
The Multi-vehicle Ride-Sharing Problem
Kelin Luo

k.luo@tue.nl

Eindhoven University of Technology & University of Bonn

Eindhoven, Netherlands & Bonn, Germany

Chaitanya Agarwal

chaitanyaagarwal291@gmail.com

New York University

New York, NY, USA

Syamantak Das

syamantak@iiitd.ac.in

Indraprastha Institute of Information Technology Delhi

(IIIT-Delhi)

Delhi, India

Xiangyu Guo

xiangyug@buffalo.edu

University at Buffalo

Buffalo, NY, USA

ABSTRACT

Ride-sharing is one of the most popular models of economical and

eco-friendly transportation in modern smart cities, especially when

riding hybrid and electric vehicles. Usually multiple passengers

with similar itineraries are grouped together, which significantly

reduces travel cost (or time), road congestion, and traffic emissions.

In this paper, we study the ride-sharing problem where each

vehicle is shared by exactly _ riders for any fixed _ > 0, and the goal

is to minimize the total travel distance. The min-cost ride-sharing

problem is intractable even in the case of exactly two riders sharing

a vehicle [2], and hence we can only hope for an approximate

solution.

We propose a novel two-phase algorithm: a hierarchical grouping

phase that partitions requests into disjoint groups of fixed size,

followed by an assignment of request groups to individual vehicles

and planning a feasible route for each vehicle. This is the first non-

trivial approximation algorithm for the ride-sharing problem with

vehicle capacity larger than two.

We verify the efficacy of our algorithm on both synthetic and

realworld datasets. Our experiments show that, the ride-sharing

scheme produced by our algorithm not only has small total travel

distance compared to state-of-the-art baselines, but also enjoys a

small makespan and total latency, which crucially relate to each

single rider’s traveling time. This suggests that our algorithm also

enhances rider experience while being energy-efficient.

CCS CONCEPTS

• Applied computing→ Transportation; • Theory of compu-

tation→ Routing and network design problems.

KEYWORDS

ride-sharing, approximation algorithm

ACM Reference Format:

Kelin Luo, Chaitanya Agarwal, Syamantak Das, and Xiangyu Guo. 2022.

The Multi-vehicle Ride-Sharing Problem. In Proceedings of the Fifteenth

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

WSDM ’22, February 21–25, 2022, Tempe, AZ, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9132-0/22/02.

https://doi.org/10.1145/3488560.3498449

ACM International Conference on Web Search and Data Mining (WSDM ’22),
February 21–25, 2022, Tempe, AZ, USA. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3488560.3498449

1 INTRODUCTION

Ride-sharing has grown to be one of the most important aspects of

shared-economy [6] in recent years. All major urban taxi-providers

like Uber, Lyft or Didi Chuxing have introduced the option to car-

pool. Further, carpooling is becoming increasingly popular among

cross-country travellers, boosted by platforms like Bla Bla Car [3]

and Transvision [19]. On such platforms, travellers sharing similar

routes can rent a car and share their long distance commutes. Cor-

porations with offices spread out across a city often provide cab

services to their employees and carpooling is an essential aspect of

such a service.

Ride-sharing offers economic advantages from the perspective

of both the riders and the service providers. Riders can travel at a

cheaper cost due to sharing. The transportation provider can better

utilize their limited resources and improve their profit margin by

attracting more riders. Perhaps more importantly, ride-sharing has

a massive positive impact on the environment. It can potentially

reduce air pollution by reducing the number of vehicles on road [7]

and optimize cumulative fuel consumption leading to reduced car-

bon footprint [4, 21].

We consider the following scenario. There is a set of riders who

have specified their origins and destinations to the vehicle provider

platform and the provider has a set of cars. Depending on the

context, the vehicles maybe driven by a chauffeur or driven by one

of the riders (for instance, carpooling through Bla Bla Car works

under this model). The task is to suitably assign riders to vehicles

without exceeding the vehicle’s capacity and plan a route for each

of the vehicles based on a suitable optimization criteria.

Majority of related literature in this area have considered the

objectives of maximizing the revenue [11, 18, 23–25] or minimizing

the travel distance/time of the vehicles [2, 13, 18, 22]. In this work,

we consider the classical objective of minimizing the total travel
distance of all cars. Our choice of objective is primarily guided by a

motivation to provide energy-efficient solutions to the ride-sharing

problem. In spite of a rich literature on shared mobility, there is a

surprising dearth of principled techniques to tackle the particular

problem described above. We point out two major limitations of

existing techniques as follows.

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

628

https://doi.org/10.1145/3488560.3498449
https://doi.org/10.1145/3488560.3498449
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3488560.3498449&domain=pdf&date_stamp=2022-02-15

Limitation 1. The only algorithms with theoretical guarantees

known for the ride-sharing problem stated above work for the

rather restrictive case where the car capacity is 2 [2, 13]. Very

recently, the authors of [23] consider our setting with general ca-

pacities, but with a different objective of maximizing the revenue

rather than minimizing total travel distance. Hence their algorithms

are not applicable for the objective we seek to minimize.

Limitation 2. There is some work in the literature which considers

a related but subtly different version of the problem [18, 22]. In

particular, these papers assume the model where the number of

riders assigned to a specific vehicle can exceed the capacity of the

vehicle. However, the planned routes ensure that at any point in

time, the vehicle carries at most as many riders as its capacity. This

is popularly known as the dial-a-ride problem [5, 10]. Recall that

our setting requires a more strict allocation where each vehicle is

assigned to exactly one group of people and hence the algorithms in

the above paper are not directly applicable. Indeed, those algorithms

can be modified to solve our problem. However, we are not aware

of any theoretical guarantees for such algorithms. Further, our

experiments show that such solutions can have 15%-70% higher

travel time than our algorithm in practice.

The above discussion makes it clear that the existing solutions

for ride-sharing are far from optimal both in theory and practice.

In this work, we give the first approximation algorithm for the

ride-sharing problem minimizing total travel time with vehicle

capacity _ ≥ 2. The approximation factor of our algorithm isO(
√
_).

In practical scenarios, the value of _ is small [1] and hence our

algorithm has a small error compared to the optimal solution. At

a very high level, our technique follows a grouping, assigning and
route planning strategy. The first two phases utilize a hierarchical

grouping technique in conjunction with minimum cost matching on

a suitably defined bipartite graph. A key property of our algorithm

is that the ‘cost’ of the algorithm of these phases can be bounded by

a suitably chosen lower bound of the optimal solution. Thanks to

the above property, our routing strategy is a fairly straightforward

travelling salesman tour which respects the order of pickups and

drop-offs. We summarize our key contributions as follows.

• Wegive the first approximation algorithm for the ride-sharing

problemminimizing the total travel distance/time that works

with any arbitrary vehicle capacities. Our approximation fac-

tor is O(
√
_), where _ is the capacity of the vehicles.

• We perform extensive experiments on both synthetic and

real datasets, where we compare our algorithm with mild

adaptations of state-of-the-art algorithms for ride-sharing.

Our method outperforms all these algorithms on total travel

distance by a significant margin of 40% − 70% on synthetic

and 15% − 40% on real-world datasets.

• Although our theoretical guarantees are valid only for the

objective of minimizing the total travel time, we also perform

an empirical evaluation of our method for two other classical

objective functions - makespan, that is the maximum time

to complete a single trip and total latency, that is sum of

service time of each passenger. Surprisingly, we find that,

in practice, our algorithm matches or outperforms the state-

of-the art algorithms even in terms of the these objectives:

10%-20%-less latency, and 10%-30%-less makespan.

2 PROBLEM STATEMENT

2.1 Notations and Preliminaries

Definition 1. (Distance Metric). Let 𝑉 be a set of locations. Then

the distance metric is defined as the function 𝑑 : 𝑉 ×𝑉 ↦→ R≥0 that

satisfies the three properties -

a) (reflexive) 𝑑 (𝑣,𝑢) = 0 if and only if 𝑣 = 𝑢

b) (symmetric) 𝑑 (𝑣,𝑢) = 𝑑 (𝑢, 𝑣)
c) (triangle inequality) 𝑑 (𝑣,𝑢) ≤ 𝑑 (𝑣,𝑤) + 𝑑 (𝑤,𝑢)

Our algorithm works for arbitrary metrics. But in the experi-

ments, we assume the travel distances between two locations to

be either the shortest path metric in a suitably defined graph or

Euclidean distances.

Definition 2. (Request). A request is a tuple 𝑟 = ⟨𝑠𝑟 , 𝑡𝑟 ⟩ where
𝑠𝑟 ∈ 𝑉 , 𝑡𝑟 ∈ 𝑉 are respectively the origin and destination.

Definition 3. (Vehicle). A vehicle/car is a tuple 𝑘 = ⟨𝑝𝑘 , _𝑘 ⟩,
where 𝑝𝑘 ∈ 𝑉 is the initial location of the vehicle and _𝑘 is the

capacity. In our setting _𝑘 = _,∀𝑘 ∈ K .

We denote the set of requests by 𝑅, |𝑅 | = 𝑛 and the set of vehicles
by K , |K | =𝑚. Throughout the paper, we assume that 𝑛 = _𝑚.

Definition 4. (Route). Given a car 𝑘 ∈ K , and a set of requests

𝑅𝑘 assigned to it, a route is a sequence 𝑆𝑘 = ⟨ℓ0 = 𝑝𝑘 , ℓ1, ℓ2, · · · ℓ𝑡 ⟩,
starting with the origin location of car 𝑘 , where ℓ𝑖 ∈ {𝑠𝑟 : 𝑟 ∈
𝑅𝑘 } ∪ {𝑡𝑟 : 𝑟 ∈ 𝑅𝑘 }, 1 ≤ 𝑖 ≤ 𝑡 . A route 𝑆𝑘 is feasible if - i) ∀𝑟 ∈ 𝑅𝑘 ,
𝑠𝑟 appears before 𝑡𝑟 in 𝑆𝑘 and ii) |𝑅𝑘 | = _.

