
Enumerating Fair Packages for Group Recommendations
Ryoma Sato

r.sato@ml.ist.i.kyoto-u.ac.jp

Kyoto University / RIKEN AIP

ABSTRACT
Package-to-group recommender systems recommend a set of uni-

fied items to a group of people. Different from conventional settings,

it is not easy to measure the utility of group recommendations be-

cause it involves more than one user. In particular, fairness is crucial

in group recommendations. Even if some members in a group are

substantially satisfied with a recommendation, it is undesirable

if other members are ignored to increase the total utility. Many

methods for evaluating and applying the fairness of group recom-

mendations have been proposed in the literature. However, all these

methods maximize the score and output only one package. This is

in contrast to conventional recommender systems, which output

several (e.g., top-𝐾) candidates. This can be problematic because a

group can be dissatisfied with the recommended package owing to

some unobserved reasons, even if the score is high. To address this

issue, we propose a method to enumerate fair packages efficiently.

Our method furthermore supports filtering queries, such as top-𝐾

and intersection, to select favorite packages when the list is long.

We confirm that our algorithm scales to large datasets and can

balance several aspects of the utility of the packages.

CCS CONCEPTS
• Information systems→ Recommender systems; Informa-
tion retrieval diversity; Top-k retrieval in databases; • The-
ory of computation→ Fixed parameter tractability.

KEYWORDS
fairness; recommender systems; enumeration

ACM Reference Format:
Ryoma Sato. 2022. Enumerating Fair Packages for Group Recommendations.

In Proceedings of the Fifteenth ACM International Conference on Web Search
and Data Mining (WSDM ’22), February 21–25, 2022, Tempe, AZ, USA. ACM,

New York, NY, USA, 9 pages. https://doi.org/10.1145/3488560.3498432

1 INTRODUCTION
With the use of recommender systems in diverse scenarios, a new

setting called group recommendation [1, 4, 5, 17] has emerged. A

group recommender system recommends items to a set of users

(i.e., a group). For example, PolyLens [25] recommends movies to

a group of people who are planning to go to a movie together.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WSDM ’22, February 21–25, 2022, Tempe, AZ, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9132-0/22/02. . . $15.00

https://doi.org/10.1145/3488560.3498432

Let’s browse [21] recommends web pages to a group of people who

are browsing web pages together. Another emerging scenario is

package recommendation, in which a set of items is considered

as a unified package toward a single common goal [2, 32, 33, 36].

For example, in music playlist recommendations, each package

(i.e., playlist) should be consistent with respect to genres. In movie

package recommendations, each package should be diverse to avoid

monotony. Package recommendations are also referred to as bundle

recommendations [36] and composite recommendations [32].

In this paper, we consider the combination of these two settings,

i.e., package-to-group recommendations [27, 29], where a recom-

mender system recommends packages to a group of people, and

focus on the fairness problem in this setting. For example, consider

the case of selecting the music to play in a car. Suppose all except

one person in a car like music in the order of pop, jazz, and rock

music, whereas the single remaining person likes music in the op-

posite order. Although a recommender system may recommend

pop music to satisfy the majority to the maximum extent, it may

dissatisfy the last person, who may refuse to go along with the

solution. An amicable and fair solution is to play jazz music, which

is liked moderately by all occupants of the car.

Existing fair package-to-group recommendation algorithms [27,

29] define fairness scores of a list and determine the optimal package

by maximizing the scores. These methods can compute an excellent

package with respect to their fairness scores. However, a critical

drawback is that they recommend only one package. Therefore, a

group has only one candidate. This is in contrast to the standard

setting, where several (top-𝐾) candidates are presented, and users

can choose their favorite items.

To solve this problem, we propose to enumerate all fair packages.
Our proposed method outputs a set of packages, i.e., a set of sets of

items. More specifically, given a threshold 𝜏 , our proposed method

computes all packages with at least fairness scores 𝜏 . Although

these sets may contain unsatisfactory packages, users can choose

their most preferred package by filtering.

However, there are several technical challenges to achieving this

goal. First, it was shown that the problem of maximizing fairness is

NP-hard [22, 29]. The enumeration problem is more difficult than

the maximization problem because if we can efficiently solve the

enumeration problem, we can solve the maximization problem as

well by simply adjusting the threshold 𝜏 . Besides, the enumeration

problem requires more detailed solutions than the maximization

problem. Specifically, not only the optimal value but also the set of

qualified packages needs to be provided. Therefore, the enumeration

problem is also NP-hard, and it may appear impossible to efficiently

solve this problem. A crucial technical contribution of this paper

is that we prove that the optimization and enumeration problems

are fixed-parameter tractable (FPT) [13]. Therefore, they can be

solved if the parameter is small. Fortunately, most instances in

the literature have small values. Thus, our proposed method can

ar
X

iv
:2

10
5.

14
42

3v
2

 [
cs

.I
R

]
 2

8
D

ec
 2

02
1

https://doi.org/10.1145/3488560.3498432
https://doi.org/10.1145/3488560.3498432

WSDM ’22, February 21–25, 2022, Tempe, AZ, USA Ryoma Sato

efficiently solve the enumeration problem. The second challenge

is the existence of numerous qualified packages because of the

exponential increase in the combination of packages with respect

to the number of items. To solve this problem, We manipulate sets

of packages and output solutions in a compressed form, namely

a ZDD, instead of manipulating them one by one. ZDDs enable

efficient filtering queries as well as efficient enumeration.

The contributions of this paper are as follows:

• We propose enumerating all fair packages to allow users to

select their favorite packages in their own way.

• We propose an efficient method that enumerates all fair

packages exactly. Our method not only enumerates packages

but also samples packages, lists important top-𝐾 packages,

and efficiently filters packages.

• We confirm the effectiveness and efficiency of our method

in empirical evaluations. We show that our method can enu-

merate over one trillion packages in several seconds.

Reproducibility:Our code is available at https://github.com/joisino/

fape. The library can be installed via pip install fape.

2 PRELIMINARY
2.1 Notations
For every positive integer 𝑛 ∈ Z+, [𝑛] denotes the set {1, 2, . . . 𝑛}.
|𝐴| denotes the number of elements contained in set 𝐴. Let 𝐴(𝐾) =
{𝐵 ⊆ 𝐴 | |𝐵 | = 𝐾} be the set of 𝐾-subsets of 𝐴. Let U = [𝑛𝑢]
denote the set of users and I = [𝑛] denote the set of items, where

𝑛𝑢 and 𝑛 are the numbers of users and items, respectively. Without

loss of generality, we assume the users and the items are numbered

as 1, . . . , 𝑛𝑢 and 1, . . . , 𝑛, respectively.

2.2 Package-to-group recommendations
Let 𝑔 be the number of members in a group, and let G ∈ U (𝑔) be
a group, i.e., a set of users. Without loss of generality, we assume

G = [𝑔]. We also assume that the preference 𝑹𝑢𝑖 ∈ R≥0 (e.g., rating)
of user𝑢 ∈ U for item 𝑖 ∈ I for each user and item is known, which

is a common assumptionmade in previous studies [19, 27, 29].When

a rating matrix at hand is incomplete, we complete the matrix using

off-the-shelf completion algorithms. For example, Serbos et al. [29]

utilized the item-to-item collaborative filtering [28], and Kaya et al.

[19] employed matrix factorization [26] to complete rating matrices.

A package is represented by a set of items. Let 𝐾 ∈ Z+ be the
size of a package. We recommend a list of packages to group G. A
straightforward method is to recommend the package P with the

maximum total preference: argmax P∈I (𝐾) 𝑆 (P) :=
∑
𝑖∈P

∑
𝑢∈G 𝑹𝑢𝑖 .

However, this is problematic because the optimal package may be

unfair to the minority people in the group, as discussed in the in-

troduction. Several fairness measures have been proposed to avoid

unfair recommendations. In this paper, we consider the following

two measures:

• Proportionality [27]: We say user 𝑢 likes item 𝑖 if 𝑹𝑢𝑖 is
ranked in the top-Δ% in 𝑹𝑢 : . We say that package P is

𝑚-proportional for user 𝑢 if user 𝑢 likes at least 𝑚 items

in package P. The 𝑚-proportionality of package P is the

number of members for whom package P is𝑚-proportional.

