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ABSTRACT
Ensemble models in E-commerce combine predictions from multi-

ple sub-models for ranking and revenue improvement. Industrial

ensemble models are typically deep neural networks, following

the supervised learning paradigm to infer conversion rate given

inputs from sub-models. However, this process has the following

two problems. Firstly, the point-wise scoring approach disregards

the relationships between items and leads to homogeneous dis-

played results, while diversified display benefits user experience

and revenue. Secondly, the learning paradigm focuses on the rank-

ing metrics and does not directly optimize the revenue. In our work,

we propose a new Learning-To-Ensemble (LTE) framework RA-

EGO, which replaces the ensemble model with a contextual Rank

Aggregator (RA) and explores the best weights of sub-models by

the Evaluator-Generator Optimization (EGO). To achieve the best

online performance, we propose a new rank aggregation algorithm

TournamentGreedy as a refinement of classic rank aggregators,

which also produces the best average weighted Kendall Tau Dis-

tance (KTD) amongst all the considered algorithms with quadratic

time complexity. Under the assumption that the best output list

should be Pareto Optimal on the KTD metric for sub-models, we

show that our RA algorithm has higher efficiency and coverage in

exploring the optimal weights. Combined with the idea of Bayesian

Optimization and gradient descent, we solve the online contextual

Black-Box Optimization task that finds the optimal weights for

sub-models given a chosen RA model. RA-EGO has been deployed

in our online system and has improved the revenue significantly.
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1 INTRODUCTION
Deep ensemble learning is a popular choice for E-commerce ensem-

ble models. Deep ensemble learning models input sub-model scores

and are trained for click-through rate or conversion rate prediction,

following the supervised learning paradigm as a Learning-To-Rank

(LTR) task. It has successfully improved the revenue for many on-

line systems [1–5]. The sub-models usually model the relationships

between the target item and the current context (i.e., query, user)
differently. For example, sub-models may estimate the preferences

of the user on stores, brands, prices, and sales separately. A well-

trained deep ensemble learning model allows for joint mining of

different user behavior patterns for a single task.

However, as the items are scored independently, similar items

get similar scores thus their ranking positions are close. The ho-

mogeneous result is not desirable, as it usually benefits to display

items with some variations. For example, displaying two identical

items together unlikely results in two clicks, and replacing one of

them with another dissimilar item can possibly result in user clicks.

Additionally, the offline training objective (e.g., loss functions, rank-

ing metrics) has a significant gap to the true business objective (e.g.,

number of purchases). Many practitioners report that a fine-tuned

model with a better offline performance does not correspondingly

improve the online performance [6–10]. Therefore, it is ideal to find

an ensemble learning algorithm that can output diversified items [?
? ? ] and can directly optimize the online performance.

Rank Aggregation (RA) is similar to ensemble learning. RA al-

gorithm is a methodology to combine several permutations into a
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single permutation for a consensus rank, with applications in fields

like web search, collaborative filtering, multi-agent planning and

so on. RA evolves from the social choice and voting theory, which

focuses on combining individual preferences or interests to reach a

collective decision. Since the RA problem is NP-hard even for only

4 permutations [11] (i.e., it is hard to find the permutation with the

lowest average distance even for only 4 input permutations
1
), it is

often solved with heuristic and approximate algorithms.

In our scenario, we replace the deep ensemble learning model

with a contextual RA model, required to find proper weights of

sub-models in different contexts. We name this novel framework

the Learning-To-Ensemble (LTE) framework. In the framework, we

need an algorithm that finds the set of weights for the contextual

RA model to achieve the best online performance. Practically, be-

cause the inputs of RA models are scores produced by fine-tuned

sub-models under a context, it is reasonable to assume that the best

permutation is Pareto Optimal (PO). Under this assumption, we pro-

pose a new RA algorithm TournamentGreedy. TournamentGreedy

has the best comprehensive performance amongst the known RA

algorithms with quadratic time complexity.

Finding the best weights for the sub-models can be regarded as

a contextual Black-Box Optimization (BBO) problem. The classic

BBO refers to finding a set of parameters to optimize an unknown

function. As we need to include additional context information

such as the gender of a user, it is non-trivial to apply classic BBO

solutions in a straightforward manner. Unlike the classic BBO, con-

textual BBO allows modeling an additional group of uncontrollable

input variables. These contexts are important: for example, male

and female users do not share the same optimized weights. Classic

Bayesian Optimization cannot handle the context unless it ignores

the context, or separates the contextual BBO problems by con-

text and solves several classic BBOs, which is difficult to optimize

due to the data sparsity issue. We propose an Evaluator-Generator

Optimization (EGO) framework for this contextual BBO problem.

Inspired by Bayesian Optimization, EGO contains an Evaluator as

the reward predictor and a Generator to generate the best weights

under the supervision from the Evaluator along with an exploration

bonus. Intuitively, EGO maps BBOs with different contexts into the

same evaluation space. As the number of sub-models is small, EGO

can generate proper weights to benefit the online system within an

acceptable number of online interactions.

Our main contributions include:

• To our knowledge, RA-EGO is the first practical LTE frame-

work with a contextual RA model deployed on a large-scale

E-commerce platform. The online A/B test shows it outper-

forms the industrial deep LTR solution in the ensemble task.

• As far as we know, the proposed EGO framework is the first

to combine the classic Bayesian Optimization framework

with deep learning to solve the contextual BBO problem.

• We emphasize the importance of the expressive power of

expected RA models and propose evaluation metrics on the

expressive power. Under the assumption that the best permu-

tation should be Pareto Optimal, we propose to examine al-

gorithms by weak PO permutations, which can be efficiently

computed to estimate the expressive power of algorithms.