The cost of a route 𝑆𝑘 is defined as cost(𝑆𝑘) =
∑𝑡−1

𝑖=0
𝑑 (ℓ𝑖 , ℓ𝑖+1)

Finally, we define the Minimum Cost Ride Sharing (MCRS) prob-

lem as follows.

Definition 5. (MCRS). Given a distance metric 𝑑 on a set of lo-

cations 𝑉 , a set of requests 𝑅 and a set of vehicles K , the task is

to find a feasible route 𝑆𝑘 for each vehicle 𝑘 ∈ K such that all

requests in 𝑅 are served and the total travel distance of all vehicles,∑
𝑘∈K cost(𝑆𝑘) is minimized.

Computational Complexity. The computational hardness of the

MCRS problem has already been observed in previous literature

and we just state it here for completeness.

Theorem 6 ([9]). The MCRS problem is APX-hard.

3 ALGORITHM FOR MCRS

3.1 High Level Ideas

Algorithm 1 summarizes the main steps of our algorithm which we

call Hierarchical Ride Allocation (HRA).

The grouping phase ensures that the total length of a feasible

tour to serve requests inside each group is not too large compared

to the optimal solution. This requires a non-trivial hierarchical
grouping technique which roughly works as follows. We first form

sub-groups, each of size 2, such that the sum of sub-group tour costs

is minimum. This is carried out using a minimum-cost matching

algorithm on a suitably defined graph. In the next phase, the goal

is to combine these sub-groups into larger subgroups of size 4. The

idea is again to define a suitable min-cost matching problem on

a graph whose vertices represent the 2-size groups formed in the

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

629

Algorithm 1: Hierarchical Ride Allocation

Input: Request set 𝑅. Vehicle set K , car capacity _

Output: a set of feasible routes 𝑆𝑘 ,∀𝑘 ∈ K such that all

requests in 𝑅 are served

1 Run Grouping algorithm (Algorithm 2) to obtain a partition

P of the request set 𝑅 such that each partition is of size _.

2 Run Assignment and Routing algorithm (Algorithm 3) to

a) Assign each request group in P to a vehicle in K .
b) Use Find-Route algorithm (Algorithm 4) on each vehicle to

find a feasible route

first phase. However, the cost function on the edges of the graph

is non-trivial now and needs to be carefully chosen such that we

can bound the cost of grouping with respect to the optimal cost.

This process is carried out in ⌈log _⌉ iterations to obtain the final

partition.

The assignment phase is a relatively straightforward min-cost

matching problem on a bipartite graph where we assign each group

to a vehicle minimizing the total cost of the tours.

We now describe all the steps of the HRA algorithm in more

detail and prove the following central theorem.

Theorem 7. Given a set of requests 𝑅 and a set of vehicles K
with capacity _ such that |𝑅 | = _ |K |, the HRA algorithm runs in
time O(|𝑅 |3 log _) and returns a set of |K | feasible routes serving
all requests in 𝑅 such that the total travel distance is at most O(

√
_)

times that of an optimal solution.

In order to formally describe the algorithm, we need some more

notations. Recall that we are given a set of requests 𝑅, a set of

vehicles K embedded in a metric space (𝑉 ,𝑑). It is a standard fact

in routing literature (see for example [12, 20]) that given a subset of

points 𝑋 ∈ 𝑉 , theminimum spanning tree (MST) cost of 𝑋 serves as

a reasonably good lower bound for the optimal travelling salesman

tour on 𝑋 . We use this heavily in our algorithm and define the

following useful notations.

Definition 8. (Minimum Spanning Trees Cost on Requests) Let

𝑋 ⊆ 𝑅 be a subset of requests. Then mst𝑠 (𝑋) (resp. mst𝑡 (𝑋)) is
defined to be the cost of a minimum spanning tree over the origins

(resp. destinations) of all requests in 𝑋 . Further, define mst𝑠,𝑡 (𝑋) =
mst𝑠 (𝑋) +mst𝑡 (𝑋).

Definition 9. (IncrementalMSTCosts) Given two requests groups

𝑋,𝑋 ′ ⊆ 𝑅, define𝑤 (𝑋,𝑋 ′) = mst𝑠,𝑡 (𝑋∪𝑋 ′)−mst𝑠,𝑡 (𝑋)−mst𝑠,𝑡 (𝑋 ′)

Informally,𝑤 (𝑋,𝑋 ′) can be thought of as the incremental MST
cost of combining request groups 𝑋 and 𝑋 ′ together versus serving
them separately.

3.2 Grouping phase

In order to simplify the description of our algorithm, we assume for

now that _ is a power of 2. In Section 3.4, we explain how to modify

this to work for arbitrary values of _ with the same approximation

guarantee. In Algorithm 2, requests are hierarchically combined in

to groups of size 2, 4, 8, ..., _ iteratively. Line 1 is an initialization

with the trivial partition P0 containing all requests in 𝑅. Lines 3-8

iterates for ℓ = 1, 2, · · · log _. Consider a particular iteration ℓ . Line

4 first builds a complete graph𝐺ℓ on the basis of the partition Pℓ−1

obtained in the previous iteration. Each vertex in 𝐺ℓ corresponds

to a group in Pℓ−1. The cost of an edge between any two vertices

𝑃, 𝑃 ′ ∈ Pℓ−1 is defined as 𝑤 (𝑃, 𝑃 ′), the incremental MST cost of

combining the groups 𝑃 and 𝑃 ′. Line 5-7 then computes a minimum

cost perfect matching 𝑀ℓ in 𝐺ℓ and uses it to combine pairs of

groups 𝑃, 𝑃 ′ to obtain the new partition Pℓ . Essentially, in iteration

ℓ , we pair up groups of size 2
ℓ−1

to form groups of size 2
ℓ
. In the

last iteration, we obtain partition P = P
log_ , where each group

contains exactly _ requests.

Analysis of Grouping Phase. We now prove some important

properties of the grouping phase that will help us bound total cost.

Let Pℓ denote the partition constructed at ℓ-th iteration (Line 7 in

Algorithm 2). Based on the definition of the incremental MST cost

𝑤 , we have the following lemma by a simple telescope sum:

Lemma 10. For partition Pℓ (1 ≤ ℓ ≤ log _) obtained by Algo-
rithm 2, we have

∑
𝑃 ∈P𝑙 mst𝑠,𝑡 (𝑃) =

∑ℓ
𝑖=1

𝑤 (𝑀𝑖) .

We further introduce the following notations. Fix an optimal

solution {𝑆★
1
, 𝑆★

2
, ..., 𝑆★𝑚} and the corresponding partition of requests

P★ = {the set of requests 𝑅★
𝑘
served in route 𝑆★

𝑘
: 𝑘 ∈ [𝑚]}.

Algorithm 2: Grouping algorithm

Input: Request set 𝑅 and car capacity _

Output: a partition P of 𝑅, each group in P contains _

requests

1 P0 =
⋃

𝑟 ∈𝑅{{𝑟 }}, ℓ = 0

2 while ℓ < log _ do

3 ℓ ← ℓ + 1, Pℓ = ∅
4 Let 𝐺ℓ ≡ (Pℓ−1, 𝐸) be a complete graph, with weight

𝑤 (𝑃, 𝑃 ′) for any edge (𝑃, 𝑃 ′) ∈ 𝐸, 𝑃, 𝑃 ′ ∈ Pℓ−1.

5 Find a minimum weight matching𝑀ℓ in 𝐺ℓ with weight

𝑤 (𝑀ℓ) =
∑
(𝑃,𝑃 ′) ∈𝑀ℓ

𝑤 (𝑃, 𝑃 ′).
6 for (𝑃, 𝑃 ′) ∈ 𝑀ℓ do

7 Pℓ ← 𝑃 ∪ 𝑃 ′
8 end

9 end

10 return P = P
log_

Lemma 11. (Grouping Lemma) The total minimum spanning tree
cost on the final partition P∑︁

𝑃 ∈P
mst𝑠,𝑡 (𝑃) ≤ 𝑂 (

√
_)

∑︁
𝑃 ∈P★

mst𝑠,𝑡 (𝑃)

Proof. Suppose we have the following two inequalities (which

are stated later in Lemma 12 and Lemma 13):

𝑤 (𝑀1) ≤ (
√
_ + 1) ·

∑︁
𝑃 ∈P★

mst𝑠,𝑡 (𝑃)

𝑤 (𝑀ℓ) ≤ (2
log_−ℓ

2 + 1) ·
∑︁

𝑃 ∈P★

mst𝑠,𝑡 (𝑃) for ℓ ≥ 2

Then

∑
𝑃 ∈P mst𝑠,𝑡 (𝑃) =

∑log_

ℓ=1
𝑤 (𝑀ℓ) ≤ 𝑂 (

√
_)∑𝑃 ∈P★ mst𝑠,𝑡 (𝑃)

proves the theorem. □

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

630

Now we turn to prove Lemma 12 and 13, which bound the Incre-

mental MST costs of every iteration ℓ . The main idea is to break the

optimal partition into sub-groups of the same size as those in Pℓ−1,

the partition obtained in the (ℓ − 1)-th iteration of Algorithm 2.

Then we charge the cost of merging groups in Pℓ−1 to the MST

cost of the aforementioned sub-groups from the optimal partition.

