of Observation 5.2. We explicitly construct such an in-

stance that meets the specification. Define 𝑛 ≜ 5, Σ ≜ {𝑎, 𝑏, 𝑐, 𝑑},
𝑉1 = {𝑎, 𝑏}, 𝑉2 = {𝑐, 𝑑}, 𝑉3 = {𝑎, 𝑐}, 𝑉4 = {𝑏, 𝑑}, and 𝑉5 = Σ.
We then define a coverage function 𝑓 : 2

[𝑛] → R+ such that

𝑓 (𝑆) ≜ |
⋃

𝑖∈𝑆 𝑉𝑖 |
|Σ | for 𝑆 ⊆ [𝑛]. Consider MaxMSReco defined by 𝑓 ,

𝑋 ≜ {1, 2}, and 𝑌 ≜ {3, 4}. An optimal reconfiguration sequence

from 𝑋 to 𝑌 is S∗ = ⟨{1, 2}, {1, 5}, {3, 5}, {3, 4}⟩, whose value is

𝑓 (S∗) = 1. On the other hand, when we are restricted to have sub-

sets of 𝑋 ∪ 𝑌 = {1, 2, 3, 4} in the output sequence, we must touch

either of {1, 3}, {1, 4}, {2, 3}, {2, 4}, whose function value is
3

4
. □

Proof of Observation 5.4. We construct such an instance that

meets the specification. Suppose 𝑛 is a positive integer divisible

by 4. Define an edge-weighted graph 𝐺 = ([𝑛], 𝐸), where 𝐸 ≜
{(𝑖, 𝑛

2
+ 𝑖) | 𝑖 ∈ [𝑛

2
]}, and the weight of edge (𝑖, 𝑛

2
+ 𝑖) is 𝑖−1. Let

𝑓 : 2
[𝑛] → R+ be a weighted cut function defined by 𝐺 . Con-

sider MaxUSReco[tjar] defined by 𝑓 , 𝑋 ≜ [𝑛
2
], and 𝑌 ≜ [𝑛] \ 𝑆 .

Algorithm 3 produces a reconfiguration sequence of value 1. On

the other hand, Algorithm 2 returns a reconfiguration sequence

includes {1, . . . , 𝑛
4
} ⊎ {𝑛

2
+ 1, . . . , 𝑛

2
+ 𝑛

4
}, whose cut value is 0. □

Proof of Observation 5.5. We construct such an instance that

meets the specification. We define a submodular set function 𝑓 :

2
[2] → R+ as 𝑓 (∅) = 𝑓 ({1, 2}) = 0 and 𝑓 ({1}) = 𝑓 ({2}) = 1.

Consider MaxUSReco[tar] defined by 𝑓 , 𝑋 ≜ {1}, and 𝑌 ≜ {2}.
Since we can use tar steps only, any reconfiguration sequence S
from 𝑋 to 𝑌 (including the optimal one) must pass through at least

either one of ∅ or {1, 2}; thus, 𝑓 (S) must be 0. □

Proof of Theorem 6.1. We show that to solveMinimum Ver-
tex Cover Reconfiguration exactly, a (1 − 1+𝜖

𝑛2
)-approximation

Algorithm 4 A* algorithm forMSReco and USReco.
Input: submodular function 𝑓 : 2

[𝑛] → R+ , two sets 𝑋,𝑌 , threshold \ , heuristic

function ℎ : 2
[𝑛] → R+ .

1: initialize priority queue OPEN, and CLOSE← ∅.
2: declare empty hash table 𝑔, and push 𝑋 with score ℎ (𝑋) into OPEN.
3: while OPEN is not empty do
4: pop set 𝑆 with minimum score from OPEN and push 𝑆 into CLOSE.
5: if 𝑆 = 𝑌 then: return reconfiguration sequence constructed using 𝜋 .

6: for all set𝑇 adjacent to 𝑆 such that 𝑓 (𝑇) ≥ \ do
7: if 𝑇 ∈ OPEN and 𝑔 [𝑆] + 1 < 𝑔 [𝑇] then ⊲ reinsert node.

8: 𝑔 [𝑇] ← 𝑔 [𝑆] + 1 and 𝜋 [𝑇] ← 𝑆 .

9: remove𝑇 from OPEN and push𝑇 with score 𝑔 [𝑇] + ℎ (𝑇) into OPEN.
10: else if 𝑇 ∈ CLOSE and 𝑔 [𝑆] + 1 < 𝑔 [𝑇] then ⊲ reopen node.

11: 𝑔 [𝑇] ← 𝑔 [𝑆] + 1 and 𝜋 [𝑇] ← 𝑆 .

12: remove𝑇 from CLOSE and push𝑇 with score 𝑔 [𝑇] + ℎ (𝑇) into OPEN.
13: else if 𝑇 ∉ OPEN and𝑇 ∉ CLOSE then ⊲ open node.