• Envy-freeness [29]: We say user 𝑢 is envy-free for item 𝑖

if 𝑹𝑢𝑖 is ranked in the top-Δ% in {𝑹𝑣𝑖 | 𝑣 ∈ G}. We say that

package P is𝑚-envy-free for user 𝑢 if user 𝑢 is envy-free

for at least𝑚 items in package P. The𝑚-envy-freeness of

package P is the number of members for whom package P
is𝑚-envy-free.

These measures have been successfully used in the fairness of

package-to-group recommendations [27, 29]. In the following, we

assume that 𝑚 = 1 (i.e., single proportionality and single envy-

freeness). We describe how to extend our method to multi propor-

tionality and envy-freeness in Section 3.4.

Previous works proposed methods for optimizing the above-

mentioned fairness measures. However, they recommend only one

package, which is in contrast to the standard setting in which

several options are suggested to users. In this paper, we solve the

more general problem of enumerating all fair packages. Specifically,

given threshold 𝜏 ∈ Z+, we enumerate all packages whose fairness

values are larger than 𝜏 . Formally, we solve the following problem.

Problem 1. Enumerating Fair Packages.
Given: Group G, package size 𝐾 , rating matrix 𝑹 ∈ R𝑛𝑢×𝑛≥0 , and

threshold 𝜏 ∈ N+.
Output: All packages with proportionality at least 𝜏 : {P ∈ I (𝐾) |
proportionality(P) ≥ 𝜏}, and all packages with envy-freeness at

least 𝜏 : {P ∈ I (𝐾) | envy-freeness(P) ≥ 𝜏}.
We emphasize that we do not resort to any approximations. The

output should contain all packages that meet the constraints and

should not contain any other packages. The size of the output may

be exponentially large. Thus, we output packages in compressed

form, which is subsequently introduced in Section 2.4.

It should be noted that we do not necessarily use all output pack-

ages. Rather, for example, we enumerate (1) the set 𝐴 of packages

with high proportionality, (2) the set 𝐵 of packages with high envy-

freeness, and (3) the set 𝐶 of packages with high preferences, and

find an ideal package by inspecting common packages contained in

all of the three sets. Although the number of the filtered packages

in 𝐴 ∩ 𝐵 ∩𝐶 may be small, each of 𝐴, 𝐵, and 𝐶 is extremely large;

thus, we require an efficient enumeration algorithm.

2.3 Fixed Parameter Tractable (FPT)
We review FPT algorithms briefly. Let 𝑁 denote the size of an input,

and let 𝑘 denote a parameter of a problem. For example, in this

paper, we consider the size of a group as the parameter. Recall

that a problem in P (complexity class) is efficiently solved only

if 𝑁 is moderately small. Therefore, if the fair package-to-group

recommendation problem is in P, it is efficiently solved even if,

e.g., the number of users is 106, number of items is 106, package
size is 106, and group size is 106, which is an improbable scenario.

The main idea of an FPT algorithm is restricting a parameter to be

small. The fair package-to-group recommendation problem with

the group size parameter is FPT if the problem is efficiently solved

when the group size is small, e.g., 10, but it requires that the problem
is efficiently solved even when the numbers of users and items and

the package size are large, e.g., 106. Therefore, an FPT algorithm

efficiently solves large instances with many users and items only if

the group size is small.

https://github.com/joisino/fape
https://github.com/joisino/fape

Enumerating Fair Packages for Group Recommendations WSDM ’22, February 21–25, 2022, Tempe, AZ, USA

Formally, algorithms that run in𝑂 (Poly(𝑁) 𝑓 (𝑘)) time for some

polynomial Poly(𝑁) and some function 𝑓 (𝑘) are called FPT algo-

rithms with respect to parameter 𝑘 . Here, although the degree of

Poly(𝑁) should be independent of 𝑘 , 𝑓 (𝑘) can be exponentially

large. A problem with parameter 𝑘 is FPT if it has an FPT algorithm.

It should be noted that this is different from the definition of XP

(complexity class)
1
, which requires a polynomial-time algorithm

when the parameter is a constant. For example, a problem is in XP

when it is solvable in 𝑂 (𝑁𝑘) time; however, it is not necessarily

FPT because the degree of the polynomial depends on 𝑘 . A problem

is FPT when it is solvable in𝑂 (𝑁2𝑘); however, it is not necessarily
in P because it takes exponential time when 𝑘 is linearly large. To

illustrate the difference of XP and FPT algorithms, suppose𝑁 = 106

and 𝑘 = 10. An𝑂 (𝑁𝑘) time algorithm requires roughly 𝑁𝑘 = 1060

operations, and thus, it is not tractable. By contrast, an 𝑂 (𝑁2𝑘)
algorithm requires roughly 𝑁2𝑘 = 106 · 210 ≈ 109 operations,

and thus, it is tractable. Moreover, there exists a theoretical gap

between FPT and XP problems [12]. FPT is a well established field,

and textbooks and surveys [10, 13] are available for more details

on FPT algorithms.

In this paper, we prove that the fair package-to-group recom-

mendation problem with the group size parameter is FPT. In the

literature, many examples considering small group sizes (e.g., fami-

lies) are reported
2
. For example, Serbos et al. [29] set the default

group size as 8 and the maximum group size as 16. Lin et al. [22]

and Kaya et al. [19] set the maximum group size as 8. Therefore,
our FPT algorithm efficiently solves their cases with a theoretical

guarantee.

2.4 Zero-suppressed Decision Diagrams (ZDDs)
A ZDD [24] is an efficient data structure for representing a family

of sets. The universe set of set families is the item set I throughout

the paper, and the order of variables are the same as the indices

of the item set. A ZDD is represented by a rooted directed acyclic

graph, and it contains a top node ⊤, a bottom node ⊥, and branch

nodes. Each branch node 𝑣 is labeled with an index 𝑖𝑣 ∈ I of an item

and has two outgoing edges: 0-edge and 1-edge. The label of the
head node should be larger than that of the tail node (i.e., ordered).

Figure 1 (a) shows an example of ZDDs. A ZDD represents a family

of sets. Let X = {𝑖1, 𝑖2, . . . , 𝑖𝑙 } ⊆ I be a set of items such that

𝑖1 < 𝑖2 < · · · < 𝑖𝑙 .X is contained in a ZDD if and only if there exists

a path (. 0−→)∗ 𝑖1
1−→ (. 0−→)∗ 𝑖2

1−→ · · · (. 0−→)∗ 𝑖𝑙
1−→ (. 0−→)∗⊤ that

starts at the root node, where a dot denotes an arbitrary node,

0−→
denotes a 0-edge, and

1−→ denotes a 1-edge, and an asterisk indicates
zero or more occurrences of the preceding element. For example,

the red bold path in Figure 1 (b) represents {1, 3, 5}, and the red bold
path in Figure 1 (c) corresponds to {2, 3, 4}. Therefore, the ZDD in

Figure 1 (a) represents a set family {{1, 3, 5}, {1, 2}, {2, 3, 4}, {4, 5}}.
We use the Fraktur fonts such as 𝔄, 𝔅, and ℭ to denote ZDDs.

We use the same variable for the set family represented by a ZDD.

