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ABSTRACT

The widespread use of mobile devices propels the development of

new-fashioned video applications like 3D (3-Dimensional) stereo

video and mobile cloud game via web or App, exerting more pres-

sure on current mobile access network. To address this challenge,

we adopt the crowdsourcing paradigm to offer some incentive for

guiding the movement of recruited crowdsourcing users and facil-

itate the optimization of the movement control decision. In this

paper, based on a practical 4G (4th-Generation) network through-

put measurement study, we formulate the movement control deci-

sion as a cost-constrained user recruitment optimization problem.

Considering the intractable complexity of this problem, we focus

first on a single crowdsourcing user case and propose a pseudo-

polynomial time complexity optimal solution. Then, we apply this

solution to solve the more general problem of multiple users and

propose a graph-partition-based algorithm. Extensive experiments

show that our solutions can improve the efficiency of real-time

D2D communication for mobile videos.

CCS CONCEPTS

• Networks → Mobile networks; • Information systems →

Multimedia streaming.

KEYWORDS

Mobile Videos, D2D Communication, Movement Control, Utility

Optimization

1 INTRODUCTION

Video streaming has obtained a significant increase of popularity

and become the dominant application over the Internet in past

decades. According to recent reports [18], online videos via web

or App currently occupy more than half of the Internet traffic. In

this process, the widespread use of powerful mobile devices such

as smartphones has a far-reaching effect on the prosperity of video

streaming. Portable mobile devices enable users to instantly share

user-generated videos anywhere over social media applications

and enjoy high-quality on-demand videos anytime. The prosper-

ity of video streaming propels the pursuit for better visual expe-

rience, boosting the advent of UHD (Ultra-High-Definition) video

and newmultimedia applications like 3D stereo video [1] and cloud

∗W. Dou and X. Zhang are the corresponding authors of this research.

game [7]. These new-fashioned video applications trigger higher

bandwidth demand and exert more pressure on current Internet

network and mobile access network. The mobile communication

sector has been characterized by an exponentially increasing traf-

fic demand for high quality mobile multimedia services [6].

To cater for the development of mobile video streaming, new

network technologies such as SDN (Software Defined Network-

ing) [9] and NFV (Network Function Virtualization) [16] have been

studied to optimize Internet traffic and demonstrated to act as ser-

vice cornerstone on future Internet. Geo-distributed cloud com-

puting platforms [25] are introduced to address dynamic video

demand scale by leveraging its elastic resource provisioning and

seemingly unlimited computationpower. However, these technolo-

gies focus on the optimization inside Internet network and lack

attention to mobile access network. Actually, supporting efficient

high-quality real-time video delivery to mobile users in mobile net-

works is challenging and user perceived quality for video services

delivered over these networks is in general low. From Shannon’s

capacity formula, the maximum transmission rate in wireless com-

munication would be restricted by the limited signal bandwidth

and transmit power [23]. The competition among mobile users as-

sociated with the same BS (Base Station) limits each individual

maximum throughput, lagging behind the users’ booming high-

quality video traffic demand.

D2D (Device-to-Device) communication paradigm is treated as

a promising technology to compensate this gap [11]. D2D com-

munication in cellular networks allows direct communication be-

tween two mobile users without traversing a BS or a core network.

Most existing works [4, 20–22] showed that D2D communication

improves spectral and energy efficiency, delay, or even fairness.

However, existing D2D communication researches usually build

on users’ random mobility or position snapshot in cellular net-

works. This opportunistic mobility characteristic implies that the

D2D communication is low-efficient, especially for video transmis-

sion. The random mobility of mobile users leads to dynamic varia-

tion of communication duration and quality, which can only sup-

port video transmission on a best-effort basis. Actually, sustainable

real-time D2D communication is preferable for high-quality online

videos.

In this paper, we focus on efficiency improvement of D2D com-

munication for online videos. By investigating a simple example

shown in Fig. 1, we observe an important phenomenon that the

http://arxiv.org/abs/2111.14364v1
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Strategy S1: (U1 randomly walks).
Possible Communication Duration:

U1 and U2: [2min, 5min]

U1 and U3: [6min, 7min]

Effective D2D Time:  1 min.

Strategy S2: (U1 is recruited).
Possible Communication Duration:

U1 and U2: [1min, 3min]

U1 and U3: [7min, 8min]

Effective D2D Time: 3 min.

S1 :  [2min, 5min]

S2 :  [1min, 3min]

S1 :  [6min, 7min]

S2 :  [7min, 8min]

R3: [7min, 8min]
R2: [1min, 3min]

Figure 1: Motivation example: Comparison of video en-

hancement service quality under two different strategies.

D2D communication efficiency can be greatly improved by adopt-

ing the crowdsourcing paradigm to facilitate the control on users’

movement. In detail, there are three smartphone users *1,*2, and

*3.*2 requests the video enhancement service from 1min to 3min

(Gmin denotes the time stampwithminute as the unit), while*3 re-

quests the same service from 7min to 8min. Meanwhile, *1 moves

from %1 (i.e., a position) to %2 and can support video enhancement

service by D2D communication. Assumewe examine two video en-

hancement strategies (1 and (2. In Strategy (1,*1 randomly walks

from %1 to %2 and no control is imposed on the movement. The

total effective service time of both *2 and *3 is only 1 minute. In

Strategy (2, *1 is recruited and the corresponding total effective

service time is 3 minutes. Hence, it can be observed that applying

a control on the movement of the recruited mobile users (i.e., (2)

can increase the real-time D2D communication efficiency, hence

improving the live video quality.