Specifically, considering the optimal partition P★, we bipartition
each request group 𝑃★ ∈ P★ iteratively until each contains two

requests: Let P★
0

= P★; in round ℎ ∈ [1, log _ − 1], we partition
the request group 𝑃★ ∈ P★

ℎ−1
into two equal-sized sub-groups, and

P★
ℎ
is the resulting partition in round ℎ. Specifically, if ℎ is odd, we

partition the request set 𝑃★ into two subsets 𝑃★
left

and 𝑃★
right

such that

mst𝑠 (𝑃★
left
) +mst𝑠 (𝑃★

right
) ≤ mst𝑠 (𝑃★); if ℓ is even, we partition 𝑃★

into 𝑃★
left

and 𝑃★
right

such thatmst𝑡 (𝑃★
left
)+mst𝑡 (𝑃★

right
) ≤ mst𝑡 (𝑃★).

To see why such bipartition scheme is always feasible, just focus

on one round ℎ and w.l.o.g. assume it’s odd. Then we take the MST

𝑇𝑠 on the origins of the request group 𝑃★, and break it into two

equal-sized sub-trees by removing one edge from 𝑇𝑠 , and 𝑃
★
left

and

𝑃★
right

be the corresponding request sub-groups. By construction

they satisfy mst𝑠 (𝑃★
left
) +mst𝑠 (𝑃★

right
) ≤ mst𝑠 (𝑃★).

Based on this partition rule, we have the following

(1) For any even ℎ ≥ 0,∑︁
𝑃 ∈P★

ℎ+2

mst𝑠 (𝑃) =
∑︁

𝑃 ∈P★
ℎ+1

mst𝑠 (𝑃) ≤ 2

∑︁
𝑃 ∈P★

ℎ

mst𝑠 (𝑃),∑︁
𝑃 ∈P★

ℎ+2

mst𝑡 (𝑃) ≤ 2

∑︁
𝑃 ∈P★

ℎ+1

mst𝑡 (𝑃) = 2

∑︁
𝑃 ∈P★

ℎ

mst𝑡 (𝑃);

(2) For any odd ℎ ≥ 0,∑︁
𝑃 ∈P★

ℎ+2

mst𝑠 (𝑃) ≤ 2

∑︁
𝑃 ∈P★

ℎ+1

mst𝑠 (𝑃) = 2

∑︁
𝑃 ∈P★

ℎ

mst𝑠 (𝑃),∑︁
𝑃 ∈P★

ℎ+2

mst𝑡 (𝑃) =
∑︁

𝑃 ∈P★
ℎ+1

mst𝑡 (𝑃) ≤ 2

∑︁
𝑃 ∈P★

ℎ

mst𝑡 (𝑃) .

Combine the equations above we observe that: after every two
round of bipartitions, the total MST cost on all groups is at most

doubled, i.e, for every ℎ ≥ 0,∑︁
𝑃 ∈P★

ℎ+2

mst𝑠,𝑡 (𝑃) ≤ 2

∑︁
𝑃 ∈P★

ℎ

mst𝑠,𝑡 (𝑃) . (1)

Lemma 12. The Incremental MST cost in the 1-st iteration

𝑤 (𝑀1) ≤ (
√
_ + 1) ·

∑︁
𝑃 ∈P★

mst𝑠,𝑡 (𝑃)

Proof. To bound the Incremental MST costs in the 1-st iteration,

we break optimum groups to obtain sub-groups of size 2. After

log _ − 1 times partition, each group in P★
log_−1

contains 2 requests

and we have:∑︁
𝑃 ∈P★

log_−1

mst𝑠,𝑡 (𝑃) ≤ (2
log_−1

2 + 1)
∑︁

𝑃 ∈P★

mst𝑠,𝑡 (𝑃) .

Since P1 is the minimum weight matching of 𝑅 (see Algorithm 2

Line 5), we have𝑤 (𝑀1) =
∑
𝑃 ∈P1

mst𝑠,𝑡 (𝑃) ≤
∑
𝑃 ∈P★

log_−1

mst𝑠,𝑡 (𝑃),
which proves the lemma. □

Lemma 13. The Incremental MST cost in ℓ-th (ℓ ≥ 2) iteration is

𝑤 (𝑀ℓ) ≤ (2
log_−ℓ

2 + 1)
∑︁

𝑃 ∈P★

mst𝑠,𝑡 (𝑃) .

The proof of this lemma ismore involved andwe refer the readers

to Appendix A for full details.

3.3 Assignment and Routing phase

In Algorithm 3, we assign request groups formed in Algorithm 2 to

vehicles and find a feasible route for each vehicle starting at their

respective origin locations.

Algorithm 3: Assignment and Routing algorithm

Input: Partition P of request set 𝑅, set of vehicles K
Output: A set of feasible routes 𝑆𝑘 for all vehicles 𝑘 ∈ K

1 for 𝑘 ∈ K do

2 for 𝑃 ∈ P do

3 𝑒 (𝑘, 𝑃) = min𝑟𝑖 ∈𝑃 𝑑 (𝑝𝑘 , 𝑠𝑖)
4 end

5 end

6 Let 𝐺 be the complete bipartite graph on K ∪ P with left
vertex-set K , right vertex-set P, and edge weights 𝑒 (𝑘, 𝑃)
for 𝑘 ∈ K and 𝑃 ∈ P.

7 Find a minimum weight perfect matching A in 𝐺 .

8 for 𝑘 ∈ K do

9 𝑆𝑘 ← Find-Route(𝑘, 𝑃)
10 end

11 return 𝑆𝑘 ,∀𝑘 ∈ K

Algorithm 4: Find-Route algorithm

Input: Request group 𝑃 , vehicle 𝑘

Output: A feasible route for requests in 𝑃 using vehicle 𝑘

1 𝑟★← arg min𝑟 ∈𝑃 𝑑 (𝑝𝑘 , 𝑠𝑟), 𝑟 ← arg min𝑟 ∈𝑃 𝑑 (𝑠𝑟 , 𝑡𝑟)
2 𝜌0 ← Shortest path route between 𝑝𝑘 , 𝑠𝑟★

3 𝜌𝑠 ← 2-approximate 𝑠-𝑡 path TSP on

⋃
𝑟 ∈𝑃 𝑠𝑟 starting at 𝑠𝑟★

and ending at 𝑠𝑟 using MST-heurstic [20]

4 𝜌𝑡 ← 2-approximate TSP tour on

⋃
𝑟 ∈𝑃 𝑡𝑟 starting at 𝑡𝑟

using MST-heuristic [20]

5 𝑆𝑘 ← 𝜌0 ∪ 𝜌𝑠 ∪ {𝑠𝑟 , 𝑡𝑟 } ∪ 𝜌𝑡
6 return 𝑆𝑘

In Algorithm 3, Lines 1-5 finds for each vehicle 𝑘 ∈ K and each

request group 𝑃 ∈ P, the shortest distance 𝑒 (𝑘, 𝑃) for 𝑘 to visit an

origin location of some request in 𝑃 . Lines 6-7 then assign vehicles

to groups by computing a minimum-weight bipartite matching on

K and P with edge weight 𝑒 (𝑘, 𝑃). Lastly, Lines 8-10 computes a

feasible route for each vehicle using Algorithm 4. In Algorithm 4,

Line 1 finds the request 𝑟★ ∈ 𝑃 whose origin is closest to the

vehicle at 𝑝𝑘 , i.e., 𝑟
★← arg min𝑟 ∈𝑃 𝑑 (𝑝𝑘 , 𝑠𝑟), and also the "shortest"

request 𝑟 ∈ 𝑃 , i.e., 𝑟 ← arg min𝑟 ∈𝑃 𝑑 (𝑠𝑟 , 𝑡𝑟). Lines 2-4 constructs
the tour for vehicle 𝑘 . It travels from 𝑝𝑘 to 𝑠𝑟★ via a shortest path,

then visits all the origins using a standard 2-approximate 𝑠-𝑡-path

heuristic [20] which ends at 𝑠𝑟 . Finally, it moves to 𝑡𝑟 and visits all

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

631

destinations using another 2-approximate TSP tour. This implies

that

cost(𝑆𝑘) ≤ 𝑑 (𝑝𝑘 , 𝑠𝑟★) + 2mst𝑠 (𝑃) + 𝑑 (𝑠𝑟 , 𝑡𝑟) + 2mst𝑡 (𝑃) .
Approximation Analysis. In the remainder of this section, we

prove a bound on the total cost of the tours returned by Algorithm 3

and prove Theorem 7.

We first bound the cost of visiting first locations, 𝑠𝑟★ . Recall the

notations: {𝑆★
1
, 𝑆★

2
, ..., 𝑆★𝑚} is any fixed optimal solution, and P★ =

{the set of requests 𝑅★
𝑘
served in route 𝑆★

𝑘
: 𝑘 ∈ [𝑚]}. We have the

following structural lemma that relates any feasible partition P
with P★ (the full proof can be found in Appendix A).

Lemma 14. Suppose𝐺 ≡ (P,P★, 𝐸) is a bipartite, _-regular, multi-
graph, where for each request 𝑟 ∈ 𝑅 there is an edge between vertex
𝑃 ∈ P and 𝑅★

𝑘
∈ P★ with weight 𝑓 (𝑟), whenever 𝑟 ∈ 𝑃 ∩ 𝑅★

𝑘
. We

can find _ disjoint perfect matchings in graph 𝐺 with total weight∑
𝑟 ∈𝑅 𝑓 (𝑟).