1
In this paper, we do not distinguish between sub-models, permutations, and voters.

2 RELATEDWORKS
In the early 20th century, Dwork et al. [12] use the RA technique

to combat spam in Web Search. In his work, Borda’s method [13],

Footrule approximation [14], and different types of Markov Chain

(MC) methods [15] are experimented. Frans et al. [11] review RA

methods and classify them into four categories, being positional,

comparison sort, local search, and hybrid methods. Ensemble learn-

ing has a different objective with RA. Ensemble learning models is

generally a supervised learning model with inputs of sub-models,

aim at predicting the conversion rate rather than finding the most

consistent permutation as RA. In industry, the deep LTR model is a

popular choice for ensemble learning [16–19], and the model ranks

items according to their predicted scores when serves.

BBO can offer feasible solutions for functions about which the

analytical form is unknown. It has been widely studied and utilized

in the field of hyper-parameter tuning, robotics planning, neural

architecture search, material discovery and so on [20]. Bayesian

Optimization [21] is a classic BBO algorithm [22]. In particular,

Bayesian Optimization uses a Bayesian statistical model, such as

Gaussian Process (GP) regression, to model the objective function

and relies on an Acquisition Function (AF) to decide the next sample

to interact with the system. In many scenarios including ours, GP

regression is not enough and needs to be replaced by kernel meth-

ods [23], random forest [24], neural network [25], and others [26],

which can be summarized as surrogate-based BBO methods [27].

Monte Carlo Tree Search (MCTS) [28] is another popular algorithm

for BBO used extensively in adversarial games and robotics plan-

ning. Beomjoon et al. demonstrate the empirical effectiveness of the

Voronoi partitioning algorithm for sampling, with the provision of

the regret bound [29]. To improve the sampling efficiency, Linnan et

al. propose an MCTS based search algorithm that learns the action

space for MCTS with recursive partitioning [30].

3 PRELIMINARY
In the standard RA problem, there are 𝑛 permutations (𝑝1, 𝑝2, ..., 𝑝𝑛)
of𝑚 candidates. The objective is to find the permutation with the

lowest average weighted Kendall Tau Distance (KTD) where the 𝑖-th
permutation has weight𝑤𝑖 . Formally, we want to

arg min

𝑝∗∈𝐶
1

𝑛

𝑛∑︁
𝑖=1

(
𝑤𝑖𝑑𝜏 (𝑝∗, 𝑝𝑖 )

)
, (1)

where 𝐶 is the complete set of permutations with 𝑚 candidates.

The function 𝑑𝜏 (𝑝, 𝑞) is proportional to the number of inverse item

pairs between permutations 𝑝 and 𝑞. Concretely,

𝑑𝜏 (𝑝, 𝑞) =
𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=𝑖+1

2𝑟
(
𝑝−1 (𝑖), 𝑝−1 ( 𝑗), 𝑞−1 (𝑖), 𝑞−1 ( 𝑗)

)
𝑚(𝑚 − 1) , (2)

𝑟 (𝑝𝑖 , 𝑝 𝑗 , 𝑞𝑖 , 𝑞 𝑗 ) =
1 − sign(𝑝𝑖 − 𝑝 𝑗 ) · sign(𝑞𝑖 − 𝑞 𝑗 )

2

, (3)

where sign(𝑥) denotes the sign function, and the inverse function

of permutation, i.e., 𝑝−1 (𝑖), denotes the position of the 𝑖-th element

in permutation 𝑝 . Therefore, inverse pair function 𝑟 (𝑝𝑖 , 𝑝 𝑗 , 𝑞𝑖 , 𝑞 𝑗 )
equals 1 when the order of elements 𝑖 and 𝑗 is different, i.e., 𝑖 is in

the front of 𝑗 in one permutation but is in the behind of 𝑗 in the

other permutation.



3.1 Relation to Graph Theory
A graph 𝐺 = (𝑉 , 𝐸) contains a set of vertices 𝑉 and a set of edges

𝐸. A tournament is a standard notion in graph theory and can be

explained as an undirected complete graph with an assignment of

direction for each edge. A weighted tournament is a tournament

where each edge has a weight. In this paper, we denote a weighted

edge as (𝑢, 𝑣,𝑤) which points from 𝑢 to 𝑣 with the weight 𝑤 . For

easier presentation, we use (𝑢, 𝑣, ·) to denote an edge that points

from 𝑢 to 𝑣 regardless of the weight. A directed acyclic graph is a

directed graph without cycle, implying that the topological sort can
be completed. The result of a topological sort is a permutation, in

which 𝑢 is ranked before 𝑣 for each (𝑢, 𝑣) in the graph. A minimal
Feedback Arc Set (FAS) problem requires us to remove edges to make

the tournament a directed acyclic graph with minimal cost (i.e., the

sum of weights on the removed edges).

Fact 1. A standard rank aggregation problem can be reduced to a
minimal FAS problem.

This fact has been found in previous works [11, 31]. The key in-

gredient of the proof is to build a weighted tournament (𝑉 , 𝐸), then
the weights in the original rank aggregation problem are equivalent

to the costs in the minimal FAS problem. We first build vertices

𝑉 = (1, 2, ...,𝑚), where vertex 𝑣 represents the 𝑣-th candidate in the

RA problem. Then we determine the edge direction of each pair of

vertices (𝑣,𝑢, ·) by the weighted frequency as follows

𝑑 (𝑣,𝑢) =
𝑛∑︁
𝑖=1

𝑤𝑖

(
sign

(
𝑝−1𝑖 (𝑢) − 𝑝

−1
𝑖 (𝑣)

))
,

(𝑣,𝑢, 𝑑 (𝑣,𝑢)) ∈ 𝐸 ⇐⇒ 𝑑 (𝑣,𝑢) > 0.