The abovementioned example motivates us to investigate the

crucial problem of optimizing the movement of recruited mobile

users to improve video quality. Meanwhile, the pioneering work

[8, 12] has demonstrated that adopting incentive mechanisms is

an effective measure to guide users to a given destination so as

to enhance the video service quality. However, little work focuses

on optimizing recruited crowdsourcing users’ movement for video

enhancement, mainly due to the following challenges. First, it is

difficult to implement a quantization analysis of the influence of

current real-time D2D communication on high-quality videos on

the mobile devices. Second, it is possible that different requests

can conflict with each other with respect to the service time, while

strong timeliness is essential for a request. Therefore, the far-sighted

cooperationdecision needs to bemade formultiple recruited crowd-

sourcing users to optimize the efficiency of the system. Third, the

number of both requesters and recruited mobile users can be large,

which leads to exponential time complexity if one uses a straight-

forward exhaustive search method.

In this paper, we first study on practical 4G network through-

put measurement. Then, based on the analysis results, we formu-

late a cost-efficient user recruitment problem (CURP) and design

efficient algorithms for both single and multiple recruited crowd-

sourcing users cases. In summary, themain technical contributions

of this paper are summarized as follows:

• We analyse the possibility to improve the quality of mobile

videos by exploring current mobile network throughput.We

dig out important observations: One recruited 4G mobile

user can enhance fluent playback of 4K1 video and a better

no-stutter playback of FHD online video.

• We formulate the CURP and rigorously prove its intractable

computation complexity, i.e., being NP-hard. We design a

pseudo-polynomial time optimal algorithm for single crowd-

sourcing user case and a Graph-Partition-based Algorithm

(GPA) for multiple crowdsourcing users.

• We perform extensive experiment evaluations on real data

sets and the results demonstrate that by leveraging the crowd-

sourcing technique and facilitating a control on the move-

ment of recruited mobile users, our solution can effectively

guarantee high online video quality.

The rest of this work is organized as follows. Section 2 reviews

the related work. Section 3 studies a 4G network throughput anal-

ysis. Section 4 formulates the cost-constrained user recruitment

problem. Section 5 designs the optimal algorithm for the single

user case while Section 6 addresses the general problem. Section 7

evaluates our solutions and Section 8 concludes this paper.

2 RELATED WORK

D2D communication is a promising technology to relieve the pres-

sure forced by the global video streaming on the access network.

In academia, D2D communication was first proposed in [13] to

enable multi-hop relays in cellular networks. This architecture is

demonstrated to be able to improve spectral efficiency of cellu-

lar networks dramatically. Then, D2D communication was intro-

duced into video dissemination [10, 20, 22]. Based on a network

utility maximization framework, Le et al. [10] designed a cooper-

ative system called MicroCast, in which each mobile device has

simultaneously two network interfaces. Wu et al. [20] proposed

a user-centric video transmission mechanism based on D2D com-

munications that allows mobile users to cache and share videos in

a cooperative manner. Yan et al. [22] proposed a network coding

aided collaborative real-time scalable video transmission in D2D

communications.

However, existing D2D communications for video dissemina-

tion usually assume that some users cache and share these video

clips when they meet. This best-effort style makes the efficiency of

D2D communication low, especially for live video streaming with

hard timeliness. Fortunately, crowdsourcing paradigm is a poten-

tial technique to adopt incentive mechanisms to guide the move-

ment of recruited users to improve the communication efficiency

of the whole system [8, 12]. Lin et al. [12] desinged Sybil-proof on-

line incentive mechanisms to guide users’ operations and perform

the corresponding tasks. Therefore, we introduce the paradigm to

improve the D2D communicaiton efficiency of mobile videos.

3 4G NETWORK THROUGHPUT ANALYSIS

3.1 Online Video Watching

We introduce a real measurement evaluation conducted recently

by J. van der Hooft et al. [19] in the city of Ghent, Belgium. The

dataset contains throughput logs in six different scenes, i.e., bicycle,

14K refers to 3840×2160 pixels, which is defined by the International Telecommunica-
tion Union (ITU).



Figure 2: A crowdsourcing scenario with multi-device coop-

eration.

bus, car, foot, train, and tram. We focus on two different types of

videos, i.e., FHD and 4K video. From some popular test movies such

as Netflix’s El Fuente [17], a nominal bitrate of 5.2Mbps is enough

for mobile user to enjoy a FHD 1080p video by using H.265/HEVC

encoding technology while 21.4Mbps are enough to enjoy a 4K

2160p video. Based on these nominal values and the above real 4G

throughput, the fluent playback probabilities of these two types of

videos are calculated and the corresponding results are listed in Ta-

ble 1 (Conf. = 1x). An important finding is that one individual’s 4G

network can effectively support the fluent playback of FHD video.

However, for 4K videos, the situation turns to be very bad. In partic-

ular, the fluent playback probability is about two thirds in general

and even less than one half in the train scene.

Observation 3.1. One user’s 4G network effectively supports the

fluent playback of online FHD video, but is not good at 4K video.

3.2 Real-Time D2D Communication

We consider the influence of real-time D2D communication be-

tweenmobile users on online videos. OFDM (Orthogonal Frequency

Division Multiplexing) technology is usually adopted to proceed

data transmission and communication and there would be little

interference among mobile users even associated with the same

cellular base [5]. Proposition 3.1 shows one mobile user’s fluent

playback probability is improved exponentially with the increase

of mobile users building real-time D2D communication.

Proposition 3.1. Suppose 4G mobile users’ network bandwidth

conditions are independent identically distributedwith CDF of � , then

the CDF (denote as �) of the total available network bandwidths of

these I users satisfies the inequality:� (G) ≤ �I (G).