We consider the size of a ZDD to be the number of branch nodes in

1
Algorithms that run in 𝑂 (𝑁 𝑓 (𝑘)) time are called XP algorithms, i.e., they run in

polynomial time for each fixed 𝑘 .
2
Notably, some works consider larger groups, e.g., 𝑘 ≤ 20 in [3]

1

2 2

3 3

4

5

4

(a) 1

2 2

3 3

4

5

4

(b) 1

2 2

3 3

4

5

4

(c) 1

2

3

4

5

(d)

Figure 1: Examples of ZDDs: dashed and solid lines repre-
sent 0- and 1-edges, respectively. (a) ZDD representing fam-
ily {{1, 3, 5}, {1, 2}, {2, 3, 4}, {4, 5}}. (b) Path corresponding to
{1, 3, 5}. (c) Path corresponding to {2, 3, 4}. (d) ZDD represent-
ing the power set of {1, 2, 3, 4, 5}.
(a)

x x x share
(b)

x jump

reduction reduction

Figure 2: Reduction of ZDDs: (a) If two nodes of the same
index point to the same successors, they merge into a sin-
gle node. (b) If the 1-edge of a node points to the bottom
node, that node is skipped. Intuitively, if no sets contain
item 𝑥 (i.e., 1-edge points to the bottom node), item 𝑥 can
be ignored.

the ZDD. For a set family 𝔄, let |𝔄 | denote the number of sets in 𝔄,

and let ∥𝔄∥ denote the number of branch nodes in ZDD 𝔄.

The most basic operation for ZDDs is reduction, which is de-

picted in Figure 2. Specifically, duplicate nodes that point to the

same children and have the same item label are merged, and a node

whose 1-edge is connected to the bottom node is skipped. This

process is continued until no nodes are redundant
3
. ZDD 𝔄 can

be reduced in 𝑂 (∥𝔄∥) time. The reduction does not change the

set family that 𝔄 represents and decreases the size of the ZDD. It

is known that a set family has a unique reduced ZDD, and any

ZDD can reach the reduced form by any sequence of reduction

operations. In some literature, ZDDs stand only for reduced ZDDs,

whereas we use both non-reduced and reduced ZDDs in this paper.

One of the benefits of ZDDs is that ZDDs consume less memory

than raw representations. For example, Figure 1 (d) shows a ZDD

that represents the power set of {1, 2, 3, 4, 5}. Although this set

family contains 25 = 32 sets, the ZDD contains only five nodes and

ten edges. In general, the advantage tends to increase exponentially

as the size of the universe set increases. Besides, the size of a reduced

ZDD is at most the total number of elements in the sets in the family.

Specifically, ∥𝔄∥ ≤ ∑
A∈𝔄 |A| holds because when a new set X is

inserted to a ZDD, at most |X| nodes are created. Therefore, a ZDD
3
We say a node is redundant if its 1-edge is connected to the bottom node, or some

other nodes with the same item label point to the same children.

WSDM ’22, February 21–25, 2022, Tempe, AZ, USA Ryoma Sato

is as memory efficient as a raw description, even in the worst case,

and performs much better in practice.

Another benefit is that ZDDs support many operations for set

families [20]. The celebrated apply operation [8, 24] is an example,

which efficiently merges two ZDDs. Specifically, it computes the

reduced ZDDs that represent𝔄∪𝔅,𝔄∩𝔅, and𝔄\𝔅 from ZDDs𝔄

and 𝔅 in 𝑂 (∥𝔄∥∥𝔅∥) time in the worst case. It runs in linear time

in practice without pathological cases [8, 24]. The crux of the apply

operation is that it manipulates compressed ZDDs directly, and the

running time is independent of the number of sets contained in the

ZDDs but only dependent on the size of the ZDDs. Recall that the

number of sets can be exponentially larger than the size of the ZDD

(e.g., the power set). Thus, the benefit can be exponentially large.

3 METHOD
We introduce our proposed method and analyze time complexity.

Although our proposed method is simple and easy to implement, it

has a strong theoretical property on the fixed parameter tractability.

3.1 Maximization Problem
As we highlighted in the introduction, the enumeration problem is

more difficult than the maximization problem. We first show that

the maximization problem can be efficiently solved, even though

it is an NP-hard problem. We consider the proportionality here.

Formally, the maximization problem is defined as follows:

Problem 2. Maximizing Fairness.
Given: Group G, package size 𝐾 , and rating matrix 𝑹 ∈ R𝑛𝑢×𝑛≥0 .

Output: The maximum proportionality of all possible packages,

i.e., max{proportionality(P) | P ∈ I (𝐾) }.
A naive algorithm for this problem is to check all 𝐾-sets of items.

However, this algorithm requires at least𝑂 (𝑛𝐾) time and is not FPT.

The dynamic programming algorithm introduced in this section

efficiently solves this problem and serves as a foundation for the

analysis of our proposed method in the next section.

Theorem 3.1. The maximizing fairness problem can be solved
in 𝑂 (𝑛(𝐾 + 𝑔)2𝑔) time and is FPT with respect to the group size
parameter.

Proof. For item 𝑖 ∈ I, integer 𝑘 ∈ {0}∪ [𝐾], and subsetH ⊂ G
of group G, let 𝑩𝑖,𝑘,H be a Boolean variable that indicates whether

there exists a package P ⊂ [𝑖] (𝑘) that is liked by all users inH . Let

S𝑖 ⊂ G be the set of users that like item 𝑖 . We show that dynamic

programming efficiently computes the values of 𝑩 in a recursive

manner. Specifically, the following recursive relations hold:

𝑩𝑖,0,∅ = True (0 ≤ 𝑖 ≤ 𝑛),
𝑩𝑖,0,H = False (0 ≤ 𝑖 ≤ 𝑛,H ≠ ∅),
𝑩0,𝑘,H = False (1 ≤ 𝑘 ≤ 𝐾),

𝑩𝑖,𝑘,H = 𝑩𝑖−1,𝑘,H +
∑︁

F : F∪S𝑖=H
𝑩𝑖−1,𝑘−1,F (1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝐾),

where + and∑ denote Boolean OR. The first three equations follow

from the definition. The last equation holds because there exists a

package P ⊆ [𝑖] (𝑘) that is liked by all users inH if (1) there already

exists a package P ⊆ [𝑖 − 1] (𝑘) that is liked by all users in H or

(2) there exists a package P ⊆ [𝑖 − 1] (𝑘−1) that is liked by all users

Algorithm 1:Maximizing Fairness

1 Data: Group G, Package size 𝐾 , Rating matrix 𝑹 ∈ R𝑛𝑢×𝑛≥0 .

2 Result:Maximum proportionality.

3 𝑩𝑖,𝑘,H ←
{
True (𝑘 = 0,H = ∅)
False (otherwise)

4 for 𝑖 ← 1 to 𝑛 do
5 S𝑖 ← {𝑢 ∈ G | 𝑹𝑢𝑖 is ranked in the top-Δ % in 𝑹𝑢 : }
6 for F ⊆ G do
7 H ← F ∪ S𝑖 // Add item 𝑖

8 for 𝑘 ← 0 to 𝐾 do
9 if 𝑘 ≤ 𝐾 − 1 then
10 𝑩𝑖,𝑘+1,H ← 𝑩𝑖,𝑘+1,H + 𝑩𝑖−1,𝑘,F
11 𝑩𝑖,𝑘,F ← 𝑩𝑖,𝑘,F + 𝑩𝑖−1,𝑘,F

12 return max{|H | | H ⊂ G,𝑩𝑛,𝐾,H = True}

in F for some subset F , and the remaining usersH\F like item 𝑖 .

In the latter case, the size of the package increases by one, thereby

increasing index 𝑘 . Although the summation in the fourth equation

may be exponentially large, only one term is included on average

because only oneH satisfies F ∪ S𝑖 = H for each F . Algorithm 1

shows the pseudo code. For a fixedH , it is cumbersome to iterate

F that satisfies F ∪ S𝑖 = H as in the formula above. To handle

it, we iterate F instead ofH in the code, thereby, it becomes clear

where to add 𝑩𝑖−1,𝑘,F , i.e., to 𝑩𝑖,𝑘+1,F∪S𝑖 . In Line 3, the variables

are initialized as described above. In Lines 4–11, the values of 𝑩 are

computed in a bottom-upmanner. In Line 12, the maximum satisfied

set is computed. The computational bottleneck of this algorithm

is the triple loop in Lines 4–11. If H and S𝑖 are represented by

Boolean arrays, H ∪ S𝑖+1 can be computed in 𝑂 (𝑔) time. Hence,

the time complexity of this algorithm is 𝑂 (𝑛(𝐾 + 𝑔)2𝑔). □

It should be noted that previous works proved the problem is

NP-hard [29], concluded that it was not efficiently solvable, and

resorted to approximations. However, the above theorem shows

the problem can be solved efficiently and exactly when the group

size is small, which is the case in previous works [19, 22, 29].