14: 𝑔 [𝑇] ← 𝑔 [𝑆] + 1 and 𝜋 [𝑇] ← 𝑆 .

15: push𝑇 with score 𝑔 [𝑇] + ℎ (𝑇) into OPEN.

algorithm for MaxMSReco is sufficient. Recall that given a graph

𝐺 = (𝑉 , 𝐸) and twominimumvertex covers𝐶𝑥
and𝐶𝑦

, the polynomial-

time reduction introduced in the proof of Theorem 4.2 constructs an

instance 𝑓 ,𝐶𝑥 ,𝐶𝑦
of MaxMSReco, for which an optimal reconfig-

uration sequence S∗ satisfies that 𝑓 (S∗) = |𝐸 | if the answer to the

Minimum Vertex Cover Reconfiguration instance is “yes” and

𝑓 (S∗) ≤ |𝐸 | − 1 otherwise. To distinguish the two cases, it is suffi-

cient to approximate the optimal value ofMaxMSReco within a

factor of
|𝐸 |−1+𝜖
|𝐸 | ≤ 1− 1+𝜖

𝑛2
for any 𝜖 > 0, completing the proof. □

Proof of Theorem 6.3. The proof is almost the same as that of

Theorem 6.2. We only need to claim that for any 𝑆 ⊆ [𝑛], we can
construct a reconfiguration sequence S whose value is 𝑔(S) = Υ +
𝑓 (𝑆) using only tar steps: an example of such a sequence is ⟨𝑋, · · ·
adding elements of 𝑆 one by one · · · , 𝑋 ∪ 𝑆, {𝑥1} ∪ 𝑆, {𝑥1, 𝑦1} ∪
𝑆, {𝑦1}∪𝑆,𝑌∪𝑆, · · · removing elements of 𝑆 one by one · · · , 𝑌 ⟩. □

B A* SEARCH ALGORITHM
Algorithm 4 describes an A* search algorithm for MSReco and

USReco. In A* algorithms [25], we have a table 𝑔 for storing the

minimum number of reconfiguration steps required to transform

from 𝑋 to each set 𝑆 , and a heuristic function ℎ : 2
[𝑛] → R for

underestimating the number of reconfiguration steps required to

transform from each set 𝑆 to 𝑌 . For example, ℎ(𝑆) = |𝑆\𝑌 |+ |𝑌\𝑆 |
2

under tj and ℎ(𝑆) = max(|𝑆 \ 𝑌 |, |𝑌 \ 𝑆 |) under tjar, which are

both admissible and consistent [55]. We continue the iterations,

which pop a set 𝑆 with minimum 𝑔[𝑆] + ℎ(𝑆) and explore each of

the adjacent feasible sets 𝑇 , until we found 𝑇 = 𝑌 or no further

expansion is possible. Since two or more tie sets may have the same

score, we used a Last-In-First-Out policy [4]. Note that Algorithm 4

may require exponential time in the worst case.

C ADDITIONAL RESULT
Table 2: Sequence returned by Algorithm 2 on karate.

index 𝑖 seed set 𝑆 (𝑖) influence 𝑓 (𝑆 (𝑖))

0 {34, 2, 7, 32, 4, 11, 30, 9} 23.2

1 {34, 2, 7, 32, 4, 11, 30, 1} 24.3

2 {34, 2, 7, 32, 4, 11, 33, 1} 25.2

3 {34, 2, 7, 32, 4, 3, 33, 1} 25.5

4 {34, 2, 7, 32, 6, 3, 33, 1} 25.5

5 {34, 2, 7, 14, 6, 3, 33, 1} 25.0

6 {34, 2, 24, 14, 6, 3, 33, 1} 25.2

7 {34, 25, 24, 14, 6, 3, 33, 1} 25.0

8 {27, 25, 24, 14, 6, 3, 33, 1} 23.6

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Related Work
	3 Problem Formulation
	3.1 ito2011complexity's Reconfiguration Framework
	3.2 Defining Submodular Reconfiguration

	4 Hardness
	4.1 PSPACE-completeness of MSReco
	4.2 PSPACE-completeness of USReco

	5 Approximability
	5.1 Greedy Algorithm
	5.2 max{12, (1-)2}-Approximation Algorithm for MaxMSReco
	5.3 1n-Approximation Algorithm for MaxUSReco[tjar]
	5.4 Difficulty in Designing Approximation Algorithms for MaxUSReco[tar]

	6 Inapproximability
	6.1 Inapproximability Result of MaxMSReco
	6.2 Inapproximability Results of MaxUSReco

	7 Numerical Study
	7.1 Influence Maximization Reconfiguration
	7.2 MAP Inference Reconfiguration

	8 Conclusion and Open Questions
	References
	A Missing Proofs
	B A* Search Algorithm
	C Additional Result