(4)

If edge (𝑣,𝑢, ·) exists, we set its weight as 𝑑 (𝑣,𝑢) and it represents

the decreased cost when we let 𝑣 be in front of 𝑢 in the aggregation

result. All weights are positive. If neither (𝑣,𝑢, ·) nor (𝑢, 𝑣, ·) exists,
we arbitrarily pick one with the weight of 0. The permutation 𝑝

obtained by the topological sort in the graph after removed the

minimal FAS is the best permutation in the original RA problem.

3.2 Pareto Optimality
Given the input permutations (𝑝1, 𝑝2, ..., 𝑝𝑛) in an RA problem, we

say a permutation 𝑝 is PO if there is no permutation 𝑞 strictly better

than 𝑝 on the metric of KTD. Concretely,

𝑝 is PO =⇒ ∀𝑞 ∈ 𝐶, ∃𝑖, s.t. 𝑑𝜏 (𝑝, 𝑝𝑖 ) ≤ 𝑑𝜏 (𝑞, 𝑝𝑖 ). (5)

Practically, since the inputs are predictions from fine-tuned sub-

models, it is reasonable to assume the permutation that yields the

best online performance is in the set of PO permutations. Since

the number of PO permutations is exponential, we weaken PO by

observed permutations 𝐶 ′ ⊂ 𝐶 in practice, then the Precision and

Recall of an output set 𝑆 can be computed as

𝑃 =
{
∀𝑝 satisfies Equation (5) for 𝑞 ∈ 𝐶 ′ rather than 𝐶

}
(6)

Precision(𝑆) = |𝑆
⋂

𝑃 |
|𝑆 | , Recall(𝑆) = |𝑆

⋂
𝑃 |

|𝑃 | (7)

Intuitively, Precision represents the probability that the output of

an RA model is weak PO, and Recall represents the probability that

a weak PO permutation can be outputted by an RA model with

some weights. Both metrics indicate whether an RA model is likely

to find the best permutation.

3.3 Contextual BBO
To optimize the online revenue, we regard weights selection as

a BBO problem, where we optimize an unknown online revenue

function 𝑓 (𝑥). In an online environment, the best permutation

heavily depends on the context, such as the gender and the age of

a user. Therefore, we need to generalize BBO to include an uncon-

trollable input as the context. Formally, a contextual BBO contains

an unknown conditional function 𝑓 (𝑥 |𝑐) given a context distribu-

tion 𝐶 and we need to find a weight-generation policy 𝑔 such that

argmax𝑔 ( ·) E𝑐∼𝐶 [𝑓 (𝑔(𝑐) |𝑐)].
It is hard to apply classic methods for contextual BBO unless

we partition 𝑓 (𝑥 |𝑐) into {𝑓 (𝑥)}𝑐 and independently solve them as

standard BBO tasks. However, it assumes the BBO with different

contexts are Independent and Identically Distributed (i.i.d.) and

drops the connections between data with different contexts. Fur-

thermore, since the combinations of the context are exponential, it

results in the data sparsity problem.

Figure 1: The workflow of RA-EGO in the online system.

4 PROPOSED FRAMEWORK
The high level idea of our framework is to use EGO, the proposed

solution for contextual BBO, to solve the weights selection task. We

describe the framework with pseudo code in Algorithm 1 and its

workflow in Figure 1.

Algorithm 1 Learning-To-Ensemble via RA-EGO

Notation: Online feedback 𝑓𝑐,R maps weights set 𝑊 =

(𝑤1,𝑤2, ...,𝑤𝑛) to rewards 𝑟 with the given context 𝑐 and the

rank aggregator 𝑅, weight generation policy 𝑔 maps the context

𝑐 to an optimized set of weights𝑊

// Cold start

Dataset D← ∅
R← TournamentGreedy // Refer Section 4.1

Generate 𝑘 weights sets {𝑊1,𝑊2, ...,𝑊𝑘 } by experts, weight gen-

eration policy 𝑔 randomly picks one

D← D ∪
{
𝑔(𝑐), 𝑓𝑐,R (𝑔(𝑐))

}
𝑐
// Expensive online operation

// Warm start

Weight generation policy 𝑔← EGO(D) // Refer Section 4.2

D← D ∪
{
𝑔(𝑐), 𝑓𝑐,R (𝑔(𝑐))

}
𝑐
// Expensive online operation



(a) The illustration of process in TournamentGreedy. For the clear representation, the common

factor

√︃
1

∥𝑉 ∥−1 has been removed.

(b) The illustration of process in Evaluator-

Generator Optimization.

Figure 2: The illustrations of TournamentGreedy and Evaluator-Generator Optimization.

4.1 Proposed RA Model
One important difference between the classic RA problem and ours

is that the classic objective to minimize the average weighted KTD

cannot promise the best online revenue. In our framework, we

emphasize the importance of the expressive power of an RA model.

With proper weights, the designed RA model can possibly express

the permutation that could generate the highest revenue online.

Therefore, besides KTD, we also study two properties of RAmod-

els: Efficiency (how likely the generated permutations are to be the

best), and Coverage (howmany of the permutations, that potentially

will optimize the online revenue, can be generated by an RA model).

We introduce the measurement Precision and Recall to evaluate

the above two properties of RA models. Our TournamentGreedy

has the best average weighted KTD among all the considered RA

models, and has a high performance in Precision and Recall. The

performances can be found in the experimental section.