Let us set 𝑓 (𝑟𝑖) = 𝑑 (𝑝𝑘 , 𝑠𝑖) in Lemma 14 for each request 𝑟𝑖 ∈ 𝑅★𝑘
with 𝑅★

𝑘
∈ P★. Then by averaging, the lemma implies that there

exists one perfect matching 𝑀 in 𝐺 ≡ (P,P★, 𝐸) with cost no

more than
1

_

∑
𝑅★
𝑘
∈P★

∑
𝑟𝑖 ∈𝑅★

𝑘
𝑑 (𝑝𝑘 , 𝑠𝑖). By assigning group 𝑃 to

vehicle 𝑘 for each (𝑃, 𝑅★
𝑘
) ∈ 𝑀 , we get a perfect matching A ′ in

𝐺 ≡ (K ∪ P, 𝑒) with 𝑒 (A ′) ≤ 1

_

∑
𝑅★
𝑘
∈P★

∑
𝑟𝑖 ∈𝑅★

𝑘
𝑑 (𝑝𝑘 , 𝑠𝑖). Now

recall Algorithm 3 finds a minimum weight matching A in 𝐺 ≡
(K ∪ P, 𝑒), we have the following inequality on the cost of A.

𝑒 (A) =
∑︁
𝑘∈K

𝑑 (𝑝𝑘 , 𝑠𝑟★) ≤ 𝑒 (A ′) ≤
1

_

∑︁
𝑅★
𝑘
∈P★

∑︁
𝑟𝑖 ∈𝑅★

𝑘

𝑑 (𝑝𝑘 , 𝑠𝑖) . (2)

Now we apply Lemma 14 again but this time let 𝑓 (𝑟𝑖) = 𝑑 (𝑠𝑖 , 𝑡𝑖).
We know that there is a perfect matching in 𝐺 ≡ (P,P★, 𝐸) with
cost smaller than

1

_

∑
𝑅★
𝑘
∈P★

∑
𝑟𝑖 ∈𝑅★

𝑘
𝑑 (𝑠𝑖 , 𝑡𝑖), and thus∑︁

𝑃 ∈P
𝑑 (𝑠𝑟 , 𝑡𝑟) =

∑︁
𝑃 ∈P

min

𝑟𝑖 ∈𝑃
𝑑 (𝑠𝑖 , 𝑡𝑖) ≤

1

_

∑︁
𝑅★
𝑘
∈P★

∑︁
𝑟𝑖 ∈𝑅★

𝑘

𝑑 (𝑠𝑖 , 𝑡𝑖) . (3)

We are now ready to complete the proof of Theorem 7. Using the

Grouping Lemma (Lemma 11) and inequality (2) and (3), we have:∑︁
𝑘∈K

cost(𝑆𝑘) ≤
∑︁

(𝑘,𝑃) ∈A

(
𝑑 (𝑝𝑘 , 𝑠𝑟★) + 2mst𝑠,𝑡 (𝑃) + 𝑑 (𝑠𝑟 , 𝑡𝑟)

)
(4)

≤ 𝑂 (
√
_)

∑︁
𝑃 ∈P★

mst𝑠,𝑡 (𝑃) +
1

_

∑︁
𝑅★
𝑘
∈P★

∑︁
𝑟𝑖 ∈𝑅★

𝑘

(𝑑 (𝑝𝑘 , 𝑠𝑖) + 𝑑 (𝑠𝑖 , 𝑡𝑖))

(5)

≤ 𝑂 (
√
_)

∑︁
𝑘∈K

cost(𝑆★
𝑘
) (6)

Note that for any request 𝑟𝑖 ∈ 𝑅★
𝑘
with 𝑅★

𝑘
∈ P★, there is

cost(𝑆★
𝑘
) ≥ (1/2)mst𝑠,𝑡 (𝑅★𝑘) and cost(𝑆★

𝑘
) ≥ 𝑑 (𝑝𝑘 , 𝑠𝑖) + 𝑑 (𝑠𝑖 , 𝑡𝑖),

which finishes the proof of inequality (6).

Runtime Analysis. In the Grouping phase, we construct
𝑛
2
ℓ min-

imum spanning trees in each iteration ℓ , each of them can be

constructed in time 𝑂 (22ℓ
log(2ℓ)) [15]; and we compute log _

minimum-cost perfect matchings in Grouping phase, each of them

can be found in time 𝑂 (𝑛3) [8]; Thus, the running time of Group-

ing phase is 𝑂 (𝑛3
log _). In the Assignment and Routing phase,

we found minimum perfect matching in time 𝑂 (𝑚3). In total, the

running time is 𝑂 (𝑛3
log _).

3.4 Algorithm for general capacities

In this section, we briefly mention how to modify HRA in order

to handle values of _ that are (possibly) not exact powers of 2. We

just need to modify the Grouping algorithm (Algorithm 2). We will

have a forward and backward phase. First observe that any positive

integer _ can be written as _ =
∑ ⌊log_⌋
ℓ=0

𝑏𝑖 · 2ℓ , where 𝑏ℓ ∈ {0, 1}.
Recall in iteration ℓ of Algorithm 2, we compute a minimum cost

matching that combines groups of size 2
ℓ−1

into groups of size 2
ℓ
.

In the modified algorithm, if 𝑏ℓ = 0, we do the same as before;

otherwise, if 𝑏ℓ = 1, we find a min-cost matching that matches

all but discards𝑚 groups of size 2
ℓ−1

. After ⌊log _⌋ iterations, we
would have formed groups of size 2

⌊log_⌋
. However, we still need

to combine the groups that we potentially discarded in previous

iterations. To this end, we perform a backward phase - we iterate

for ℓ = ⌊log _⌋ down to 0. At iteration ℓ , we set up a minimum

cost bipartite matching with the discarded groups from iteration ℓ

on one side and the already formed groups on the other side. On

the basis of this matching, we update each group with 2
ℓ
more

requests. We remark that all the proofs from the previous section

goes through with someminor modifications and the modified HRA

algorithm is still an O(
√
_)-approximation.

4 EXPERIMENTS

4.1 Experiment Setup

Metrics In our experiments, we compare the performance of our

algorithm (Hra) with various baselines. The relative performance of

the algorithms is measured across four aspects: total travel distance,

makespan, total latency, and running time. Aside from total travel

distance, makespan and total latency are two other commonly used

objectives in vehicle routing problems. Makespan is defined as the

maximum travel distance among all vehicles, while total latency is

the sum of serving time of each request (Assume all vehicles leave

their depot at time 0, the serving time of a request is the time when

it is delivered to its destination). Recall all vehicles are running

at unit speed, thus the "time" here is equivalent to the distance a

vehicle has travelled.

Baselines. We use the following algorithms as baselines. Since

there is no algorithm that solves exactly the same problem as ours

(as far as we know), we have to modify these baselines to make

them work with our setting.

(1)Greedy. This is a simple greedymethod which can be thought

of as the naive version of our main algorithm. Instead of the hi-

erarchical grouping scheme, we aggregate requests by repeatedly

solving capacity-2 sub-instances and stack them together: first

run Algorithm 2 for one iteration to get all requests paired; then

we greedily assign these pairs by repeatedly computing bipartite

matchings between the vehicles and the unmatched request pairs.

The cost for matching a request pair to a vehicle is the incremental

distance that the vehicle would need to travel to serve the pair along

with the already-matched requests. If _𝑚 is odd, at the last iteration

there will be 𝑚 requests left, which will be assigned by another

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

632

min-cost matching with the vehicles. Lastly, we run Algorithm 4 to

compute a route for each vehicle.

We remark that the Greedy algorithm runs in 𝑂 (_𝑛3) time, and

it’s easy to show a Ω(_) lower bound for its approximation ratio.

(2) pruneGdp[18]. This is Algorithm 5 in [18]. It was designed

for the multi-vehicle dial-a-ride problem and does not directly work

with our problem. (see Section 1 for a comparison of the two prob-

lems). The key difference is that a vehicle can be reused multiple

times and could serve more than _ requests, while in our setting

a vehicle can only be used once. We modify their algorithm by

forcing each vehicle to serve no more than _ requests.

(3) Lmd[22]. This is Algorithm 1 in [22]. Like pruneGdp, it was

designed for the dial-a-ride problem and we modify it to make sure

no vehicle serves more than _ requests.

Implementation We implement our algorithm and Greedy using

Python, and use the C++ implementation provided by [22] for

pruneGdp and Lmd. The experiments are conducted on a machine

with 6 Intel 2.2GHZ cores and 16GB RAM.

Synthetic Datasets. We use a similar method as in [2] to generate

the synthetic datasets in the Euclidean plane. Specifically, we first

generate some 𝐾 centers uniformly at random from a 4000 × 4000

box on the Euclidean plane. These centers will serve as the means of

𝐾 Gaussian distribution with covariance Σ. Then for various request
numbers 𝑛 and vehicle capacity _, we sample from the mixture of 𝐾

Gaussians𝑚 = 𝑛/_ vehicle locations, 𝑛 request origins, and another
𝑛 corresponding destinations. The detailed parameter setting is

summarized in Table 1(a), where numbers in bold are fixed when

varying other parameters: e.g., we fix 𝑛 = 5040 when varying _. For

each parameter setting, the experiment is repeated 25 times and

the average performance is reported.

(a) Synthetic datasets.

𝑛: #requests 840, 2520, 5040, 7560, 10080

_: vehicle capacity 2, 4, 5, 6, 8

𝐾 : #clusters of the GMM 5, 10, 20, 50

𝜎 : covariance of the GMM 10𝐼 , 50𝐼 , 100𝐼 , 200𝐼

(b) Realworld datasets.

Dataset 𝑛: #requests _: vehicle capacity

NYC 600, 1080, 2640, 5040, 7560 2, 4, 5, 6, 8

SFO 480, 840, 1680, 3000, 4560 2, 4, 5, 6, 8

Table 1: Parameter settings for the datasets. A parameter is

fixed to the number in bold when varying other parameters.