Table 1: Fluent Playback Probability of FHD and 4K Video

("1x"means a single 4G network, while "2x"means the com-

bination of 4G networks via Wi-Fi Direct).

Video Conf. Bicycle Bus Car Foot Train Tram

FHD
1x 0.9470 0.9733 0.9746 0.9256 0.8853 0.9259

2x 0.9983 0.9995 0.9995 0.9974 0.9891 0.9964

4K
1x 0.6409 0.7220 0.7862 0.6182 0.4941 0.6345

2x 0.9581 0.9824 0.9891 0.9446 0.8830 0.9297

Proof. Without loss of generality, we only need to consider the

case of two 4G users. Then,

� (G) =

∫ G

0

∫ G−C

0
5 (~) 5 (C)3~3C ≤

( ∫ G

0
5 (C)3C

)2
= � 2 (G).

Then, an iteration process on users’ number can complete the proof.

�

From Proposition 3.1, given any demand G0, 1 −� (G0) ≥ 1 −

�I (G0). Therefore, for any one mobile user, if all other I − 1 mo-

bile users build real-time D2D communication with him, his flu-

ent playback probability can be improved dramatically. However,

overlarge I is impractical in reality as one smartphone’s interface

is usually limited (one cellular interface and one WiFi interface).

Therefore, we focus on a practical case with I = 2where two smart-

phones are connected through Wi-Fi Direct2. We quantitatively

evaluate one mobile user’s fluent playback probability in such a

cooperative occasion. The influence of this cooperation style to

online video support is listed in Table 1 (Conf. = 2x). Here, we find

that the cooperation of two 4G users can allow one of them to

enjoy fluent playback of 4K with a probability of above 90 percent.

Moreover, for FHD video, the fluent playback probability improves

greatly, especially in the train scene.

Observation 3.2. One 4G mobile user can enjoy fluent playback

of 4K video with one more 4G mobile user building real-time D2D

communication throughWi-Fi Direct. Moreover, he can enjoy a better

no-stutter playback of FHD online video by doing this.

From Observation 3.1 and 3.2, when some smartphone user

(2/3/4G) wants to enjoy an excellent view experience of online

video, one more 4G user can be employed to achieve this goal by

building real-time D2D communication.

4 ONLINE VIDEO ENHANCEMENT VIA
MULTI-DEVICE COOPERATION

4.1 System Model

Fig. 2 shows a crowdsourcing scenario where mobile users seek

to enjoy enhanced online video view experience by recruiting idle

4G mobile users. We consider a spatial area Λ with a set of smart-

phone users where user channel interference is negligible. The

area Λ is divided into  discrete non-overlap smaller regions, i.e.,

Λ = {1, 2, . . . ,  }. We assume that crowdsourcing user recruitment

is activated at periodic time intervals of duration) . Within) , sup-

pose � mobile users are crowdsourcing requesters while � mobile

users are idle and serve as crowdsourcing users. Here, one crowd-

sourcing requester can enjoy an enhanced view experience by con-

necting to another crowdsourcing user through Wi-Fi Direct. As

one requester is relatively still when he/she is watching an online

video, we assume crowdsourcing requester 8’s location is fixed at

38 . Further, the service range of crowdsourcing user 9 in region

: is denoted as ( 9,: . For simplicity, we assume ( 9,: = {:}. That is,

the scale of each region is comparable to one crowdsourcing user’s

service range.

2Wi-Fi Direct a recent communication technology superior to Bluetooth. The pre-
vious measurement shows Wi-Fi Direct performs 30 times better than Bluetooth in
terms of throughput and can allow a high transmission throughput (18∼30 Mbps),
depending on communication distance (1∼10 m) [24].



In this model, by leveraging some incentives [8, 12], one crowd-

sourcing user can move to some pre-determined regions. This con-

trolledmobility characteristic results in the expansion of one crowd-

sourcing user’s service range and thus improves the system’s per-

formance. The moving cost between different regions is denoted

as a matrix P where the item ?:1,:2 stands for moving cost from

region :1 to region :2, where ?:1,:2 = 0 if :1 = :2. It satisfies the

following triangle inequality:

?:1,:2 ≤ ?:1,:3 + ?:3,:2 , ∀:1, :2, :3 ∈ Λ. (1)

Moreover, in this paper, we assume when a crowdsourcing user

is in transfer, he would not serve any requester and all crowd-

sourcing users obey a homogenous-constant-speed mobility model.

Here, homogeneity means different crowdsourcing users need the

same time to move from one specific region to another specific re-

gion while constant-speed means transfer time between different

regions also satisfies triangle inequality. Another matrix Q is used

to denote transfer time between different regions where the item

@:1,:2 represents transfer time from region :1 to region :2, where

@:1,:2 = 0 if :1 = :2. The following triangle inequality holds:

@:1,:2 ≤ @:1,:3 + @:3,:2 , ∀:1, :2, :3 ∈ Λ. (2)

Route and association optimization is conducted by a central

controller. The controller can collect location information of all

crowdsourcing requesters and users, and make a decision on sys-

tem performance optimization.

4.2 Problem Formulation

We formulate the optimization problem that the trusted central

controller solves. Suppose the enhanced time interval for requester

8 starts from B8 and end at 48 . Let 0C 9 ∈ {0, 1} denote whether crowd-

sourcing user 9 is in transfer at time C and ~8C 9 ∈ {0, 1} denote

whether the request of 8 is done on crowdsourcing user 9 at time

C . Here, we assume that at C , one crowdsourcing user serves only

one requester through Wi-Fi Direct. ~8C =
∑

9 ~
8
C 9 ∈ {0, 1} indicates

whether the request of 8 is done at C . We also give the definitions

of requester utility and system utility, respectively.