The high level idea of TournamentGreedy is to greedily decide

the next element by minimizing the expected increased cost. We build

the tournament 𝐺 = (𝑉 , 𝐸) following Equation (4). Pessimistically,

we compute the increased cost of choosing 𝑖 as
∑
(𝑣,𝑖,𝑤) ∈𝐸 𝑤 −∑

(𝑖,𝑣,𝑤) ∈𝐸 𝑤 , which is the difference of summation of weights that

places 𝑖 in the next position or the last position. The expected

increased cost 𝑐 (𝑖) of element 𝑖 is a smooth combination of the

probability that 𝑣 is chosen where (𝑣, 𝑖) exists and the above cost

𝑐 (𝑖) =

√︄∑
(𝑣,𝑖,𝑤) ∈𝐸 I(𝑤 > 0)
∥𝑉 ∥ − 1 ·©­«

∑︁
(𝑣,𝑖,𝑤) ∈𝐸

√
𝑤 −

∑︁
(𝑖,𝑣,𝑤) ∈𝐸

√
𝑤
ª®¬ , (8)

where I(𝑤 > 0) = 1 if 𝑤 > 0. We provide an example on how

TournamentGreedy works in Figure 2(a) and the corresponding

pseudo code is listed in Algorithm 2. Note that 𝑐 (𝑖) can be updated

in linear time without explicit changing the graph (𝑉 , 𝐸). Therefore,
the time complexity of the proposed RAmodel is𝑂 (𝑛𝑚+𝑚2), which
includes𝑂 (𝑛𝑚) for graph building and𝑂 (𝑚2) for greedy decisions.

Algorithm 2 TournamentGreedy

Input: 𝑛 permutations and their weights {(𝑝𝑖 ,𝑤𝑖 )}𝑛𝑖=1, the num-

ber of candidates𝑚

Output: a permutation 𝑝

𝑉 ← [𝑚], 𝐸 ← ∅
for 𝑖, 𝑗 ∈ [𝑚], 𝑖 ≠ 𝑗 do

weightSum← 0

for 𝑘 ∈ [𝑛], 𝑘 ≠ 𝑗 do
if 𝑖 is in the front of 𝑗 in 𝑝𝑘 then

weightSum← weightSum −𝑤𝑘

else
weightSum← weightSum +𝑤𝑘

end if
end for
𝐸 ← 𝐸 ∪ (𝑖, 𝑗,weightSum)

end for
Initialize permutation 𝑝 as an empty permutation

for 𝑡 ∈ [𝑚] do
Put 𝑖 to the end of 𝑝 with the maximal 𝑐 (𝑖) in Equation (8)

𝑉 ← 𝑉 \ {𝑖} , 𝐸 ← 𝐸 \ ({(𝑖, ·, ·)} ∪ {(·, 𝑖, ·)})
end for
return 𝑝

4.2 Weights Optimization as Contextual BBO
Without context, the weight optimization task can be regarded as

a standard BBO problem. We combine the framework of Bayesian

Optimization and neural networks for the generalization ability.

Similar to the Bayesian Optimization approaches, ours has a surro-
gate model to estimate the reward and an Acquisition Function (AF)
to search the solution space. The general choice of the surrogate

model is Gaussian Process (GP), and the general choice for AF is the

Upper Confidence Bound (UCB) function. However, it is difficult

for GP to handle contexts. A possible solution is to apply classic

Bayesian Optimization by partitioning the original problem into



(a) The ground-truth of reward that

TournamentGreedy produces with

weights (𝑥, 𝑦, 𝑧) .

(b) Reward prediction with pure ex-

ploitation strategy after 20 rounds.

The latest weights is marked in green.

(c) Reward prediction with explo-

ration bonuses after 20 rounds.

(d) The distribution of exploration

bonus after 20 rounds.

Figure 3: The importance of the exploration bonus in EGO. Hotter area implies the greater reward.

sub-problems according to their contexts. However, as there are

many permutations of the context variables, the number of sub-

problems is large. Thus each sub-problem may have few data points

and difficult to optimize. Hence we propose the Evaluator, a deep
surrogate model which inputs a context vector and the weights

for the RA model. One difficulty with adopting the deep surrogate

model is optimal solution searching. A straightforward idea is to

perform multiple gradient descents to get the optimal weights, but

it is time-consuming when deployed online. In EGO, we prepare

another deep model, which we call the Generator, to optimize the

feedback of Evaluator and quickly infer weights of sub-models

online. The complete process can be found in Figure 2(b) and the

pseudo code can be found in Algorithm 3.

4.2.1 The Evaluator. The inputs to the evaluator is the context and
weights of sub-models. We use a simple Multi-Layer Perceptron

(MLP) 𝑀 with layer sizes 64 and 32 to classify whether the input

weights will have a better performance compared to current online

weights. With a well-trained Evaluator, the model weights can be

correctly predicted with history data. Yet there is a need to explore

unseen permutations as the corresponding parameters with the

new samples can possibly result in better performance than the

current prediction. To give exploration bonuses on the unreliable

space of the Evaluator, we borrow the idea from Random Network

Distillation (RND) [32]. We additionally set up an auxiliary regres-

sion task 𝑅 with an MLP model𝑀𝑅 , whose inputs are the same as

the Evaluator but outputs are vectors and its oracle is a randomly

weighted MLP𝑀∗
𝑅
. Intuitively, this auxiliary task characterizes con-

fidence on the prediction of the Evaluator: given parameters 𝑥 , if

the prediction 𝑀𝑅 (𝑥) is far different with the oracle 𝑀∗
𝑅
(𝑥), the

prediction of the Evaluator may have a similar difference to the true

reward. Let 𝑙 (𝑥) ∈ [−1, 1] denote the label about the conversion
rate gap in comparison to the baseline, I (𝑙 (𝑥) > 0)) denotes the
corresponding 0-1 label, and 𝑠 (𝑙 (𝑥)) denotes the number of samples

with parameters 𝑥 . Thus, the objective function of the Evaluator

can be represented as

arg min

𝑀,𝑀𝑅

∑︁
𝑥

WCE (𝑀 (𝑥), 𝑙 (𝑥)) +MSE

(
𝑀𝑅 (𝑥), 𝑀∗𝑅 (𝑥)