Real-world Datasets. We test our algorithm on real-world taxi

records for New York City (NYC) and San Francisco (SFO). For NYC

we use the NYC TLC Trip Record Data[17], which contains taxi

transportation records through year 2009 to 2020. In our experi-

ment we pick the subset of records from April 2016. Each record

consists of the pick-up and drop-off time, the origin and destina-

tion locations, and trip distances. The locations are specified using

GPS coordinates. For SFO, we use the Cab Spotting Data[16] that

contains trace records of approximately 500 taxis collected over

30 days in the San Francisco Bay Area. We use the shortest-path

distance defined by the Open Street Maps[14], which contains road

network map of both cities: the map for NYC has 1,014,391 vertices

and 1,140,405 edges, while that for SFO has 210,937 vertices and

229,581 edges. (Note our algorithm’s complexity is independent of

the size of the underlying graph, because what we only need is

the pairwise distance between car/request locations, which can be

pre-computed.)

The parameter setting is summarized in Table 1(b). To vary the

number of requests, we pick time windows with length ranging

from 1 ∼ 15 minutes, and run experiments for the subset of data

within each window. Also, there is no information for initial vehicle

locations in the dataset, therefore we follow the strategy used in

[22] and generate initial vehicle locations by sampling vertices

uniformly from the Open Street Maps.

4.2 Experimental Results

4.2.1 Results on synthetic datasets. Figure 1 shows the experimen-

tal result on synthetic datasets. Each column shows one objective

under various parameter settings (from left to right): total travel

distance, makespan, total latency, and running time. Each row corre-

sponds to the result of varying one parameter (from top to bottom):

number of requests (𝑛), vehicle capacity (_), GMM centers (𝐾), and

GMM covariance (Σ).

Effect of varying number of requests. Our algorithm (Hra)

consistently performs (among) the best on all three objectives. The

gap is especially large compared with Lmd and pruneGdp: it obtains

total travel distance (1st column) 80%-less than Lmd and 50%-less

than pruneGdp, and a similar margin for the total latency objective

(3rd column). For the makespan objective, Hra is still significantly

(∼ 50%) better than Lmd, and outperforms pruneGdp by a small

margin. Regarding running time, pruneGdp is always much faster

than other algorithms, while Hra is comparable with Lmd.

The interesting case is the Greedy baseline: it achieves almost

the same performance as Hra on all three objectives, albeit with a

worse running time (Note we don’t have results for Greedy when

𝑛 > 8000 because it takes too long to finish, but we expect it to

perform similar asHra). Although in theory Greedy could perform

worse than Hra (Ω(_) versus �̃� (
√
_)), the difference may not be

noticeable when _ is small.

Effect of varying capacity. The effect of varying capacity _ is

more subtle, though. Sinceweworkwith the setting𝑛 = _𝑚, a larger

_ implies less vehicles. Hence, the total travel distance decreases for

all the algorithms. However, some of the vehicles might now travel

longer distances which results in an increase in the makespan and

total latency.

Effects of other parameters. Overall, varying the parameters,

number of cluster centers (𝐾) or variance of the Gaussian (Σ), does
not alter the relative performance of the algorithms being compared

(except for running time). Increasing the number of requests (1st

row) unsurprisingly leads to larger total travel distance or latency,

while the makespan is less affected as it’s more related to the spatial

distribution of requests, which is reflected clearly when increasing

the variance of sample data distribution.

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

633

2000 4000 6000 8000 10000

#Requests

0.0

0.5

1.0

1.5

2.0

2.5

T
ot

al
D

is
ta

nc
e

×106 Varying number of requests

pruneGDP

HRA

LMD

Greedy

2000 4000 6000 8000 10000

#Requests

1000

1500

2000

2500

3000

3500

D
ri

ve
r

M
ak

es
pa

n

Varying number of requests

pruneGDP

HRA

LMD

Greedy

2000 4000 6000 8000 10000

#Requests

1

2

3

4

5

6

T
ot

al
L

at
en

cy

×106 Varying number of requests

pruneGDP

HRA

LMD

Greedy

2000 4000 6000 8000 10000

#Requests

0

10

20

30

40

50

R
un

ti
m

e
(s

)

Varying number of requests

pruneGDP

HRA

LMD

Greedy

2 3 4 5 6 7 8

λ: Car Capacity

0.4

0.6

0.8

1.0

1.2

1.4

T
ot

al
D

is
ta

nc
e

×106 Varying car capacity

pruneGDP

HRA

LMD

Greedy

2 3 4 5 6 7 8

λ: Car Capacity

1000

2000

3000

4000

5000

D
ri

ve
r

M
ak

es
pa

n

Varying car capacity

pruneGDP

HRA

LMD

Greedy

2 3 4 5 6 7 8

λ: Car Capacity

1.5

2.0

2.5

3.0

3.5

4.0

4.5

T
ot

al
L

at
en

cy

×106 Varying car capacity

pruneGDP

HRA

LMD

Greedy

2 3 4 5 6 7 8

λ: Car Capacity

0

5

10

15

20

25

R
un

ti
m

e
(s

)

Varying car capacity

pruneGDP

HRA

LMD

Greedy

10 20 30 40 50

Number of Centers

0.6

0.8

1.0

1.2

T
ot

al
D

is
ta

nc
e

×106 Varying number of centers

pruneGDP

HRA

LMD

Greedy

10 20 30 40 50

Number of Centers

1000

1500

2000

2500

3000

D
ri

ve
r

M
ak

es
pa

n

Varying number of centers

pruneGDP

HRA

LMD

Greedy

10 20 30 40 50

Number of Centers

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

T
ot

al
L

at
en

cy

×106 Varying number of centers

pruneGDP

HRA

LMD

Greedy

10 20 30 40 50

Number of Centers

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

R
un

ti
m

e
(s

)

Varying number of centers

pruneGDP

HRA

LMD

Greedy

25.0I 50.0I 75.0I 100.0I 125.0I 150.0I 175.0I 200.0I
Σ: Covariance

0.5

1.0

1.5

2.0

2.5

T
ot

al
D

is
ta

nc
e

×106 Varying covariance

pruneGDP

HRA

LMD

Greedy

Total travel dist

25.0I 50.0I 75.0I 100.0I 125.0I 150.0I 175.0I 200.0I
Σ: Covariance

1000

2000

3000

4000

5000

6000

D
ri

ve
r

M
ak

es
pa

n

Varying covariance

pruneGDP

HRA

LMD

Greedy

Makespan

25.0I 50.0I 75.0I 100.0I 125.0I 150.0I 175.0I 200.0I
Σ: Covariance

1

2

3

4

5

T
ot

al
L

at
en

cy

×106 Varying covariance

pruneGDP

HRA

LMD

Greedy

Total Latency

25.0I 50.0I 75.0I 100.0I 125.0I 150.0I 175.0I 200.0I
Σ: Covariance

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

R
un

ti
m

e
(s

)

Varying covariance

pruneGDP

HRA

LMD

Greedy

Running time

Figure 1: Results on the synthetic data set. From top to bottom: (1) Varying request number 𝑛 (with vehicle capacity fixed

_ = 4); (2) Varying _ with fixed 𝑛 = 5040; (3) Varying number of centers 𝐾 of the GMM, with fixed 𝑛 = 5040 and _ = 4; (4) Varying

covariance Σ of the GMM, with fixed 𝑛 = 5040, _ = 4, and 𝐾 = 10.

4.2.2 Results on real-world datasets. Figure 2 and 3 show the results

on real-world taxi transportation datasets.

Just like the situation in synthetic datasets, on both datasets our

algorithm Hra, along with Greedy, achieves the best performance

on all three objectives. But this time the advantage of Hra is smaller:

when the capacity is fixed (the top rows of Figure 2 and 3), Hra

achieves total travel distance 20% less than Lmd and 30% less than

pruneGdp, and a 10%-20% smaller total latency. The gap between

Lmd and Hra is even larger on the makespan objective, with Lmd

giving almost twice as large makespan; while pruneGdp shows a

smaller margin, but still gives 20%-30% larger makespan. If we fix

the number of requests and change the capacity (the bottom rows

of Figure 2 and 3), Hra (and Greedy) still consistently outperforms

the other two baselines by a significant margin.

One notable difference between the results and those on the syn-

thetic datasets is the running time. pruneGdp is still the fastest, and

significantly faster than all other three algorithms; while Greedy

now takes comparable time with Lmd and Hra. The main reason

is because we are using the shortest-path distance, and the num-

ber of shortest-path queries in pruneGdp is significantly smaller

than other three algorithms. pruneGdp makes roughly 𝑂 (𝑛) many

queries, while the other three require Ω(𝑛2) queries. Because the
underlying graph is huge, the distance query is expensive and dom-

inates the running time.

Handling dynamic requests. Although our algorithm has been

designed for static input, it can be deployed effectively in a dynamic

request scenario using the standard batching technique [25]. The

idea is to collect all requests coming inside a pre-determined time

window and process them together. For example, in the NY dataset,

during the most busy hours, the number of requests in windows of

size 15 minutes is approximately 7500. Our algorithm can process

these requests in less than 100 seconds (See Figure 2) which is

significantly small compared to the size of the time-window.