Definition 4.1 (Requester Utility). The requester utility*8 of crowd-

sourcing requester 8 is defined as the length of service interval i.e.,

*8 = |{C |~
8
C = 1}|. For example, if {C |~8C = 1} = [1, 2] ∪ [3, 5],*8 = 3.

Definition 4.2 (System Utility). The utility of the whole system

is defined as the sum of individual requester utility i.e., * =
∑
8 *8 .

We use ; 9 and ;
9
C to stand for routing path (region sequence) of

crowdsourcing user 9 and its location (region) at C respectively. Spe-

cially, ;
9
0 means the initial location. The symbol C( 9

C
−→ ; 9 ) counts

the relevant moving cost when 9 follows the path ; 9 until time C .

That is,

C( 9
C
−→ ; 9 ) =




0, C = 0

C
(
9

1 (C)
−−−→ ; 9

)
+ ?

;
9

1 (C )
,;
9
C
, C > 0

(3)

where 1 (C) = C− means the previous moment before C .

Here, we formulate crowdsourcing user recruitment problem

aiming at maximizing the system utility * . Actually, there is a

relationship between system utility and the maximum available

moving budget. A higher latter can support a higher system util-

ity. Thus, we study the cost-constrained situation where central

controller solves the following problem:

Definition 4.3 (Cost-constrained User Recruitment Problem, CURP).

The problem aims at maximizing system utility within a limited

budget by making routing path and association decisions, i.e.,

max
l, y

* (4)

s. t.
∑

9

C
(
9

)
−→ ; 9

)
≤ � (5)

∑

8

~8C 9 ≤ 1, ∀C, 9 (6)

~8C 9 ≤ 1 − 0C 9 , ∀C, 9, 8 (7)

~8C 9 = 0, ∀38 ∉ ( 9,; 9C
(8)

~8C 9 , 0C 9 ∈ {0, 1}, ∀C, 9, 8 (9)

where l={; 9 | ∀9}, y={~8C 9 | ∀C, 9, 8} and � is the maximum available

moving budget. Eq. (5) ensures a limited cost budget while Eq. (6)

means one crowdsourcing user serves at most one requester ev-

ery moment. Eq. (7) guarantees that crowdsourcing user would

not provide service in transfer. Eq. (8) demands one crowdsourc-

ing user should build real-time D2D communication with another

requester when they are close enough. Moreover, � is a constant

knob controlling the optimal objective value.

4.3 Computation Complexity

Theorem 4.4. The CURP is NP-hard, i.e., there exists no polyno-

mial time optimal algorithm to this problem unless P = NP.

Proof. We prove that the famous knapsack Problem can be re-

duced in polynomial time to Cost-Constrained User Recruitment

Problem. Given one instance of knapsack Problem: There are a set

of" items numbered from 1 up to" , each with a weightF< and

a value E< , along with a maximum weight capacity, ,

max
∑

<

E<G< , B .C .,
∑

<

F<G< ≤, ;G< ∈ {0, 1}. (10)

For Cost-Constrained User Recruitment Problem, we consider the

simplest case with" crowdsourcing requesters and only 1 crowd-

sourcing user, i.e., � = " and � = 1. These crowdsourcing re-

questers are located in different regions, i.e., 381≠382,∀81 ≠ 82. And

the enhanced interval satisfies 48 + @<0G ≤ B8+1,∀8 = 1, . . . , " − 1

where @<0G is the maximum value in Q. We make the following

settings:

• P: ?:,38 = F8 ,∀: = 1, 2, . . . ,  ; 8 = 1, 2, . . . , " ;

• 48 − B8 = E8 ,∀8 = 1, . . . , " ;

•  = � + 1 and ;10 ≠ 38 ,∀8 = 1, . . . , " ;

• � =, .

Routing path optimization is simplified to be a node selection de-

cision. Note that this setting would not violate moving cost trian-

gle inequality. To prove this, we randomly pick out three points

:1, :2, :3, then ?:1,:2 + ?:2,:3 = F:2 +F:3 ≥ F:3 = ?:1,:3 .

We use G8 ∈ {0, 1} to denote whether the requester 8 is served or

not. With the above settings, this special case of Cost-Constrained

User Recruitment Problem is simplified to be just the instance of
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Figure 3: The illustration of proof of Proposition 5.1:

We compare the system performance between any optimal

strategy Γ (solid line) and adjusted policy (dotted line).

Knapsack Problem. Therefore, Cost-Constrained User Recruitment

Problem is at least as hard as Knapsack Problem, the optimization

version of which is NP-hard. �

5 OPTIMAL USER RECRUITMENT STRATEGY
FOR SINGLE CROWDSOURCING USER

One major challenge to solve the CURP lies in infinite decision

variables l, y for all C ∈ [0,) ]. In this section, we consider a special

case of CURP in which � = 1, i.e., there is only one crowdsourcing

user.We first introduce a propositionwhich captures a useful prop-

erty of the problem. The property specifies the characteristic of an

optimal decision which can reduce infinite decision variables.

Proposition 5.1. Given any problem instance with �=1, there

always exists one optimal decision Γ∗, satisfying the following condi-

tion: for each requester 8 , ∃g8 ∈ [B8 , 48 ] such that ~8C = 0,∀C ∈ [B8 , g8]

and ~8C = 1,∀C ∈ [g8 , 48].

Proof. To prove this proposition, we only need to show that

any optimal decision Γ can be adjusted to be Γ∗ without incurring

any additional cost. We consider two cases in Γ.

Case 1. The crowdsourcing user does not serve 8 : We only treat

g8 as the ending time of 8’s request, i.e., g8 = 48 .