)
,

WCE (𝑀 (𝑥), 𝑙 (𝑥)) = CE (𝑀 (𝑥), I(𝑙 (𝑥) > 0)) · 𝑠 (𝑙 (𝑥)) · |𝑙 (𝑥) |,
(9)

where CE and MSE denote the Cross-Entropy (CE) loss and the

Mean-Squared-Error (MSE) loss, respectively.

Algorithm 3 The Evaluator-Generator Optimization

Input: Dataset D = {(𝑐𝑖 ,𝑤𝑖 , 𝑟𝑖 )} contains contexts, weights of
sub-models and rewards.

Output: The generation policy 𝑔(𝑐) which aims at producing

optimized weights of sub-models on a given context 𝑐 .

Initialize the Evaluator 𝑀 (𝑐, 𝑝) → 𝑟 and train it by supervised

learning with dataset D
Initialize the Evaluator 𝑀𝑅 (𝑐, 𝑝), 𝑀∗𝑅 (𝑐, 𝑝) → v with random

weights, where virtual target v is a vector

Train 𝑀𝑅 by supervised learning with modified dataset D′ =
{(𝑐𝑖 ,𝑤𝑖 , 𝑀

∗
𝑅
(𝑐𝑖 ,𝑤𝑖 ))}

Train the parameters 𝜃𝑔 of the Generator𝑔(𝑐) → 𝑝 by supervised

learning with dataset D and loss 𝐿(𝜃𝑔)
return Generator 𝑔

4.2.2 The Generator. After the Evaluator𝑀 and the auxiliary mod-

els𝑀𝑅 and𝑀∗
𝑅
are trained, the Generator 𝑔 aims at exploring pa-

rameters, i.e., the weights of sub-models given a context 𝑐 , which

can maximize the following reward

argmax

𝑔

∑︁
𝑐

𝑀 (𝑔(𝑐)) + 𝛼


𝑀𝑅 (𝑔(𝑐)) −𝑀∗𝑅 (𝑔(𝑐))



2 . (10)

The above formula is similar to UCB in Multi-Arm Bandit (MAB) ap-

plications: the first term is the average reward and the second term

is the confidence bound (i.e. exploration bonus). In our scenario,

the Generator 𝑔 is an MLP and can be parameterized by 𝜃𝑔 .

As𝑀 ,𝑀𝑅 and𝑀∗
𝑅
are differentiable, let

𝐿(𝜃𝑔) = −
∑︁
𝑐

𝑀 (𝑔(𝑐)) − 𝛼


𝑀𝑅 (𝑔(𝑐)) −𝑀∗𝑅 (𝑔(𝑐))



2 , (11)

and Back-Propagation (BP) is allowed to find the best 𝜃∗𝑔 , with
stopping updates of gradients to parameters within𝑀 ,𝑀𝑅 and𝑀∗

𝑅
.

The BP process is gradient descent of vector 𝜃𝑔 in the value space

of 𝐿(𝜃𝑔). We summarize the above process in Algorithm 3.

To demonstrate the effectiveness of the exploration bonus brought

by the auxiliary task, we set up a toy example and study the ac-

curacy of the reward predictions without involving 𝑀𝑅 and 𝑀∗
𝑅
.

Unlike the reward function of common black-box optimizations, the

values of the reward function in our scenario are formed by several

connected regions, with each region sharing the same reward value



Figure 4: Virtualization on diversity in a toy example with 3 permutations.

as Figure 3(a) shows. Therefore, a pure exploitation strategy that

always chooses the permutation with the best response from the

reward predictor 𝑀 may easily fall into the local optima. In this

toy example, we have 3 target permutations and need to find the

best weights (𝑥,𝑦, 𝑧) for TournamentGreedy to optimize a designed

reward function, as described in Figure 3(a). Initially, we give the

ground-truth rewards at weights (1, 0, 0), (0, 1, 0), and (0, 0, 1) and
each model has 20 rounds to interact with the reward function.

As Figure 3(b) shows, the pure exploitation strategy sticks at the

local optima and always outputs weight (0, 1, 0), which is the best

among three initial combinations of weights. On the other hand,

the reward predictor can roughly reproduce the ground-truth in a

short time with the exploration bonus as Figure 3(c) shows.

5 EXPERIMENTS
We design experiments to examine the following questions:

• RQ1: Does TournamentGreedy outperform the classic ones

for random voters?

• RQ2: Does TournamentGreedy outperform the classic algo-

rithms with preferences from real-world users?

• RQ3: Does our proposed ensemble framework RA-EGO out-

perform the industrial deep ensemble learning model?

5.1 Offline Experiment
We examine our proposed RA model in two kinds of offline environ-

ments: one is the randomly generated dataset with different scales

of voters and candidates, and the other is a group of real-world

datasets extracted from thousands of customer ratings.

5.1.1 Baselines. Since a real-world system requires a short re-

sponse time, we only consider efficient RA models and the chosen

baselines include 4 classic RA models with computational complex-

ity lower than O(𝑛𝑚 +𝑚2), which are listed as follows.

• Dictator. It always picks the highest weighted permutation.