Maximization of the envy-freeness is also solvable in 𝑂 (𝑛(𝐾 +
𝑔)2𝑔) time by replacing S𝑖 with the set of envy-free users for 𝑖 .

3.2 Fair Package Enumeration
This section describes our proposed method FAPE (FAir Package

Enumeration). We consider the proportionality first. Thus, the ZDD

we construct in the following represents all packages with propor-

tionality at least 𝜏 . i.e., {P ∈ I (𝐾) | proportionality(P) ≥ 𝜏}.
The ZDD we consider in this section has the same structure

as the DP table 𝑩 used in the proof of Theorem 3.1. Specifically,

let the vertex set be V = {𝔵𝑖,𝑘,H | 𝑖 ∈ I, 𝑘 ∈ {0, 1, · · · , 𝐾},H ⊆
G} ∪ {⊥,⊤}. The label of node 𝔵𝑖,𝑘,H is item 𝑖 . The root node is

𝔵1,0,∅ . Intuitively, 𝔵𝑖,𝑘,H represents a set of packages that contain 𝑘

items in [𝑖] and are liked byH . We assume that the all undefined

nodes (e.g., 𝔵0,𝐾+1,∅) denote the bottom node. We construct the

ZDD as follows. Internal states: Recall that S𝑖 ⊆ G is the set of

users that like item 𝑖 . For each 𝑖 ∈ [𝑛−1], the 0-edge of node 𝔵𝑖,𝑘,H
points to 𝔵𝑖+1,𝑘,H because the set of satisfied members does not

Enumerating Fair Packages for Group Recommendations WSDM ’22, February 21–25, 2022, Tempe, AZ, USA

Algorithm 2: FAPE

1 Data: Group G, Package size 𝐾 , Rating matrix 𝑹 ∈ R𝑛𝑢×𝑛≥0 ,

threshold 𝜏 ∈ Z+.
2 Result: All packages with proportionality at least 𝜏 .

3 for 𝑖 ← 𝑛 to 1 do
4 S𝑖 ← {𝑢 ∈ G | 𝑹𝑢𝑖 is ranked in top-Δ % in 𝑹𝑢 : }
5 forH ⊆ G do
6 H ′ ←H ∪S𝑖 // Add item 𝑖

7 for 𝑘 ← 0 to 𝐾 do
8 if 𝑖 = 𝑛 then
9 hi← ⊤ if |H ′ | ≥ 𝜏 and 𝑘 = 𝐾 − 1 else ⊥

10 low← ⊤ if |H | ≥ 𝜏 and 𝑘 = 𝐾 else ⊥
11 else if 𝑘 = 𝐾 then
12 hi← ⊥; low← 𝔰𝑖+1,𝑘,H
13 else
14 hi← 𝔰𝑖+1,𝑘+1,H′ ; low← 𝔰𝑖+1,𝑘,H
15 if hi = ⊥ then
16 𝔰𝑖,𝑘,H ← low // Skip (Fig. 2 (b))

17 else if 𝔭𝑖,hi,low is not None then
18 // Duplicate node found.

19 𝔰𝑖,𝑘,H ← 𝔭𝑖,hi,low // Merge (Fig. 2 (a))

20 else
21 // No duplicate nodes found.

22 𝔭𝑖,hi,low ← 𝔵𝑖,𝑘,H ; 𝔰𝑖,𝑘,H ← 𝔵𝑖,𝑘,H
23 𝔵𝑖,𝑘,H .edges← (hi, low)

24 return 𝔰1,0,∅

change if an item is not inserted. The 1-edge points to 𝔵𝑖,𝑘+1,S𝑖∪H
because members in S𝑖 are newly satisfied by item 𝑖 and the size of

the package increases by 1. Last states: The 0-edge of node 𝔵𝑛,𝑘,H
points to ⊤ if |H | ≥ 𝜏 and 𝑘 = 𝐾 and points to ⊥ otherwise by

the definition of the solutions. Recall that package P is included

(i.e., connected to ⊤) if the size |P | = 𝑘 is 𝐾 and the number of

satisfied members H is at least 𝜏 . In the 1-edge case, the sizes of
the packages are incremented and S𝑛 is newly satisfied. Thus, the

1-edge of node 𝔵𝑛,𝑘,H points to ⊤ if |H ∪ S𝑛 | ≥ 𝜏 and 𝑘 = 𝐾 − 1
and points to ⊥ otherwise.

As in case of Theorem 3.1, for 𝑖 ∈ [𝑛] and P ⊆ [𝑖], package P
contains 𝑘 items and is liked by all users inH if the corresponding

path reaches 𝔵𝑖+1,𝑘,H . Therefore, a path from the root reaches the

top node if and only if the corresponding package is liked by at

least 𝜏 users and contains exactly 𝐾 items. The size of this ZDD is

𝑛(𝐾 + 1)2𝑔 by construction.

The ZDD described above is not reduced. One way to obtain

the reduced ZDD is to construct the ZDD described above and

then reduce it. However, this two-step method may produce re-

dundant nodes in the intermediate step and is memory inefficient.

By contrast, FAPE constructs the reduced ZDD directly all at once,

from bottom to top, avoiding duplicate (Figure 2 (a)) and redundant

(Figure 2 (b)) nodes.

Algorithm 2 shows the pseudo-code. hi and low stand for 1- and
0-edges, respectively. Nodes 𝔵𝑖,𝑘,H are divided into equivalence

classes induced by the reduction operations (Figure 2). Merged

nodes belong to the same equivalence class. A skipped node is

identified with the node pointed by the 0-edge. 𝔰𝑖,𝑘,H is the repre-

sentative node of the equivalence class to which node 𝔵𝑖,𝑘,H belongs.

Recall that when two states 𝔵𝑖,𝑘,H and 𝔵𝑖,𝑘′,H′ , for some𝑘, 𝑘 ′,H ,H ′,
point to the same successors (hi, low), they are identified by the

reduction operation (Figure 2 (a)). 𝔭𝑖,hi,low is the representative

node that points to (hi, low) with index 𝑖 . We use the first state that

points to (hi, low) as the representative node 𝔭𝑖,hi,low and identify

the following states that point to the same successors with the first

one 𝔭𝑖,hi,low.

The outermost loop in Line 3 iterates item 𝑖 in the descending

order, i.e., FAPE constructs the reduced ZDD from bottom to top.

Last states: In Lines 8–10, we determine the successors of the last

variable nodes. If the resulting packages contain exactly 𝐾 items

and are liked by at least 𝜏 users, the link points to the top node, and

otherwise points to the bottom node. See also the corresponding

descriptions in the redundant ZDDs (“Last states” on the left col-

umn). Border states: In Lines 11–12, we determine the successors

of the nodes that contain 𝐾 items already. If a new item is inserted

into such a package (i.e., 1-edge), the resulting package contains

more than 𝐾 items, and thus, should point to the bottom node. The

0-edges are determined similarly as the internal states. Internal
states: In Lines 13–14, we determine the successors of other nodes.

See also the corresponding descriptions in the redundant ZDDs

(“Internal states” on the previous page). Skipping: In Lines 15–16,

if the 1-edge points to the bottom node, the node is skipped and

identified with the node pointed by the 0-edge. Merging: In Lines

17–19, if there already exists a node that points to the same succes-

sors, we merge the current node to the existing node. Otherwise, a

new node is created in Lines 21–23.We use a hashmap to implement

𝔭. A bucket sort-based algorithm [20, 30] can also be employed.