Case 2. The crowdsourcing user starts serving 8 at C0 where C0 ∈

[B8 , 48]: Suppose that in Γ, the following regions and time intervals

the crowdsourcing user works in are ;1 : [C0, C1], ;2 : [C2, C3], · · · .

We compare Γ with another adjusted policy.

Adjusted Policy Γ
′
: The crowdsourcing user keeps serving 8 in

[C0, 48] and then transfers to regions as the same order with Γ and

does not serve any requester until the temporal-spatial coincident

point with Γ. Next, the user works under Γ.

The comparison is illustrated in Fig. 3. To compare Γ with this

adjusting policy, we only need to consider time interval [C0, C2 ]

where C2 is the temporal-spatial coincident point. In [C0, C2 ]: As the

user transfers to regions in the same order under Γ and Γ
′
, the

transfer cost under Γ
′
is equal to Γ and the transfer time ΔC5 is

also equal. In terms of system performance, the utility under Γ
′
is

ΔCB = 48 − C0 = C2 − C0 − ΔC5 . The utility under Γ would be no more

than ΔCB depending on whether the user keeps working when not

in transfer under Γ. That is, Γ
′
does not decrease the system utility

with incurring no additional cost. Finally, this adjusted policy can

be adopted in each served request 8 in Γ, therefore, by doing this,

Γ is adjusted to Γ
∗-type strategy with g8 = C0. �

Algorithm 1 Optimal Routing Scheduling

Input: P, Q, all sorted requests E8 where 8 = 0, 1, · · · , � ;

Output: Decision variables l and y.

1: Calculate prior one request set Φ8 for each E8 : Φ0 ← {E0} and

Φ8 ← {E 9 |4 9 + @ 98 ≤ 48 , 9 = 0, 1, . . . , � },∀8 = 1, · · · , � ;

2: Initialize the boundary condition: * [8] [2] ← −∞,∀2 < 0 or

∀Φ8 ⊅ {E0} and * [0] [2] ← 0,∀2 ≥ 0;

3: Calculate all other subproblems * [8] [2] based on Eq. (11):

* [8] [2] ← max 9 ∈Φ8 \{8 }* [ 9] [2 98 ] + D 98 ,∀8 ≥ 1, 2 ≥ 0, E0 ∈ Φ8 ;

4: l and y corresponding to max8 ∈{0,1, · · · ,� } * [8] [�];

From Proposition 5.1, when the crowdsourcing user moves to

a region to serve one request, it will not leave unless this request

has been finished. That is, the crowdsourcing user’s location only

changes at a limited number of time points. This result will help

us design an optimal dynamic programming algorithm. We intro-

duce one virtual request E0 with BE0 = 4E0 = 0. This virtual re-

quest stands for the crowdsourcing user’s starting location. Then

all requests (including E0) are sorted according the ascending or-

der of the ending time of these requests. Assume that the set of

sorted tasks is V = {E0, E1, . . . , E� } and the ending times satisfy

40 ≤ 41 ≤ · · · ≤ 4� .

Let Φ8 be the set containing all requests whose ending times

plus transfer time are smaller than E8 ’s ending time. Precisely, we

have Φ8 = {E 9 |4 9 + @ 98 ≤ 48 , 9 = 0, 1, . . . , � } and Φ0 = {E0}. Ac-

cording to Proposition 5.1, the crowdsourcing user keeps serving

one requester until the request is completed. Therefore, Φ8 actually

contains all possible prior one requests before coming to E8 .

Based on the above analysis, let * [8] [2] be the optimal system

utility gain when the crowdsourcing user is at E8 with the total cost

no more than 2 . We have,

* [8] [2] =





−∞, 2 < 0 or E0 ∉ Φ8

0, 8 = 0, 2 ≥ 0

max
9 ∈Φ8 \{8 }

* [ 9] [2 98 ] + D 98 , 8 ≥ 1, 2 ≥ 0
(11)

where 2 98 = 2−? 98 ,D 98 = 48−max{B8 , 4 9 +@ 98 } and ? 98 stands for the

moving cost from E 9 ’s location to E8 ’s location. Eq. (11) shows how

the value of * [8] [2] can be recursively computed. When 2 < 0,

* [8] [2] is not feasible because the cost can not be negative. Φ8 ⊅

{E0} means the user can not reach 8 in time, hence * [8] [2] is also

infeasible. Considering that the CURP is a maximization problem,

we make the infeasible * [8] [2] = −∞. Otherwise, when 2 ≥ 0

and Φ8 ⊃ {E0}, * [8] [2] can be derived from all possible prior one

subproblems corresponding to * [ 9] [2 − ? 98 ], 9 ∈ Φ8 . Moving cost

inequality Eq. (1) and transfer time inequality Eq. (2) ensure the

correctness of Eq. (11). With Eq. (1) and Eq. (2), the crowdsourc-

ing user would transfer from one region to another region directly

without searching cost-shortest or time-shortest path.

Based on Eq. (11), we design Algorithm 1, an optimal schedul-

ing algorithm. Step 1 computes prior one request sets for all sorted

requests while Step 2 and 3 show the complete dynamic program-

ming process. The optimality of this algorithm is analyzed as fol-

lows.
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Figure 4: An example to show the calculation and meaning

of \ and W .

Theorem 5.2. Algorithm 1 has an optimal solution to the CURP

problem (�=1) under the pseudo-polynomial time computation com-

plexity O(� 2(� + ?<0G )) where ?<0G is the maximum value in P.