4.2.3 Summary.

• In terms of total travel distance, our algorithm Hra gives

notably better solutions than Lmd and pruneGdp. This is

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

634

1000 2000 3000 4000 5000 6000 7000

#Requests

1

2

3

4

5

6

7

8

T
ot

al
D

is
ta

nc
e

×107 Varying number of requests

pruneGDP

HRA

LMD

Greedy

1000 2000 3000 4000 5000 6000 7000

#Requests

0.6

0.8

1.0

1.2

1.4

1.6

D
ri

ve
r

M
ak

es
pa

n

×105 Varying number of requests

pruneGDP

HRA

LMD

Greedy

1000 2000 3000 4000 5000 6000 7000

#Requests

0.5

1.0

1.5

2.0

2.5

T
ot

al
L

at
en

cy

×108 Varying number of requests

pruneGDP

HRA

LMD

Greedy

1000 2000 3000 4000 5000 6000 7000

#Requests

0

20

40

60

80

100

R
un

ti
m

e
(s

)

Varying number of requests

pruneGDP

HRA

LMD

Greedy

2 3 4 5 6 7 8

λ: Car Capacity

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
ot

al
D

is
ta

nc
e

×107 Varying car capacity

pruneGDP

HRA

LMD

Greedy

Total travel dist

2 3 4 5 6 7 8

λ: Car Capacity

0.6

0.8

1.0

1.2

1.4

1.6
D

ri
ve

r
M

ak
es

pa
n

×105 Varying car capacity

pruneGDP

HRA

LMD

Greedy

Makespan

2 3 4 5 6 7 8

λ: Car Capacity

0.7

0.8

0.9

1.0

1.1

T
ot

al
L

at
en

cy

×108 Varying car capacity

pruneGDP

HRA

LMD

Greedy

Total Latency

2 3 4 5 6 7 8

λ: Car Capacity

0

5

10

15

20

25

30

R
un

ti
m

e
(s

)

Varying car capacity

pruneGDP

HRA

LMD

Greedy

Running time

Figure 2: Results on the NYC dataset. The first row is the result of varying 𝑛, and the second row is for varying _.

500 1000 1500 2000 2500 3000 3500 4000 4500

#Requests

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
ot

al
D

is
ta

nc
e

×107 Varying number of requests

pruneGDP

HRA

LMD

Greedy

500 1000 1500 2000 2500 3000 3500 4000 4500

#Requests

0.6

0.8

1.0

1.2

1.4

1.6

D
ri

ve
r

M
ak

es
pa

n

×105 Varying number of requests

pruneGDP

HRA

LMD

Greedy

500 1000 1500 2000 2500 3000 3500 4000 4500

#Requests

0.2

0.4

0.6

0.8

1.0

T
ot

al
L

at
en

cy

×108 Varying number of requests

pruneGDP

HRA

LMD

Greedy

500 1000 1500 2000 2500 3000 3500 4000 4500

#Requests

0

10

20

30

40

50

60

70

80

R
un

ti
m

e
(s

)

Varying number of requests

pruneGDP

HRA

LMD

Greedy

2 3 4 5 6 7 8

λ: Car Capacity

0.6

0.8

1.0

1.2

1.4

1.6

1.8

T
ot

al
D

is
ta

nc
e

×107 Varying car capacity

pruneGDP

HRA

LMD

Greedy

Total travel dist

2 3 4 5 6 7 8

λ: Car Capacity

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

D
ri

ve
r

M
ak

es
pa

n

×105 Varying car capacity

pruneGDP

HRA

LMD

Greedy

Makespan

2 3 4 5 6 7 8

λ: Car Capacity

3.0

3.5

4.0

4.5

5.0

T
ot

al
L

at
en

cy

×107 Varying car capacity

pruneGDP

HRA

LMD

Greedy

Total Latency

2 3 4 5 6 7 8

λ: Car Capacity

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

R
un

ti
m

e
(s

)

Varying car capacity

pruneGDP

HRA

LMD

Greedy

Running time

Figure 3: Results on the SFO dataset. The first row is the result of varying 𝑛, and the second row is for varying _.

expected, as Hra directly optimize the objective. But Hra

also shows good robustness in the sense that it also performs

well on the makespan and total latency objectives.

• In terms of running time, Hra is slower than the baseline

pruneGdp, but still comparable with Lmd.

• The Greedymethod, which can be viewed as a naive version

of Hra and is strictly worse in theory, achieves comparable

experimental performance as Hra. We believe this offers

another option for practitioners, as Greedy is conceptually

much simpler and easier to implement.

5 CONCLUSION

In this paper, we give the first algorithm, HRA, for the minimum

total distance ride-sharing problem with vehicles of any arbitrary

vehicle capacity _ ≥ 2. We prove an approximation guarantee of

O(
√
_) for HRA. We also give a greedy heuristic that has compa-

rable performance to HRA in practice. Extensive experiments on

both synthetic and real-world datasets testify to the fact that our

algorithms have up to 40% performance improvement compared

to some of the state-of-the-art ride-sharing algorithms. Finally, we

witness that in practice, our algorithms either match or outper-

form existing baselines even for the complementary objectives of

makespan and total latency of individual riders.

ACKNOWLEDGMENTS

Kelin Luo has received funding from the European Union’s Hori-

zon 2020 research and innovation programme under the Marie

Skłodowska-Curie grant agreement No 754462.

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

635

REFERENCES

[1] Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and

Daniela Rus. 2017. On-demand high-capacity ride-sharing via dynamic trip-

vehicle assignment. Proceedings of the National Academy of Sciences 114, 3 (2017),
462–467.

[2] Xiaohui Bei and Shengyu Zhang. 2018. Algorithms for Trip-Vehicle Assignment

in Ride-Sharing. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, Sheila A.
McIlraith and Kilian Q. Weinberger (Eds.). AAAI Press, 3–9. https://www.aaai.

org/ocs/index.php/AAAI/AAAI18/paper/view/16583

[3] Blablacar. 2021. Blablacar. https://www.blablacar.com/

[4] Hua Cai, Xi Wang, Peter Adriaens, and Ming Xu. 2019. Environmental benefits

of taxi ride sharing in Beijing. Energy 174 (2019), 503–508.

[5] Moses Charikar and Balaji Raghavachari. 1998. The finite capacity dial-a-ride

problem. In Proceedings 39th Annual Symposium on Foundations of Computer
Science (Cat. No. 98CB36280). IEEE, 458–467.

[6] Regina R Clewlow and Gouri S Mishra. 2017. Disruptive transportation: The

adoption, utilization, and impacts of ride-hailing in the United States. (2017).

[7] Nicolas Coulombel, Virginie Boutueil, Liu Liu, Vincent Viguie, and Biao Yin. 2019.

Substantial rebound effects in urban ridesharing: Simulating travel decisions

in Paris, France. Transportation Research Part D: Transport and Environment 71
(2019), 110–126.

[8] Harold N Gabow. 1990. Data structures for weighted matching and nearest

common ancestors with linking. In Proceedings of the first annual ACM-SIAM
symposium on Discrete algorithms. 434–443.

[9] Dries Goossens, Sergey Polyakovskiy, Frits CR Spieksma, and Gerhard J Woegin-

ger. 2012. Between a rock and a hard place: the two-to-one assignment problem.

Mathematical methods of operations research 76, 2 (2012), 223–237.

[10] Anupam Gupta, MohammadTaghi Hajiaghayi, Viswanath Nagarajan, and Ra-

mamoorthi Ravi. 2010. Dial a ride from k-forest. ACM Transactions on Algorithms
(TALG) 6, 2 (2010), 1–21.

[11] Jagan Jacob and Ricky Roet-Green. 2021. Ride solo or pool: Designing price-

service menus for a ride-sharing platform. European Journal of Operational
Research (2021).

[12] Eugene L Lawler. 1985. The traveling salesman problem: a guided tour of combi-

natorial optimization. Wiley-Interscience Series in Discrete Mathematics (1985).
[13] Kelin Luo and Frits CR Spieksma. 2020. Approximation algorithms for car-sharing

problems. In International Computing and Combinatorics Conference. Springer,
262–273.

[14] Open Street Map. 2011. Open Street Map. https://download.bbbike.org/

[15] Seth Pettie and Vijaya Ramachandran. 2000. An optimal minimum spanning tree

algorithm. In International Colloquium onAutomata, Languages, and Programming.
Springer, 49–60.

[16] Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias Grossglauser.

2009. CRAWDAD dataset epfl/mobility (v. 2009-02-24). Downloaded from

https://crawdad.org/epfl/mobility/20090224/cab. https://doi.org/10.15783/C7J010

traceset: cab.

[17] TLC Trip Record Data TLC. 2016. New York City TLC trip record data. https:

//www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

[18] Yongxin Tong, Yuxiang Zeng, Zimu Zhou, Lei Chen, Jieping Ye, and Ke Xu. 2018.

A Unified Approach to Route Planning for Shared Mobility. Proc. VLDB Endow.
11, 11 (2018), 1633–1646. https://doi.org/10.14778/3236187.3236211

[19] Transvision. 2021. Transvision. https://www.transvision.nl/

[20] René van Bevern and Viktoriia A Slugina. 2020. A historical note on the 3/2-

approximation algorithm for the metric traveling salesman problem. Historia
Mathematica 53 (2020), 118–127.

[21] Biying Yu, Ye Ma, Meimei Xue, Baojun Tang, Bin Wang, Jinyue Yan, and Yi-Ming

Wei. 2017. Environmental benefits from ridesharing: A case of Beijing. Applied
energy 191 (2017), 141–152.

[22] Yuxiang Zeng, Yongxin Tong, and Lei Chen. 2019. Last-Mile Delivery Made Prac-

tical: An Efficient Route Planning Framework with Theoretical Guarantees. Proc.
VLDB Endow. 13, 3 (2019), 320–333. https://doi.org/10.14778/3368289.3368297

[23] Yuxiang Zeng, Yongxin Tong, Yuguang Song, and Lei Chen. 2020. The Simpler

the Better: An Indexing Approach for Shared-Route Planning Queries. Proc.
VLDB Endow. 13, 13 (Sept. 2020), 3517–3530.

[24] Libin Zheng, Lei Chen, and Jieping Ye. 2018. Order Dispatch in Price-Aware

Ridesharing. Proc. VLDB Endow. 11, 8 (April 2018), 853–865.
[25] Libin Zheng, Peng Cheng, and Lei Chen. 2019. Auction-Based Order Dispatch

and Pricing in Ridesharing. In ICDE. IEEE, 1034–1045.