• Borda’s method. It computes the average position of each

element as the Borda score and then ranks elements accord-

ing to their Borda scores in ascending order [11].

• Lehmer Code method. This method transforms the input

permutations into their Lehmer code domain and selects the

weighted mode of items to produce the final result [33].

• Copeland’s method. Firstly, define a relation ≺ on ele-

ments, where 𝑖 ≺ 𝑗 if more than half of sub-models agree

on that 𝑖 should be ranked before 𝑗 . Secondly, define the

Copeland score of an element 𝑖 to be |{𝑦 : 𝑥 ≺ 𝑦}|. Then
the Copeland’s method ranks elements according to their

Copeland scores in descending order [11].

5.1.2 Virtualization on Diversity. We define Diversity as the num-

ber of distinct permutations that an RA model can generate. We

set up a toy example with 3 permutations and show the Diversity

of different methods in Figure 4. The plotted plane is 𝑥 + 𝑦 + 𝑧 = 1

for permutation weights 𝑥,𝑦, 𝑧 > 0. The different colors in this

figure represent the different output permutations. The AverageEn-

code uses Cantor expansion to encode permutations by integers,

and then decode the average round integer back to the result per-

mutation. It can be observed that TournamentGreedy and Borda’s

method can produce significantly more permutations with proper

weights than Lehmer Code and Copeland’s methods. AverageEn-

code produces diversified permutations and its Diversity metric

can serve as the upper bound, yet it does not optimize the online

revenue because its outputs are almost random.

5.1.3 Measurements. In this subsection, we consider the following

measurements for our proposed and baseline RA models. As it is

impossible to enumerate all PO permutations, we use weak PO

permutations to examine the expressing power of RA models.

• Efficiency on KTD. Efficiency is a common economic no-

tion that describes how a whole society benefits. Averaged

KTD is a standard metric that is commonly used in exami-

nations of RA models. It can represent Efficiency in our sce-

nario and can be formalized as Eff(𝑝r) = 1

𝑛

∑𝑛
𝑖=1𝑤𝑖𝑑𝜏 (𝑝r, 𝑝𝑖 ),

where 𝑝r denotes the output of the RA model with input per-

mutations {𝑝1, . . . , 𝑝𝑛} and their weights {𝑤1, . . . ,𝑤𝑛}. As
Eff(𝑝r) is measured by KTD, the lower Eff(𝑝r) indicates that
the better global similarity is achieved.

• Fairness on KTD. The relationship between fairness and

efficiency is usually adversarial and we need to obtain a

trade-off between them. In our setting, we use the largest

KTD to represent fairness corresponding to an RA model,

i.e., Fair(𝑝r) = max𝑖=1,...,𝑛{𝑤𝑖𝑑𝜏 (𝑝r, 𝑝𝑖 )}. The lower Fair(𝑝r)
implies the better order consistency to the result permutation

is achieved for the poorest permutation.

• Diversity. In this experiment, we count the number of dis-

tinct permutations that an RA model produces with one

million random weights as the Diversity.

• Precision onweakPO solutions. Precisionmeasures how

precisely an RA model can produce weak PO permutations.

A larger Precision value implies the output of the RA model

is more likely to be a weak PO permutation. The formula of

Precision and Recall can be found in Section 3.2.

• Recall onweak PO solutions. Recall value is the ratio that
weak PO permutations can be produced by an RA model. A

larger Recall value implies the RA model can eventually find

the optimized permutation with sufficient explorations.



UniformWeight Voters Random Weight Voters
8 candidates 20 candidates 50 candidates 8 candidates 20 candidates 50 candidates

Efficiency Fairness Efficiency Fairness Efficiency Fairness Efficiency Fairness Efficiency Fairness Efficiency Fairness

3 voters

Dictator 0.333139 0.166633 0.333536 0.166798 0.333159 0.166619 0.333686 0.146228 0.333834 0.184139 0.129505 0.131653

Copeland 0.278733 0.093029 0.290340 0.096859 0.295322 0.098570 0.306220 0.134580 0.311620 0.172000 0.117496 0.124113

Lehmer 0.351800 0.117316 0.381537 0.127364 0.392668 0.130960 0.330464 0.144903 0.335883 0.185227 0.127880 0.132648

Borda 0.290815 0.097030 0.298397 0.099528 0.300922 0.100390 0.310177 0.135934 0.313572 0.173083 0.117284 0.124582

Proposed 0.273848 0.091303 0.287520 0.095944 0.294981 0.098432 0.303375 0.133296 0.309019 0.170583 0.116853 0.123413

10 voters

Dictator 0.450368 0.050148 0.449943 0.050045 0.450097 0.050038 0.450229 0.121667 0.449989 0.094516 0.450293 0.129505

Copeland 0.390515 0.039157 0.393146 0.039373 0.394614 0.039496 0.403744 0.109014 0.407007 0.085557 0.408583 0.117496

Lehmer 0.420247 0.042083 0.434999 0.043570 0.449699 0.045009 0.426836 0.115400 0.437725 0.092045 0.444994 0.127880

Borda 0.389644 0.039050 0.392940 0.039364 0.394712 0.039507 0.403352 0.108845 0.406409 0.085444 0.407941 0.117284

Proposed 0.383025 0.038417 0.388549 0.038919 0.392431 0.039282 0.397740 0.107396 0.403145 0.084698 0.406444 0.116853

30 voters

Dictator 0.483299 0.016724 0.483403 0.016692 0.483341 0.016679 0.483307 0.028179 0.483308 0.038145 0.483290 0.026520

Copeland 0.436958 0.014608 0.438938 0.014655 0.439702 0.014670 0.444987 0.025931 0.446949 0.035302 0.447776 0.024564

Lehmer 0.455614 0.015235 0.464364 0.015528 0.471600 0.015733 0.460531 0.026805 0.467795 0.036967 0.472719 0.025941

Borda 0.436693 0.014603 0.438808 0.014650 0.439697 0.014668 0.444960 0.025917 0.446811 0.035295 0.447697 0.024561

Proposed 0.432597 0.014479 0.436291 0.014566 0.438427 0.014627 0.441501 0.025713 0.444803 0.035133 0.446710 0.024508

Table 1: Efficiency and Fairness comparisons of the proposed and baseline algorithmswith uniform and randomweight voters.