Proof. TheCURP(�=1) problemhas optimal substructure. From

the definition of* [8] [2] and Proposition 5.1, there exist |Φ8 | pos-

sible prior one states for* [8] [2]. And the optimality of* [8] [2] de-

mands the maximum utility gain of these |Φ8 | subproblems. There-

fore, the optimal solution of* [8] [2] contains optimal solutions to

all these prior one |Φ8 | subproblems. Algorithm 1 explores every

subproblem of * [8] [2] and computes * [8] [2] based on the fact of

optimal substructure, hence, it produces an optimal solution to the

CURP(�=1) problem. Eq. (11) indicates * [8] [2] (8 ≤ � , 2 ≤ �) has

overlapping subproblems and there exists at most (� + 1)×(� +

?<0G + 1) subproblems according different values of 8 and 2 . In or-

der to solve each subproblem, we need to compare |Φ8 | (≤ � ) sub-

problems. Therefore, Algorithm 1 has a pseudo-polynomial time

complexity O(� 2(� + ?<0G )). �

6 GENERAL OPTIMIZATION STRATEGY

We discuss the general CURP with multiple crowdsourcing users,

i.e., �≫�≥1. We design a Graph-Partition-based Algorithm (GPA)

by extending the above Optimal Routing Algorithm. The basic idea

of GPA is to decrease the crowdsourcing user’s transfer number on the

high-cost link. Since the total available cost� is limited, decreasing

one high-cost link transfer means increasing more low-cost link

transfers, hence higher chances of serving more requests. To real-

ize this idea, we adopt a graph-partition method. All requests are

divided into several disjoint partitions and one crowdsourcing user

is only responsible for one partition. Thus, according to reasonable

partition rules, those high-cost links between different partitions

can be decreased or even removed. There are two steps of GPA:

Requests Partition and Available Cost Allocation. We show the de-

tailed explanations in the following subsections.

6.1 Request Partition by Normalized Cut
Spectral Clustering

We adopt normalized cut spectral clustering algorithm to do re-

quest partition. In the clustering process, it is important to calcu-

late the similarity relation between any two requests. In our prob-

lem, we consider that any one good partition should possess the

following two properties. First, the requests in one partition should

have fewer overlapping parts. Second, one partition has smaller

connectivity cost inside. We define two metrics to measure these

two properties.

6.1.1 Overlapping degree. For any two requests E8 and E 9 with

48 ≤ 4 9 , we define their overlapping degree \ as follows:

\ (E8 , E 9 ) , 1 −
(4 9 −max{B 9 , 48 + @8 9 })

+

4 9 − B 9
, (12)

in which G+=max{G, 0}.

6.1.2 Connectivity degree. The relevant connectivity degree W be-

tween E8 and E 9 with 48 ≤ 4 9 is defined as W (E8 , E 9 ) ,
?8 9

?<0G
.

We give an instance to illustrate the calculation of \ and W de-

fined above. As shown in Fig. 4, there are three requests E1, E2
and E3. Their request times are [3, 14], [12, 28] and [22, 30]. The

transfer time between region ;1 and ;2 is 4 while the moving cost

?;1,;2=?;2,;1=1. For the pair (E1, E2), any crowdsourcing user can

only transfer from E1 to E2 based on Proposition 5.1. Their maxi-

mal non-overlapping time is42−41−?12=10, and\ (E1, E2)=1−10/(28−

12)=0.375. Likewise, \ (E1, E3)=0 and\ (E2, E3)=1. Since ?<0G=1, there-

fore,W (E1, E2)=1,W (E1, E3)=0 andW (E2, E3)=1. Obviously, both \ and

W belong to [0, 1] and can reflect its meaning truly.

6.1.3 Similarity weight. The similarity weight between E8 and E 9 is

calculated by U8 9 =
1

\+VW
where V is a weight knob of overlapping

degree and connectivity degree.

Let W = [U8 9 ] be the similarity matrix among requests and L

be the diagonal matrix whose 8-th diagonal element is the sum of

the elements in the 8-th row of W. Let �A be the A -th partitioned

request set and � = ∪
�
A=1�A . Let eA be a � × 1 indicator vector for

the A -th partition, i.e., eA ∈ {0, 1}
� , and have a nonzero component

exactly when the requester is in the A -th partition. Our goal is to

find a good partition E = (e1, e2, . . . , e� ), which follows the above

two properties, i.e.,

min
E

�∑

A=1

e)A (L −W)eA

e)A LeA
=

�∑

A=1

∑
E8 ∈�A ,E9∉�A

U8 9
∑

E8 ∈�A ,E9 ∈� U8 9
. (13)

The popular normalized spectral clustering algorithm can be

adopted to solve this problem. Normally, the normalized spectral

clustering algorithm first relaxes the above problem to be an eigen-

value problem and then rounds the relaxation solution to the inte-

ger solution satisfying the binary constraint.

6.1.4 Finding a relaxation optimization solution. According to [2],

one lower bound of Eq. (13) is given as

min
Y) Y=I

trY) (I − L−1/2WL−1/2)Y =

�∑

9=1

_ 9 , (14)

in which Y ∈ '�×� and _ 9 refers to the 9-th smallest eigenvalue

of matrix I − L−1/2WL−1/2. This bound can be attained at Y = U

where U is a matrix whose columns are the eigenvectors corre-

sponding to the first � eigenvalues of I − L−1/2WL−1/2. The relax-

ation solution of Eq. (13) can be calculated by Ê = L−1/2U.

6.1.5 Rounding the relaxation solution to binary solution. Ê pro-

vides an approximation of E and there may exist non-integer com-

ponents in Ê. Therefore, how to round Ê’s components to be bi-

nary should be studied. A simple :-means algorithm is adopted to

achieve this goal. For each row of Ê, it first normalizes the row to



norm 1, i.e., 48 9 ← 48 9/(
∑�
<=1 48<)

1/2. Then these rows are clus-

tered into � clusters by using a standard :-means algorithm.