Clearly, the construed ZDD is reduced. There are no nodes whose

1-edges point to the bottom node owing to Line 15. There are no two

nodes that point to the same successor with the same index because

Line 17 does not allow creating such nodes. In addition, clearly,

the resulting ZDD represents all packages with proportionality

at least 𝜏 and contains exactly 𝐾 items owing to the same reason

that the (non-reduced) ZDD introduced at the beginning of this

subsection. The time complexity of FAPE is𝑂 (𝑛(𝐾 +𝑔)2𝑔) because
the outermost loop iterates𝑛 times, themiddle loop in Line 5 iterates

2𝑔 times, the innermost loop in Line 7 iterates 𝐾 + 1 times, and the

union operation in Line 6 takes𝑂 (𝑔) time. Therefore, the following

theorem holds.

Theorem 3.2. The enumerating fair packages problem can be
solved in 𝑂 (𝑛(𝐾 + 𝑔)2𝑔) time.

Corollary 3.3. The enumerating fair packages problem is FPT
with respect to the group size parameter.

Corollary 3.4. The size of the reduced ZDD that represents all
packages with proportionality at least 𝜏 is 𝑂 (𝑛𝐾2𝑔).

Note that the size of the ZDD is bounded by 𝑂 (𝑛𝐾2𝑔), even in

the worst case. It is much smaller in practice than the bound due

to the pruning stpdf in Lines 15–19 in Algorithm 2. Therefore, the

filtering operations we will introduce in the next section can be

efficiently conducted once the ZDD is constructed.

WSDM ’22, February 21–25, 2022, Tempe, AZ, USA Ryoma Sato

Enumerating envy-free packages is also solvable in𝑂 (𝑛(𝐾+𝑔)2𝑔)
time by replacing S𝑖 with the set of users that are envy-free for 𝑖 .

3.3 Operations
Enumerating all candidates is helpful when the number of candi-

dates is small. However, it is impossible to investigate all candidates

by hand when there are countless candidates. The crux of our pro-

posed algorithm is that it can filter items by various operations in

such cases. We introduce several examples of such operations.

Union and Intersection. As we reviewed in Section 2.4, ZDDs

support the apply operation, which computes the intersec-

tion and union of two ZDDs. Therefore, for any 𝜏, 𝜏 ′, we

can enumerate ℑ𝜏,𝜏 ′ = {P ⊆ I | proportionality(P) ≥
𝜏 and envy-freeness(P) ≥ 𝜏 ′}, by constructing two ZDDs by

FAPE and conducting the apply operation. Similarly, {P ⊆ I |
proportionality(P) ≥ 𝜏 or envy-freeness(P) ≥ 𝜏 ′} can be con-

structed. This is beneficial when either criterion is acceptable. Fur-

thermore, for any 𝜏 , we can compute the maximum envy-freeness

of the packages with proportionality at least 𝜏 by investigating

non-empty ℑ𝜏,𝜏 ′ with maximum 𝜏 ′. In other words, we can com-

pute the Pareto optimal packages in the sense of having the best

envy-freeness for a given proportionality.

We can impose additional constraints by constraint ZDDs and the

intersection operation. A typical example is category constraints

[29]. In music playlist recommendations, all items in a package

should have the same category for consistency. The constraint ZDD

can be constructed by (1) constructing ZDD ℭ𝑐 that represents the

power sets of items in each category 𝑐 (see Figure 1 (d)) and (2)

merging them by the union operation. ℭ𝑐 contains all packages

that are composed only of items with category 𝑐 . Thus, the merged

ZDD contains all packages that are composed of a single category.

In tour recommendation usage, if we set categories based on pre-

fectures or regions, the POIs in a package are constrained to be

geometrically close. In movie and tour package recommendations,

all items in a package should have different categories to avoid

monotony. The constraint ZDD can be constructed by dynamic

programming similar to FAPE in this case. In general, constraint

ZDDs are domain-specific, and it may be time-consuming to build

them. However, we can re-use them for all groups. Once we build

the constraint ZDDs and store them in a database, we can enu-

merate the filtered packages by running FAPE and the intersection

operation with the stored constraint ZDDs.

Fixing Items. There may be favorite or disliked items in a group.

ZDDs support superset and exclusion operations. Specifically, given

an item setQ ⊆ I and a ZDD𝔄, we can build a ZDD that represents

supersets {P | Q ⊆ P ∈ 𝔄} and exclusion {P | P ∈ 𝔄,P∩Q = ∅}
in 𝑂 (∥𝔄∥ + |Q|) time.

Optimizing Scores. In general, fairness is not the only objective.

Even if a package is envy-free, it is not helpful if all items are

not liked by any users. A natural request is to obtain high total

preference 𝑆 (P) = ∑
𝑖∈P

∑
𝑢∈G 𝑹𝑢𝑖 . ZDDs can efficiently solve the

linear Boolean programming problem [20]. Specifically, given a

weight𝑤𝑖 ∈ R for each item 𝑖 ∈ I and a ZDD 𝔄, we can obtain the

maximum weight package argmax P∈𝔄
∑
𝑖∈P 𝑤𝑖 in 𝑂 (∥𝔄∥) time.

Top-𝑘 packages can be also computed efficiently. Therefore, if we set

𝑤𝑖 =
∑
𝑢∈G 𝑹𝑢𝑖 , we can compute the package with the maximum

total preference in a ZDD. If we set𝑤𝑖 = −Var({𝑹𝑢𝑖 | 𝑢 ∈ G)}), the
resulting package contains items that all users rated similarly, which

can be considered as another fairness criterion. We can apply these

operations to the ZDDs constructed by FAPE and those filtered by

the intersection operations mentioned above.

Sampling Packages. Although optimization is a powerful tool, it

outputs an extreme case in a ZDD. Some users may want to de-

termine average packages to know the properties of the ZDD at

hand. ZDDs support uniform and weighted sampling. Specifically,

given ZDD 𝔄, uniform sampling outputs each package with proba-

bility 1/|𝔄 |. Given a weight𝑤𝑖 ∈ R for each item 𝑖 ∈ I, weighted
sampling outputs package P ∈ 𝔄 with probability proportional to∑
𝑖∈P 𝑤𝑖 . These operations enable investigating ZDDs even if their

sizes are large. Note that even uniform sampling may be satisfactory

because the ZDDs constructed by FAPE contain only fair packages.

3.4 Extensions
In this section, we describe how to extend our method to𝑚 > 1
briefly. For 𝑖 ∈ I, 𝑘 ∈ {0, 1, · · · , 𝐾},H ∈ {0, 1, · · · ,𝑚}G , let 𝔵𝑖,𝑘,H
represent packages P ∈ I (𝐾) such that user 𝑢 ∈ G likesH𝑢 items

inP.H𝑢 =𝑚means at least𝑚 items. Then, the reduced ZDD can be

constructed as FAPE, whereH is not a Boolean array but a counter

array. The time complexity is 𝑂 (𝑛(𝐾 + 𝑔) (𝑚 + 1)𝑔). Therefore, the
problem is still FTP if it is parameterized with both 𝑔 and𝑚. We

note that the ZDDs constructed with different𝑚 can be combined

by the union and intersection operations for finer-grained fairness.

4 EXPERIMENTS
4.1 Experimental settings
Datasets. We use two standard datasets for recommendations.

• MovieLens [15]. We use five versions of this dataset, 100k,

1M, 10M, 20M, and 25M, to investigate the scalability of

our method. An example scenario induced by this dataset is

recommending a bundle of movies to a group of friends who

are planning to see several movies together on their day off.

• Amazon Home and Kitchen [16, 23] contains reviews of

home and kitchen products on amazon.com. To remove noisy

items and users, we extract 10-cores of the dataset, i.e., we
iteratively remove items and users with less than 10 interac-

tions until all items and users have at least 10 interactions.

After preprocessing, the dataset contains 1395 users, 1171
items, and 25445 interactions in total. This dataset is an

example of bundle recommendations in e-commerce [36].

Group Generation. We use three strategies to create synthetic

groups following [19, 29]:

• Random: Members are sampled uniformly at random with-

out replacement.

• Similar:We sample members one by one. The first member

is sampled uniformly at random. The following members are

sampled uniformly at random from the set of users whose

Pearson correlation coefficients (PCCs) of the rating vector

to the already selected members are at least 𝐶sim, where

𝐶sim ∈ [−1, 1] is a threshold hyperparameter. The generated

groups tend to have similar preferences.