A MISSING PROOFS

Lemma 13. The Incremental MST cost in ℓ-th (ℓ ≥ 2) iteration is

𝑤 (𝑀ℓ) ≤ (2
log_−ℓ

2 + 1)
∑︁

𝑃 ∈P★

mst𝑠,𝑡 (𝑃) .

Proof. To bound the Incremental MST costs in the ℓ-st itera-

tion, we break optimum groups to obtain sub-groups of size 2
ℓ
. By

inequality (1), we have∑︁
𝑃 ∈P★

ℓ

mst𝑠,𝑡 (𝑃) ≤ (2
ℓ
2 + 1)

∑︁
𝑃 ∈P★

mst𝑠,𝑡 (𝑃).

Therefore if we can prove𝑤 (𝑀ℓ) ≤
∑
𝑃 ∈P★

log_−ℓ
mst𝑠,𝑡 (𝑃), then

𝑤 (𝑀ℓ) ≤ (2
log_−ℓ

2 + 1)
∑︁

𝑃 ∈P★

mst𝑠,𝑡 (𝑃) .

Now we show how to do this. Recall the partitions of P★ con-

structed in Lemma 12, i,e., {P★
1
,P★

2
, ...,P★

log_−1
}, where each re-

quest group in partition P★
log_−ℓ contains 2

ℓ
requests for all ℓ ≥ 0.

Define a bipartite, 2
ℓ−1

-regular multi-graph (Pℓ−1,P★
log_−(ℓ−1) , 𝐸)

as follows: the vertices of the graph are the groups from Pℓ−1 or

P★
log_−(ℓ−1) , and for each request 𝑟 we add an edge 𝑒 between

vertex 𝑃 ∈ Pℓ−1 and 𝑃★ ∈ P★
log_−(ℓ−1) if 𝑟 ∈ 𝑃 ∩ 𝑃

★
. Note that

|𝐸 | = |𝑅 | = 2
ℓ−1 · |Pℓ−1 |. According to Hall’s marriage theorem, we

can find a perfect matchingM among Pℓ−1 and P★
log_−(ℓ−1) .

a b c d

a b c d

d

d b

b

a

a

c

c

A

A*

B

B*

<latexit sha1_base64="rXXDomufyIa8kzb91Sm8FNVKbFQ=">AAACCXicbVC7SgNBFJ2Nrxhfq5Y2g0EQxbBroZZBG8sI5gHZdZmd3CRDZh/MzAph2dYmv2FpY6GIrX9g54fYO5uk0MQDA4dz7mHuPX7MmVSW9WUUFhaXlleKq6W19Y3NLXN7pyGjRFCo04hHouUTCZyFUFdMcWjFAkjgc2j6g6vcb96DkCwKb9UwBjcgvZB1GSVKS56JnYCoPiU8rWV3R17q8KjncJ3vkBMHOM88s2xVrDHwPLGnpFw9/n4cQTmueean04loEkCoKCdStm0rVm5KhGKUQ1ZyEgkxoQPSg7amIQlAuun4kgwfaKWDu5HQL1R4rP5OpCSQchj4ejLfW856ufif105U98JNWRgnCkI6+aibcKwinNeCO0wAVXyoCaGC6V0x7RNBqNLllXQJ9uzJ86RxWrHPKvaNbuMSTVBEe2gfHSIbnaMqukY1VEcUPaAn9IJejZHxbLwZ75PRgjHN7KI/MD5+AJi3nfI=</latexit>P⇤
log ��`

<latexit sha1_base64="qe8Jit/UV4x5HRjrEO9J4Ebqkmo=">AAACDXicbVDLSsNAFJ3UV62vVJduBqtQhZbEhbosCuKygn1AE8NkMm2HTh7MTIQS8gOC+CtuBC3itnt3/o2TtgttPTBwOOce5t7jRowKaRjfWm5peWV1Lb9e2Njc2t7Ri7tNEcYckwYOWcjbLhKE0YA0JJWMtCNOkO8y0nIHV5nfeiBc0DC4k8OI2D7qBbRLMZJKcvRDy0eyjxFL6un9iZNYLOxZTOU9VClbhLGKeZw6esmoGhPARWLOSKlmXD+9jcbFuqN/WV6IY58EEjMkRMc0ImkniEuKGUkLVixIhPAA9UhH0QD5RNjJ5JoUHinFg92QqxdIOFF/JxLkCzH0XTWZ7S7mvUz8z+vEsnthJzSIYkkCPP2oGzMoQ5hVAz3KCZZsqAjCnKpdIe4jjrBUBRZUCeb8yYukeVo1z6rmrWrjEkyRB/vgAJSBCc5BDdyAOmgADB7BC3gHI+1Ze9U+tM/paE6bZfbAH2jjH24Ins8=</latexit>P⇤
log ��(`�1)

<latexit sha1_base64="NyQ9otHJYnL64UcpUcREQvY4WRE=">AAAB/XicbVC7TsMwFHXKq5RXeGwshgqpDFQJAzBWsDAWiT6kJooc96a1cB6yHaQSVXwCv8DCAEKs7HwCGx/CjtN2gJYjWTo6517d4+MnnEllWV9GYW5+YXGpuFxaWV1b3zA3t5oyTgWFBo15LNo+kcBZBA3FFId2IoCEPoeWf3OR+61bEJLF0bUaJOCGpBexgFGitOSZO05IVJ8SntWHXuYA50f20DPLVtUaAc8Se0LKtb3K98eDc1j3zE+nG9M0hEhRTqTs2Fai3IwIxSiHYclJJSSE3pAedDSNSAjSzUbph/hAK10cxEK/SOGR+nsjI6GUg9DXk3lWOe3l4n9eJ1XBmZuxKEkVRHR8KEg5VjHOq8BdJoAqPtCEUMF0Vkz7RBCqdGElXYI9/eVZ0jyu2idV+0q3cY7GKKJdtI8qyEanqIYuUR01EEV36BE9oxfj3ngyXo238WjBmOxsoz8w3n8AADaYlQ==</latexit>P`�1

<latexit sha1_base64="6gC0puTaPXP1Yth2XP53rG94xDA=">AAAB/HicbVC7TsMwFHV4lvIKdGSxWiE6VQkDZaxgYSwSfUhNFDmu01p1nMh2kKIo/AgDCwMIsfIPrGwIPgan7QAtR7J0dM69usfHjxmVyrI+jZXVtfWNzdJWeXtnd2/fPDjsyigRmHRwxCLR95EkjHLSUVQx0o8FQaHPSM+fXBZ+75YISSN+o9KYuCEacRpQjJSWPLPihEiNMWJZOz/xMocwlntmzWpYU8BlYs9JrVWtf3813+/bnvnhDCOchIQrzJCUA9uKlZshoShmJC87iSQxwhM0IgNNOQqJdLNp+Bwea2UIg0joxxWcqr83MhRKmYa+niyiykWvEP/zBokKzt2M8jhRhOPZoSBhUEWwaAIOqSBYsVQThAXVWSEeI4Gw0n2VdQn24peXSfe0YZ817GvdxgWYoQSOQBXUgQ2aoAWuQBt0AAYpeABP4Nm4Mx6NF+N1NrpizHcq4A+Mtx8zp5jc</latexit>

P 0
`

Figure 4: Visualization of P ′
ℓ
in Lemma 13. Find a partition

P ′
ℓ
: we first find a matching𝑀 between Pℓ−1 and P★

log_−(ℓ−1)
(see bold black lines); then find partition P ′

ℓ
based on𝑀 and

P★
log_−ℓ (see dotted lines)

This matchingM naturally induces a merging scheme for the

partition Pℓ−1. Take two groups 𝐴★ and 𝐵★ in P★
log_−(ℓ−1) that

are obtained by breaking a same larger group in P★
log_−ℓ . Then

consider their matched groups (underM) in Pℓ−1, denoted as𝐴 and

𝐵 respectively: we merge 𝐴, 𝐵 to get a larger group. This procedure

gives us a partition P ′
ℓ
, each group of which is obtained by merging

two groups of Pℓ−1

Nowwe claim the Incremental MST cost of gettingP ′
ℓ
is bounded

by

∑
𝑃 ∈P★

log_−ℓ
mst𝑠,𝑡 (𝑃). Then since Pℓ is obtained by computing

amin-cost matching, its cost increase (i.e.,𝑤 (𝑀ℓ)) must also be less

than

∑
𝑃 ∈P★

log_−ℓ
mst𝑠,𝑡 (𝑃).

Firstly, by the definition ofM we know both 𝐴∩𝐴★ and 𝐵 ∩𝐵★
are non-empty. Thus, for 𝑃★ = 𝐴★ ∪ 𝐵★ ∈ P★

log_−ℓ we have

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

636

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16583
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16583
https://www.blablacar.com/
https://download.bbbike.org/
https://crawdad.org/epfl/mobility/20090224/cab
https://doi.org/10.15783/C7J010
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://doi.org/10.14778/3236187.3236211
https://www.transvision.nl/
https://doi.org/10.14778/3368289.3368297

Figure 5: An example with _ = 4 and |P | = 6: when 𝑗 = 1,

find a perfect matching in (P1,P∗
1
, 𝐸1), delete the common

requests in each matched request groups and obtain graph

(P𝑗 ,P∗𝑗 , 𝐸 𝑗) for 𝑗 = 2; Similarly, find the rest three perfect

matchings.

min𝑟𝑖 ∈𝐴,𝑟 𝑗 ∈𝐵 𝑑 (𝑠𝑖 , 𝑠 𝑗)+min𝑟𝑖 ∈𝐴,𝑟 𝑗 ∈𝐵 𝑑 (𝑡𝑖 , 𝑡 𝑗) ≤ mst𝑠 (𝑃★)+mst𝑡 (𝑃★).
Now the crucial observation is 𝑤 (𝐴, 𝐵) ≤ min𝑟𝑖 ∈𝐴,𝑟 𝑗 ∈𝐵 𝑑 (𝑠𝑖 , 𝑠 𝑗) +
min𝑟𝑖 ∈𝐴,𝑟 𝑗 ∈𝐵 𝑑 (𝑡𝑖 , 𝑡 𝑗): to see this, recall the definition of𝑤 (𝐴, 𝐵),

𝑤 (𝐴, 𝐵) = (mst𝑠 (𝐴 ∪ 𝐵) −mst𝑠 (𝐴) −mst𝑠 (𝐵))+
(mst𝑡 (𝐴 ∪ 𝐵) −mst𝑡 (𝐴) −mst𝑡 (𝐵)) .