6.2 Branch-and-Bound/Greedy Cost Allocation

Suppose that after normalized cut spectral clustering algorithm, all

requests are classified into � partitions, denoted as {�∗A | A = 1, ..., � }.

For each crowdsourcing user, the average Euclidean distance to all

requests in any partition is calculated. Then the user is dispatched

to the partition with the smallest distance. For each generated par-

tition, Algorithm 1 is leveraged to seek the optimal sub-decision.

We use *A [2] (0 ≤ 2 ≤ �) to represent the maximum utility given

the available cost 2 on the A -th partition �∗A .

As the maximum total available cost is limited, we should al-

locate these available costs to different partitions to maximize the

system utility. Let 2A denote the cost allocated on A -th partition and

this problem can be formulated as follows,

max
∑

A

*A [2A ] s. t.
∑

A

2A ≤ �. (15)

The problem is a combinatorial optimization problem. We only

know that *A [2] is monotonously increasing in 2 as Algorithm 1

gives the optimal solution given 2 . Based on this monotonic prop-

erty, we first propose an optimal branch-and-bound search approach

to allocate total available cost.

6.2.1 Branch-and-bound cost allocation. Without loss of general-

ity, in the search process, we assume that the cost {21, 22, · · · , 2 � }

on different partitions is sequentially determined. Then, we have

the following proposition:

Proposition 6.1. 6: is the total amount of system utility gain for

the :-th partition having been branched and ℎ: is the corresponding

cost having been allocated. The upper bound on the total amount of

system utility gain for the remaining � − : partitions is D: = 6: +∑�
A=:+1

*A [� − ℎ: ].

Proof. *A [2] is monotonously increasing in 2 and the remain-

ing � −: partitions all take the maximum available cost. Therefore,

D: provides an upper bound on the system utility gain for the re-

maining � − : partitions. �

Based on Proposition 6.1, the branching process is a depth-first

search over subproblems allocating subset of the available cost,

with the ones of the biggest upper bounds being searched first.

Each time when a leaf node in the search tree is reached, all other

branches with smaller values of upper bounds are pruned. The op-

timal solutionwill be found until all the leaf nodes have been either

pruned or searched.

6.2.2 Greedy cost allocation. Although the branch-and-bound search

process efficiently avoids local optimum and achieves the optimal

cost allocation, its time consumption seems unacceptable as� may

be too large. To cope with large � case, a greedy approach is de-

signed. Specifically, we first give a maximum step length 20 and

keep a temporary cost allocation vector c
′
= {2

′

1, 2
′

2, · · · , 2
′

�
}. Then,

we calculate cost-increment-efficiency of *A in [2
′

8 , 2
′

8 + 20] and

search the cost increment (A∗, 2∗B ) = argmax{
*A [2

′

8+2B ]−*A [2
′

8 ]

2B
|∀A, 2B ≤
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(b) Campus waypoint model

Figure 5: The influence of user scale on system utility under

two different mobility models without movement control.

20}. Update 2
′

A ∗ = 2
′

A ∗ + 2
∗
B . This process is repeated until the cost is

beyond the total available cost.

From our experimental evaluation, *A [2A ] can be treated as an

approximate increasing concave function with some small fluctu-

ation. This characteristic ensures the efficiency of greedy method.

Actually, if *A [2A ] is strict increasing concave, the optimal cost al-

location would be achieved at the equal derivative point by solv-

ing the KKT (Karush–Kuhn–Tucker) condition, i.e., m*<

m2<
=

m*=

m2=
.

The greedy method would achieve this optimal solution in this

case. However, small fluctuation may break this optimality. In our

greedy method, the variable step length in [1, 20] can relieve the

adverse effect of small fluctuation. Therefore, greedy approach can

generally achieve a good solution.

7 PERFORMANCE EVALUATION

7.1 Simulation Setup

In our simulation, we consider an area which is divided into 50×45

regions and each region is a square with side length of 5 meters.

Two mobility models are adopted to simulate the track of users,

i.e., random waypoint model [3] and campus waypoint model [15].

These twomodels depict different occasions: the former onemeans

relatively uniform node densities with simulation areas while the

later one represents non-uniform node densities. The model pa-

rameters are set based on some well-known benchmarks. Specif-

ically, in these two models, one crowdsourcing user’s residence

time in one region follows the Pareto distribution [14] with shape

parameter 5 and scale parameter 2 (2 is the minimum possible of

the residence time). The average view time per request follows the

gamma distribution [26] with shape parameter 4 and scale parame-

ter 2. In each region, the requests come following the Poisson pro-

cess and the total arrival rate _2 in this area is set to be in the

interval [0.01, 0.1].

In order to do comparative analysis, we realize some other bench-

mark algorithms besides our algorithm. The corresponding algo-

rithmic are Region Division (RD) + Branch-and-Bound/Greedy Cost

Allocation, Sequential Scheduling and Greedy Scheduling.

7.2 Movement Control Influence Evaluation

Here, we consider the effects of different user scales and differ-

ent request arrival rates under the two mobility models. The scale

of users in this area would reflect the chance one request can be
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Figure 6: The influence of available cost on system utility.

The left-figure shows random waypoint model with move-

ment control. The right-figure evaluates the total available

cost � on the optimality with _2 = 0.1, � = 3.

served. This reflection is observed visually from Fig. 5, the sys-

tem utility increases as the growth of user scale in this area un-

der both two mobility models. Moreover, different from smooth

growth curves under randomwaypointmodel (Fig. 5(a)), the curves

under campus waypoint model are rough. This may be because

there exist some “hot” regions under campus and the users would

have little possibility of meeting the requests from “cold” regions.