Enumerating Fair Packages for Group Recommendations WSDM ’22, February 21–25, 2022, Tempe, AZ, USA

� ��� ��� ��� ��� 	��
��
��%��$�n

�

��

��

�

��

���
'��
���

���
$�
��

������%�$�%���)�

�����! $&�"%�!
�� ��#�(�� �#��$�$

�	�

���

����

����

����

���

!��
��

��
��
��
$��
�!�

�$�
���

�

�&���#�!���������$

� � � 	
 � �
����������)��K

�

�

�

��

�

'�
���

���
$�
��

��������������)�

������! $&�"%�!
�� ��#�(�� �#��$�$

���

���

���

����

!�
��

��
��
��
$��
�!�

�$�
���

�

�&���#�!���������$�
�'"! � %����(�� �#��$�$

� 	 � �� �

�#!&"���)��g

��*�

���

���

���

���

'�
���

���
$�
���
�!�

�$�
���

� �����#!&"���)�

������! $&�"%�!
�'"! � %����(�� �#��$�$ ���

����

����

����

!�
��

��
��
��
$��
�!�

�$�
���

�

�&���#�!���������$

� �� �� 	�
� ���
�#!"!#%�! ���%)���#�$�!���Δ

�

�

�

	

(��
���

���
$�
��

�����#!"!#%�! ���%)���#�$�!��

�����! $&�"%�!
�� �#��$�$����
����#��$�$

�!!$�
���

����

����

����

����

!��
��

��
��
��
$��
�!�

�$�
���

�

�&���#�!���������$
! '�#��$�%!�n���!!$��K

��� ��� 	��
�� ��� ��� �� ���
�#*,��&�����&�'�$!��Δ/100

�

�

�

	

+��
��"

���
'�
��

�����#*,��&�����&�'�$!�
��"���$#')"%(�$#

�$$'� ���

���

����

����

����

���	

$��
��

��
 �

��
'��

!$�
�'�

�!�
�

�)"��&�$����� ���'
�$#*�&��'�($�n���$$'��K

� � 	

��!�"�����τ

�

�

�

�

�

%��
���

���
"�
��

������!�"����

����
���"$� #���

�#!�����# ����

����

����

���
��
��
��
��
"��
���

�"�
���

�

�$���!�����������"�
������������������!��"�"

��� ��	 ��� ���
������#�$�!���Csim

�

�

�

�

	

'�
���

���
$�
��

����������!#�$�!����$�����#�

������! $&�"%�!
��!�$��!%���� ��

������#
����

�(����

�(����

!�
��

��
��
��
$��
�!�

�$�
���

�

�&���#�!�
��������$

)��� ��� ��� ��	 ��
 ���
����"�#� ���Cdiv

�

�

�

�

	

'��
���

���
#�
��

�������� "�#� ������&�"���$�

����� �#%�!$� �
������$�(����"��#�#

��&�"���$

����

�*����

	*����

*����

 ��
��
��
��
��
#��
� �

�#�
���

�

�%���"� �
��������#

Figure 3: Speed and number of qualified packages in various settings. The number of packages shown on the right axis is in a
log scale. The time consumption shown on the left axis is in a linear scale, except for Figure (c).

• Divergent: The sampling process is the same as the similar

strategy except that the candidate members are users whose

minimum PCC to the already selected members is at most

𝐶
div

, where 𝐶
div
∈ [−1, 1] is a threshold hyperparameter.

The generated groups tend to have divergent preferences.

Baselines. We use seven fair package recommendation methods.

• AveRanking [4]: Items are ranked by average preferences.

This algorithm maximizes the preference exactly but does

not take fairness into consideration.

• LMRanking [4]: Items are ranked by the minimum prefer-

ences in the group.

• GreedyVar [22]: Items are chosen greedily so that the bal-

anced score of the preferences and fairness scores is maxi-

mized. This method uses variance as the fairness score. We

set _ = 0.5 (i.e., balancing completely).

• LMRanking [22]: Items are chosen greedily so that the

balanced score of the preferences and fairness scores is max-

imized. This method uses the least misery as the fairness

score. We set _ = 0.5 (i.e., balancing completely).

• GFAR [19]: Items are chosen greedily so that the sum of

the relevance scores in the group is maximized.

• SPGreedy [29]: Items are chosen greedily with respect to

the proportionality. Although this is not exact, it showed ex-

cellent performance in proportionality in the original paper.

• EFGreedy [29]: Items are chosen greedily with respect to

envy-freeness. Although this is not exact, it showed excellent

performance in envy-freeness in the original paper.

4.2 Speed and Number of Packages
We investigate the relations among the speed of FAPE, the number

of packages, and various parameters of the problem, including the

dataset size, package size 𝐾 , group size 𝑔, threshold Δ, threshold
𝜏 , fairness criteria, and grouping criteria. We set 𝑔 = 8, 𝐾 = 4,
Δ = 5 for proportionality, Δ/100 = 2/𝑔 for envy-freeness, 𝜏 = 𝑔,

the MovieLens1M dataset, proportionality criterion, and random

grouping as the default setting and vary each aspect in the following

analysis. We use a Linux server with an Intel Xeon CPU E7-4830 @

2.00GHz and 1TB RAM. The time consumption reported in the next

subsection is evaluated on one core of the CPU. Figure 3 shows

the results. Note that the number of packages is plotted on a log

scale because the combination of packages can be exponentially

large. We plot time consumption on a linear scale, except for the

group size experiment, where an exponential time is expected due

to Theorem 3.2. The analysis of the results is discussed below.

Dataset Size (Figure 3 (a)): We use datasets of various sizes: Movie-

Lens100k, 1M, 10M, 20M, and 25M. They contain 1682, 3706, 10677,
26744, and 59047 items, respectively. Although the problem is NP-

hard, the time consumption of FAPE scales only linearly, and it

scales to large datasets owing to the fixed parameter tractability.

This result is consistent with Theorem 3.2. It can also be seen that

the number of completely fair packages, where all members are

satisfied, is unexpectedly large (e.g., > 108 packages for Movie-

Lens100k). The existing algorithms (e.g., SPGreedy [29]) optimize

scores by some procedures and output only one package from as

many as 108 candidates. It is not clear which package is chosen by

these methods as a consequence of the optimization procedures. By

contrast, our method enables us to choose packages in a way each

user specifies using filtering operations (see Sections 3.3 and 4.3).

Package Size (Figure 3 (b)): We vary the package size 𝐾 from 2 to

8. The number of packages increases exponentially with respect

to 𝐾 because 𝑂 (𝑛𝐾) combinations of items exist. Nonetheless, the

time consumption scales linearly, which is consistent with Theorem
3.2.

Group Size (Figure 3 (c)): We vary the size 𝑔 of groups from 2 to

16. Note that the time axis is on a log scale only for this experiment.

As expected from Theorem 3.2, the time consumption increases

exponentially. This is the main limitation of our proposed algorithm.

However, we stress that many applications in the literature consider

at most 8 members (e.g., families). Thus, our algorithm is tractable

in these cases. We observe that the number of qualified packages

decreases because, with large groups, it is difficult to satisfy all.

Proportionality Threshold (Figure 3 (d)): We vary the threshold

Δ that determines the set of items that each user likes. We observe

that the number of qualified packages converges to

(𝑛
𝐾

)
because all

packages are fair if all members like all items. It can also be observed

that the time consumption increases first and then decreases. This

indicates that the intermediate case is the most difficult. Overall,

our algorithm is efficient in all regions.

Envy-freeness Threshold (Figure 3 (e)): We use envy-freeness

instead of proportionality as the fairness criterion. We vary the

WSDM ’22, February 21–25, 2022, Tempe, AZ, USA Ryoma Sato

Table 1: Balancing scores. Proportionality, envy-freeness, and preference are normalized to be in [0, 1]. The total score is the
sum of these values. Thus, the maximum total score is three. Our method achieves the best proportionality and envy-fairness,
whereas its preferences are second or third best. Highest values are marked in bold in each column.