8 candidates 20 candidates 50 candidates
Diversity Precision Recall Diversity Precision Recall Diversity Precision Recall

3 voters

Dictator 0.032835 1.000000 0.074078 0.000569 1.000000 0.005141 0.000019 1.000000 0.000297

Copeland 0.051164 0.871000 0.105351 0.000948 0.624000 0.005364 0.000031 0.600000 0.000297

Lehmer 0.054122 0.669143 0.084747 0.001170 0.504667 0.005258 0.000039 0.493048 0.000300

Borda 0.709906 0.386323 0.660930 0.682931 0.046277 0.285271 0.721840 0.007076 0.080663

Proposed 0.519149 0.514662 0.662682 0.319168 0.110721 0.314686 0.278190 0.019098 0.083801

Table 2: Diversity, Precision, and Recall comparisons of the proposed and baseline algorithms with the uniformweight voters.

5.1.4 Random Benchmark. A random benchmark is sufficient for

offline RA models evaluation and its results can be easily repro-

duced. In each round, the environment randomly generates 𝑛 dif-

ferent permutations {𝑝𝑖 } among𝑚 candidates and generate a ran-

domly weight 𝑤𝑖 ∈ [0, 1] for each permutation, where 𝑤𝑖 will be

normalized by𝑤𝑖/
∑
𝑤𝑖 . After that, an RA model needs to output a

permutation with inputs {(𝑝𝑖 ,𝑤𝑖 )}. In our work, we examine the

performance of baseline methods and the proposed one in different

settings with various scales of votes and candidates. Concretely, we

examine methods in 9 independent settings of the random bench-

mark with 8, 20, 50 candidates and 3, 10, 30 voters.

Efficiency and Fairness. The Efficiency and Fairness compar-

isons are measured in both uniform and random weight voters

setting. The uniform weight voters are a setting in the classic base-

line methods and the random weight voters setting reflects special

considerations for E-commerce scenarios. The experiment results

on Efficiency and Fairness are listed in Table 1, with average 50000

samples of random permutations. Our TournamentGreedy outper-

forms all the baselines on measurements Efficiency and Fairness,

under uniform and random weight voters settings.

Diversity, Precision, and Recall. The Diversity, Precision, and
Recall comparisons are displayed in Table 2, in which 1 million sam-

ples are randomly generated to obtain the weak PO set. To better

relieve the bias brought by replacing PO with weak PO, we only

examine the performance of RA models under the setting of 8 vot-

ers. As the Dictator method always selects the permutation with

the largest weight, it has a Precision of up to 100%. However, it is

far less diverse than Borda’s method and TournamentGreedy. Al-

though the proposed TournamentGreedy has lower Diversity than

Borda’s method, its Precision and Recall are relatively higher. Over-

all, among all the considered RAmodels with complexity lower than

O(𝑛𝑚 +𝑚2), the proposed TournamentGreedy method achieves

the best trade-off among Diversity, Precision, and Recall.

5.1.5 Real-World Dataset. As the behavior pattern of real-world

voters may be different from the random permutations, we exam-

ine our method in two real-world datasets listed in [33], the Jester

dataset and Sushi dataset. Jester dataset contains 6.5 million anony-

mous ratings of 100 jokes by the Jester Joke Recommender System

users and we take out totally 14116 ratings that cover all of the 100

jokes. Similarly, Sushi dataset includes 5000 orders of 10 kinds of top

rated sushi. Following the examination methodology in [33], we ex-

amine TournamentGreedy and the classic RA models by randomly

choosing 50, 200, 1000, 5000, 10000 permutations from each dataset.

The Efficiency metric is calculated by averaging 50 independently

experiment results. From comparisons listed in Table 3, we find

the proposed TournamentGreedy method has the best Efficiency

performance in most cases. But as the number of voters increases,

the gap between the baselines and the proposed one diminishes

and Copeland’s method obtains better Efficiency at 5000 and 10000

voters on Jester Dataset.

5.2 Online Experiment
Since a surrogate objective always has a gapwith the online revenue,

online A/B test is the only golden criterion for our comparisons. We

set up online A/B tests on the AliExpress Search System to examine

our proposed RA-EGO. We prepare 4 methods in the online A/B

test, namely Deep LTR, RA-RE, RA-BE, and RA-EGO. Deep LTR

follows a recent work HMOE [2] as a classic deep LTR model for

the ensemble task with inputs from more than 40 sub-models. It

has been implemented to update its weights in real-time on our



Jester Dataset Sushi Dataset
Voters 50 200 1000 5000 10000 50 200 1000 5000 10000
Dictator 0.455278 0.461552 0.458725 0.432150 0.440028 0.475591 0.479541 0.485994 0.483410 0.478364

Copeland 0.378942 0.385276 0.387709 0.386687 0.387343 0.413360 0.421786 0.425510 0.426090 0.426046

Lehmer 0.418019 0.407635 0.405217 0.405607 0.404071 0.424053 0.425423 0.427978 0.428867 0.428902

Borda 0.379292 0.385460 0.387830 0.386809 0.387454 0.414418 0.422401 0.425739 0.426169 0.426114

Proposed 0.378818 0.385214 0.387704 0.386690 0.387350 0.411867 0.421481 0.425462 0.426064 0.426045

Table 3: Efficiency comparisons of algorithms on two real-world datasets under the uniform weight voters setting.

online platform. RA-RE is the weight generation policy for cold-

start in the Algorithm 1, and it will choose a random combination

of weights from a set designed by human experts. The designed set

of weights contains 8 different combinations of weights on several

main metrics including the click-through rate, the conversion rate,

relevance scores between user and items, sales of items, and so on.