When the requests in “hot" regions are fully satisfied, the system

utility would increase at a slower speed, which is just shown in

Fig. 5(b). Furthermore, we would find that the system utility is low

on the whole and there are many requests which are not satisfied.

As the total length of requests is 3718 (_2 = 0.1), the satisfaction

ratio of requests is only 8.18 percent when 200 users are thrown

into this area even under random waypoint model.

We also evaluate the influence of movement control. Here, we

only consider single employed user case and the results are shown

in Fig. 6(a). On the whole, the system utility increases with the in-

crease of available cost. This relation can be approximately treated

as an increasing concave function. This characteristic would have

a valuable meaning: The system utility would be improved greatly

even with less available cost. Moreover, there exist threshold val-

ues in these curves where the user is fully used. When available

cost exceeds the threshold value, the system utility would not in-

crease. Therefore, in practice, we should rationally regulate the

available cost. In addition, we observe that the satisfaction ratio

would be almost 50 percent with sufficient available cost even with

only one employed user. Almost 4 percent of the cost at maxi-

mum utility point would achieve nearly 10 percent satisfaction ra-

tio. These results indicate the advantage of movement control.

7.3 Comparison with Benchmark Algorithms

7.3.1 Effect of the number of crowdsourcing users � . In Fig. 7(a),

with the increase of crowdsourcing users’ number, all these algo-

rithms can nearly achieve a better system utility. This conforms to

our intuition: The increase of crowdsourcing users means that one

crowdsourcing user can actually serve requests within a smaller

range (less transfer cost). Therefore, the utility-cost ratio can be im-

proved. Namely, the system utility would increase when the total

available cost is fixed. Furthermore, the system utility increment

decreases with the increase of crowdsourcing users. This may be

Table 2: Comparison with Existing Algorithms.

System

Utility

Time Fairness (MAD)

SOF [11] 101 129 98

GBB [11] 112 622 155

User-Centric [4] 506 1850 127

MicroCast [10] 542 3410 130

GPA+B&B 628 3910 136

because the requests seem to be more fully utilized with the in-

crease of crowdsourcing users, which means that in reality we

don’t need to employ too many users in a limited area.

Fig. 7(a) also indicates the advantage of clustering on the level of

requests. Although clustering on the level of requests needs a little

more time consumption (shown in Fig. 7(b)), it can better balance

the requests’ overlapping degree and transfer cost while the region

division only focuses on the transfer cost and neglects the requests’

overlapping degree. We also find that although the greedy cost al-

location method can not ensure the optimality of cost allocation,

the gap is relatively small compared with other algorithms due to

the effect of approximately increasing concave characteristic in Fig.

6(a). Considering the low time complexity, the greedy cost alloca-

tion method seems to be more suitable for the large available cost

case. Fig. 7(b) further illustrates the high time complexity of re-

quest clustering and branch-and-bound more visually.

We show another evaluation metric, i.e., cost allocation fairness.

Cost allocation fairness is measured by mean absolute deviation

(MAD) value of different employed users’ allocated cost. A smaller

MAD value means a better fairness. This metric can sometimes re-

flect the load on different users such as transfer distance or even

profit. Just as shown in Fig. 9(c), all these methods have amoderate

cost allocation fairness. Actually, GPA algorithm adopts normal-

ized cut spectral clustering to partition the requests and the nor-

malized cut spectral clustering can achieve a relatively balanced

partition.

7.3.2 Effect of total available cost � . In Fig. 6(b), all of methods

achieve better system utility with the increase of total available

cost, as bigger� stands formore transfer opportunities.Here, Greedy

has a worst performance, mainly because it does not consider the

cost-effectiveness. Sequential Scheduling can have relatively bet-

ter system utility due to the approximately increasing concave re-

lation between optimal utility and allocated cost. The curves also

shows the advantage of partition and cost allocation in GPA with

branch-and-bound/greedy cost allocation. In addition, the approx-

imate increasing concave relation between system utility and cost

still holds in the case of multiple crowdsourcing users.

7.4 Further Discussion

Based on the comparison with benchmark algorithms, it is intu-

itive to find that GPA with Branch-and-Bound (abbrv. GPA+B&B)

has the optimal system utility. Here, we compare GPA+B&B with

the existing approaches, including SOF [11], GBB [11], User-Centric
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Figure 7: The effect of users’ number � on the optimality, execution time and cost allocation with _2 = 0.1, � = 120.

[4], and MicroCast [10]. In order to evaluate the scheduling strate-

gies in the same condition, we modify these algorithms and set the

key parameters (e.g., # = 5). Table 2 shows the concrete results of

five algorithms from three aspects. It indicates that our algorithm,

i.e., GPA+B&B, has the best system utility and needs the more time

due to the relative complex operations. Although SOF has the least

time and the best fairness, its system utility is worst due to select-

ing an available neighbor at random. Therefore, in the future, we

plan to improve our algorithms to reduce the computational com-

plexity.

8 CONCLUSION

Mobile devices speed up the development of new video applica-

tions and put forward higher demands on current mobile access

network. In this paper, we adopt the crowdsourcing paradigm to

offer incentive for guiding the movement of recruited crowdsourc-

ing users and facilitate the optimization of the movement decision

for high-quality video enhancement. We analyze the influence of

crowdsourcing style on the improvement of D2D communication.

We formulate themovement control decision as a cost-constrained

user recruitment optimization problem. We study in detail how to

optimize movement control decision for single and multiple users.

The effectiveness of our algorithms is evaluated by simulations.

The results demonstrate the crowdsourcing style can guarantee a

higher D2D communication efficiency for video enhancement.
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