Note thatmst𝑠 (𝐴∪𝐵)−mst𝑠 (𝐴)−mst𝑠 (𝐵) ≤ min𝑟𝑖 ∈𝐴,𝑟 𝑗 ∈𝐵 𝑑 (𝑠𝑖 , 𝑠 𝑗):
Let’s denote the MSTs on the origins of A and B as MST𝑠 (𝐴)
and MST𝑠 (𝐵), and let (𝑟𝑎, 𝑟𝑏) = arg min𝑟𝑖 ∈𝐴,𝑟 𝑗 ∈𝐵 𝑑 (𝑠𝑖 , 𝑠 𝑗) be the

two requests whose origins are the closest. Then adding one edge

(𝑠𝑎, 𝑠𝑏) connecting MST𝑠 (𝐴) and MST𝑠 (𝐵) results in a spanning

tree 𝑇 ′𝑠 on the origins of 𝐴 ∪ 𝐵, and this 𝑇 ′𝑠 has incremental cost

𝑑 (𝑠𝑎, 𝑠𝑏); But by definition cost(𝑇 ′) ≤ mst𝑠 (𝐴∪𝐵), which gives the
claimed inequality. Similarly, mst𝑡 (𝐴 ∪ 𝐵) −mst𝑡 (𝐴) −mst𝑡 (𝐵) ≤
min𝑟𝑖 ∈𝐴,𝑟 𝑗 ∈𝐵 𝑑 (𝑡𝑖 , 𝑡 𝑗). Therefore we have

𝑤 (𝐴, 𝐵) ≤ min

𝑟𝑖 ∈𝐴,𝑟 𝑗 ∈𝐵
𝑑 (𝑠𝑖 , 𝑠 𝑗) + min

𝑟𝑖 ∈𝐴,𝑟 𝑗 ∈𝐵
𝑑 (𝑡𝑖 , 𝑡 𝑗)

and thus

∑
𝑃=𝐴∪𝐵∈P′ℓ 𝑤 (𝐴, 𝐵) ≤

∑
𝑃 ∈P★

log_−ℓ
mst𝑠,𝑡 (𝑃). This con-

cludes our proof.

□

Lemma 14. Suppose𝐺 ≡ (P,P★, 𝐸) is a bipartite, _-regular, multi-
graph, where for each request 𝑟 ∈ 𝑅 there is an edge between vertex
𝑃 ∈ P and 𝑅★

𝑘
∈ P★ with weight 𝑓 (𝑟), whenever 𝑟 ∈ 𝑃 ∩ 𝑅★

𝑘
. We

can find _ disjoint perfect matchings in graph 𝐺 with total weight∑
𝑟 ∈𝑅 𝑓 (𝑟).

Proof. For any two perfect matchings 𝑀𝑖 , 𝑀𝑗 in graph 𝐺 ≡
(P,P∗, 𝐸), 𝑀𝑖 and 𝑀𝑗 are disjoint if and only if 𝑀𝑖 ∩ 𝑀𝑗 = ∅.
Suppose there are _ perfect matchingM such that any two perfect

matchings𝑀𝑖 , 𝑀𝑗 ∈ M are disjoint, we know thatM contains all

edges of 𝐸, then the sum of the weight of the _ perfect matchings

is: ∑︁
𝑀𝑖 ∈M

∑︁
𝑒 (𝑟) ∈𝑀𝑖

𝑓 (𝑟) =
∑︁
𝑟 ∈𝑅

𝑓 (𝑟)

We construct _ disjoint perfectmatchings in graph𝐺 ≡ (P,P∗, 𝐸)
by the following steps (see Figure 5 as an example):

Step (1) Initialization 𝑗 = 1, graph𝐺 𝑗 ≡ (P𝑗 ,P∗𝑗 , 𝐸 𝑗) ≡ (P,P
∗, 𝐸);

Step (2) Find a perfect matching𝑀𝑗 in graph (P𝑗 ,P∗𝑗 , 𝐸 𝑗), then
delete the edges of 𝑀𝑗 (also the corresponding requests of these
edges from its request groups) from graph (P𝑗 ,P∗𝑗 , 𝐸 𝑗), and obtain

a bipartite graph 𝐺 𝑗+1 ≡ (P𝑗+1,P∗𝑗+1, 𝐸 𝑗+1);
Step (3) Repeat Step (2) until 𝑗 = _.

We claim that there always exists a perfect matching in Step (2).

Since we delete all edges of

⋃
𝑖≤ 𝑗 𝑀𝑖 from the graph𝐺 ≡ (P,P∗, 𝐸)

before create matching𝑀𝑗+1, we know that all edges 𝐸 =
⋃_

𝑖=1
𝑀𝑖

and then

∑_
𝑖=1

∑
𝑒 (𝑟) ∈𝑀𝑖

𝑓 (𝑟) = ∑
𝑟 ∈𝑅 𝑓 (𝑟) as the claim holds.

We prove the claim by repeatedly applying Hall’s marriage theo-

rem, which claims that for any bipartite graph𝐺 = (𝑋 ∪𝑌, 𝐸), there
is an 𝑋 -perfect matching if and only if |𝑊 | ≤ |𝑁𝐺 (𝑊) | for every
subset𝑊 of 𝑋 where 𝑁𝐺 (𝑊) denote the neighborhood of𝑊 in 𝐺 .

We prove the following by induction on 𝑗 : ∀𝑗 ∈ {0, 1, 2..., _ − 1}
and graph (P𝑗+1,P∗𝑗+1, 𝐸 𝑗+1), there is |𝑃 | = _ − 𝑗 for all 𝑃 ∈ P𝑗+1
or 𝑃 ∈ P∗

𝑗+1, and
⋃

𝑃 ∈P𝑗+1 𝑃 =
⋃

𝑃 ∈P∗
𝑗+1
𝑃 ; Furthermore, there is a

perfect matching in graph (P𝑗+1,P∗𝑗+1, 𝐸 𝑗+1).
Base Case: 𝑗 = 0. Obviously

⋃
𝑃 ∈P1

𝑃 =
⋃

𝑃 ∈P∗
1

𝑃∗ = 𝑅, |𝑃 | = _
for all 𝑃 ∈ P1 or 𝑃 ∈ P∗

1
. Since the number of requests in𝑊 is

_ · |𝑊 | for every subset𝑊 of P∗
1
, |𝑁𝐺 (𝑊) | ≥ _ · |𝑊 |

_
= |𝑊 | (each

item in 𝑁𝐺 (𝑊) contains exactly _ requests) where 𝑁𝐺 (𝑊) denote
the neighborhood of𝑊 in (P1,P∗

1
, 𝐸1). By Hall’s theorem, there is

a perfect matching in 𝐺1 ≡ (P1,P∗
1
, 𝐸1).

Induction: Suppose the claim holds in graph (P𝑗 ,P∗𝑗 , 𝐸 𝑗). Af-
ter deleting the edges of 𝑀𝑗 (also the requests on edges 𝑀𝑗 from

its corresponding request groups 𝑃 ∈ P𝑗 and 𝑃∗ ∈ P∗
𝑗
) from

graph 𝐺 𝑗 ≡ (P𝑗 ,P∗𝑗 , 𝐸 𝑗), we obtain a bipartite graph 𝐺 𝑗+1 ≡
(P𝑗+1,P∗𝑗+1, 𝐸 𝑗+1) and |𝑃 | = _ − 𝑗 for all 𝑃 ∈ P𝑗+1 or 𝑃 ∈ P∗

𝑗+1
because |𝑃 | = _ − 𝑗 + 1 for all 𝑃 ∈ P𝑗 or 𝑃 ∈ P∗𝑗 by the induc-

tion hypothesis. Also we have

⋃
𝑃 ∈P𝑗+1 𝑃 =

⋃
𝑃 ∈P∗

𝑗+1
𝑃 . Since the

number of requests in𝑊 is (_ − 𝑗) · |𝑊 | for every subset𝑊 of

P∗
𝑗+1, |𝑁𝐺 (𝑊) | ≥

(_−𝑗) · |𝑊 |
_−𝑗 = |𝑊 | (each item in 𝑁𝐺 (𝑊) contains

exactly _ − 𝑗 requests) where 𝑁𝐺 (𝑊) denote the neighborhood of

𝑊 in 𝐺 𝑗+1 ≡ (P𝑗+1,P∗𝑗+1, 𝐸 𝑗+1). Again by Hall’s theorem, there is

a perfect matching in 𝐺 𝑗+1 ≡ (P𝑗+1,P∗𝑗+1, 𝐸 𝑗+1). □

Research Paper WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

637

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Notations and Preliminaries

	3 Algorithm for MCRS
	3.1 High Level Ideas
	3.2 Grouping phase
	3.3 Assignment and Routing phase
	3.4 Algorithm for general capacities

	4 Experiments
	4.1 Experiment Setup
	4.2 Experimental Results

	5 Conclusion
	Acknowledgments
	References
	A Missing Proofs