MovieLens1M Amazon

Proportionality Envy-freeness Preference Total Score Proportionality Envy-freeness Preference Total Score

AveRanking [4] 1.000 ± 0.000 0.725 ± 0.156 0.911 ± 0.027 2.636 ± 0.171 1.000 ± 0.000 0.500 ± 0.125 0.939 ± 0.012 2.439 ± 0.126

LMRanking [4] 0.988 ± 0.037 0.588 ± 0.168 0.876 ± 0.036 2.451 ± 0.188 0.912 ± 0.263 0.425 ± 0.139 0.924 ± 0.031 2.261 ± 0.373

GreedyVar [22] 0.912 ± 0.080 0.750 ± 0.112 0.812 ± 0.035 2.474 ± 0.157 0.787 ± 0.202 0.637 ± 0.088 0.859 ± 0.031 2.284 ± 0.287

GreedyLM [22] 0.950 ± 0.061 0.775 ± 0.109 0.813 ± 0.036 2.538 ± 0.155 0.662 ± 0.159 0.600 ± 0.094 0.853 ± 0.031 2.115 ± 0.249

GFAR [19] 0.950 ± 0.061 0.762 ± 0.104 0.812 ± 0.038 2.525 ± 0.154 0.762 ± 0.142 0.650 ± 0.075 0.871 ± 0.025 2.284 ± 0.219

SPGreedy [29] 1.000 ± 0.000 0.525 ± 0.156 0.851 ± 0.041 2.376 ± 0.167 1.000 ± 0.000 0.375 ± 0.079 0.867 ± 0.015 2.242 ± 0.085

EFGreedy [29] 0.925 ± 0.127 1.000 ± 0.000 0.792 ± 0.053 2.717 ± 0.165 0.750 ± 0.244 0.838 ± 0.080 0.854 ± 0.027 2.441 ± 0.302

Ours 1.000 ± 0.000 1.000 ± 0.000 0.888 ± 0.037 2.888 ± 0.037 1.000 ± 0.000 0.912 ± 0.057 0.913 ± 0.020 2.825 ± 0.064

Ours (10th) 1.000 ± 0.000 1.000 ± 0.000 0.887 ± 0.037 2.887 ± 0.037 1.000 ± 0.000 0.912 ± 0.057 0.911 ± 0.020 2.824 ± 0.064

Ours (100th) 1.000 ± 0.000 1.000 ± 0.000 0.881 ± 0.040 2.881 ± 0.040 1.000 ± 0.000 0.900 ± 0.050 0.905 ± 0.025 2.805 ± 0.058

Ours (random) 1.000 ± 0.000 1.000 ± 0.000 0.720 ± 0.044 2.720 ± 0.044 1.000 ± 0.000 0.912 ± 0.057 0.862 ± 0.031 2.774 ± 0.080

threshold Δ. Note that Δ/100 = 𝑘/𝑔 means that a member is envy-

free for item 𝑖 if his/her rating for item 𝑖 is in top-𝑘 in the group.

Similar to proportionality, the time consumption increases and then

decreases, and the number of packages converges to

(𝑛
𝐾

)
.

Threshold (Figure 3 (f)): We vary the threshold 𝜏 of proportionality

from 1 to 8(= 𝑔). As the constraint becomes more stringent, the

number of qualified packages decreases.

Grouping (Figures 3 (g) and (h)): We use similar and divergent

grouping instead of random grouping. The number of packages in-

creases as the group becomes homogeneous. The time consumption

does not change much regardless of the properties of the groups.

Overall, our algorithm is efficient in various settings. It enumer-

ates as many as 1012 items within a few seconds.

4.3 Balancing Fairness and Preference
Ensuring fairness is not the only requirement in package-to-group

recommendations. Even if a package is envy-free, it is useless if

all members dislike items in the package. Balancing fairness and

preference is important. In addition, both proportionality and envy-

freeness may be simultaneously required because they model dif-

ferent aspects of fairness. We show that our method achieves high

proportionality, envy-freeness, and preference simultaneously by

the intersection and optimization operations introduced in Section

3.3. The objective score is the sum of proportionality, envy-freeness,

and total preference S(P). We call it the total score. We divide the

proportionality and the envy-freeness by 𝑔 and normalize the pref-

erence to ensure that each term is within [0, 1].
First, we run FAPE with each threshold 𝜏 ∈ {1, 2, · · · , 𝑔} and

build ZDDs for proportionality and envy-freeness. For each 𝜏 and

𝜏 ′, we build the ZDD ℑ𝜏,𝜏′ with at least 𝜏 proportionality and 𝜏 ′

envy-freeness by the intersection operation. Then, we draw the

package with the maximum total preference from each ZDD by the

optimization operation. We adopt the package with the maximum

objective score among ℑ𝜏,𝜏 ′ . This procedure outputs the exactly
optimal package with respect to the total score in a reasonable time.

We compare the performance of our method and existing meth-

ods. We set 𝑔 = 8, 𝐾 = 4, Δ = 5 for proportionality, and

Δ/100 = 2/𝑔 for envy-freeness. Table 1 reports the average scores
and standard deviations for randomly created 10 groups. It shows

that our method achieves the best performance in both propor-

tionality and envy-freeness simultaneously. It is remarkable that

on the Amazon dataset, the envy-freeness of our method is better

than that of EFGreedy, which is designed to optimize envy-freeness.

Although AveRanking, which optimizes preference exactly, per-

forms better than our method in preference, it performs poorly

in envy-freeness and may frustrate some members. Our method

computes packages with slightly worse preference but much better

fairness than AveRanking. Overall, our method outperforms the

other methods with respect to the total score. It indicates that our

method strikes a better balance of fairness and preference than the

existing methods.

We also compute 10-th and 100-th best packages and random

packages from the best ZDD (i.e., the ZDD that contains the best

package) using the optimization and sampling operations. Recall

that even random packages are satisfactory because the ZDD con-

tains only fair packages. The bottom three rows in Table 1 report

the results. These results indicate that our method provides many

effective candidates, whereas the existing fair package-to-group

methods provide only one candidate.

5 RELATEDWORK
Fairness is a crucial aspect in many applications [9, 14, 18, 34, 35].

In this work, we study a special case of recommendation tasks,

package-to-group recommendations [27, 29]. In group recommen-

dations, items are recommended to a group instead of an individual

[17]. Serbos et al. [29] and others [19, 27, 31] found that group

recommender systems were also biased against some members in a

group. In packages recommendations (or composite recommenda-

tions [32] or bundle recommendations [36]), a set of items forms a

unified package toward a single common goal [2, 32, 33, 36]. As Xie

et al. [32] pointed out, recommending top-𝐾 packages (thus, a list

of sets of items) is crucial to provide choices of packages to users.

Deng et al. [11] proved the complexities of package recommenda-

tions. Their results are fundamentally different from ours in two

aspects. First, we consider fair and group recommendations which

were not considered by them. Second, we derived FPT algorithms

for practical implementations, whereas their interest was in theo-

retical aspects. Although the complexities of fair item allocation

problems have been studied [6, 7], they are not in the context of

recommendations nor enumeration.

Enumerating Fair Packages for Group Recommendations WSDM ’22, February 21–25, 2022, Tempe, AZ, USA

The most related works are [27, 29], where fair package-to-group

recommender systems were proposed. There are two crucial dif-

ferences between this work and theirs. First, we enumerate all fair
packages, whereas they output a single package as a result of op-

timization. Second, our algorithm does not resort to any approx-

imations. Thus, our method provably performs better than their

methods while keeping efficiency owing to its fixed time tractability.

Difference with Maximization Algorithms. We point out sev-

eral crucial differences between enumeration and maximization

algorithms. One may think that maximization algorithms, such as

SPGreedy and EFGreedy, can also enumerate packages by creat-

ing solutions and removing them from the search space iteratively.

However, greedy algorithms just avoid exact matches, change only

the last item, and fail to provide diverse packages. Besides, it is not

obvious how to retrieve more than one packages using ranking-

based algorithms, such as AveRanking and LMRanking. Further-

more, it is infeasible to enumerate all fair packages by generating

them one by one because there are as many as 1014 candidates. By

contrast, our algorithm can enumerate all packages all at once and

enables filtering favorite packages by a variety of operations.