RA-BE relies on data collected by the RA-RE method, and always

selects the combination of weights with the highest accumulated

online conversion rates in real-time. RA-EGO is our proposed con-

textual method utilizing EGO for sub-model weights generation

and TournamentGreedy for item rank aggregation.

Furthermore, in the E-Commerce scenario, users have potential

behavior patterns on each position of a given rank, well-known as

Position Bias [34, 35]. Sub-models could have differing predictive

power at different positions. For example, some sub-models have

better predictive power at top positions and others are better at tail

positions. To better model the positions, we modify the weights of

𝑖-th sub-model on the 𝑘-th position as 𝜔𝑖 (𝑘) = 𝑤𝑖𝛾
𝑘
𝑖
, in which the

𝑖-th rank has the original weight𝑤𝑖 , and the adjustable decay factor

𝛾𝑖 denotes the positional decay factor of 𝑖-th sub-model. Therefore,

less 𝛾𝑖 implies the model influences less on the decision of the latter

items. Under this setting, the Generator needs to produce a number

of weights equal to twice the number of sub-models.

The above 4 methods serve a non-overlapping random portion of

users, with 12million daily exposed pages and 1millionDaily Active

Users (DAU). During seven days of A/B testing, we collect data and

calculate gaps between the considered 4 models as summarized

in Table 4. The Deep LTR serves as the baseline. Our proposed

RA-EGO method can achieve more than 0.76% Conversion Rate

(CR) gain on purchasing and 0.86% Gross Merchandise Volume

(GMV) gain compared to Deep LTR, translating into a significant

improvement for a large-scale E-Commerce platform.

Models Update Imprv on CR Imprv on GMV
Deep LTR Real-time 0.0000% 0.0000%

RA-RE No update −0.7863% ± 0.0076 −0.6859% ± 0.0184
RA-BE Real-time 0.5510% ± 0.0033 0.3212% ± 0.0102
RA-EGO Daily 0.7681% ± 0.0058 0.8602% ± 0.0112

Table 4: Improvement in online A/B tests among RA-EGO,
RA-RE, and RA-BE methods compared to Deep LTR.

The above A/B testing result shows that RA-RE includes many

trials that do not choose the proper weights for the RA model. Thus

there is a severe decrease in the conversion rate and GMV compared

to Deep LTR. On the other hand, RA-BE clearly outperforms Deep

LTR, implying that Deep LTR has its limitation. We further examine

the strategies chosen by RA-BE and find that RA-BE produces the

same permutation as Deep LTR for about 87.7% pages, implying

Deep LTR can have correct predictions in most contexts. Finally,

the fact that RA-EGO outperforms RA-BE proves RA-EGO can find

better weight combinations beyond the expert-designed strategies.

We find that the performance improvement in RA-EGO is mainly

brought by the weak sub-models, which otherwise get low atten-

tions in baseline models. We select three sub-models, which ranks

items by their prices, sales, and historical click-through rate (CTR),

and study the relative improvement in KTD of them in Table 5.

Models Price Imprv Sale Imprv CTR Imprv
Deep LTR 0.503 +0.00% 0.437 +0.00% 0.413 +0.00%
RA-RE 0.500 −0.50% 0.430 −1.79% 0.404 −2.00%
RA-BE 0.505 +0.46% 0.440 +0.51% 0.408 −1.07%
RA-EGO 0.502 −0.05% 0.436 −0.34% 0.410 −0.56%

Table 5: Value and relative improvement of KTD among RA-
EGO, RA-RE, and RA-BE methods compared to Deep LTR.

Note that a smaller KTD value in the Table 5 indicates a higher

order consistency. As ranking according to Price or Sale is very

different from ranking according to online revenue, there is usually

a decrease in the weights of weak sub-models when we optimize

the online revenue. In RA-RE, the weights of the weak sub-models

are relatively high, and it reasonably leads to a decrease in online

revenue. Different fromRA-RE, RA-BE optimizes the online revenue,

and the weights on Price and Sale decrease. However, RA-EGO

produces permutations more consistent to the outputs of weak sub-

models than Deep LTR, while also provides a better online revenue.

This fact further implies RA-EGO may be a better LTE framework

than simply applying the deep ensemble learning model.

6 CONCLUSION
We propose the LTE framework for online ranking services and

successfully earn considerable online revenue. The LTE framework

is scalable to be deployed to improve the revenue of other real-

world applications. Our TournamentGreedy is not only a better RA

model in classic examinations, but is also the first contextual RA

model designed for optimizing the online revenue instead of offline

metrics. It needs to serve as a part of the huge online system, and its

parameters (weights of permutations) need to be properly chosen

by EGO as an RA-EGO framework works. To ensure an RA model

can produce satisfying permutations, we emphasize the importance

of the expressive power of RA models, and propose weak PO to

efficiently estimate the expressive power. RA-EGO is the start of

industrial LTE applications. More theories of applied RA models

and contextual BBO need to be carefully studied in the future.
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