6 CONCLUSION
In this paper, we investigated the fair package-to-group recommen-

dation problem. We proposed enumerating all fair packages instead

of computing a single package. Although the enumeration problem

is computationally challenging, we proved that it is FPT with re-

spect to the group size and proposed an efficient algorithm based on

ZDDs. Our proposed algorithm can not only enumerate packages

but also filter items by the intersection operation, optimize prefer-

ences by the linear Boolean programming, and sample packages

uniformly and randomly. We experimentally confirmed that our

proposed method scales to large datasets and can enumerate as

many as one trillion packages in a reasonable time.

ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI GrantNumber

21J22490.

REFERENCES
[1] Sihem Amer-Yahia, Senjuti Basu Roy, Ashish Chawla, Gautam Das, and Cong

Yu. Group recommendation: Semantics and efficiency. Proc. VLDB Endow., 2(1):
754–765, 2009.

[2] Sihem Amer-Yahia, Francesco Bonchi, Carlos Castillo, Esteban Feuerstein, Isabel

Méndez-Díaz, and Paula Zabala. Composite retrieval of diverse and complemen-

tary bundles. IEEE Trans. Knowl. Data Eng., 26(11):2662–2675, 2014.
[3] Aris Anagnostopoulos, Reem Atassi, Luca Becchetti, Adriano Fazzone, and Fab-

rizio Silvestri. Tour recommendation for groups. Data Min. Knowl. Discov., 31(5):
1157–1188, 2017.

[4] Linas Baltrunas, TadasMakcinskas, and Francesco Ricci. Group recommendations

with rank aggregation and collaborative filtering. In RecSys, pages 119–126. ACM,

2010.

[5] Shlomo Berkovsky and Jill Freyne. Group-based recipe recommendations: analy-

sis of data aggregation strategies. In RecSys, pages 111–118. ACM, 2010.

[6] Bernhard Bliem, Robert Bredereck, and Rolf Niedermeier. Complexity of efficient

and envy-free resource allocation: Few agents, resources, or utility levels. In Pro-
ceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence,
IJCAI, pages 102–108. IJCAI/AAAI Press, 2016.

[7] Sylvain Bouveret and Jérôme Lang. Efficiency and envy-freeness in fair division

of indivisible goods: Logical representation and complexity. J. Artif. Intell. Res.,
32:525–564, 2008.

[8] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Trans. Computers, 35(8):677–691, 1986.

[9] Robin Burke. Multisided fairness for recommendation. In 4th Workshop on
Fairness, Accountability, and Transparency in Machine Learning, FAT/ML, 2017.

[10] Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx,

Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms.
Springer, 2015.

[11] Ting Deng, Wenfei Fan, and Floris Geerts. On the complexity of package recom-

mendation problems. In PODS, pages 261–272. ACM, 2012.

[12] Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and

completeness II: on completeness forW[1]. Theor. Comput. Sci., 141(1&2):109–131,
1995.

[13] Rodney G Downey and Michael Ralph Fellows. Parameterized complexity.
Springer Science & Business Media, 2012.

[14] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised

learning. In NeurIPS, pages 3315–3323, 2016.
[15] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and

context. ACM Trans. Interact. Intell. Syst., 5(4):19:1–19:19, 2016.
[16] Ruining He and Julian J. McAuley. Ups and downs: Modeling the visual evolution

of fashion trends with one-class collaborative filtering. InWWW, pages 507–517.

ACM, 2016.

[17] Anthony Jameson and Barry Smyth. Recommendation to groups. In The Adaptive
Web, Methods and Strategies of Web Personalization, volume 4321 of Lecture Notes
in Computer Science, pages 596–627. Springer, 2007.

[18] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Enhance-

ment of the neutrality in recommendation. In Proceedings of the 2nd Workshop on
Human Decision Making in Recommender Systems, volume 893, pages 8–14, 2012.

[19] Mesut Kaya, Derek G. Bridge, and Nava Tintarev. Ensuring fairness in group

recommendations by rank-sensitive balancing of relevance. In RecSys, pages
101–110. ACM, 2020.

[20] Donald E Knuth. The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise
Tricks & Techniques; Binary Decision Diagrams. Addison-Wesley Professional,

2009.

[21] Henry Lieberman, Neil W. Van Dyke, and Adriana Santarosa Vivacqua. Let’s

browse: A collaborative web browsing agent. In Proceedings of the 4th Interna-
tional Conference on Intelligent User Interfaces, IUI 1999, Los Angeles, CA, USA,
January 5-8, 1999, pages 65–68. ACM, 1999.

[22] Xiao Lin, Min Zhang, Yongfeng Zhang, Zhaoquan Gu, Yiqun Liu, and Shaoping

Ma. Fairness-aware group recommendation with pareto-efficiency. In RecSys,
pages 107–115. ACM, 2017.

[23] Julian J. McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel.

Image-based recommendations on styles and substitutes. In SIGIR, pages 43–52.
ACM, 2015.

[24] Shin-ichi Minato. Zero-suppressed bdds for set manipulation in combinatorial

problems. In Proceedings of the 30th Design Automation Conference, DAC, pages
272–277. ACM Press, 1993.

[25] Mark O’connor, Dan Cosley, Joseph A Konstan, and John Riedl. Polylens: a rec-

ommender system for groups of users. In ECSCW 2001, pages 199–218. Springer,
2001.

[26] István Pilászy, Dávid Zibriczky, and Domonkos Tikk. Fast als-based matrix

factorization for explicit and implicit feedback datasets. In RecSys, pages 71–78.
ACM, 2010.

[27] Shuyao Qi, Nikos Mamoulis, Evaggelia Pitoura, and Panayiotis Tsaparas. Recom-

mending packages to groups. In ICDM, pages 449–458. IEEE Computer Society,

2016.

[28] Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. Item-

based collaborative filtering recommendation algorithms. In WWW, pages 285–

295. ACM, 2001.

[29] Dimitris Serbos, Shuyao Qi, Nikos Mamoulis, Evaggelia Pitoura, and Panayiotis

Tsaparas. Fairness in package-to-group recommendations. In WWW, pages

371–379. ACM, 2017.

[30] Detlef Sieling and Ingo Wegener. Reduction of obdds in linear time. Inf. Process.
Lett., 48(3):139–144, 1993.

[31] Wenyi Xiao, Huan Zhao, Haojie Pan, Yangqiu Song, Vincent W. Zheng, and

Qiang Yang. Beyond personalization: Social content recommendation for creator

equality and consumer satisfaction. In KDD, pages 235–245. ACM, 2019.

[32] Min Xie, Laks V. S. Lakshmanan, and Peter T. Wood. Breaking out of the box of

recommendations: from items to packages. In RecSys, pages 151–158. ACM, 2010.

[33] Min Xie, Laks V. S. Lakshmanan, and Peter T. Wood. Generating top-k packages

via preference elicitation. Proc. VLDB Endow., 7(14):1941–1952, 2014.
[34] Sirui Yao and Bert Huang. Beyond parity: Fairness objectives for collaborative

filtering. In NeurIPS, pages 2921–2930, 2017.
[35] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, and Krishna P.

Gummadi. Fairness beyond disparate treatment & disparate impact: Learning

classification without disparate mistreatment. InWWW, pages 1171–1180. ACM,

2017.

[36] Tao Zhu, Patrick Harrington, Junjun Li, and Lei Tang. Bundle recommendation

in ecommerce. In SIGIR, pages 657–666. ACM, 2014.

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Notations
	2.2 Package-to-group recommendations
	2.3 Fixed Parameter Tractable (FPT)
	2.4 Zero-suppressed Decision Diagrams (ZDDs)

	3 Method
	3.1 Maximization Problem
	3.2 Fair Package Enumeration
	3.3 Operations
	3.4 Extensions

	4 Experiments
	4.1 Experimental settings
	4.2 Speed and Number of Packages
	4.3 Balancing Fairness and Preference

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

